基于MATLAB的平面四连杆机构运动学分析

基于MATLAB的平面四连杆机构运动学分析
基于MATLAB的平面四连杆机构运动学分析

一、课程设计内容及要求:

1.对连杆机构运动工作原理及运动参数有一定理解

2.掌握MATLAB基本命令

3.了解MATLAB编程的基本知识,并能编写简单M文件

4.了解MATLAB图形界面设计的基本知识

5.课程设计说明书:应阐述整个课程设计内容,要突出重点和特色,图文并茂,文字通畅。应有目录、摘要及关键词、正文、参考文献等内容,字数一般不少于6000字。

二、主要参考资料

有关复杂刀具参数计算及结构设计、机械制造工艺与设备的手册与图册。

三、课程设计进度安排

指导教师(签名):时间:

教研室主任(签名):时间:

院长(签名):时间:

目录

1平面连杆机构的运动分析 (1)

1.1机构运动分析的任务、目的和方法 (1)

1.2机构的工作原理 (1)

1.3机构的数学模型的建立 (1)

1.3.1建立机构的闭环矢量位置方程 (1)

1.3.2求解方法 (2)

2 基于MATLAB程序设计 (4)

2.1程序流程图 (4)

2.2 M文件编写 (6)

2.3程序运行结果输出 (7)

3基于MATLAB图形界面设计 (11)

3.1界面设计 (11)

3.2代码设计 (12)

4 小结 (17)

参考文献 (18)

1 平面连杆机构的运动分析

1.1 机构运动分析的任务、目的和方法

曲柄摇杆机构是平面连杆机构中最基本的由转动副组成的四杆机构,它可以用来实现转动和摆动之间运动形式的转换或传递动力。

对四杆机构进行运动分析的意义是:在机构尺寸参数已知的情况下,假定主动件(曲柄)做匀速转动,撇开力的作用,仅从运动几何关系上分析从动件(连杆、摇杆)的角位移、角速度、角加速度等运动参数的变化情况。还可以根据机构闭环矢量方程计算从动件的位移偏差。上述这些内容,无论是设计新的机械,还是为了了解现有机械的运动性能,都是十分必要的,而且它还是研究机械运动性能和动力性能提供必要的依据。

机构运动分析的方法很多,主要有图解法和解析法。当需要简捷直观地了解机构的某个或某几个位置的运动特性时,采用图解法比较方便,而且精度也能满足实际问题的要求。而当需要精确地知道或要了解机构在整个运动循环过程中的运动特性时,采用解析法并借助计算机,不仅可获得很高的计算精度及一系列位置的分析结果,并能绘制机构相应的运动线图,同时还可以把机构分析和机构综合问题联系起来,以便于机构的优化设计。

1.2 机构的工作原理

在平面四杆机构中,其具有曲柄的条件为:

a.各杆的长度应满足杆长条件,即:

最短杆长度+最长杆长度≤其余两杆长度之和。

b.组成该周转副的两杆中必有一杆为最短杆,且其最短杆为连架杆或机架(当最短杆

为连架杆时,四杆机构为曲柄摇杆机构;当最短杆为机架时,则为双曲柄机构)。 在如下图1所示的曲柄摇杆机构中,构件AB 为曲柄,则B 点应能通过曲柄与连杆两次共线的位置。

1.3 机构的数学模型的建立

1.3.1建立机构的闭环矢量位置

方程

在用矢量法建立机构的位置方程时,需将构件用矢量来表示,并作出机构的封闭矢量多边形。如图1所示,先建立一直角坐标系。设各构件的长度分别为1L 、2L 、3L 、4L ,其方位角为1θ、2θ、3θ、

4θ。以各杆矢量组成一个封闭矢

量多边形,即ABCDA 。其个矢量 图1 四杆机构简图

之和必等于零。即:

2314L L L L +=+

式1

式1 为图1所示四杆机构的封闭矢量位置方程式。对于一个特定的四杆机构,其各构

件的长度和原动件2的运动规律,即2θ为已知,而1θ=0,故由此矢量方程可求得未知方位角3θ、4θ。

角位移方程的分量形式为:

223311442

2331144cos cos cos cos sin sin sin sin L L L L L L L L θθθθθθθθ+=+????+=+?? 式2 闭环矢量方程分量形式对时间求一阶导数(角速度方程)为:

33344422233

3444222sin sin sin cos cos cos L L L L L L ωθωθωθωθωθωθ-+=????-=-?? 式3 其矩阵形式为:

3222334433444224s i n

s i n s i n c o s s i n c o s L L L L L L ωωθθθθθωθω-??????= ?

? ?--????

?? 式4 联立式3两公式可求得:

32224334sin()/[sin()]L L ωωθθθθ=--- 式5 42223443sin()/[sin()]L L ωωθθθθ=-- 式6

闭环矢量方程分量形式对时间求二阶导数(角加速度方程)矩阵形式为:

333

44334442222222

2233

34

4422222

2233333444sin sin cos sin sin cos cos cos sin sin sin sin L L L L L L L L L L L L αθθθθααθωθωθωθαθωθωθωθ-??

?? ?

?-????

??++-=

? ?

-++-?? 式7

由式7可求得加速度:

222

2224333444

3434cos()cos()sin()L L L L ωθθωθθωαθθ----+=

- 式8 2222223444333

4443cos()cos()sin()

L L L L ωθθωθθωαθθ---+=

- 式9 注:式1~式9中,i L (i=1,2,3,4)分别表示机架1、曲柄2、连杆3、摇杆4的长度;i θ(i=1,2,3,4)是各杆与x 轴的正向夹角,逆时针为正,顺时针为负,单位为rad ;

i ω是各杆的角速度,

i i d dt θω=,单位为/rad s ; i α为各杆的角加速度,2i i i d d dt dt

ωθα==,单位为2/rad s 。

1.3.2求解方法

(1)求导中应用了下列公式:

()'''sin cos cos cos sin sin d d dt dt

d d dt dt uv vu uv θθθωθθθθωθ??

==????

??=-=-?

???

??=+????

式10 (2)在角位移方程分量形式(式2)中,由于假定机架为参考系,矢量1与x 轴重合,1θ=0,则有非线性超越方程组:

1342233144234223344(,)cos cos cos 0(,)sin sin sin 0f L L L L f L L L θθθθθθθθθθ=+--=??

??=+-=??

式11 可以借助牛顿-辛普森数值解法或Matlab 自带的fsolve 函数求出连杆3的角位移3θ和摇杆4的角位移4θ。

(3)求解具有n 个未知量i x (i=1,2,…,n )的线性方程组:

111122112111221211221n n n n n n nn n n a x a x a x b a x a x a x b a x a x a x b +++=??

??+++=????????+++=??

式12 式中,系列矩阵A 是一个*n n 阶方阵:

1111n m mn a a A a a ?? ?

= ? ???

式13

A 的逆矩阵为1A -;常数项b 是一个n 维矢量:

12(,,,)T n b b b b = 式14

因此,线性方程组解的矢量为:

12(,,,)T T n x x x x A b == 式15

式11是求解连杆3和摇杆4角速度和角加速度的依据。

2基于MATLAB程序设计

MATLAB是Mathworks公司推出的交互式计算分析软件,具有强大的运算分析功能,具有集科学计算、程序设计和可视化于一体的高度集成化软件环境,是目前国际上公认的最优秀的计算分析软件之一,被广泛应用于自动控制、信号处理、机械设计、流体力学和数理统计等工程领域。通过运算分析,MATLAB 可以从众多的设计方案中寻找最佳途径,获取最优结果,大大提高了设计水平和质量。四连杆机构的解析法同样可以用MA TLAB的计算工具来求值,并结合MATLAB的可视化手段,把各点的计算值拟合成曲线,得到四连杆机构的运动仿真轨迹。

2.1 程序流程图

2.2 M 文件编写

首先创建函数FoutBarPosition ,函数fsolve 通过他确定34,θθ。

function t=fourbarposition(th,th2,L2,L3,L4,L1) t=[L2*cos(th2)+L3*cos(th(1))-L4*cos(th(2))-L1;… L2*sin(th2)+L3*sin(th(1))-L4*sin(th(2))]; 主程序如下:

disp ' * * * * * * 平面四杆机构的运动分析 * * * * * *'

