压电式加速度传感器

压电式加速度传感器
压电式加速度传感器

压电式加速度传感器

摘要:本文介绍了压电式加速度传感器的结构和工作原理,推导了传感器的数学模型,并分析了测量电路,压电传感器的产生零漂现象的各种原因,并针对这些原因提出相应的解决措施。

关键词:压电式;加速度传感器;零漂

1 引言

现代工业和自动化生产过程中,非电物理量的测量和控制技术会涉及大量的动态测试问题。所谓动态测试是指量的瞬时值以及它随时间而变化的值的确定,即被测量为变量的连续测量过程。它以动态信号为特征,研究了测试系统的动态特性问题,而动态测试中振动和冲击的精确测量尤其重要。振动与冲击测量的核心是传感器,常用压电加速度传感器来获取冲击和振动信号。压电式传感器是基于某些介质材料的压电效应,当材料受力作用而变形时,其表面会有电荷产生,从而实现非电量测量。压电式传感器具有体积小,质量轻,工作频带宽等特点,因此在各种动态力、机械冲击与振动的测量以及声学、医学、力学、体育、制造业、军事、航空航天等领域都得到了非常广泛的应用。

加速度传感器作为测量物体运动状态的一种重要的传感器,加速度传感器主要分为压阻式、电容式、应变式、压电式、振弦式、挠性摆式、液浮摆式等类型。压电式加速度传感器是以压电材料为转换元件,将加速度输入转化成与之成正比的电荷或电压输出的装置,具有结构简单、重量轻、体积小、耐高温、固有频率高、输出线性好、测量的动态范围大、安装简单的特点。

2工作原理

压电式加速度传感器又称为压电加速度计,它也属于惯性式传感器。它是典型的有源传感器。利用某些物质如石英晶体、人造压电陶瓷的压电效应,在加速度计受振时,质量块加在压电元件上的力也随之变化。压电敏感元件是力敏元件,在外力作用下,压电敏感元件的表面上产生电荷,从而实现非电量电测量的目的。

压电加速度传感器的原理框图如图1所示,原理如图2所示。

图1 加速度传感器的组成框图

图2 压电加速度传感器原理图

实际测量时,将图中的支座与待测物刚性地固定在一起。当待测物运动时,支座与待测物以同一加速度运动,压电元件受到质量块与加速度相反方向的惯性力的作用,在晶体的两个表面上产生交变电荷(电压)。当振动频率远低于传感器的固有频率时,传感器的输出电荷(电压)与作用力成正比。电信号经前置放大器放大,即可由一般测量仪器测试出电荷(电压)大小,从而得出物体的加速度。

压电加速度传感器的压敏元件采用具有压电效应的压电材料,换能元件是以压电材料受力后在其表面产生电荷的压电效应为转换原理。这些压电材料,当沿着一定方向对其施力而使它变形时,内部就产生极化现象,同时在它的两个相对的表面上便产生符号相反的电荷;当外力去掉后,又重新恢复不带电的状态;当作用力的方向改变时,电荷的极性也随着改变。其中弹性体是传感器的核心,其结构决定着传感器的各种性能和测量精度,弹性体结构设计的优劣对加速度传感器性能的好坏至关重要。 3数学模型推理

压电材料可分为压电晶体和压电陶瓷两大类,因压电陶瓷的压电系数比压电晶体的大,且采用压电陶瓷制作的压电式传感器的灵敏度较高,故本系统压电元件采用压电陶瓷,极化方向在厚度方向(z 方向)

。当加速度传感器和被测物一起受到冲击振动

支座

时,压电元件受质量块惯性力的作用,根据牛顿第二定律,此惯性力是加速度的函数。设质量块作用于压电元件的力为F 上,支座作用于压电元件的力为F 下,则有

=M F a 上 (1)

=M+m)F a 下( (2)

式中M 为质量块质量;m 为晶片质量;a 为物体振动加速度。

由式(1)、(2)可得晶片中厚度方向(z 方向)任一截面上的力为

=Ma+m (1/)F a z d - (3)

式中d 为晶片厚度。则平均力为

[]011=Ma+m (1/)()2

d F a z d dz M m a d -=+? (4) 因晶片为压电陶瓷,极化方向在厚度方向(z 方向),作用力沿着z 方向,故此时外加应力只有T 3,不等于零,其平均值为

