牛顿运动定律三种典型模型

牛顿运动定律三种典型模型
牛顿运动定律三种典型模型

图2—

牛顿定律三种典型模型

板块模型

1、如图所示,薄板A 长L =5 m ,其质量M =5 kg ,放在水平桌面上,板右端与

桌边相齐.在A 上距右端x =3 m 处放一物体B (可看成质点),其质量m =2 kg.

已知A 、B 间动摩擦因数μ1=0.1,A 与桌面间和B 与桌面间的动摩擦因数均为

μ2=0.2,原来系统静止.现在在板的右端施加一大小一定的水平力F 持续作

用在A 上直到将A 从B 下抽出才撤去,且使B 最后停于桌的右边缘.求:

(1)B 运动的时间.(2)力F 的大小

2、如图所示,长为L =2 m 、质量为M =8 kg 的木板,放在水平地面上,木板向右运动的速度v 0=6 m/s 时,在木板前端轻放一个大小不计,质量为m =2 kg 的小物块.木板与地面、物块与木板间的动摩擦因数均为μ=0.2,g

=10 m/s 2.求:

(1)物块及木板的加速度大小.

(2)物块滑离木板时的速度大小.

传送带模型

3、如图所示,一质量为m 的小物体以一定的速率v 0滑到水平传送带上左端的A 点,当传送带始终静止时,已知物体能滑过右端的B 点,经过的时间为t 0,则下列判断正确的是( )

A .若传送带逆时针方向运行且保持速率不变,则物体也能滑过

B 点,且用时为t 0

B .若传送带逆时针方向运行且保持速率不变,则物体可能先向

右做匀减速运动直到速度减为零,然后向左加速,因此不能滑过B

C .若传送带顺时针方向运行,当其运行速率(保持不变)v =v 0

时,物体将一直做匀速运动滑过B 点,用时一定小于t 0

D .若传送带顺时针方向运行,当其运行速率(保持不变)v >v 0时,物体一定向右一直做匀加速运动滑过B 点,用时一定小于t 0

4、如图所示,绷紧的传送带,始终以2 m/s 的速度匀速斜向上运行,传送带与

水平方向间的夹角θ=30°.现把质量为10 kg 的工件轻轻地放在传送带底端P

处,由传送带传送至顶端Q 处. 已知P 、Q 之间的距离为4 m ,工件与传送带间的

动摩擦因数为μ=32

,取g =10 m/s. (1)通过计算说明工件在传送带上做什么运动.

(2)求工件从P 点运动到Q 点所用的时间.

5、如图所示,传送带与地面成夹角θ=37°,以10m/s 的速度逆时针转动,在传送带上端轻

轻地放一个质量m=0.5㎏的物体,它与传送带间的动摩擦因数μ=0.5,已知传送带从A →B

的长度L=16m ,则物体从A 到B 需要的时间为多少?

“等时圆”模型

(1)物体沿着位于同一竖直圆上的所有光滑弦由静止下滑,到达圆周最低点时间均相等,

且为t =2R g

(如图甲所示).

(2)物体沿着位于同一竖直圆上的所有过顶点的光滑弦由静止下滑,到达圆周低端时间相

等为t =2R g

(如图乙所示). 6

、如图所示,位于竖直平面内的固定光滑圆环轨道与水平面相切于

M

点,与竖直墙相切于

A

点.竖直墙上另一点B 与M 的连线和水平面的夹角为60°,C 是圆环轨道的圆心.已知

在同一时刻a 、b 两球分别由A 、B 两点从静止开始沿光滑倾斜直轨道AM 、BM 运动到M 点;

c 球由C 点自由下落到M 点. 则( )

A .a 球最先到达M 点

B .b 球最先到达M 点

C .c 球最先到达M 点

D .b 球和c 球都可能最先到达M 点

7、如图所示,在倾角为θ的斜面上方的A 点处放置一光滑的木板AB ,B 端刚好在斜面

上.木板与竖直方向AC 所成角度为α,一小物块自A 端沿木板由静止滑下,要使物块滑

到斜面的时间最短,则α与θ角的大小关系应为( )

A .α=θ

B .α=θ2

C .α=θ3

D .α=2θ

练习

1.如图所示,AB 和CD 为两条光滑斜槽,它们各自的两个端点均分别位于半径为R 和r 的两个

相切的圆上,且斜槽都通过切点P .设有一重物先后沿两个斜槽,从静止出发,由A 滑到B 和由

C 滑到

D ,所用的时间分别为t 1和t 2,则t 1与t 2之比为( )

A .2∶1

B .1∶1 C.3∶1 D .1∶ 3

2.如图甲为应用于机场和火车站的安全检查仪,用于对旅客的行李进行安全检查.其传送装

置可简化为如图乙的模型,紧绷的传送带始终保持v =1 m/s 的恒定速率运行.旅客把行李无

初速度地放在A 处,设行李与传送带之间的动摩擦因数μ=0.1,A 、B 间的距离为2 m ,g 取

10 m/s 2.若乘客把行李放到传送带的同时也以v =1 m/s 的恒定速率平行于传送带运动到B 处取

行李,则( )

A .乘客与行李同时到达

B 处 B .乘客提前0.5 s 到达B 处

C .行李提前0.5 s 到达B 处

D .若传送带速度足够大,行李最快也要2 s 才能到达B 处

3.(2012·济宁模拟)如图所示,水平传送带A 、B 两端点相距x =4 m ,以v 0=2 m/s 的速度(始终保持不变)顺时针

运转,今将一小煤块(可视为质点)无初速度地轻放至A 点处,已知小煤块与传送带间的动摩擦因数为0.4,g 取10 m/s 2.

由于小煤块与传送带之间有相对滑动,会在传送带上留下划痕.则小煤块

从A 运动到B 的过程中( )

A .小煤块从A 运动到

B 的时间是 2 s

B .小煤块从A 运动到B 的时间是2.25 s

C .划痕长度是4 m

D .划痕长度是0.5 m

4.如图所示,质量M =8 kg 的长木板放在光滑的水平面上,在长木板左端加一水平恒推力F =8 N ,当长木板向右运动的速度达到1.5 m/s 时,在长木板前端轻轻地放上一个大小不计,

质量为m =2 kg 的小物块,物块与长木板间的动摩擦因数μ=0.2,

长木板足够长.(g =10 m/s 2)

(1)小物块放后,小物块及长木板的加速度各为多大?

(2)经多长时间两者达到相同的速度?

(3)从小物块放上长木板开始,经过t =1.5 s 小物块的位移大小

为多少?