L1=304.8;L2=101.6;L3=254.0;L4=177.8; %给定已知量,各杆长L1,L2,L3,L4

th2=[0:1/6:2]*pi; %曲柄输入角度从0至360度,步长为pi/6 th34=zeros(length(th2),2); %建立一个N 行2列的零矩阵,第一列存放options=optimset('display','off'); %θ_3,第二列存放θ_3

for m=1:length(th2) %建立for 循环,求解θ_3,θ_4

th34(m,:)=fsolve('fourbarposition',[1 1],… %调用fsove 函数求解关于θ_3,θ_4 options,th2(m),L2,L3,L4,L1); %的非线性超越方程,结果保存在th34中 end

y=L2*sin(th2)+L3*sin(th34(:,1)'); %连杆3的D 端点Y 坐标值 x=L2*cos(th2)+L3*cos(th34(:,1)'); %连杆3的D 端点X 坐标值

xx=[L2*cos(th2)]; %连杆3的C 端点X 坐标值 yy=[L2*sin(th2)]; %连杆3的C 端点Y 坐标值 figure(1)

plot([x;xx],[y;yy],'k',[0 L1],[0 0],… %绘制连杆3的几个位置点

'k--^',x,y,'ko',xx,yy,'ks') title('连杆3的几个位置点') xlabel('水平方向') ylabel('垂直方向')

axis equal %XY 坐标均衡

th2=[0:2/72:2]*pi; %重新细分曲柄输入角度θ_2,步长为5度 th34=zeros(length(th2),2);

options=optimset('display','off'); for m=1:length(th2)

th34(m,:)=fsolve('fourbarposition',[1 1],… options,th2(m),L2,L3,L4,L1); end

figure(2)

plot(th2*180/pi,th34(:,1),th2*180/pi,th34(:,2)) %绘制连杆3的角位移关于曲柄2的角位移图 plot(th2*180/pi,th34(:,1)*180/pi,…

th2*180/pi,th34(:,2)*180/pi) %绘制摇杆4的角位移关于曲柄2的角位移图 axis([0 360 0 170]) %确定XY 边界值 grid %图形加网格 xlabel('主动件转角\theta_2(度)') ylabel('从动件角位移(度)') title('角位移线图')

text(120,120,'摇杆4角位移')

text(150,40,'连杆3角位移')

w2=250; %设定曲柄角速度

for i=1:length(th2)

A=[-L3*sin(th34(i,1)) L4*sin(th34(i,2));…

L3*cos(th34(i,1)) -L4*cos(th34(i,2))];

B=[w2*L2*sin(th2(i)); -w2*L2*cos(th2(i))];

w=inv(A)*B;

w3(i)=w(1);

w4(i)=w(2);

end

figure(3)

plot(th2*180/pi,w3,th2*180/pi,w4); %绘制角速度线图

axis([0 360 -175 200])

text(50,160,'摇杆4角速度(\omega_4)')

text(220,130,'连杆3角速度(\omega_3)')

grid

xlabel('主动件转角\theta_2(度)')

ylabel('从动件角速度(rad\cdot s^{-1})')

title('角速度线图')

for i=1:length(th2)

C=[-L3*sin(th34(i,1)) L4*sin(th34(i,2));…

L3*cos(th34(i,1)) -L4*cos(th34(i,2))];

D=[w2^2*L2*cos(th2(i))+w3(i)^2*L3*cos(th34(i,1))-w4(i)^2*L4*cos(th34(i,2));...

w2^2*L2*sin(th2(i))+w3(i)^2*L3*sin(th34(i,1))-w4(i)^2*L4*sin(th34(i,2))];

a=inv(C)*D;

a3(i)=a(1);

a4(i)=a(2);

end

figure(4)

plot(th2*180/pi,a3,th2*180/pi,a4); %绘制角加速度线图

axis([0 360 -70000 65000])

text(50,50000,'摇杆4角加速度(\alpha_4)')

text(220,12000,'连杆3角加速度(\alpha_3)')

grid

xlabel('从动件角加速度')

ylabel('从动件角加速度(rad\cdot s^{-2})')

title('角加速度线图')

disp '曲柄转角连杆转角-摇杆转角-连杆角速度-摇杆角速度-连杆加速度-摇杆加速度' %输出:四杆机构一个运动周期内角位移,角速度,角加速度数据

ydcs=[th2'*180/pi,th34(:,1)*180/pi,th34(:,2)*180/pi,w3',w4',a3',a4'];

disp(ydcs)

2.3 程序运行结果输出

>> * * * * * * 平面四杆机构的运动分析 * * * * * *

曲柄转角连杆转角-摇杆转角-连杆角速度-摇杆角速度-连杆加速度-摇杆加速度 1.0e+004 *

0 0.0044 0.0097 -0.0125 -0.0125 -0.5478 4.8458 0.0005 0.0042 0.0094 -0.0126 -0.0107 0.2300 5.5630 0.0010 0.0039 0.0092 -0.0124 -0.0086 0.8946 6.0520 0.0015 0.0037 0.0091 -0.0119 -0.0065 1.4143 6.2982 0.0020 0.0034 0.0090 -0.0114 -0.0043 1.7801 6.3174 0.0025 0.0032 0.0089 -0.0107 -0.0021 2.0027 6.1467 0.0030 0.0030 0.0089 -0.0100 0.0000 2.1046 5.8339 0.0035 0.0028 0.0089 -0.0093 0.0020 2.1134 5.4272 0.0040 0.0026 0.0090 -0.0085 0.0038 2.0566 4.9687 0.0045 0.0025 0.0091 -0.0078 0.0054 1.9578 4.4918 0.0050 0.0023 0.0092 -0.0072 0.0069 1.8356 4.0198 0.0055 0.0022 0.0093 -0.0065 0.0082 1.7040 3.5680 0.0060 0.0021 0.0095 -0.0060 0.0094 1.5725 3.1450 0.0065 0.0019 0.0097 -0.0055 0.0104 1.4474 2.7545 0.0070 0.0018 0.0099 -0.0050 0.0113 1.3328 2.3968 0.0075 0.0017 0.0102 -0.0045 0.0121 1.2307 2.0702 0.0080 0.0017 0.0104 -0.0041 0.0128 1.1425 1.7716 0.0085 0.0016 0.0107 -0.0037 0.0134 1.0687 1.4971 0.0090 0.0015 0.0110 -0.0034 0.0138 1.0095 1.2426 0.0095 0.0014 0.0112 -0.0030 0.0142 0.9653 1.0035 0.0100 0.0014 0.0115 -0.0027 0.0145 0.9364 0.7752 0.0105 0.0013 0.0118 -0.0024 0.0148 0.9232 0.5530 0.0110 0.0013 0.0121 -0.0020 0.0149 0.9269 0.3319 0.0115 0.0013 0.0124 -0.0017 0.0150 0.9485 0.1069 0.0120 0.0012 0.0127 -0.0014 0.0150 0.9899 -0.1276 0.0125 0.0012 0.0130 -0.0010 0.0149 1.0530 -0.3773 0.0130 0.0012 0.0133 -0.0006 0.0147 1.1404 -0.6481 0.0135 0.0012 0.0136 -0.0002 0.0145 1.2544 -0.9455 0.0140 0.0012 0.0139 0.0002 0.0141 1.3967 -1.2743 0.0145 0.0012 0.0142 0.0008 0.0136 1.5677 -1.6368 0.0150 0.0012 0.0144 0.0013 0.0129 1.7648 -2.0314 0.0155 0.0012 0.0147 0.0020 0.0121 1.9807 -2.4495 0.0160 0.0013 0.0149 0.0027 0.0112 2.2018 -2.8735 0.0165 0.0013 0.0151 0.0035 0.0101 2.4071 -3.2754 0.0170 0.0014 0.0153 0.0044 0.0089 2.5697 -3.6186 0.0175 0.0015 0.0155 0.0053 0.0076 2.6616 -3.8650 0.0180 0.0016 0.0156 0.0063 0.0063 2.6609 -3.9849 0.0185 0.0018 0.0157 0.0072 0.0049 2.5591 -3.9674 0.0190 0.0019 0.0158 0.0080 0.0035 2.3638 -3.8244