311()2

T M m a A =+ (5) 式中A 为晶片电极面面积。

选用D 型压电常数矩阵,得电荷

333331()2

Q d T A d M m a ==+ (6) 式中d 33为压电常数。由于质量块一般采用质量大的金属钨或其他金属制成,而晶片很薄,即有M m >>,故式(6)通常写为

33Q d Ma = (7)

由式(7)可知,压电元件的Q 和d 33、M 成正比,根据测量电荷量就可得到加速度。 4测量电路分析

由压电元件的工作原理可知,压电式传感器可看作一个电荷发生器。同时,它也是一个电容器,晶体上聚集正负电荷的两表面相当于电容的两个极板,极板间物质等效于一种介质,则其电容量为

0r a A

C d εε= (8)

式中A 为晶片电极面面积;r ε为压电材料的相对介电常数;0ε为真空介电常数。

因此,压电传感器可以等效为一个与电容相串联的电荷源。压电传感器本身的内

阻抗很高,而输出能量较小,因此,它的测量电路通常需接入一个高输入阻抗的前置放大器,其作用如下:

(1)把它的高输出阻抗变换为低输出阻抗。

(2)放大传感器输出的微弱信号。本设计中前置放大器采用电荷放大器。

压电传感器在实际使用时与测量仪器或测量电路相连接,因此还需考虑连接电缆的等效电容Cc 、放大器的输入电阻i R 、输人电容i C 及压电传感器的泄漏电阻a R ,这样压电传感器在测量系统中的实际等效电路如图2所示。

图3 压电传感器测量等效电路图

图中,K A 为运算放大器增益。由于运算放大器的i R 极高,而a R =109~1014欧姆,所以可认为i R 和a R 是开路的。设运算放大器输人电压为U i ,输出电压为U 0,根据运算放大器理论和电路理论得电荷量为

()()i a c i i o F Q U C C C U U C =+++-

(9) 式中F C 为反馈电容。将0K i U A U =-代入式(9)得

0()(1)K a c i F

A Q U C C C A C =++++ (10) 若放大器开环增益足够大,满足(1)K F a c i A C C C C +>>++时,式(10)可表示为

o F

Q U C =- (11) 由式(11)可知,在一定情况下,电荷放大器的出电压与传感器的电荷量成正此,并且与电缆分布电容无关。因此,采用电荷放大器时,即使联接电缆长度在百米以上,其灵敏度也无明显变化,这是电荷放大器的突出优点。

5传感器特性分析

传感器所测量的物理量经常会发生各样的变动,传感器主要通过两个基本特性——静态特性和动态特性来反映被测物理量的这种变动性。

静态特性表示传感器在被测物理量各个值处于稳定状态时的输出-输入关系。一般情况下,输出-输入关系不完全符合所要求的线性(或非线性)关系。衡量传感器的静态特性的重要指标是:线性度、迟滞、重复性和灵敏度。

5.1 迟滞特性

迟滞特性表明传感器在正(输入量增大)反(输入量减小)行程期间输出-输入曲线不重合的程度,也就是说,对应于同一大小的输入信号,传感器正反行程的输出信号大小不相等,迟滞反映了传感器机械部分不可避免的缺陷。

5.2 重复性

重复性表示传感器在输入量按同一方向作全量程连续多次变动时所得特性曲线不一致的程度,若特性曲线一致,重复性就好,误差也小。

5.3 线性度

把传感器校准数据的零点输出平均值和满量程输出平均值连成直线,作为传感器特性的拟合直线,其方程式为

y kx b

=+(12)式中y为输出量;x为输入量;b为y轴上的截距;k为直线的斜率。

5.4灵敏度

线性传感器的校准曲线的斜率就是其静态灵敏度,非线性传感器的灵敏度则随输入量而变化。线性传感器静态灵敏度K的计算式如下:

y

=(13)

k

x

式中y为输出量的变化量;x为输入量的变化量;非线性传感器的灵敏度可用

d d表示。

y x

6干扰因素分析及解决方案

6.1干扰因素分析

压电式加速度在冲击加速度测试过程中,经常发现加速度测试曲线在峰值加速度后存在零点漂移,这种漂移严重影响了应用结果。产生漂移的原因有:

1、基座应变的影响

由于压电元件直接放置在基座上,往往具有较大的基应变灵敏度,除了有直接的基应变输出外,由于机械形变或者不均匀的加热,使传感器的安装部位产生弯曲或者延伸应变,将引起传感器的基座应变。该应变直接传递到压电元件上,导致预载荷的改变,继而导致内部元件的移动,产生一定的零漂。