5.如图甲所示,质量为M 的长木板,静止放置在粗糙水平地面上,有

一个质量为m 、可视为质点的物块,以某一水平初速度v 0从左端冲上

木板.从物块冲上木板到物块和木板达到共同速度的过程中,物块和

木板的v -t 图象分别如图乙中的折线acd 和bcd 所示,a 、b 、c 、d

点的坐标为a (0,10)、b (0,0)、c (4,4)、d (12,0).根据v -t 图象,

求:

(1)物块相对长木板滑行的距离Δx .

(2)物块质量m 与长木板质量M 之比.

牛顿运动定律练习题经典习题汇总.

一、选择题 1.下列关于力和运动关系的说法中,正确的是 ( ) A .没有外力作用时,物体不会运动,这是牛顿第一定律的体现 B .物体受力越大,运动得越快,这是符合牛顿第二定律的 C .物体所受合外力为0,则速度一定为0;物体所受合外力不为0,则其速度也一定不为0 D .物体所受的合外力最大时,速度却可以为0;物体所受的合外力为0时,速度却可以最大 2.升降机天花板上悬挂一个小球,当悬线中的拉力小于小球所受的重力时,则升降机的运动情况可能是 ( ) A .竖直向上做加速运动 B .竖直向下做加速运动 C .竖直向上做减速运动 D .竖直向下做减速运动 3.物体运动的速度方向、加速度方向与作用在物体上合力方向的关系是 ( ) A .速度方向、加速度方向、合力方向三者总是相同的 B .速度方向可与加速度方向成任何夹角,但加速度方向总是与合力方向相同 C .速度方向总是和合力方向相同,而加速度方向可能和合力相同,也可能不同 D .速度方向与加速度方向相同,而加速度方向和合力方向可以成任意夹角 4.一人将一木箱匀速推上一粗糙斜面,在此过程中,木箱所受的合力( ) A .等于人的推力 B .等于摩擦力 C .等于零 D .等于重力的下滑分量 5.物体做直线运动的v-t 图象如图所示,若第1 s 内所受合力为F 1,第2 s 内所受合力为F 2,第3 s 内所受合力为F 3,则( ) A .F 1、F 2、F 3大小相等,F 1与F 2、F 3方向相反 B .F 1、F 2、F 3大小相等,方向相同 C .F 1、F 2是正的,F 3是负的 D .F 1是正的,F 1、F 3是零 6.质量分别为m 和M 的两物体叠放在水平面上如图所示,两物体之间及M 与水平面间的动摩擦因数均为μ。现对M 施加一个水平力F ,则以下说法中不正确的是( ) A .若两物体一起向右匀速运动,则M 受到的摩擦力等于F B .若两物体一起向右匀速运动,则m 与M 间无摩擦,M 受到水平面的摩 擦力大小为μmg C .若两物体一起以加速度a 向右运动,M 受到的摩擦力的大小等于F -M a D .若两物体一起以加速度a 向右运动,M 受到的摩擦力大小等于μ(m+M )g+m a 7.用平行于斜面的推力,使静止的质量为m 的物体在倾角为θ的光滑斜面上,由底端向顶端做匀加速运动。当物体运动到斜面中点时,去掉推力,物体刚好能到达顶点,则推力的大小为 ( ) A .mg(1-sin θ) B .2mgsin θ C .2mgcos θ D .2mg(1+sin θ) 8.从不太高的地方落下的小石块,下落速度越来越大,这是因为 ( ) A .石块受到的重力越来越大 B .石块受到的空气阻力越来越小 C .石块的惯性越来越大 D .石块受到的合力的方向始终向下 9.一个物体,受n 个力的作用而做匀速直线运动,现将其中一个与速度方向相反的力逐渐减小到零,而其他的力保持不变,则物体的加速度和速度 ( ) A .加速度与原速度方向相同,速度增加得越来越快 B .加速度与原速度方向相同,速度增加得越来越慢 C .加速度与原速度方向相反,速度减小得越来越快 D .加速度与原速度方向相反,速度减小得越来越慢 10.下列关于超重和失重的说法中,正确的是 ( ) A .物体处于超重状态时,其重力增加了 B .物体处于完全失重状态时,其重力为零 C .物体处于超重或失重状态时,其惯性比物体处于静止状态时增加或减小了 D .物体处于超重或失重状态时,其质量及受到的重力都没有变化 11.如图所示,一个物体静止放在倾斜为θ的木板上,在木板倾角逐渐增大到某一角 t/s 0 2 2 1 3 -2 v/ms -1 第 5 题 F 第 6 题

(物理)物理牛顿运动定律练习题20篇

(物理)物理牛顿运动定律练习题20篇 一、高中物理精讲专题测试牛顿运动定律 1.如图甲所示,一倾角为37°,长L=3.75 m的斜面AB上端和一个竖直圆弧形光滑轨道BC 相连,斜面与圆轨道相切于B处,C为圆弧轨道的最高点。t=0时刻有一质量m=1 kg的物块沿斜面上滑,其在斜面上运动的v–t图象如图乙所示。已知圆轨道的半径R=0.5 m。(取g=10 m/s2,sin 37°=0.6,cos 37°=0.8)求: (1)物块与斜面间的动摩擦因数μ; (2)物块到达C点时对轨道的压力F N的大小; (3)试通过计算分析是否可能存在物块以一定的初速度从A点滑上轨道,通过C点后恰好能落在A点。如果能,请计算出物块从A点滑出的初速度;如不能请说明理由。 【答案】(1)μ=0.5 (2)F'N=4 N (3) 【解析】 【分析】 由图乙的斜率求出物块在斜面上滑时的加速度,由牛顿第二定律求动摩擦因数;由动能定理得物块到达C点时的速度,根据牛顿第二定律和牛顿第三定律求出)物块到达C点时对轨道的压力F N的大小;物块从C到A,做平抛运动,根据平抛运动求出物块到达C点时的速度,物块从A到C,由动能定律可求物块从A点滑出的初速度; 【详解】 解:(1)由图乙可知物块上滑时的加速度大小为 根据牛顿第二定律有: 解得 (2)设物块到达C点时的速度大小为v C,由动能定理得: 在最高点,根据牛顿第二定律则有: 解得: 由根据牛顿第三定律得: 物体在C点对轨道的压力大小为4 N (3)设物块以初速度v1上滑,最后恰好落到A点 物块从C到A,做平抛运动,竖直方向:

水平方向: 解得 ,所以能通过C 点落到A 点 物块从A 到C ,由动能定律可得: 解得: 2.如图所示,在光滑水平面上有一段质量不计,长为6m 的绸带,在绸带的中点放有两个紧靠着可视为质点的小滑块A 、B ,现同时对A 、B 两滑块施加方向相反,大小均为F=12N 的水平拉力,并开始计时.已知A 滑块的质量mA=2kg ,B 滑块的质量mB=4kg ,A 、B 滑块与绸带之间的动摩擦因素均为μ=0.5,A 、B 两滑块与绸带之间的最大静摩擦力等于滑动摩擦力,不计绸带的伸长,求: (1)t=0时刻,A 、B 两滑块加速度的大小; (2)0到3s 时间内,滑块与绸带摩擦产生的热量. 【答案】(1)2 2 121,0.5m m a a s s ==;(2)30J 【解析】 【详解】 (1)A 滑块在绸带上水平向右滑动,受到的滑动摩擦力为A f , 水平运动,则竖直方向平衡:A N mg =,A A f N =;解得:A f mg μ= ——① A 滑块在绸带上水平向右滑动,0时刻的加速度为1a , 由牛顿第二定律得:1A A F f m a -=——② B 滑块和绸带一起向左滑动,0时刻的加速度为2a 由牛顿第二定律得:2B B F f m a -=——③; 联立①②③解得:211m /s a =,2 20.5m /s a =; (2)A 滑块经t 滑离绸带,此时A B 、滑块发生的位移分别为1x 和2x 1221 122221212L x x x a t x a t ? +=?? ?=?? ?=?? 代入数据解得:12m x =,21m x =,2s t = 2秒时A 滑块离开绸带,离开绸带后A 在光滑水平面上运动,B 和绸带也在光滑水平面上

人教版高中物理第一册牛顿运动定律的应用1

牛顿运动定律的应用 教学目标: 1.掌握运用牛顿三定律解决动力学问题的基本方法、步骤 2.学会用整体法、隔离法进行受力分析,并熟练应用牛顿定律求解 3.理解超重、失重的概念,并能解决有关的问题 4.掌握应用牛顿运动定律分析问题的基本方法和基本技能 教学重点:牛顿运动定律的综合应用 教学难点: 受力分析,牛顿第二定律在实际问题中的应用 教学方法:讲练结合,计算机辅助教学 教学过程: 一、牛顿运动定律在动力学问题中的应用 1.运用牛顿运动定律解决的动力学问题常常可以分为两种类型(两类动力学基本问题): (1)已知物体的受力情况,要求物体的运动情况.如物体运动的位移、速度及时间等. (2)已知物体的运动情况,要求物体的受力情况(求力的大小和方向). 但不管哪种类型,一般总是先根据已知条件求出物体运动的加速度,然后再由此得出问题的答案. 两类动力学基本问题的解题思路图解如下: 可见,不论求解那一类问题,求解加速度是解题的桥梁和纽带,是顺利求解的关键。 点评:我们遇到的问题中,物体受力情况一般不变,即受恒力作用,物体做匀变速直线运动,故常用的运动学公式为匀变速直线运动公式,如 2/2 ,2,21,0202200t t t t v v v t s v as v v at t v s at v v =+===-+=+=等. 2.应用牛顿运动定律解题的一般步骤 (1)认真分析题意,明确已知条件和所求量,搞清所求问题的类型. (2)选取研究对象.所选取的研究对象可以是一个物体,也可以是几个物体组成的整体.同一题目,根据题意和解题需要也可以先后选取不同的研究对象. (3)分析研究对象的受力情况和运动情况. (4)当研究对象所受的外力不在一条直线上时:如果物体只受两个力,可以用平行四边形定则求其合力;如果物体受力较多,一般把它们正交分解到两个方向上去分别求合力;如果物体做直线运动,一般把各个力分解到沿运动方向和垂直运动的方向上. (5)根据牛顿第二定律和运动学公式列方程,物体所受外力、加速度、速度等都可根据规定的正方向按正、负值代入公式,按代数和进行运算. (6)求解方程,检验结果,必要时对结果进行讨论.

最新高考物理牛顿运动定律练习题

最新高考物理牛顿运动定律练习题 一、高中物理精讲专题测试牛顿运动定律 1.如图所示,质量2kg M =的木板静止在光滑水平地面上,一质量1kg m =的滑块(可 视为质点)以03m/s v =的初速度从左侧滑上木板水平地面右侧距离足够远处有一小型固定挡板,木板与挡板碰后速度立即减为零并与挡板粘连,最终滑块恰好未从木板表面滑落.已知滑块与木板之间动摩擦因数为0.2μ=,重力加速度210m/s g =,求: (1)木板与挡板碰撞前瞬间的速度v ? (2)木板与挡板碰撞后滑块的位移s ? (3)木板的长度L ? 【答案】(1)1m/s (2)0.25m (3)1.75m 【解析】 【详解】 (1)滑块与小车动量守恒0()mv m M v =+可得1m/s v = (2)木板静止后,滑块匀减速运动,根据动能定理有:2102 mgs mv μ-=- 解得0.25m s = (3)从滑块滑上木板到共速时,由能量守恒得:220111 ()22 mv m M v mgs μ=++ 故木板的长度1 1.75m L s s =+= 2.如图,光滑固定斜面上有一楔形物体A 。A 的上表面水平,A 上放置一物块B 。已知斜面足够长、倾角为θ,A 的质量为M ,B 的质量为m ,A 、B 间动摩擦因数为μ(μ<), 最大静擦力等于滑动摩擦力,重力加速度为g 。现对A 施加一水平推力。求: (1)物体A 、B 保持静止时,水平推力的大小F 1; (2)水平推力大小为F 2时,物体A 、B 一起沿斜面向上运动,运动距离x 后撒去推力,A 、B 一起沿斜面上滑,整个过程中物体上滑的最大距离L ; (3)为使A 、B 在推力作用下能一起沿斜面上滑,推力F 应满足的条件。 【答案】(1) (2) (3)