0.0195 0.0021 0.0159 0.0088 0.0022 2.0959 -3.5866 0.0200 0.0023 0.0159 0.0095 0.0010 1.7823 -3.2931 0.0205 0.0025 0.0159 0.0100 -0.0001 1.4487 -2.9815 0.0210 0.0027 0.0159 0.0105 -0.0011 1.1152 -2.6809 0.0215 0.0029 0.0159 0.0108 -0.0020 0.7942 -2.4103 0.0220 0.0031 0.0158 0.0111 -0.0028 0.4916 -2.1794 0.0225 0.0033 0.0158 0.0112 -0.0035 0.2086 -1.9913 0.0230 0.0036 0.0157 0.0112 -0.0042 -0.0565 -1.8450 0.0235 0.0038 0.0156 0.0111 -0.0048 -0.3071 -1.7375 0.0240 0.0040 0.0155 0.0110 -0.0054 -0.5475 -1.6650 0.0245 0.0042 0.0154 0.0108 -0.0060 -0.7817 -1.6233 0.0250 0.0044 0.0153 0.0104 -0.0065 -1.0139 -1.6089 0.0255 0.0046 0.0151 0.0100 -0.0071 -1.2479 -1.6181 0.0260 0.0048 0.0150 0.0096 -0.0077 -1.4868 -1.6480 0.0265 0.0050 0.0148 0.0090 -0.0082 -1.7336 -1.6955 0.0270 0.0052 0.0146 0.0084 -0.0088 -1.9905 -1.7574 0.0275 0.0054 0.0145 0.0076 -0.0095 -2.2588 -1.8304 0.0280 0.0055 0.0143 0.0068 -0.0101 -2.5391 -1.9100 0.0285 0.0056 0.0141 0.0058 -0.0108 -2.8305 -1.9910 0.0290 0.0057 0.0138 0.0048 -0.0115 -3.1300 -2.0660 0.0295 0.0058 0.0136 0.0037 -0.0122 -3.4326 -2.1255 0.0300 0.0059 0.0133 0.0024 -0.0130 -3.7297 -2.1572 0.0305 0.0059 0.0131 0.0011 -0.0137 -4.0091 -2.1451 0.0310 0.0059 0.0128 -0.0004 -0.0145 -4.2538 -2.0696 0.0315 0.0059 0.0125 -0.0019 -0.0152 -4.4419 -1.9079 0.0320 0.0058 0.0122 -0.0035 -0.0158 -4.5473 -1.6352 0.0325 0.0058 0.0119 -0.0051 -0.0163 -4.5411 -1.2273 0.0330 0.0056 0.0115 -0.0066 -0.0166 -4.3954 -0.6661 0.0335 0.0055 0.0112 -0.0081 -0.0167 -4.0889 0.0551 0.0340 0.0053 0.0109 -0.0095 -0.0166 -3.6129 0.9243 0.0345 0.0051 0.0105 -0.0106 -0.0161 -2.9781 1.9058 0.0350 0.0049 0.0102 -0.0115 -0.0152 -2.2178 2.9395 0.0355 0.0047 0.0099 -0.0122 -0.0140 -1.3857 3.9473 0.0360 0.0044 0.0097 -0.0125 -0.0125 -0.5478 4.8458

图形输出:

图2 连杆3的几个位置点

图3 角位移线图

图4 角加速度线图

图5 角加速度线图

3 基于MATLAB图形界面设计

所谓图形用户界面, 简称为GU I (Graph ic U ser In terface) , 是指包含了各种图形控制对象, 如图形窗口、菜单、对话框以及文本等内容的用户界面。利用这些用户界面, 用户可以和计算机之间进行信息交流。用户可以通过某种方式来选择或者激活这些图形对象, 来运行一些特性的M 文件。最常见的激活方式是利用鼠标或者其它设备来点击这些对象。对于一个用户来说, 图形用户界面就是他所面对的应用程序, 对图形界面的操作直接影响应用程序的应用前途。对于以往专门用于科学计算的语言, 如FORTRAN语言等, 编写图形界面的功能较弱, 因而用其开发的程序, 其界面往往不够友好, 用户使用起来很不方便。而目前流行的可视化语言, 对科学计算的功能又相对弱一些。MATLAB提供了非常强大的编写图形用户界面的功能。用户只和前台界面下的控件发生交互,而所有运算、绘图等内部操作都封装在内部,终端用户不需要区追究这些复杂过程的代码。图形用户界面大大提高用户使用MATLAB程序的易用性。因此,学习MA TLAB图形用户界面编程,即GUI程序的创建,是MA TLAB编程用户应该掌握的重要一环。

对于一个MATLAB 中的图形用户界面, 它的设计过程一般可以分为两个部分:

①用户界面的外观设计。在这里, 主要是通过不同的对话框、按钮、文本框等许多工具的使用, 设计出一个图形用户界面。同时也应搞清楚这个图形界面的功能是什么, 也即在图形界面上的操作会引发什么样的结果。

②图形界面的完成。在这里, 用户将根据在外观设计阶段所确定的图形界面的功能, 针对各个不同的图形对象来编写出能够实现该功能的函数代码, 确保这个图形界面能够完成所预定的功能。

3.1界面设计

首先我们新建一个GUI文件,如下图所示:

图6 新建GUI文件

选择Blank GUI(Default)。

进入GUI开发环境以后添加5个编辑文本框,8个静态文本框,和1个下拉菜单。利用菜单编辑器,创建Open、Print、Close三个菜单。创建好GUI界面需要的各交互控件并调整好大概的位置后,设置这些控件的属性。最后的界面效果如下图示:

图7 界面效果

3.2 代码设计

(1)打开M文件编辑器(M-file Edit),点击向下的三角图标,可以看到各个对象的回调函数(Callback),某些对象的创建函数或打开函数等。通过选中相应项就可以跳动对应函数位置进行程序编辑。

选中’edit_callback’选项,光标跳到’function edit1_Callback(hObject, eventdata, handles)’下面空白处,添加以下代码:

user_entry=str2double(get(hObject,'String'));

if isnan(user_entry)

errordlg('请输入数值!','Bad Input')

end

该语句严格限制编辑框内必须输入数值,否则出现错误对话框(如下图所示)。同理在

其他四个编辑框的回调函数下输入相同的代码。

图8 错误对话框

(2)打开M文件编辑器(M-file Edit),点击向下的三角图标,设置下拉菜单返回函数,光标跳到’function popupmenu1_Callback(hObject, eventdata, handles)’下面空白处。由于下拉菜单是本界面设计关键控件,与本设计相关的程序都放在这个返回函数下。添加代码如下:

L1=str2double(get(handles.edit1,'String'));

L2=str2double(get(handles.edit2,'String'));

L3=str2double(get(handles.edit3,'String'));

L4=str2double(get(handles.edit4,'String'));

w2=str2double(get(handles.edit5,'String'));

th2=[0:2/72:2]*pi;

th34=zeros(length(th2),2);

options=optimset('display','off');

for m=1:length(th2)

th34(m,:)=fsolve('fourbarposition',[1 1],options,th2(m),L2,L3,L4,L1);

end

w2=250;

for i=1:length(th2)

A=[-L3*sin(th34(i,1)) L4*sin(th34(i,2)); L3*cos(th34(i,1)) -L4*cos(th34(i,2))];

B=[w2*L2*sin(th2(i)); -w2*L2*cos(th2(i))];

w=inv(A)*B;

w3(i)=w(1);

w4(i)=w(2);

end

for i=1:length(th2)

C=[-L3*sin(th34(i,1)) L4*sin(th34(i,2));L3*cos(th34(i,1)) -L4*cos(th34(i,2))];

D=[w2^2*L2*cos(th2(i))+w3(i)^2*L3*cos(th34(i,1))-w4(i)^2*L4*cos(th34(i,2));...

w2^2*L2*sin(th2(i))+w3(i)^2*L3*sin(th34(i,1))-w4(i)^2*L4*sin(th34(i,2))];

a=inv(C)*D;

a3(i)=a(1);

a4(i)=a(2);

end

val=get(hObject,'Value');

str=get(hObject,'String');

switch str{val}

case '连杆3的几个位置点'

th2=[0:1/6:2]*pi;

th34=zeros(length(th2),2);

options=optimset('display','off');

for m=1:length(th2)

th34(m,:)=fsolve('fourbarposition',[1 1],options,th2(m),L2,L3,L4,L1);

end

y=L2*sin(th2)+L3*sin(th34(:,1)');

x=L2*cos(th2)+L3*cos(th34(:,1)');

xx=[L2*cos(th2)];

yy=[L2*sin(th2)];

plot([x;xx],[y;yy],'k',[0 L1],[0 0],'k--^',x,y,'ko',xx,yy,'ks')

title('连杆3的几个位置点')

xlabel('水平方向')

ylabel('垂直方向')

axis equal

grid on

case '角位移线图'

plot(th2*180/pi,th34(:,1)*180/pi,th2*180/pi,th34(:,2)*180/pi)

axis([0 360 0 170])

grid on

xlabel('主动件转角\theta_2(度)')

ylabel('从动件角位移(度)')

title('角位移线图')

text(120,120,'摇杆4角位移')

text(150,40,'连杆3角位移')

case '角速度线图'

plot(th2*180/pi,w3,th2*180/pi,w4);

axis([0 360 -175 200])

text(50,160,'摇杆4角速度(\omega_4)')

text(220,130,'连杆3角速度(\omega_3)')

grid on

xlabel('主动件转角\theta_2(度)')

ylabel('从动件角速度(rad\cdot s^{-1})')

title('角速度线图')

case '角加速度线图'

plot(th2*180/pi,a3,th2*180/pi,a4);

axis([0 360 -50000 65000])

text(50,50000,'摇杆4角加速度(\alpha_4)')

text(220,12000,'连杆3角加速度(\alpha_3)')

grid on

xlabel('主动件转角\theta_2(度)')

ylabel('从动件角加速度(rad\cdot s^{-2})')

title('角加速度线图')

end

guidata(hObject,handles)