2、敏感材料的形变影响

加速度计的动刚度不够,在受高冲击后传感器质量-弹簧系统某一环节会发生蠕变,这种蠕变主要是压电元件自身弹性系数偏低,在较大力作用下蠕变,这种蠕变使传感器发生零漂。物理现象类似于某些弹性物体受到超弹性范围的力后产生蠕变。这些蠕变就表现为幅值线性度差和零漂。

而敏感元件在冲击后形变需要一定的时间恢复正常状态,在没有恢复前如果继续受到冲击,将造成传感器线性度变差,表现出来就是零漂更加严重。

3、瞬变温度的影响

由于压电材料的热释电效应和传感器内部应力状态随温度改变而改变,产生瞬变温度效应。瞬变温度效应是采用压电传感器测量时产生零漂的主要原因之一。

4、电缆噪声

传感器传输电缆承受机械振动和弯曲变形时,电缆的屏蔽层与电缆的中间绝缘层分离,由于摩擦生电效应,在分离部的内表面将产生电荷。这种不希望的电荷输出将造成传感器的输出零漂。

6.2温漂解决方案

1、减小瞬变温度的影响

①选用热释电移输出电系数小的压电晶体(如石英、锗酸铋等)为转换元件。

②选用剪切型压电陶瓷转换元件,因为压电陶瓷的热释电效应产生的电荷极面不在剪切极面上;因温度引起的传感器内部应力状态改变也表现在“拉压”预紧力的改变,不会产生剪切应变。

③瞬态温度效应引起传感器的输出,表现为5Hz以下的低频热漂移,在某些测量场合,可以采用高通滤波电路,滤除这种漂移。

2、传感器外部设计措施

一般屏蔽线不宜做压电传感器的输出线,需采用特制低噪声同轴射频电缆。这种电缆内绝缘层和屏蔽层之间涂有减磨材料硅油和导电石墨层,它可以有效防止电缆振动和弯曲而产生的摩擦生电效应,从而减少电缆噪声。特殊场合使用的低噪声电缆,为减少静电耦合的干扰,还有双屏蔽结构,并且在测量过程中,应将电缆紧固,以避免相对运动,电缆应该在振动最小处离开被测体。

电荷放大器及后续调理电路是传感器零漂的最主要外部原因,也就是实际设计的重点。设计上不仅要消除这部分本身的不利影响,同时也要考虑通过有效的设计尽量抑制其它原因造成的零漂。首先电荷放大器的设计上既要满足频率的要求,又要满足过载的要求,同时设计又要考虑抑制零漂的原则。

①考虑运放的开环增益A

电荷放大器运放的选用需采用具有高输入阻抗、低漂移、低噪声和宽频带的运放,在公式的推导过程中总是假设运放的开环增益足够大,但实际使用的运放的开环增益总是有限的,那么在满足测试要求的前提下,选择高开环增益的运放无疑会提高测量精度。虽然运放的开环增益会随频率发生改变,但就压电晶体型的传感器而言,因为其谐振频率一般都低于100kHz ,在这一范围运放的开环增益基本上没有改变,所以影响不明显。

②反馈电容C F 的选择

F

Q U C (14) 由式(14)可知,反馈电容的大小决定了电荷放大器的精度,同时也决定了测试系统的精度,理论上精度随C F 的提高而降低,但是从抑制零漂考虑。

③输入电缆漏电导g n

输入电缆漏电导即输入电缆的绝缘电阻,在实际使用中曾经发现有因为输入电缆绝缘电阻小而导致信号严重漂移失真的现象。在实使用中,选用的输入电缆的绝缘阻值需要尽可能大,至少应在1013欧姆以上。

7压电式加速度传感器的应用、发展前景及最新动态

7.1 向高精度发展

由于现在的高精尖设备特别的航空和宇航设备广泛采用压电传感器测量振动和

冲击,这些被测量都比较小,传感器的精度不高就可能测不出相关的量或者即使测得了相关量但是误差比较大,这些都会影响整个系统的正常工作。因此研制出具有灵敏度高、精确度高、响应速度快的压电传感器将成为未来研究的一个重要方向。

7.2 向高可靠性、宽温度范围发展

压电传感器的可靠性及温度范围直接影响到电子设备能否正常工作,研制高可靠性、宽温度范围的传感器将是永久性的方向。提高温度范围是历来需要解决的课题,大部分传感器其工作范围都在-20℃-70℃,在军用系统中要求工作温度在-40℃-85℃范围,而汽车锅炉等场合要求传感器的温度要求更高。