牛顿运动定律-经典习题汇总

牛顿运动定律经典练习题 一、选择题 1.下列关于力和运动关系的说法中,正确的是 ( ) A .没有外力作用时,物体不会运动,这是牛顿第一定律的体现 B .物体受力越大,运动得越快,这是符合牛顿第二定律的 C .物体所受合外力为0,则速度一定为0;物体所受合外力不为0,则其速度也一定不为0 D .物体所受的合外力最大时,速度却可以为0;物体所受的合外力为0时,速度却可以最大 2.升降机天花板上悬挂一个小球,当悬线中的拉力小于小球所受的重力时,则升降机的运动情况可能是 ( ) A .竖直向上做加速运动 B .竖直向下做加速运动 C .竖直向上做减速运动 D .竖直向下做减速运动 3.物体运动的速度方向、加速度方向与作用在物体上合力方向的关系是 ( ) A .速度方向、加速度方向、合力方向三者总是相同的 B .速度方向可与加速度方向成任何夹角,但加速度方向总是与合力方向相同 C .速度方向总是和合力方向相同,而加速度方向可能和合力相同,也可能不同 D .速度方向与加速度方向相同,而加速度方向和合力方向可以成任意夹角 4.一人将一木箱匀速推上一粗糙斜面,在此过程中,木箱所受的合力( ) A .等于人的推力 B .等于摩擦力 C .等于零 D .等于重力的下滑分量 5.物体做直线运动的v-t 图象如图所示,若第1 s 内所受合力为F 1,第2 s 内所受合力为F 2,第3 s 内所受合力为F 3, 则( ) A .F 1、F 2、F 3大小相等,F 1与F 2、F 3方向相反 B .F 1、F 2、F 3大小相等,方向相同 C .F 1、F 2是正的,F 3是负的 D .F 1是正的,F 1、F 3是零 6.质量分别为m 和M 的两物体叠放在水平面上如图所示,两物体之间及M 与 水平面间的动摩擦因数均为μ。现对M 施加一个水平力F ,则以下说法中不正确的是( ) A .若两物体一起向右匀速运动,则M 受到的摩擦力等于F B .若两物体一起向右匀速运动,则m 与M 间无摩擦,M 受到水平面的摩擦力大小为μmg C .若两物体一起以加速度a 向右运动,M 受到的摩擦力的大小等于F -M a D .若两物体一起以加速度a 向右运动,M 受到的摩擦力大小等于μ(m+M )g+m a 7.用平行于斜面的推力,使静止的质量为m 的物体在倾角为θ的光滑斜面上,由底端向顶端做匀加速运动。当物体运动到斜面中点时,去掉推力,物体刚好能到达顶点,则推力的大小为 ( ) A .mg(1-sin θ) B .2mgsin θ C .2mgcos θ D .2mg(1+sin θ) 8.从不太高的地方落下的小石块,下落速度越来越大,这是因为 ( ) A .石块受到的重力越来越大 B .石块受到的空气阻力越来越小 C .石块的惯性越来越大 D .石块受到的合力的方向始终向下 9.一个物体,受n 个力的作用而做匀速直线运动,现将其中一个与速度方向相反的力逐渐减小到零,而其他的力保持不变,则物体的加速度和速度 ( ) A .加速度与原速度方向相同,速度增加得越来越快 B .加速度与原速度方向相同,速度增加得越来越慢 C .加速度与原速度方向相反,速度减小得越来越快 D .加速度与原速度方向相反,速度减小得越来越慢 10.下列关于超重和失重的说法中,正确的是 ( ) 第 5 题 第 6 题

《牛顿运动定律》教案完美版

第四章牛顿运动定律 一、牛顿第一定律 [要点] 1.伽利略的成功在于把“明明白白的实验事实和清清楚楚的逻辑推理结合在一起”,物理学从此走上了正确的轨道。 2.力与运动的关系。(1)历史上错误的认识是“运动必须有力来维持” (2)正确的认识是“运动不需要力来维持,力是改变物体运动状态的原因”。 3.对伽利略的理想实验的理解。这个实验的事实依据是运动物体撤去推力后没有立即停止运动,而是运动一段距离后再停止的,摩擦力越小物体运动的距离越长。抓住这些事实依据的本质属性,并作出合理化的推理,这就是伽利略的高明之处,我们要学习的就是这种思维方法。 4.对“改变物体运动状态”的理解——运动状态的改变就是指速度的改变,速度的改变包括速度大小和速度方向的改变,速度改变就意味着存在加速度。 5.维持自己的运动状态不变是一切物体的本质属性,这一本质属性就是惯性。揭示物体的这一本质属性是牛顿第一定律的伟大贡献之一。 惯性:物体具有保持静止状态或匀速直线运动状态的性质叫做惯性。一切物体都具有惯性。 6.牛顿第一定律的内容:切物体在没有受到外力的作用时,总保静止状态或匀速直线运动状态。(1)“一切物体总保持匀速直线运动或者静止状态”——这句话的意思就是说一切物体都有惯性。(2)“除非作用在它上面的力迫使它改变这种状态”——这句话的意思就是外力是产生加速度的原因。 7.任何物理规律都有适用范围,牛顿运动定律只适用于惯性参照系。 8.质量是惯性大小的量度。 二、实验:探究加速度与力、质量的关系 [要点] 1.实验目的:探究加速度与外力、质量三者的关系。这个探究目的是在以下两个定性研究的基础上建立起来的。 (1)小汽车和载重汽车的速度变化量相同时,小汽车用的时间短,说明加速度的大小与物体的质量有关。 (2)竞赛用的小汽车与普通小轿车质量相仿,但竞赛用的小车能获得巨大的牵引力,所以速度的变化比普通小轿车快,说明加速度的大小与外力有关。 2.实验思路:本实验的基本思路是采用控制变量法。 (1)保持物体的质量不变,测量物体在不同外力作用下的加速度,探究加速度与外力的关系。探究的方法采用根据实验数据绘制图象的方法,也可以彩比较的方法,看不同的外力与由此外力产生的加速度的比值有何关系。 (2)保持物体所受的力相同,测量不同质量的物体在该力作用下的加速度,探究加速度与力的关系。探究的方法采用根据实验数据绘制图象的方法。 3.实验方案:本实验要测量的物理量有质量、加速度和外力。测量质量用天平,需要研究的是怎样测量加速度和外力。 (1)测量加速度的方案:采用较多的方案是使用打点计时器,根据连续相等的时间T内的位移之差Δx=a T2求出加速度。条件许可也可以采用气垫导轨和光电门。教材的参考案例效果也比较好。(2)提供并且测量物体所受的外力的方案:由于我们上述测量加速度的方案只能适用于匀变速直线运动,所以我们必须给物体提供一个恒定的外力,并且要测量这个外力。教材的参考案例提供的外力比较容易测量,采用这种方法是不错的选择。 4.对实验结果的分析是本实验的关键。如果根据实验数据描出的a-F图象和a-1/m图象都非常接

高考物理力学知识点之牛顿运动定律基础测试题附答案(5)