%

其中,guidata(hObject,handles)命令用于更新句柄,当输入不同参数是,程序能够做出相应的相应。

(3)打开M文件编辑器(M-file Edit),点击向下的三角图标,在Open菜单回调函数下添加

以下代码:

file = uigetfile('*.fig');

if ~isequal(file, 0)

open(file);

end

此菜单用以打开fig文件。其相应界面如图9所示:

图9

(4)打开M文件编辑器(M-file Edit),点击向下的三角图标,在Print菜单回调函数下添加以下代码:

printdlg(handles.figure1) %用于图形输出。(5)打开M文件编辑器(M-file Edit),点击向下的三角图标,在Close菜单回调函数下添加

以下代码:

selection = questdlg(['Close ' get(handles.figure1,'Name') '?'],...

['Close ' get(handles.figure1,'Name') '...'],'Yes','No','Yes');

if strcmp(selection,'No')

return;

end

delete(handles.figure1)

此菜单用于关闭界面,其响应界面如图10所示:

图10

(6)完成M文件编写后,运行程序进行检验,单击图标或M文件工具栏的图标,在编辑栏输入个构件参数,运行结果如图11:

图11 界面运行效果图

分别点击下拉菜单下各选项,则在绘图区域分别显示图2~图5。

在本次基于MA TLAB平面四杆机构机构的运动分析课程设计中,不仅用到了MATLAB 的m语言编程,还有GUI图形用户界面设计。对于课程的设计来说,m语言本身来说,功能相当强大,但是由于其复杂的编程方法,让大多数初学者望而却步;而GUI图形界面则正好弥补了它的不足,它采用的是所见即所得的编程方式,用它来做软件的界面就如图制作网页一样简单明了,用它制作出来的软件不需要太多的编程知识都可以轻松搞定;在此次课程设计中,本人尽量扬长避短,把这些工具的优点结合到一起,发挥其最大的作用。通过此次课程设计,不仅使我们对使我们对四杆机构有了进一步认识,并且使我们认识到计算机技术对工程应用的重要性。本此设计凝结了团队合作的结晶,是我们利用三周的时间努力学习、设计的成果,同时,在设计过成中得到了郑雪飞老师的悉心指导,在此表示衷心的感谢!

[1] 孙桓,陈作模.机械原理[M].7版.北京:高等教育出版社,2006.

[2] 符炜.机构设计学.[M].1版. 长沙:中南工业大学出版社,1995.

[3] MATLAB原理与工程应用[M].1版.北京:电子工业出版社,2002.

[4] https://www.360docs.net/doc/b61679450.html,

电子版源文件下载地址:

https://https://www.360docs.net/doc/b61679450.html,/s/1smS1vOD 密码:kl7h

MATLAB程序:已知三个位置设计平面四杆机构求解程序(位移矩阵法)

%MATLAB程序:已知三个位置设计平面四杆机构求解程序(位移矩阵法) clear;clc; %凡是变量名前带v的为数值变量,不带的是符号变量 vxp1=0; vyp1=0; vsita1=0*pi/180; vxp2=-2; vyp2=6; vsita2=40*pi/180; vxp3=-10; vyp3=8; vsita3=90*pi/180; %精确位置P1,P2,P3及各角度 vsita12=vsita2-vsita1; vsita13=vsita3-vsita1; vxa=-10; vya=-2; vxd=-5; vyd=-2; %选定A,D点 %所有数值均在此确定,更改此处即可解出不同数值的四杆机构位移矩阵方程 syms xp1 yp1 xp2 yp2 xp3 yp3 sita12 sita13; syms xa ya xb1 yb1 xb2 yb2 xb3 yb3; f1='(xb2-xa)^2+(yb2-ya)^2=(xb1-xa)^2+(yb1-ya)^2'; f2='(xb3-xa)^2+(yb3-ya)^2=(xb1-xa)^2+(yb1-ya)^2'; %前两个机构方程 f3='xb2=cos(sita12)*xb1-sin(sita12)*yb1+xp2-xp1*cos(sita12)+yp1*sin(sita12)'; f4='yb2=sin(sita12)*xb1+cos(sita12)*yb1+yp2-xp1*sin(sita12)-yp1*cos(sita12)'; %由第一个位移矩阵方程得出 f5='xb3=cos(sita13)*xb1-sin(sita13)*yb1+xp3-xp1*cos(sita13)+yp1*sin(sita13)'; f6='yb3=sin(sita13)*xb1+cos(sita13)*yb1+yp3-xp1*sin(sita13)-yp1*cos(sita13)'; %由第二个位移矩阵方程得出 f1=subs(f1,{xa,ya},{vxa,vya}); f2=subs(f2,{xa,ya},{vxa,vya}); f3=subs(f3,{xp1,xp2,yp1,sita12},{vxp1,vxp2,vyp1,vsita12}); f4=subs(f4,{xp1,yp1,yp2,sita12},{vxp1,vyp1,vyp2,vsita12}); f5=subs(f5,{xp1,xp3,yp1,sita13},{vxp1,vxp3,vyp1,vsita13}); f6=subs(f6,{xp1,yp1,yp3,sita13},{vxp1,vyp1,vyp3,vsita13}); %代入具体数值 [xb1,xb2,xb3,yb1,yb2,yb3]=solve(f1,f2,f3,f4,f5,f6); %解方程 vxb1=vpa(xb1); vyb1=vpa(yb1); vxb2=vpa(xb2); vyb2=vpa(yb2); vxb3=vpa(xb3); vyb3=vpa(yb3); (vxb1-vxa)^2+(vyb1-vya)^2; (vxb2-vxa)^2+(vyb2-vya)^2; (vxb3-vxa)^2+(vyb3-vya)^2; %去掉这三行分号可验证B点三个位置是否距离A点相等 syms xd yd xc1 yc1 xc2 yc2 xc3 yc3;

平面四杆机构的运动仿真模型分析

平面四杆机构的运动仿真模型分析 1前言 平面四杆机构是是平面连杆机构的基础,它虽然结构简单,但其承载能力大,而且同样能够实现多种运动轨迹曲线和运动规律,因而在工程实践中得到广泛应用。 平面四杆机构的运动分析, 就是对机构上某点的位移、轨迹、速度、加速度进行分析, 根据原动件的运动规律, 求解出从动件的运动规律。平面四杆机构的运动设计方法有很多,传统的有图解法、解析法和实验法。随着计算机技术的飞速发展,机构设计及运动分析已逐渐脱离传统方法,取而代之的是计算机仿真技术。本文在UG NX5环境下对平面四杆机构进行草图建模,通过草图中的尺寸约束、几何约束及动画尺寸等功能确定各连杆的尺寸,之后建立相应的连杆、运动副及运动驱动,对建立的运动模型进行运动学分析,给出构件上某点的运动轨迹及其速度和加速度变化规律曲线,文章最后简要分析几个应用于工程的平面四杆机构实例。 2平面四杆机构的建模 2.1问题的提出 平面四杆机构因其承载能力大,可以满足或近似满足很多的运动规律,所以其应用非常广泛,本文以基于曲柄摇杆机构的物料传送机构为例,讨论其建模及运动分析。 如图1所示,ABCD为曲柄摇杆机构,曲柄AB为主动件,机构在运动中要求连杆BC的延伸线上E点保持近似直线运动,其中直线轨迹为工作行程,圆弧轨迹为回程或空程,从而实现物料传送的功能。

2.2平面四杆机构的建模 由于物料传送机构为曲柄摇杆机构,所以它符合曲柄存在条件。根据机械原理课程中的应用实例[1],选取AB=100,BC=CD=CE=250,AD=200,单位均为毫米。 在UG NX5的Sketch环境里,创建如图2所示的草图,并作相应的尺寸约束和几何约束,其中EE'为通过E点的水平轨迹参考线,用以检验E点的工作行程运动轨迹。现通过草图里的尺寸动画功能,令AB与AD的夹角从0°到360°变化,可看到E点的变化轨迹为直线和圆弧,如图3所示为尺寸动画的四个截图,其中图3(a)中的E点为水平轨迹的起点,图3(b)中的E点为水平轨迹的中点,图3(c)中的E点为水平轨迹的终点,而图3(d)中的E点为圆弧轨迹(图中未画出)即回程的中点。 如E点轨迹不符合设计要求,则可适当调整各杆件的尺寸,再通过尺寸动画功能检验。