7.3 向微型化方向发展

现在的大型精密系统对质量和体积大小都非常的关注,传统的大块头的压电传感器将逐步的失去其市场。随着新材料及新加工技术的开发,利用激光等各种微细加工技术制成的硅加速度传感器由于具有体积非常的小、互换性及可靠性都很好的吸引力,正在逐步取代传统的压电传感器。

7.4 向智能化数字化发展

随着现代化的发展,压电传感器的功能已经突传统的功能,其输出不再是一个单一的模拟信号,而是经过微电脑处理后的数字信号,有的压电传感如集成后的压电传感器其本身带有控制功能,这就是所说的数字传感器。

现代半导体技术日趋先进和成熟的情况下,未来的压电加速度传感器会与后续处理电路集成在一块,体积更小,性能却更优。

总的来说,压电式加速度传感器具有量程大、频带宽、体积小、重量轻、安装简单、适用于各种恶劣环境的优点,因此广泛的应用于航空、航天、兵器、先造船、纺织、农机、车辆、电器等各系统的振动冲击测试、机械动态实验、环境模拟试验、振动校准、模态分析、故障诊断和优化设计等。

参考文献

[1]张春京,齐玉祥。加速度计的设计和应用领域[J].导航与控制,2003,2(3):60-65.

[2]樊尚春.传感器技术及应用[M].北京:北京航空航天大学出版社,2004.8:280-303.

[3]李科杰.新编传感器技术手册[M].北京:国防工业出版社,2002.1.

[4]刘玲玲,田文杰,张福学.压电石英加速度传感器稳定性研究[J].压电与声光,2007,29(1):45-46.

[5]李智慧,姜印平,邵磊.新型压电加速度传感器[J].传感技术学报,2003,3(3):345—347.

[6]候振德,高瑞亭.消除电荷放大器零点漂移的方法[J].四川:压电与声光,1991.

[7]周继明,江世明.传感器技术与应用[M].中南大学出版社,2005.

压电式传感器的应用

压电式压力传感器原理及应用 解宝存 201120204038摘要: 压电式压力传感器可以用来测量发动机内部燃烧压力的测量与真空度的测量。也可以用于军事工业,例如用它来测量枪炮子弹在膛中击发的一瞬间的膛压的变化和炮口的冲击波压力。它既可以用来测量大的压力,也可以用来测量微小的压力。本文主要讨论压电式压力传感器原理及压电式压力传感器的光纤传输技术应用在内弹道试验研究中的使用。 关键词:压电式传感器压力内弹道试验 压电式压力传感器(piezoelectric type pressure transducer) 1.0 压电效应 某些离子型晶体电介质(如石英、酒石酸钾钠、钛酸钡等)沿着某一个方向受力而发生机械变形(压缩或伸长)时,其内部将发生极化现象,而在其某些表面上会产生电荷。当外力去掉后,它又会重新回到不带电的状态,此现象称为“压电效应”。压电式传感器的原理是基于某些晶体材料的压电效应。 1.1 压电式压力传感器的特点 压电式压力传感器是基于压电效应的传感器。是一种自发电式和机电转换式传感器。它的敏感元件由压电材料制成。压电材料受力后表面产生电荷。此电荷经电荷放大器和测量电路放大和变换阻抗后就成为正比于所受外力的电量输出。压电式压力传感器用于测量力和能变换为力的非电物理量,如压力、加速度等(见压电式压力传感器、加速度计)。压电式压力传感器是利用压电材料的压电效应将被测压力转换为电信号的。由压电材料制成的压电元件受到压力作用时产生的电荷量与作用力之间呈线性关系:Q=kSp 式中 Q为电荷量;k为压电常数;S为作用面积;p为压力。通过测量电荷量可知被测压力大小。 压电式压力传感器的工作原理与压电式加速度传感器和力传感器基本相同,不同的是弹性元件是由膜片等把压力转换成集中力,再传给压电元件。为了保证静态特性及稳定性,通常多采用压电晶片并联。在压电式压力传感器中常用的压电材料有石英晶体和压电陶瓷,其中石英晶体应用得最为广泛。下面是采用石英晶片的膜片式压电压力传感器图。