高考物理力学知识点之牛顿运动定律基础测试题附答案(5) 一、选择题 1.一皮带传送装置如图所示,轻弹簧一端固定,另一端连接一个质量为m的滑块,已知滑块与皮带之间存在摩擦.现将滑块轻放在皮带上,弹簧恰好处于自然长度且轴线水平.若在弹簧从自然长度到第一次达最长的过程中,滑块始终未与皮带达到共速,则在此过程中滑块的速度和加速度变化情况是( ) A.速度增大,加速度增大 B.速度增大,加速度减小 C.速度先增大后减小,加速度先增大后减小 D.速度先增大后减小,加速度先减小后增大 2.质量为2kg的物体在水平推力F的作用下沿水平面做直线运动,一段时间后撤去F,其运动的v-t图象如图所示.取g=10m/s2,则物体与水平面间的动摩擦因数μ和水平推力F 的大小分别为() A.0.2,6N B.0.1,6N C.0.2,8N D.0.1,8N 3.下列单位中,不能 ..表示磁感应强度单位符号的是() A.T B. N A m ? C. 2 kg A s? D. 2 N s C m ? ? 4.如图所示,A、B两物块叠放在一起,在粗糙的水平面上保持相对静止地向右做匀减速直线运动,运动过程中B受到的摩擦力 A.方向向左,大小不变 B.方向向左,逐渐减小 C.方向向右,大小不变 D.方向向右,逐渐减小 5.如图所示,质量为m的小球用水平轻质弹簧系住,并用倾角θ=37°的木板托住,小球

处于静止状态,弹簧处于压缩状态,则( ) A.小球受木板的摩擦力一定沿斜面向上 B.弹簧弹力不可能为3 4 mg C.小球可能受三个力作用 D.木板对小球的作用力有可能小于小球的重力mg 6.关于一对平衡力、作用力和反作用力,下列叙述正确的是() A.平衡力应是分别作用在两个不同物体上的力 B.平衡力可以是同一种性质的力,也可以是不同性质的力 C.作用力和反作用力可以不是同一种性质的力 D.作用力施加之后才会产生反作用力,即反作用力总比作用力落后一些 7.如图所示,倾角为θ的光滑斜面体始终静止在水平地面上,其上有一斜劈A,A的上表面水平且放有一斜劈B,B的上表面上有一物块C,A、B、C一起沿斜面匀加速下滑。已知A、B、C的质量均为m,重力加速度为g,下列说法正确的是 A.A、B间摩擦力为零 B.A加速度大小为cos gθ C.C可能只受两个力作用 D.斜面体受到地面的摩擦力为零 8.一物体放置在粗糙水平面上,处于静止状态,从0 t=时刻起,用一水平向右的拉力F 作用在物块上,且F的大小随时间从零均匀增大,则下列关于物块的加速度a、摩擦力f F、速度v随F的变化图象正确的是() A.B.

牛顿运动定律典型例题分析报告

牛顿运动定律典型例题分析 基础知识回顾 1、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。 对牛顿第一定律的理解要点: (1)运动是物体的一种属性,物体的运动不需要力来维持; (2)它定性地揭示了运动与力的关系,即力是改变物体运动状态的原因,是使物体产生加速度的原因;(3)定律说明了任何物体都有一个极其重要的属性——惯性; (4)不受力的物体是不存在的,牛顿第一定律不能用实验直接验证,但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的。它告诉了人们研究物理问题的另一种方法,即通过大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律; (5)牛顿第一定律是牛顿第二定律的基础,不能简单地认为它是牛顿第二定律不受外力时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。 2、牛顿第二定律:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。公式F=ma. 对牛顿第二定律的理解要点: (1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律研究其效果,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础; (2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬时效果是加速度而不是速度; (3)牛顿第二定律是矢量关系,加速度的方向总是和合外力的方向相同的,可以用分量式表示,

F x=ma x,F y=ma y,F z=ma z; (4)牛顿第二定律F=ma定义了力的基本单位——牛顿(定义使质量为1kg的物体产生1m/s2的加速度的作用力为1N,即1N=1kg.m/s2. 3、牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一直线上。对牛顿第三定律的理解要点: (1)作用力和反作用力相互依赖性,它们是相互依存,互以对方作为自已存在的前提; (2)作用力和反作用力的同时性,它们是同时产生、同时消失,同时变化,不是先有作用力后有反作用力; (3)作用力和反作用力是同一性质的力; (4)作用力和反作用力是不可叠加的,作用力和反作用力分别作用在两个不同的物体上,各产生其效果,不可求它们的合力,两个力的作用效果不能相互抵消,这应注意同二力平衡加以区别。 4.物体受力分析的基本程序: (1)确定研究对象; (2)采用隔离法分析其他物体对研究对象的作用力; (3)按照先重力,然后环绕物体一周找出跟研究对象接触的物体,并逐个分析这些物体对研究对象的弹力和摩擦力,最后分析其他场力; (4)画物体受力图,没有特别要求,则画示意图即可。 5.超重和失重: (1)超重:物体有向上的加速度称物体处于超重。处于失重的物体的物体对支持面的压力F(或对悬挂物的拉力)大于物体的重力,即F=mg+ma.;

牛顿运动定律详细总结

高三一轮复习教案——许敬川 (本章课时安排:理论复习部分共三单元用6-8个课时,走向高考和小片习题处理课用4个课时 注:教案中例题和习题以学案形式印发给学生) 第三章牛顿运动定律 第一单元牛顿运动定律 第1课时牛顿第一定律牛顿第三定律 要点一、牛顿第一定律 1、伽利略的实验和推论: ①伽利略斜面实验:小球沿斜面由 滚下,再滚上另一斜面,如不计摩擦将滚到处,放低后一斜面,仍达到同一高度。若放平后一斜面,球将滚下去。 ②伽利略通过“理想实验”和“科学推理”,得出的结论是:一旦物体具有某一速度,如果它不受力,就将以这一速度 地运动下去。也即是:力不是 物体运动的原因,而恰恰是 物体运动状态的原因。 2、笛卡尔对伽利略观点的补充和完善:法国科学家笛卡尔指出:除非物体受到力的作用,物体将永远保持其 或运动状态,永远不会使自己沿 运动,而只保持在直线上运动。 3、对运动状态改变的理解: 当出现下列情形之一时,我们就说物体的运动状态改变了。①物体由静止变为 或由运动变为 ;②物体的速度大小或 发生变化。 牛顿物理学的基石――惯性定律 1、牛顿第一定律:一切物体总保持 或 ,除非作用在它上面的力迫使它改变这种状态为止,这就是牛顿第一定律,也叫惯性定律。 2、惯性:物体具有保持原来的 状态或 状态的性质,叫惯性。 强调:①牛顿第一定律是利用逻辑思维对事实进行分析的产物,不可能用实验直接验证。 ②一切物体都具有惯性,牛顿第一定律是惯性定律。 惯性与质量: 1、惯性表现为改变物体运动状态的难易程度,惯性大,物体运动状态不容易改变;惯性小,物体运动状态容易改变。 2、质量是物体惯性大小的唯一量度。质量大,惯性大,运动太太不易