平面机构的运动分析习题和答案

2 平面机构的运动分析 1.图 示 平 面 六 杆 机 构 的 速 度 多 边 形 中 矢 量 ed → 代 表 , 杆4 角 速 度 ω4的 方 向 为 时 针 方 向。 2.当 两 个 构 件 组 成 移 动 副 时 ,其 瞬 心 位 于 处 。当 两 构 件 组 成 纯 滚 动 的 高 副 时, 其 瞬 心 就 在 。当 求 机 构 的 不 互 相 直 接 联 接 各 构 件 间 的 瞬 心 时, 可 应 用 来 求。 3.3 个 彼 此 作 平 面 平 行 运 动 的 构 件 间 共 有 个 速 度 瞬 心, 这 几 个 瞬 心 必 定 位 于 上。 含 有6 个 构 件 的 平 面 机 构, 其 速 度 瞬 心 共 有 个, 其 中 有 个 是 绝 对 瞬 心, 有 个 是 相 对 瞬 心。 4.相 对 瞬 心 与 绝 对 瞬 心 的 相 同 点 是 ,不 同 点 是 。 5.速 度 比 例 尺 的 定 义 是 , 在 比 例 尺 单 位 相 同 的 条 件 下, 它 的 绝 对 值 愈 大, 绘 制 出 的 速 度 多 边 形 图 形 愈 小。 6.图 示 为 六 杆 机 构 的 机 构 运 动 简 图 及 速 度 多 边 形, 图 中 矢 量 cb → 代 表 , 杆3 角 速 度ω3 的 方 向 为 时 针 方 向。 7.机 构 瞬 心 的 数 目N 与 机 构 的 构 件 数 k 的 关 系 是 。 8.在 机 构 运 动 分 析 图 解 法 中, 影 像 原 理 只 适 用 于 。

9.当 两 构 件 组 成 转 动 副 时, 其 速 度 瞬 心 在 处; 组 成 移 动 副 时, 其 速 度 瞬 心 在 处; 组 成 兼 有 相 对 滚 动 和 滑 动 的 平 面 高 副 时, 其 速 度 瞬 心 在 上。 10..速 度 瞬 心 是 两 刚 体 上 为 零 的 重 合 点。 11.铰 链 四 杆 机 构 共 有 个 速 度 瞬 心,其 中 个 是 绝 对 瞬 心, 个 是 相 对 瞬 心。 12.速 度 影 像 的 相 似 原 理 只 能 应 用 于 的 各 点, 而 不 能 应 用 于 机 构 的 的 各 点。 13.作 相 对 运 动 的3 个 构 件 的3 个 瞬 心 必 。 14.当 两 构 件 组 成 转 动 副 时, 其 瞬 心 就 是 。 15.在 摆 动 导 杆 机 构 中, 当 导 杆 和 滑 块 的 相 对 运 动 为 动, 牵 连 运 动 为 动 时, 两 构 件 的 重 合 点 之 间 将 有 哥 氏 加 速 度。 哥 氏 加 速 度 的 大 小 为 ; 方 向 与 的 方 向 一 致。 16.相 对 运 动 瞬 心 是 相 对 运 动 两 构 件 上 为 零 的 重 合 点。 17.车 轮 在 地 面 上 纯 滚 动 并 以 常 速 v 前 进, 则 轮缘 上 K 点 的 绝 对 加 速 度 a a v l K K K KP ==n /2 。 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -( ) 18.高 副 两 元 素 之 间 相 对 运 动 有 滚 动 和 滑 动 时, 其 瞬 心 就 在 两 元 素 的 接 触 点。- - - ( ) 19.在 图 示 机 构 中, 已 知ω1 及 机 构 尺 寸, 为 求 解C 2 点 的 加 速 度, 只 要 列 出 一 个 矢 量 方 程 r r r r a a a a C B C B C B 222222=++n t 就 可 以 用 图 解 法 将 a C 2求 出。- - - - - - - - - - - - - - - - - - ( ) 20.在 讨 论 杆2 和 杆3 上 的 瞬 时 重 合 点 的 速 度 和 加 速 度 关 系 时, 可 以 选 择 任 意 点 作 为 瞬 时 重 合 点。- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ( )

基于matlab的连杆机构设计

基于matlab的连杆机构设计

————————————————————————————————作者: ————————————————————————————————日期:

目录 1平面连杆机构的运动分析 (1) 1.2 机构的工作原理 (1) 1.3机构的数学模型的建立 (1) 1.3.1建立机构的闭环矢量位置方程...................................................1 1.3.2求解方法.....................................................................2 2基于MATLAB程序设计 (4) 2.1 程序流程图 (4) 2.2 M文件编写 (6) 2.3程序运行结果输出 (7) 3 基于MATLAB图形界面设计 (11) 3.1界面设计……………………………………………………………………………………………11 3.2代码设计……………………………………………………………………………………………12

4 小结 (17) 参考文献 (18) 1平面连杆机构的运动分析 1.1 机构运动分析的任务、目的和方法 曲柄摇杆机构是平面连杆机构中最基本的由转动副组成的四杆机构,它可以用来实现转动和摆动之间运动形式的转换或传递动力。 对四杆机构进行运动分析的意义是:在机构尺寸参数已知的情况下,假定主动件(曲柄)做匀速转动,撇开力的作用,仅从运动几何关系上分析从动件(连杆、摇杆)的角位移、角速度、角加速度等运动参数的变化情况。还可以根据机构闭环矢量方程计算从动件的位移偏差。上述这些内容,无论是设计新的机械,还是为了了解现有机械的运动性能,都是十分必要的,而且它还是研究机械运动性能和动力性能提供必要的依据。 机构运动分析的方法很多,主要有图解法和解析法。当需要简捷直观地了解机构的某个或某几个位置的运动特性时,采用图解法比较方便,而且精度也能满足实际问题的要求。而当需要精确地知道或要了解机构在整个运动循环过程中的运动特性时,采用解析法并借助计算机,不仅可获得很高的计算精度及一系列位置的分析结果,并能绘制机构相应的运动线图,同时还可以把机构分析和机构综合问题联系起来,以便于机构的优化设计。 1.2 机构的工作原理 在平面四杆机构中,其具有曲柄的条件为: a.各杆的长度应满足杆长条件,即: 最短杆长度+最长杆长度≤其余两杆长度之和。 b.组成该周转副的两杆中必有一杆为最短杆,且其最短杆为连架杆或机架(当最短杆为连架杆时,四杆机构为曲柄摇杆机构;当最短杆为机架时,则为双曲柄机构)。 在如下图1所示的曲柄摇杆机构中,构件AB为曲柄,则B点应能通过曲柄与连杆两次共线的位置。

平面六杆机构的运动分析

机械原理大作业(一)平面六杆机构的运动分析 班级: 学号: 姓名: 同组者: 完成时间:

一.题目 1.1 说明 如图所示为一片面六杆机构各构件尺寸如表格1所示,又知原动件1以等角速度ω=1rad/s沿逆时针方向回转,试求各从动件的角位移、角加速度以及E点的位移、速度及加速度的变化情况。1.2 数据 组号L1L2L’2L3L4L5L6 x G y G 1-A 26.5 105.6 65.0 67.5 87.5 34.4 25.0 600 153.5 41.7 表格1 条件数据 1.3 要求 三人一组,编程计算出原动件从0~360o时(计算点数N=36)所要求各运动变量的大小,并绘制运动线图及点的轨迹曲线。

二.解题步骤 由封闭图形ABCD可得: 由封闭图形AGFECD可得 于是有: 112233 1122433 sin sin sin1 cos cos sin2 l l l l l l l θθθ θθθ +=-------- +=+----- / 1122225566 / 1122225566 cos cos sin cos cos153.53 sin sin cos sin sin41.74 l l l l l l l l l l θθθθθ θθθθθ +++=+---- +-+=+----- 对以上1到4导可得- 222333111 222333111 / 55566611122222 / 55566611122222 cos cos cos sin sin sin sin sin sin(sin cos) cos cos cos(cos sin) l l l l l l l l l l l l l l l l θωθωθω θωθωθω θωθωθωωθθ θωθωθωωθθ-+= -=- -=--- -=--+