压电式加速度传感器

HEFEI UNIVERSITY OF TECHNOLOGY 《传感器原理及应用》课程 考核论文 题目压电式加速度传感器班级机设七班 学号 20111488 姓名孙国强 成绩 机械与汽车工程学院机械电子工程系 二零一四年五月

压电式加速度传感器 摘要:现代工业和自动化生产过程中,非电物理量的测量和控制技术会涉及大量的动 态测试问题。所谓动态测试是指量的瞬时值以及它随时间而变化的值的确定,即被测量为变量的连续测量过程。振动与冲击测量的核心是传感器,常用压电加速度传感器来获取冲击和振动信号。压电式传感器是基于某些介质材料的压电效应,当材料受力作用而变形时,其表面会有电荷产生,从而实现非电量测量。其中,压电式加速度传感器是以压电材料为转换元件,将加速度输入转化成与之成正比的电荷或电压输出的装置,具有结构简单、重量轻、体积小、耐高温、固有频率高、输出线性好、测量的动态范围大、安装简单的特点。 一、传感器物理效应及工作原理 压电效应:某些材料在受力时所产生的电极化现象。正压电效应:某些电介质在受到某一方向的机械力而变形时,在一定表面上产生电荷,若外力变向,电荷极性随之而变;当撤除外力后,又重新回到不带电状态。逆压电效应:当在电介质的极化方向施加电场,电场力使其在一定方向上产生机械变形或机械应力;当撤除外加电场时,变形或应力随之消失,又称电致伸缩效应。 压电材料:石英晶体是目前广泛应用成本较低的人造石英晶体,有很大的机械强度和稳定的机械性能,温度稳定性好,但灵敏度低,介电常数小,因此逐渐被其他压电材料所代替,至今石英仍是最重要的也是用量最大的振荡器、谐振器和窄带滤波器等元件的压电材料。除此之外,压电陶瓷有较高的压电系数和介电常数,灵敏度高,但机械强度不如石英晶体好。 压电式加速度传感器又称为压电加速度计,它是典型的有源传感器,利用某些物质如石英晶体、人造压电陶瓷的压电效应,在加速度计受振时,质量块加在压电元件上的力也随之变化。压电敏感元件是力敏元件,在外力作用下,压电敏感元件的表面上产生电荷,从而实现非电量电测量的目的。 压电加速度传感器的原理框图如图1所示,原理如图2所示。

压电式传感器的发展与应用

HEFEI UNIVERSITY 自动检测技术报告 题目压电式传感器的应用与发展 系别 ***级自动化 班级 **班 姓名 ********************** 指导老师***** 完成时间 2011-11-28

前言:压电式传感器是以某些电介质的压电效应为基础,在外力作用下,在电介质的表面上产生电荷,从而实现非电量测量。压电传感元件是力敏感元件,所以它能测量最终能变换为力的那些物理量,例如力、压力、加速度等。压电式传感器具有响应频带宽、灵敏度高、信噪比大、结构简单、工作可靠、重量轻等优点。近年来,由于电子技术的飞速发展,随着与之配套的二次仪表以及低噪声、小电容、高绝缘电阻电缆的出现,使压电传感器的使用更为方便。因此,在工程力学、生物医学、石油勘探、声波测井、电声学等许多技术领域中获得了广泛的应用。本文重点介绍压电式传感器的工作原理,在航空发动机中的应用及发展趋势。 关键字:传感器压电效应测振 正文:压电式传感器的发展及应用压电式传感器是一种自发电式和机电转换式传感器。它的敏感元件由压电材料制成。压电材料受力后表面产生电荷。此电荷经电荷放大器和测量电路放大和变换阻抗后就成为正比于所受外力的电量输出。压电式传感器用于测量力和能变换为力的非电物理量。它的优点是频带宽、灵敏度高、信噪比高、结构简单、工作可靠和重量轻等。缺点是某些压电材料需要防潮措施,而且输出的直流响应差,需要采用高输入阻抗电路或电荷放大器来克服这一缺陷。 压电效应可分为正压电效应和逆压电效应。正压电效应是指:当晶体受到某固定方向外力的作用时,内部就产生电极化现象,同时在某两个表面上产生符号相反的电荷;当外力撤去后,晶体又恢复到不带电的状态;当外力作用方向改变 时,电荷的极性也随之改变;晶体受力所产生的电荷量 与外力的大小成正比。压电式传感器大多是利用正压电 效应制成的。逆压电效应是指对晶体施加交变电场引起 晶体机械变形的现象,又称电致伸缩效应。用逆压电效 应制造的变送器可用于电声和超声工程。压电敏感元件 的受力变形有厚度变形型、长度变形型、体积变形型、 厚度切变型、平面切变型5种基本形式(见图)。压电 晶体是各向异性的,并非所有晶体都能在这5种状态下产生压电效应。例如石英晶体就没有体积变形压电效应,但具有良好的厚度变形和长度变形压电效应。 压电效应是压电传感器的主要工作原理,压电传感器不能用于静态测量,因为经过外力作用后的电荷,只有在回路具有无限大的输入阻抗时才得到保存。实际的情况不是这样的,所以这决定了压电传感器只能够测量动态的应力。 压电传感器主要应用在加速度、压力和力等的测量中。压电式加速度传感器是一种常用的加速度计。它具有结构简单、体积小、重量轻、使用寿命长等优异的特点。压电式加速度传感器在飞机、汽车、船舶、桥梁和建筑的振动和冲击测量中已经得到了广泛的应用,特别是航空和宇航领域中更有它的特殊地位。压电式传感器也可以用来测量发动机内部燃烧压力的测量与真空度的测量。也可以用于军事工业,例如用它来测量枪炮子弹在膛中击发的一瞬间的膛压的变化和炮口的冲击波压力。它既可以用来测量大的压力,也可以用来测量微小的压力。 压电式传感器也广泛应用在生物医学测量中,比如说心室导管式微音器就是由压电传感器制成的,因为测量动态压力是如此普遍,所以压电传感器的应用就非常广泛。