牛顿运动定律经典例题(含解析)

7.14作业一牛顿第一定律、牛顿第三定律 看书:《大一轮》第一讲 基础热身 1.2012·模拟用一根轻质弹簧竖直悬挂一小球,小球和弹簧的受力如图K12-1所示,下列说确的是( ) B.F2的反作用力是F3 C.F3的施力物体是地球 D.F4的反作用力是F1 2.2011·模拟关于惯性,下列说法中正确的是( ) A.在月球上物体的重力只有在地面上的1 6 ,但是惯性没有变化 B.卫星的仪器由于完全失重,惯性消失了 C.铁饼运动员在掷出铁饼前快速旋转可增大铁饼惯性,使其飞得更远 D.磁悬浮列车能高速行驶是因为列车浮起后惯性小了 3.2011·模拟跳高运动员蹬地后上跳,在起跳过程中( ) A.运动员蹬地的作用力大小大于地面对他的支持力大小 B.运动员蹬地的作用力大小等于地面对他的支持力大小 C.运动员所受的支持力和重力相平衡 D.运动员所受的支持力小于重力 4.2011·海淀模拟物体同时受到F1、F2、F3三个力的作用而保持平衡状态,则以下说确的是( ) A.F1与F2的合力一定与F3大小相等,方向相反 B.F1、F2、F3在某一方向的分量之和可能不为零 C.F1、F2、F3中的任何一个力变大,则物体必然做加速运动 D.若突然撤去F3,则物体一定沿着F3的反方向做匀变速直线运动 技能强化 5.就一些实际生活中的现象,某同学试图从惯性角度加以解释,其中正确的是( ) A.采用了大功率的发动机后,某些赛车的速度甚至能超过某些老式螺旋桨飞机的速度,这表明可以通过科学进步使小质量的物体获得大惯性 B.射出枪膛的子弹在运动相当长一段距离后连一件棉衣也穿不透,这表明它的惯性小了 C.货运列车运行到不同的车站时,经常要摘下或加挂一些车厢,这会改变它的惯性 D.摩托车转弯时,车手一方面要控制速度适当,另一方面要将身体稍微向里倾斜,通过调控人和车的惯性达到急转弯的目的 6.2011·模拟计算机已经应用于各个领域.如图K12-2所示是利用计算机记录的某作用力和反作用力变化图线,根据图线可以得出的结论是( ) 图K12-2 A.作用力大时,反作用力小 B.作用力和反作用力的方向总是相反的 C.作用力和反作用力是作用在同一个物体上的 D.牛顿第三定律在物体处于非平衡状态时不再适用 7.我国《道路交通安全法》中规定:各种小型车辆前排乘坐的人(包括司机)必须系好安全带,这是因

牛顿运动定律经典例题(含解析)

7.14作业一 牛顿第一定律、牛顿第三定律 看书 :《大一轮》 第一讲 基础热身 1.2012·厦门模拟用一根轻质弹簧竖直悬挂一小球,小球和弹簧的受力如图K12-1所示, 下列说法正确的是( ) B .F 2的反作用力是F 3 C .F 3的施力物体是地球 D .F 4的反作用力是F 1 2.2011·芜湖模拟关于惯性,下列说法中正确的是( ) A .在月球上物体的重力只有在地面上的16 ,但是惯性没有变化 B .卫星内的仪器由于完全失重,惯性消失了 C .铁饼运动员在掷出铁饼前快速旋转可增大铁饼惯性,使其飞得更远 D .磁悬浮列车能高速行驶是因为列车浮起后惯性小了 3.2011·金华模拟跳高运动员蹬地后上跳,在起跳过程中( ) A .运动员蹬地的作用力大小大于地面对他的支持力大小 B .运动员蹬地的作用力大小等于地面对他的支持力大小 C .运动员所受的支持力和重力相平衡 D .运动员所受的支持力小于重力 4.2011·海淀模拟物体同时受到F 1、F 2、F 3三个力的作用而保持平衡状态,则以下说法正确的是( ) A .F 1与F 2的合力一定与F 3大小相等,方向相反 B .F 1、F 2、F 3在某一方向的分量之和可能不为零 C .F 1、F 2、F 3中的任何一个力变大,则物体必然做加速运动 D .若突然撤去F 3,则物体一定沿着F 3的反方向做匀变速直线运动 技能强化 5.就一些实际生活中的现象,某同学试图从惯性角度加以解释,其中正确的是( ) A .采用了大功率的发动机后,某些赛车的速度甚至能超过某些老式螺旋桨飞机的速度,这表明可以通过科学进步使小质量的物体获得大惯性 B .射出枪膛的子弹在运动相当长一段距离后连一件棉衣也穿不透,这表明它的惯性小了 C .货运列车运行到不同的车站时,经常要摘下或加挂一些车厢,这会改变它的惯性 D .摩托车转弯时,车手一方面要控制速度适当,另一方面要将身体稍微向里倾斜,通过调控人和车的惯性达到急转弯的目的 6.2011·台州模拟计算机已经应用于各个领域.如图K12-2所示是利用计算机记录的某作用力和反作用力变化图线,根据图线可以得出的结论是( ) 图K12-2 A .作用力大时,反作用力小 B .作用力和反作用力的方向总是相反的 C .作用力和反作用力是作用在同一个物体上的 D .牛顿第三定律在物体处于非平衡状态时不再适用 7.我国《道路交通安全法》中规定:各种小型车辆前排乘坐的人(包括司机)必须系好安全带,这是因