四连杆机构运动学分析——张海涛

四连杆机构运动学分析 使用ADAMS 建立如图1所示的四连杆机构,二杆长150mm ,三杆长500mm ,四杆长450mm ,二杆的转动速度为πrad/s ,二杆初始角度为90度。用Matlab 建立该系统的运动约束方程,计算结果,并与ADAMS 仿真结果进行对比。 图1 四杆机构 一、位置分析 1、由地面约束得到: {R x 1=0 R y 1=0θ1=0 2、由O 点约束得: { R x 2?l 22cos θ2=0R y 2?l 22 sin θ2=0 二杆 三杆 四杆 O 点 A 点 B 点 C 点

3、由A 点约束得: { R x 2+l 22cos θ2?R x 3+l 32cos θ3=0R y 2+l 22sin θ2?R y 3+l 32 sin θ3=0 4、由B 点约束得: { R x 3+l 32cos θ3?R x 4+l 42cos θ4=0R y 3+l 32sin θ3?R y 4+l 42 sin θ4=0 5、由C 点约束得: { R x 4+l 4cos θ4?l 5cos θ1=0R y 4+l 42 sin θ4?l 5sin θ1=0 6、由二杆驱动约束得: θ2?ω2=0 积分得: θ2?θ02?ω2t =0 由上面九个方程组成此机构的运动约束方程,用Matlab 表示为: fx=@(x)([x(1); x(2); x(3); x(4)-l2/2*cos(x(6)); x(5)-l2/2*sin(x(6)); x(4)+l2/2*cos(x(6))-x(7)+l3/2*cos(x(9)); x(5)+l2/2*sin(x(6))-x(8)+l3/2*sin(x(9)); x(7)+l3/2*cos(x(9))-x(10)+l4/2*cos(x(12)); x(8)+l3/2*sin(x(9))-x(11)+l4/2*sin(x(12)); x(10)+l4/2*cos(x(12))-x(1)-l5; x(11)+l4/2*sin(x(12))-x(2); x(6)-w*i-zhj0;]); x(1) x(2) x(3) x(4) x(5) x(6) x(7) x(8) x(9) x(10) x(11) x(12) 分别表示R x 1、R y 1、θ1、R x 2、R y 2、θ2、R x 3、R y 3、θ3、R x 4、R y 4、θ4。

用matlab分析四杆机构

首先创建函数FoutBarPosition,函数fsolve通过他确定。 function t=fourbarposition(th,th2,L2,L3,L4,L1) t=[L2*cos(th2)+L3*cos(th(1))-L4*cos(th(2))-L1;… L2*sin(th2)+L3*sin(th(1))-L4*sin(th(2))]; 主程序如下: disp ' * * * * * * 平面四杆机构的运动分析* * * * * *' L1=304.8;L2=101.6;L3=254.0;L4=177.8; %给定已知量,各杆长L1,L2,L3,L4 th2=[0:1/6:2]*pi; %曲柄输入角度从0至360度,步长为pi/6 th34=zeros(length(th2),2); %建立一个N行2列的零矩阵,第一列存放options=optimset('display','off'); %θ_3,第二列存放θ_3 for m=1:length(th2) %建立for循环,求解θ_3,θ_4 th34(m,:)=fsolve('fourbarposition',[1 1],…%调用fsove函数求解关于θ_3,θ_4 options,th2(m),L2,L3,L4,L1); %的非线性超越方程,结果保存在th34中 end y=L2*sin(th2)+L3*sin(th34(:,1)'); %连杆3的D端点Y坐标值 x=L2*cos(th2)+L3*cos(th34(:,1)'); %连杆3的D端点X坐标值 xx=[L2*cos(th2)]; %连杆3的C端点X坐标值 yy=[L2*sin(th2)]; %连杆3的C端点Y坐标值 figure(1) plot([x;xx],[y;yy],'k',[0 L1],[0 0],…%绘制连杆3的几个位置点 'k--^',x,y,'ko',xx,yy,'ks') title('连杆3的几个位置点') xlabel('水平方向') ylabel('垂直方向') axis equal %XY坐标均衡 th2=[0:2/72:2]*pi; %重新细分曲柄输入角度θ_2,步长为5度 th34=zeros(length(th2),2); options=optimset('display','off'); for m=1:length(th2)

四连杆机运动学分析

栏杆机四杆机构运动学分析 1 四杆机构运动学分析 1.1 机构运动分析的任务、目的和方法 曲柄摇杆机构是平面连杆机构中最基本的由转动副组成的四杆机构,它可以用来实现转动和摆动之间运动形式的转换或传递动力。 对四杆机构进行运动分析的意义是:在机构尺寸参数已知的情况下,假定主动件(曲柄)做匀速转动,撇开力的作用,仅从运动几何关系上分析从动件(连杆、摇杆)的角位移、角速度、角加速度等运动参数的变化情况。还可以根据机构闭环矢量方程计算从动件的位移偏差。上述这些内容,无论是设计新的机械,还是为了了解现有机械的运动性能,都是十分必要的,而且它还是研究机械运动性能和动力性能提供必要的依据。 机构运动分析的方法很多,主要有图解法和解析法。当需要简捷直观地了解机构的某个或某几个位置的运动特性时,采用图解法比较方便,而且精度也能满足实际问题的要求。而当需要精确地知道或要了解机构在整个运动循环过程中的运动特性时,采用解析法并借助计算机,不仅可获得很高的计算精度及一系列位置的分析结果,并能绘制机构相应的运动线图,同时还可以把机构分析和机构综合问题联系起来,以便于机构的优化设计。 1.2 机构的工作原理 在平面四杆机构中,其具有曲柄的条件为: a.各杆的长度应满足杆长条件,即: 最短杆长度+最长杆长度≤其余两杆长度之和。 b.组成该周转副的两杆中必有一杆为最短杆,且其最短杆为连架杆或机架(当最短杆为连架杆时,四杆机构为曲柄摇杆机构;当最短杆为机架时,则为双曲柄机构)。 三台设备测绘数据分别如下: 第一组(2代一套)四杆机构L1=125.36mm,L2=73.4mm,L3=103.4mm,L4=103.52mm 最短杆长度+最长杆长度(125.36+73.4) <其余两杆长度之和(103.4+103.52) 最短杆为连架杆,四杆机构为曲柄摇杆机构 图1-1 II-1型栏杆机机构测绘及其运动位置图

连杆机构运动分析

构件上点的运动分析 函数文件(m文件) 格式:function [ 输出参数] = 函数名(输入参数) p_crank.m function [p_Nx,p_Ny]=p_crank(Ax,Ay,theta,phi,l1) v_crank.m function [v_Nx,v_Ny]=v_crank(l1,v_Ax,v_Ay,omiga,theta,phi) a_crank.m function [a_Nx,a_Ny]=a_crank(l1,a_Ax,a_Ay,alpha,omiga,theta,phi) 函数中的符号说明

函数文件(m 文件) 格式: function [ 输出参数 ] = 函数名( 输入参数 ) p_RRR.m function [cx,cy,theta2,theta3]=p_RRR(bx,by,dx,dy,l2,l3,m) v_RRR.m function [vcx,vcy,omiga2,omiga3]=v_RRR(vbx,vby,vdx,vdy,cx,cy,bx,by,dx,dy) a_RRR.m function [acx,acy,alpha2,alpha3]=a_RRR(abx,aby,adx,ady,cx,cy,bx,by,dx,dy,omiga2,omiga3) 函数中的符号说明 m =1 m = -1 RRR Ⅱ级杆组运动分析

函数文件(m 文件) 格式: function [ 输出参数 ] = 函数名( 输入参数 ) p_RRP.m function [cx,cy,sr,theta2]=p_RRP(bx,by,px,py,theta3,l2,m) v_RRP.m function [vcx,vcy,vr,omiga2]=v_RRP(bx,by,cx,cy,vbx,vby,vpx,vpy,theta2,theta3,l2,sr,omiga3) a_RRP.m function [acx,acy,ar,alpha2]=a_RRP(bx,by,cx,cy,px,py,abx,aby,apx,apy,theta3,vr,omiga2,omiga3,alpha3) 函数中的符号说明 1 1 ∠BCP < 90?,∠BC 'P > 90?, m =1 RRP Ⅱ级杆组运动分析