压电式压力传感器(带信号放大解调滤波电路)

题目:压电式压力传感器的设计 姓名:刘福班级:3 学号:1003030321 专业:测控技术与仪器 目录 引言 第一章传感器基本原理 第二章传感器的基本要求 第三章传感器的结构设计 第四章传感器的参数计算 第五章测量电路信号处理电路 总结 参考文献

一、引言 此次压电式力传感器主要阐述了压电式力传感器的具体设计过程。 设计过程主要包括设计格式、设计要求及设计过程中有关压电式力传感器的设计,还有在整个设计过程中的有关计算、与传感器相连的测试电路。 本压电式传感器采用压缩型单项里传感器结构,利用纵向压电效应进行工作,在设计中压电材料采用石英晶体。由于安装中需施加预紧力,以保证该传感器的线性度良好,故留出一定的过载量,本设计中重点考虑了各部分的面积、刚度等参数,未讨论预紧力的选用范围,可能还存在一些其他因素,如安装误差等可以影响设计传感器的性能,属于正常范围内,使用中可忽略。 压电式传感器的设计,主要是让同学们了解传感器的设计过程,知道如何计算一些参数,如何设计尺寸,如何选择材料,把自己学到的知识熟练灵活的运用起来,活学活用,加深对传感器这门课程的认知。

第一章传感器基本原理 1、基本原理:压电效应 压电式传感器是基于压电效应的传感器。是一种自发电式和机电转换式传感器。它的敏感元件由压电材料制成。压电材料受力后表面产生电荷。此电荷经电荷放大器和测量电路放大和变换阻抗后就成为正比于所受外力的电量输出。常见有以下几种压电效应模型(见图1) 图1 压电效应可分正压电效应和逆压电效应。正压电效应是指:当晶体受到某固定方向外力的作用,内部就产生电极化,同时在某两个表面上产生符号相 反的电荷;当外力撤去后,晶体又恢复到不带电的状态;当外力作用方向改变时,电荷的极性也随之改变;晶体受力所产生的电荷量与外力的大小成正比。压电式传感器大多是利用正压电效应制成的。逆压电效应是指对晶体施加交变电场引起晶体机械变形的现象,又称电致伸缩效应。用逆压电效应制造的变送器可用于电声和超声工程。压电敏感元件的受力变形有厚度变形型、长度变形型、体积变形型、厚度切变型、面切变型5种形式。