高中物理 第四章牛顿运动定律(复习)教案 新人教版必修1高一

第四章牛顿运动定律(复习)教案 ★新课标要求 1、通过实验,探究加速度与质量、物体受力之间的关系。 2、理解牛顿运动定律,用牛顿运动定律解释生活中的有关问题。 3、通过实验认识超重和失重。 4、认识单位制在物理学中的重要意义。知道国际单位制中的力学单位。 ★复习重点 牛顿运动定律的应用 ★教学难点 牛顿运动定律的应用、受力分析。 ★教学方法 复习提问、讲练结合。 ★教学过程 (一)投影全章知识脉络,构建知识体系 (二)本章复习思路突破 Ⅰ物理思维方法 l、理想实验法:它是人们在思想中塑造的理想过程,是一种逻辑推理的思维过程和理论研究的重要思想方法。“理想实验”不同于科学实验,它是在真实的科学实验的基础上,抓主要矛盾,忽略次要矛盾,对实际过程作出更深层次的抽象思维过程。 惯性定律的得出,就是理想实验的一个重要结论。 2、控制变量法:这是物理学上常用的研究方法,在研究三个物理量之间的关系时,先让其中一个量不变,研究另外两个量之间的关系,最后总结三个量之间的关系。在研究牛顿第二定律,确定F、m、a三者关系时,就是采用的这种方法。 3、整体法:这是物理学上的一种常用的思维方法,整体法是把几个物体组成的系统作为一个整体来分析,隔离法是把系统中的某个物体单独拿出来研究。将两种方法相结合灵活运用,将有助于简便解题。 Ⅱ基本解题思路 应用牛顿运动定律解题的一般步骤 1、认真分析题意,明确已知条件和所求量。 2、选取研究对象。所选取的研究对象可以是一个物体,也可以是几个物体组成的整体.同一题目,根据题意和解题需要也可以先后选取不同的研究对象。 3、分析研究对象的受力情况和运动情况。

4、当研究对象所受的外力不在一条直线上时,如果物体只受两个力,可以用平行四边形定则求其合力;如果物体受力较多,一般把它们正交分解到两个方向上去分别求合力;如果物体做直线运动,一般把各个力分解到沿运动方向和垂直运动的方向上。 5、根据牛顿第二定律和运动学公式列方程,物体所受外力、加速度、速度等都可根据规定的正方向按正、负值代入公式,按代数和进行运算。 6、求解方程,检验结果,必要时对结果进行讨论。 (三)知识要点追踪 Ⅰ 物体的受力分析 物体受力分析是力学知识中的基础,也是其重要内容。正确分析物体的受力情况,是研究力学问题的关键,是必须掌握的基本功。 对物体进行受力分析,主要依据力的概念,分析物体所受到的其他物体的作用。具体方法如下: 1、明确研究对象,即首先要确定要分析哪个物体的受力情况。 2、隔离分析:将研究对象从周围环境中隔离出来,分析周围物体对它都施加了哪些作用。 3、按一定顺序分析:先重力,后接触力(弹力、摩擦力)。其中重力是非接触力,容易遗漏,应先分析;弹力和摩擦力的有无要依据其产生的条件认真分析。 4、画好受力分析图。要按顺序检查受力分析是否全面,做到不“多力”也不“少力”。 Ⅱ 动力学的两类基本问题 1、知道物体的受力情况确定物体的运动情况 2、知道物体的运动情况确定物体的受力情况 3、两类动力学问题的解题思路图解 注:我们遇到的问题中,物体受力情况一般不变,即受恒力作用,物体做匀变速直线运动,故常用的运动学公式为匀变速直线运动公式,如 2220000/21,,2,22 t v v x v v at x v t at v v ax v v t +=+=+-====等 (四)本章专题剖析 [例1]把一个质量是2kg 的物块放在水平面上,用12 N 的水平拉力使物体从静止开始 运动,物块与水平面的动摩擦因数为0.2,物块运动2 s 末撤去拉力,g 取10m/s 2.求: (1)2s 末物块的瞬时速度. (2)此后物块在水平面上还能滑行的最大距离. 解析:(1)前2秒内,有F - f =ma 1,f =μΝ, F N =mg ,则 m/s 8,,m/s 41121===-=t a v m mg F a μ 牛顿第二定律 加速度a 运动学公式 运动情况 第一类问题 受力情况 加速度a 另一类问题 牛顿第二定律 运动学公式

最新物理牛顿运动定律练习题20篇

最新物理牛顿运动定律练习题20篇 一、高中物理精讲专题测试牛顿运动定律 1.利用弹簧弹射和传送带可以将工件运送至高处。如图所示,传送带与水平方向成37度角,顺时针匀速运动的速度v =4m/s 。B 、C 分别是传送带与两轮的切点,相距L =6.4m 。倾角也是37?的斜面固定于地面且与传送带上的B 点良好对接。一原长小于斜面长的轻弹簧平行斜面放置,下端固定在斜面底端,上端放一质量m =1kg 的工件(可视为质点)。用力将弹簧压缩至A 点后由静止释放,工件离开斜面顶端滑到B 点时速度v 0=8m/s ,A 、B 间的距离x =1m ,工件与斜面、传送带问的动摩擦因数相同,均为μ=0.5,工件到达C 点即为运送过程结束。g 取10m/s 2,sin37°=0.6,cos37°=0.8,求: (1)弹簧压缩至A 点时的弹性势能; (2)工件沿传送带由B 点上滑到C 点所用的时间; (3)工件沿传送带由B 点上滑到C 点的过程中,工件和传送带间由于摩擦而产生的热量。 【答案】(1)42J,(2)2.4s,(3)19.2J 【解析】 【详解】 (1)由能量守恒定律得,弹簧的最大弹性势能为: 2 P 01sin 37cos372 E mgx mgx mv μ??=++ 解得:E p =42J (2)工件在减速到与传送带速度相等的过程中,加速度为a 1,由牛顿第二定律得: 1sin 37cos37mg mg ma μ??+= 解得:a 1=10m/s 2 工件与传送带共速需要时间为:011 v v t a -= 解得:t 1=0.4s 工件滑行位移大小为:22 011 2v v x a -= 解得:1 2.4x m L =< 因为tan 37μ? <,所以工件将沿传送带继续减速上滑,在继续上滑过程中加速度为a 2,则有:

高中物理牛顿运动定律解题技巧及经典题型及练习题(含答案)及解析

高中物理牛顿运动定律解题技巧及经典题型及练习题(含答案)及解析 一、高中物理精讲专题测试牛顿运动定律 1.如图所示,一足够长木板在水平粗糙面上向右运动。某时刻速度为v 0=2m/s ,此时一质量与木板相等的小滑块(可视为质点)以v 1=4m/s 的速度从右侧滑上木板,经过1s 两者速度恰好相同,速度大小为v 2=1m/s ,方向向左。重力加速度g =10m/s 2,试求: (1)木板与滑块间的动摩擦因数μ1 (2)木板与地面间的动摩擦因数μ2 (3)从滑块滑上木板,到最终两者静止的过程中,滑块相对木板的位移大小。 【答案】(1)0.3(2)1 20 (3)2.75m 【解析】 【分析】 (1)对小滑块根据牛顿第二定律以及运动学公式进行求解; (2)对木板分析,先向右减速后向左加速,分过程进行分析即可; (3)分别求出二者相对地面位移,然后求解二者相对位移; 【详解】 (1)对小滑块分析:其加速度为:2221114 /3/1 v v a m s m s t --= ==-,方向向右 对小滑块根据牛顿第二定律有:11mg ma μ-=,可以得到:10.3μ=; (2)对木板分析,其先向右减速运动,根据牛顿第二定律以及运动学公式可以得到: 1212v mg mg m t μμ+?= 然后向左加速运动,根据牛顿第二定律以及运动学公式可以得到: 2 122 2v mg mg m t μμ-?= 而且121t t t s +== 联立可以得到:21 20 μ=,10.5s t =,20.5t s =; (3)在 1 0.5s t =时间内,木板向右减速运动,其向右运动的位移为: 1100.52 v x t m += ?=,方向向右; 在20.5t s =时间内,木板向左加速运动,其向左加速运动的位移为:

牛顿运动定律知识点总结.

牛 顿 运 动 定 律 1、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变 这种状态为止。 (1)运动是物体的一种属性,物体的运动不需要力来维持; (2)它定性地揭示了运动与力的关系,即力是改变物体运动状态的原因,(运动状态指物体的速度)又根据加速度定义:t v a ??=,有速度变化就一定有加速度,所以可以说:力是使物体产生加速度的原因。(不能说“力是产 生速度的原因”、“力是维持速度的原因”,也不能说“力是改变加速度的原因”。); (3)定律说明了任何物体都有一个极其重要的属性——惯性;一切物体都有保持原有运动状态的性质,这就是惯性。惯性反映了物体运动状态改变的难易程度(惯性大的物体运动状态不容易改变)。质量是物体惯性大小的量度。 (4)牛顿第一定律描述的是物体在不受任何外力时的状态。而不受外力的物体是不存在的,牛顿第一定律不能用实验直接验证,因此它不是一个实验定律 (5)牛顿第一定律是牛顿第二定律的基础,物体不受外力和物体所受合外力为零是有区别的,所以不能把牛顿第一定律当成牛顿第二定律在F =0时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。 2、牛顿第二定律:物体的加速度跟作用力成正比,跟物体的质量成反比。公式F=ma. (1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律研究其效果,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础;(2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,力的瞬时效果是加速度而不是速度; (3)牛顿第二定律是矢量关系,加速度的方向总是和合外力的方向相同的,可以用分量式表示,F x =ma x ,F y =ma y , 若 F 为物体受的合外力,那么a 表示物体的实际加速度;若F 为物体受的某一个方向上的所有力的合力,那么a 表 示物体在该方向上的分加速度;若F 为物体受的若干力中的某一个力,那么a 仅表示该力产生的加速度,不是物体的实际加速度。 (4)牛顿第二定律F=ma 定义了力的基本单位——牛顿(使质量为1kg 的物体产生1m/s 2 的加速度的作用力为1N,即1N=1kg.m/s 2 . (5)应用牛顿第二定律解题的步骤: ①明确研究对象。 ②对研究对象进行受力分析。同时还应该分析研究对象的运动情况(包括速度、加速度),并把速度、加速

高考物理力学知识点之牛顿运动定律基础测试题含答案(5)

高考物理力学知识点之牛顿运动定律基础测试题含答案(5) 一、选择题 1.荡秋千是一项娱乐,图示为某人荡秋千时的示意图,A点为最高位置,B点为最低位置,不计空气阻力,下列说法正确的是() A.在A点时,人所受的合力为零 B.在B点时,人处于失重状态 C.从A点运动到B点的过程中,人的角速度不变 D.从A点运动到B点的过程中,人所受的向心力逐渐增大 2.在匀速行驶的火车车厢内,有一人从B点正上方相对车厢静止释放一个小球,不计空气阻力,则小球() A.可能落在A处B.一定落在B处 C.可能落在C处D.以上都有可能 3.质量为2kg的物体在水平推力F的作用下沿水平面做直线运动,一段时间后撤去F,其运动的v-t图象如图所示.取g=10m/s2,则物体与水平面间的动摩擦因数μ和水平推力F 的大小分别为() A.0.2,6N B.0.1,6N C.0.2,8N D.0.1,8N 4.如图A、B、C为三个完全相同的物体。当水平力F作用于B上,三物体可一起匀速运动,撤去力F后,三物体仍可一起向前运动,设此时A、B间作用力为f1,B、C间作用力为f2,则f1和f2的大小为()

A .f 1=f 2=0 B .f 1=0,f 2=F C .13 F f = ,f 2=2 3F D .f 1=F ,f 2=0 5.下列单位中,不能.. 表示磁感应强度单位符号的是( ) A .T B . N A m ? C . 2 kg A s ? D . 2 N s C m ?? 6.如图所示,质量m =1kg 、长L =0.8m 的均匀矩形薄板静止在水平桌面上,其右端与桌子边缘相平.板与桌面间的动摩擦因数为μ=0.4.现用F =5N 的水平力向右推薄板,使它翻下桌子,力F 做的功至少为( )(g 取10m/s 2) A .1J B .1.6J C .2J D .4J 7.在水平地面上运动的小车车厢底部有一质量为m 1的木块,木块和车厢通过一根轻质弹簧相连接,弹簧的劲度系数为k .在车厢的顶部用一根细线悬挂一质量为m 2的小球.某段时间内发现细线与竖直方向的夹角为θ,在这段时间内木块与车厢保持相对静止,如图所示.不计木块与车厢底部的摩擦力,则在这段时间内弹簧的形变为( ) A .伸长量为 1tan m g k θ B .压缩量为1tan m g k θ C .伸长量为 1m g k tan θ D .压缩量为 1m g k tan θ 8.如图甲所示,在升降机的顶部安装了一个能够显示拉力大小的传感器,传感器下方挂上一轻质弹簧,弹簧下端挂一质量为m 的小球,若升降机在匀速运行过程中突然停止, 并以此时为零时刻,在后面一段时间内传 感器显示弹簧弹力F 随时间t 变化的图象 如图乙所示,g 为重力加速度,则( )

相关文档
最新文档