第3章 平面机构的运动分析答案

一、填空题: 1.速度瞬心是两刚体上瞬时速度相等的重合点。 2.若瞬心的绝对速度为零,则该瞬心称为绝对瞬心; 若瞬心的绝对速度不为零,则该瞬心称为相对瞬心。 3.当两个构件组成移动副时,其瞬心位于垂直于导路方向的无穷远处。当两构件组成高副时,两个高副元素作纯滚动,则其瞬心就在接触点处;若两个高副元素间有相对滑动时,则其瞬心在过接触点两高副元素的公法线上。 4.当求机构的不互相直接联接各构件间的瞬心时,可应用三心定理来求。 5.3个彼此作平面平行运动的构件间共有 3 个速度瞬心,这几个瞬心必定位于一条直线上。 6.机构瞬心的数目K与机构的构件数N的关系是K=N(N-1)/2 。 7.铰链四杆机构共有6个速度瞬心,其中3个是绝对瞬心。 8.速度比例尺μν表示图上每单位长度所代表的速度大小,单位为:(m/s)/mm 。 加速度比例尺μa表示图上每单位长度所代表的加速度大小,单位为(m/s2)/mm。 9.速度影像的相似原理只能应用于构件,而不能应用于整个机构。 10.在摆动导杆机构中,当导杆和滑块的相对运动为平动,牵连运动为转动时(以上两空格填转动或平动),两构件的重合点之间将有哥氏加速度。哥氏加速度的大小为2×相对速度×牵连角速度;方向为相对速度沿牵连角速度的方向转过90°之后的方向。 P直接标注在图上)。 二、试求出图示各机构在图示位置时全部瞬心的位置(用符号 ij

12 三、 在图a 所示的四杆机构中,l AB =60mm,l CD =90mm ,l AD =l BC =120mm ,ω2=10rad/s ,试用瞬心法求: 1)当φ=165°时,点C 的速度v C ; 2)当φ=165°时,构件3的BC 线上速度 a ) 24) 14(P 13) P 24 P 23→∞

四连杆机构运动分析

游梁式抽油机是以游梁支点和曲柄轴中心的连线做固定杆,以曲柄,连杆和游梁后臂为三个活动杆所构成的四连结构。 1.1四连杆机构运动分析: 图1 复数矢量法: 为了对机构进行运动分析,先建立坐标系,并将各构件表示为杆矢量。结构封闭矢量方程式的复数矢量形式: 3121234i i i l e l e l e l ???+=+ (1) 应用欧拉公式cos sin i e i θθθ=+将(1)的实部、虚部分离,得 1122433112233cos cos cos sin sin sin l l l l l l l ??????+=+? ?+=? (2) 由此方程组可求得两个未知方位角23,??。 当要求解3?时,应将2?消去可得 2222234134313311412cos 2cos()2cos l l l l l l l l l l ????=++---- (3) 解得 3tan(/2)(/()B A C ?=- (4) 33 233 sin arctan cos B l A l ???+=+ (5) 其中:411 11 2222 32 3 cos sin 2A l l B l A B l l C l ??=-=-++-= (4)式中负号对应的四连杆机构的图形如图2所示,在求得3?之后,可利用(5)求得2?。

图2 由于初始状态1?有个初始角度,定义为01?,因此,我们可以得到关于011t ??ω=+, ω是曲柄的角速度。而通过图形3分析,我们得到OA 的角度0312 π θ??=- -。 因此悬点E 的位移公式为||s OA θ=?,速度||ds d v OA dt dt θ = =,加速度2222||dv d s d a OA dt dt dt θ===。 图3 已知附录4给出四连杆各段尺寸,前臂AO=4315mm ,后臂BO=2495mm , 连杆BD=3675mm ,曲柄半径O ’D=R=950mm ,根据已知条件我们推出''||||||||OO O D OB BD +>+违背了抽油系统的四连结构基本原则。为了合理解释光杆悬点的运动规律,我们对四连结构进行简化,可采用简谐运动、曲柄滑块结构进行研究。 1.2 简化为简谐运动时的悬点运动规律 一般我们认为曲柄半径|O ’D|比连杆长度|BD|和游梁后臂|OA|小很多,以至于它与|BD|、|OA|的比值可以忽略。此时,游梁和连杆的连接点B 的运动可以看为简谐运动,即认为B 点的运动规律和D 点做圆周运动时在垂直中心线上的投影的运动规律相同。则B 点经过时间t 时的位移B s 为

平面连杆机构的运动分析

平面连杆机构的运动分析 以典型平面连杆机构(牛头刨床机构)为研究对象,首先进行机构的运动分析,并列出相应方程,然后采用计算机C语言编程的方法,计算出机构中选定点的位移、速度,并绘出相关数据图像。 标签: 连杆机构;位移;速度;计算机编程 TB 1 前言 平面连杆机构是现代机械中应用的最为广泛的一种典型机构。平面连杆机构的典型应用包括牛头刨床机构、缝纫机、颚式破碎机等。在研究平面连杆机构的过程中对机构上某个特定点的研究是必不可少的。然而在传统的研究方法中,手工计算不仅计算量大,而且极易出错。随着计算机技术的广泛普及,计算机逐渐成为分析研究典型机械结构的有力工具。因此本文力求通过C语言编程技术来对牛头刨床机构来进行简单运动分析。 2 牛头刨床机构运动分析 图1所示的为一牛头刨床。假设已知各构件的尺寸如表1所示,原动件1以匀角速度ω1=1rad/s沿着逆时针方向回转,试求各从动件的角位移、角速度和角加速度以及刨头C点的位移、速度的变化情况。 角速度变化较为平缓,保证刨头慢速、稳定工作;在220°~340°之间为回程阶段,角速度变化较快,以提高效率;4杆有4个角速度为0点,即4杆的速度方向改变了四次。 C点的位移、速度分析:在0°~200°范围内,C点位移曲线斜率的绝对值变化较小,说明此时C点速度及加速度的变化量不大,且保持在较小值。200°~260°范围内C点的速度变化量明显增大,由速度图像可以推知加速度在220°左右达到最大值后快速减小,并使其速度在260°左右达到最大,而后加速度反向缓慢增大,速度持续减小到零以后又开始反向增大。 ①工作行程为θ1:0°~220°,回程为θ1:220°~340 °;工作行程角度大于回程角度,工作效率较高; ②工作行程阶段,刨头C点位移的变化较为平稳,速度可以近似看为匀速,

基于MATLAB的双摇杆机构运动分析与仿真模板

本科生毕业设计 基于MATLAB的双摇杆机构运动分析与仿真 Based on the MATLAB double rocker organization movement analysis and simulation

基于MATLAB/SIMULINK的双摇杆机构运动学分析与仿 真 邹凯旋 云南农业大学工程技术学院,昆明黑龙潭650201 摘要 平面连杆机构的应用十分广泛,它的分析及设计一直是机构学研究的一个重要课题。MATLAB的Simulink是一个对动态系统建模和仿真分析的软件包,为信号与系统仿真实验提供了很好的平台。借助其强大的模拟仿真分析功能可以方便的实现机构性能分析和动态仿真,降低分析的难度,有效提高设计工作效率、产品开发质量、降低开发成本。本设计课题以MATLAB的simulink\simMechanics 动态模拟仿真工具为平台,对双摇杆机构进行运动分析。结果表明该仿真方法能方便、准确的得到机构的运动、动力数据,能为机构的选择、优化设计提供参考依据。应用此工具可很好地对机械系统的各种运动进行分析,构造出平面连杆机构的数学模型。通过对此数学模型分析,分离出可独立求解的机构模型,并用相应的机构分析方法对它进行求解,建立了平面连杆机构运动学分析专家系统。系统可完成部分平面连杆机构的运动学分析及动画仿真,从而为机械系统的建模仿真提供一个强大而方便的工具。 关键词:连杆机构;动态仿真;SimMechanics;数学模型

Based on the MATLAB double rocker organization movement analysis and simulation Zou kaixuan Faculty of Engineering and Technology Yunan Agricultural University,Heilongtan Kunming 650201 ABSTRACT Planar linkage mechanism used widely, its analysis and design of the study of institutions has been an important subject. MATLAB Simulink is a dynamic system modeling and simulation software package, for signal and system simulation results provide a good platform. With its powerful simulation analysis function is realized the performance analysis and the dynamic simulation institutions, reduce the difficulties of analysis, effectively improve the design work efficiency and product development quality, reduce development costs. This design task to MATLAB simulink \ simMechanics dynamic simulation tools as the platform, on the double rocker organization motion analysis. The results show that the simulation method can conveniently, accurately to get the kinematic and dynamic data organization, for the choice of institutions, optimum design to provide the reference. This tool can application is mechanical system analysis of all kinds of sports, constructed the mathematical model of the planar linkage mechanism. Through mathematical model to analysis, separating out can be independent of solving mechanism model, and the corresponding institutions analysis method to solve it, a planar linkage mechanism kinematic analysis of the expert system. System can finish part of planar linkage mechanism kinematic analysis and animated simulation, thus for mechanical system modeling simulation provide a strong and convenient tool. Key words: linkage;Dynamic Simulation;SimMechanics;mathematical model