加速度传感器的选择

加速度传感器选型 压电加速度传感器因其频响宽、动态范围大、可靠性高、使用方便,受到广泛应用。在一般通用振动测量时,用户主要关心的技术指标为:灵敏度、频率范围,内部结构、内置电路型与纯压电型的区别,现场环境与后续仪器配置等。 一、灵敏度的选择 制造商在产品介绍或说明书中一般都给出传感器的灵敏度和参考量程范围,目的是让用户在选择不同灵敏度的加速度传感器时能方便地选出合适的产品,最小加速度测量值也称最小分辨率,考虑到后级放大电路噪声问题,应尽量远离最小可用值,以确保最佳信噪比。最大测量极限要考虑加速度传感器自身的非线性影响和后续仪器的最大输出电压。 估算方法:最大被测加速度×传感器电荷(电压)灵敏度,其数值是否超过配套仪器的最大输入电荷(电压)值。建议如已知被测加速度范围可在传感器指标中的“参考量程范围”中选择(兼顾频响、重量),同时,在频响、质量允许的情况下,尽量选择高灵敏度的传感器,以提高后续仪器输入信号,提高信噪比。在兼顾频响、质量的同时,可参照以下范围选择传感器灵敏度:以电荷输出型压电加速度传感器为例: 1、土木工程和超大型机械结构的振动在0.1g-10g (1g=9.81m/s2)左右,可选电荷灵敏度在300pC/ms-2~ 30pC/ms-2的压电加速度传感器,属于电荷输出型压电加速度传感器 2、特殊的土木结构(如桩基)和机械设备的振动在100ms-2~1000ms-2,可选择20pC/ms-2~2pC/ms-2的加速度传感器。 3、冲击,碰撞测量量程一般10000ms-2~1000000ms-2,可选则传感器灵敏度是0.2pC/ms-2~ 0.002pC/ms-2的加速度传感器。 二、频率选择 制造商给出的加速度传感器的频响曲线是用螺钉刚性连接安装的。 一般将曲线分成二段:谐振频率和使用频率。使用频率是按灵敏度偏差给出的,有±10%、±5%、±3dB。谐振频率一般是避开不用的,但也有特例,如轴承故障检测。选择加速度传感器的频率范围应高于被测试件的振动频率。有倍频分析要求的加速度传感器频率响应应更高。土木工程一般是低频振动,加速度传感器频率响应范围可选择0.2Hz~1kHz,机械设备一般是中频段,可根据设备转速、设备刚度等因素综合估算振动频率,选择0.5Hz~ 5kHz 的加速度传感器。如发电机转速在3000rms 时,除以60s 此时它的主频率为50Hz。碰撞、冲击测量高频居多。 加速度传感器的安装方式不同也会改变使用频响(对振动值影响不大)。 安装面要平整、光洁,安装选择应根据方便、安全的原则。我们给出同一只AD500S 加速度传感器不同安装方式的使用频率:螺钉刚性连接(±10%误差)10kHz;环氧胶或“502”粘接安装6kHz;磁力吸座安装 2kHz;双面胶安装1kHz。由此可见,安装方式的不同对测试频率的响应影响很大,应注意选择。加速度传感器的质量、灵敏度与使用频率成反比,灵敏度高,质量大,使用频率低,这也是选择的技巧。 三、内部结构 内部结构是指敏感材料晶体片感受振动的方式及安装形式。有压缩和剪切两大类,常见的有中心压缩、平面剪切、三角剪切、环型剪切。 中心压缩型频响高于剪切型,剪切型对环境适应性好于中心压缩型。如配用积分型电荷放大器测量速度、位移时,最好选用剪切型产品,这样所获得的信号波动小,稳定性好。 四、内置电路 内置的概念是将放大电路置于加速度传感器内,成为具有电压输出功能的传感元件。它可分双电源(四线)和单电源(二线、带偏置,又称ICP) 两种,下面所指内装电路专指ICP

第三章习题

第三章思考题 一、选择题 1.电涡流式传感器是利用( A )材料的电涡流效应工作的。 A.金属导体 B.半导体 C.非金属 D. PVF 2 2.为消除压电传感器电缆分布电容变化对输出灵敏度的影响,可采用( 3. )。 A.电压放大器 B. 电荷放大器 C.前置放大器 3.磁电式振动速度传感器的数学模型是一个()。 A. 一阶环节 B.二阶环节 C.比例环节 4. 磁电式振动速度传感器的测振频率应()其固有频率。 A.远高于 B.远低于 b C.等于 5. 压电式加速度计,其压电片并联时可提高()。 A.电压灵敏度 B.电荷灵敏度 C.电压和电荷灵敏度 6.下列传感器中()是基于压阻效应的。 A.金属应变片 B.半导体应变片 C.压敏电阻 7.压电式振动传感器输出电压信号与输入振动的()成正比。 A.位移 B.速度 C.加速度 8.石英晶体沿机械轴受到正应力时,则会在垂直于()的表面上产生电荷量。 A.机械轴 B.电轴 C.光轴 9.石英晶体的压电系数比压电陶瓷的()。 A.大得多 B.相接近 C.小得多 10.光敏晶体管的工作原理是基于()效应。 A.外光电 B.内光电 C.光生电动势 11.一般来说,物性型的传感器,其工作频率范围()。 A.较宽 B.较窄 C.不确定 12.金属丝应变片在测量构件的应变时,电阻的相对变化主要由()来决定的。 A.贴片位置的温度变化 B. 电阻丝几何尺寸的变化