四连杆机构分析代码动力学--精简

平面连杆机构的运动分析和动力分析1.1 机构运动分析的任务、目的和方法 曲柄摇杆机构是平面连杆机构中最基本的由转动副组成的四杆机构,它可以用来实现转动和摆动之间运动形式的转换或传递动力。 对四杆机构进行运动分析的意义是:在机构尺寸参数已知的情况下,假定主动件(曲柄)做匀速转动,撇开力的作用,仅从运动几何关系上分析从动件(连杆、摇杆)的角位移、角速度、角加速度等运动参数的变化情况。还可以根据机构闭环矢量方程计算从动件的位移偏差。上述这些内容,无论是设计新的机械,还是为了了解现有机械的运动性能,都是十分必要的,而且它还是研究机械运动性能和动力性能提供必要的依据。 机构运动分析的方法很多,主要有图解法和解析法。当需要简捷直观地了解机构的某个或某几个位置的运动特性时,采用图解法比较方便,而且精度也能满足实际问题的要求。而当需要精确地知道或要了解机构在整个运动循环过程中的运动特性时,采用解析法并借助计算机,不仅可获得很高的计算精度及一系列位置的分析结果,并能绘制机构相应的运动线图,同时还可以把机构分析和机构综合问题联系起来,以便于机构的优化设计。 1.2 机构的工作原理 在平面四杆机构中,其具有曲柄的条件为: a.各杆的长度应满足杆长条件,即: 最短杆长度+最长杆长度≤其余两杆长度之和。 b.组成该周转副的两杆中必有一杆为最短杆,且其最短杆为连架杆或机架(当最短杆为连架杆时,四杆机构为曲柄摇杆机构;当最短杆为机架时,则为双曲柄机构)。 第一组(2代一套)四杆机构L1=125.36mm,L2=73.4mm,L3=103.4mm,L4=103.52mm 最短杆长度+最长杆长度(125.36+73.4) ≤其余两杆长度之和(103.4+103.52) 最短杆为连架杆,四杆机构为曲柄摇杆机构 第二组(2代二套)四杆机构L1=125.36mm,L2=50.1mm,L3=109.8mm,L4=72.85mm 最短杆长度+最长杆长度(125.36+50.1) ≤其余两杆长度之和(109.8+72.85) 最短杆为连架杆,四杆机构为曲柄摇杆机构 第三组(3代)四杆机构L1=163.2mm,L2=61.6mm,L3=150mm,L4=90mm 最短杆长度+最长杆长度(163.2+61.6) ≤其余两杆长度之和(150+90) 最短杆为连架杆,四杆机构为曲柄摇杆机构 在如下图1所示的曲柄摇杆机构中,构件AB为曲柄,则B点应能通过曲柄与连杆两次共线的位置。 1.3 机构的数学模型的建立 图1机构结构简图 在用矢量法建立机构的位置方程时,需将构件用矢量来表示,并作出机构的封闭矢量多边形。如图1所示,先建立一直角坐标系。设各构件的长度分别为L1 、L2 、L3 、L4 , 其方位角为、、、。以各杆矢量组成一个封闭矢量多边形,即ABCDA。其个矢量之和必等于零。即:

平面四杆机构的运动仿真模型分析

平面四杆机构的运动仿真模型分析1前言 平面四杆机构是是平面连杆机构的基础,它虽然结构简单,但其承载能力大,而且同样能够实现多种运动轨迹曲线和运动规律,因而在工程实践中得到广泛应用。 平面四杆机构的运动分析, 就是对机构上某点的位移、轨迹、速度、加速度进行分析, 根据原动件的运动规律, 求解出从动件的运动规律。平面四杆机构的运动设计方法有很多,传统的有图解法、解析法和实验法。随着计算机技术的飞速发展,机构设计及运动分析已逐渐脱离传统方法,取而代之的是计算机仿真技术。本文在UG NX5环境下对平面四杆机构进行草图建模,通过草图中的尺寸约束、几何约束及动画尺寸等功能确定各连杆的尺寸,之后建立相应的连杆、运动副及运动驱动,对建立的运动模型进行运动学分析,给出构件上某点的运动轨迹及其速度和加速度变化规律曲线,文章最后简要分析几个应用于工程的平面四杆机构实例。 2平面四杆机构的建模 问题的提出 平面四杆机构因其承载能力大,可以满足或近似满足很多的运动规律,所以其应用非常广泛,本文以基于曲柄摇杆机构的物料传送机构为例,讨论其建模及运动分析。 如图1所示,ABCD为曲柄摇杆机构,曲柄AB为主动件,机构在运动中要求连杆BC的延伸线上E 点保持近似直线运动,其中直线轨迹为工作行程,圆弧轨迹为回程或空程,从而实现物料传送的功能。

平面四杆机构的建模 由于物料传送机构为曲柄摇杆机构,所以它符合曲柄存在条件。根据机械原理课程中的应用实例[1],选取AB=100,BC=CD=CE=250,AD=200,单位均为毫米。 在UG NX5的Sketch环境里,创建如图2所示的草图,并作相应的尺寸约束和几何约束,其中EE'为通过E点的水平轨迹参考线,用以检验E点的工作行程运动轨迹。现通过草图里的尺寸动画功能,令AB与AD 的夹角从0°到360°变化,可看到E点的变化轨迹为直线和圆弧,如图3所示为尺寸动画的四个截图,其中图3(a)中的E点为水平轨迹的起点,图3(b)中的E点为水平轨迹的中点,图3(c)中的E点为水平轨迹的终点,而图3(d)中的E点为圆弧轨迹(图中未画出)即回程的中点。

平面四杆机构分析报告

工业设计机械设计基础大作业 一、序言 平面连杆机构是若干个刚性构件通过低副(转动副、移动副)联接,且各构件上各点的运动平面均相互平行的机构。虽然与高副机构相比,它难以准确实现预期运动,设计计算复杂,但是因为低副具有压强小、磨损轻、易于加工和几何形状能保证本身封闭等优点,故平面连杆机构广泛用于各种机械和仪器。对连杆机构进入深入透彻的研究,有助于工业设计的学生在今后的产品设计中对其进行灵活应用或创新改进。 二、平面连杆机构优缺点的介绍 连杆机构应用十分广泛,它是由许多刚性构件用低副连接而成的机构,故称为低副机构,这类机构常常应用于各种原动机、工作机和仪器中。例如,抽水机、空气压缩机中的曲柄连杆机构,牛头刨床机构中的导杆机构,机械手的传动机构,折叠伞的收放机构等。这其中铰链四杆机构,曲柄滑块机构和导杆机构是最常见的连杆机构形式。 它们的共同特点是:第一,它们的运动副元素是面接触,所以所受的压力较高副机构小,磨损轻;第二,低副表面为平面和圆柱面,所以制造容易,并且可获得较高的加工精度;第三,低副元素的接触是依靠本身的几何约束来实现的,因此不需要高副机构中的弹簧等保证运动副的封闭装置。 连杆机构也存在如下一些缺点:为了满足设计的要求,往往要增加构件和运动副数目,使机构构造复杂,有可能会产生自锁;制造的不精确所产生的累积误差也会使运动规律发生偏差;设计与计算比高副机构复杂;在连杆机构运动过程中,连杆及滑块的质心都在作变速运动,所产生的惯性力难以用一般方法方法加以消除,因而会增加机构的动载荷,所以连杆机构不宜用于高速运动。此外,虽然可以利用连杆机构来满足一些运动规律和运动轨迹的设计要求,但其设计却是十分困难的,且一般只能近似地得以满足。 正因如此,所以如何根据最优化方法来设计连杆机构,使其能最佳地满足设计要求,一直是连杆机构研究的一个重要课题。 三、平面四杆机构的基本类型与应用实例。 连杆机构是由若干刚性构件用低副连接所组成的。在连杆机构中,若各运动构件均在相互平行的平面内运动,则称为平面连杆机构。平面四杆机构是平面连杆机构的最基本形式,这其中所有运动副均为转动副的四杆机构称为铰链四杆机构。 在铰链四杆机构中,按连架杆能否作整周转动,可将四杆机构分为三种基本形式。即曲柄摇杆机构、双曲柄机构和双摇杆机构。其中: 1.曲柄摇杆机构 在铰链四杆机构中,若两连架杆中有一个为曲柄(整周回转),另一个为摇杆(一定范围内摆动),则称为曲柄摇杆机构。 在这种机构中,当曲柄为原动件时,可将原动件的连续转动,转变为摇杆的反复摆动。如飞剪、间歇传送机构、传送带送料机构等。

相关文档
最新文档