C.电阻丝材料的电阻率变化 13.电容式传感器中,灵敏度最高的是()。 A.面积变化型 B.介质变化型 C.极距变化型 14.高频反射式涡流传感器是基于()和()的效应来实现信号的感受和变化的。 A.涡电流 B.纵向 C.横向 D.集肤 15.压电材料按一定方向放置在交变电场中,其几何尺寸将随之发生变化,这称为()效应。 A.压电 B.压阻 C.压磁 D.逆压电 二、填空题 1.可用于实现非接触式测量的传感器有___和___等。 2.电阻应变片的灵敏度表达式为 / 12 / dR R S E dl l υλ ==++,对于金属应变片来说: S=___,而对于半导体应变片来说S=___。 3.具有___的材料称为压电材料,常用的压电材料有___和___。 4.当测量较小应变值时应选用___效应工作的应变片,而测量大应变值时应选用___效应工作的应变片。 5.电容器的电容量0A C εε δ =,极距变化型的电容传感器其灵敏度表达式为:_ __。 6. 极距变化型的电容传感器存在着非线性度,为了改善非线性度及提高传感器的灵敏度,通常采用___的形式。 7.差动变压器式传感器的两个次级线圈在连接时应___。 8.光电元件中常用的有___、___和___。 9.不同的光电元件对于不同波长的光源,其灵敏度是___。 10.发电式传感器(也称能量转换型传感器)有___、___等,而电参量式的传感器(也称能量控制型传感器)主要是___、___和___等。 11.压电传感器在使用___放大器时,其输出电压几乎不受电缆长度变化的影

压电式传感器

摘要 (1) 一、引言 (1) 二、压电式传感器原理 (1) 2.1压电传感器所应用的原理 (1) 2.2压电效应的产生 (2) 2.3石英晶体的压电效应 (3) 三、压电传感器在汽车上的应用 (4) 3.1压电式爆震传感器 (4) 3.1.1共振型压电式爆震传感器 (4) 3.1.2非共振型压电式传感器 (5) 3.2碰撞传感器 (6) 3.3压电式加减速传感器 (6) 四、压电式传感器的发展趋势 (7) 参考文献 (7)

压电式传感器及应用 摘要 近年来,由于电子技术的飞速发展,随着与之配套的二次仪表以及低噪声、小电容、高绝缘电阻电缆的出现,使得压电传感器在工程力学、生物医学、石油勘探、声波测井、电声学等许多技术领域中获得了广泛的应用。本文将以压电式传感器的应用与发展为核心,首先对压电效应的原理进行介绍,紧接着是在行业、具体工程方面尤其是在汽车领域的应用以及应用的方法,最后介绍了压电式式传感器未来的发展趋势。 关键字:压电式传感器;压电效应;应用;发展 一、引言 传感器是指那些对被测对象的某一确定的信息具有感受与检出功能, 并使之按照一定规律转换与之对应有用输出信号的元器件或装置,是新技术革命和信息社会的重要技术基础,是现代科技的开路先锋,美国早在80年代就声称世界已进入传感器时代,日本则把传感器技术列为十大技术之创立。 压电式传感器是基于压电效应的传感器。是一种自发电式和机电转换式传感器它的敏感元件由压电材料制成。压电材料受力后表面产生电荷。此电荷经电荷放大器和测量电路放大和变换阻抗后就成为正比于所受外力的电量输出。压电式传感器用于测量力和能变换为力的非电物理量。它的优点是频带宽、灵敏度高、信噪比高、结构简单、工作可靠和重量轻等。缺点是某些压电材料需要防潮措施,而且输出的直流响应差,需要采用高输入阻抗电路或电荷放大器来克服这一缺陷。 二、压电式传感器原理 2.1压电传感器所应用的原理 压电式传感器所采用的是压电效应,即,当沿着一定方向对某些物质加力而使其变形时,

传感器(1)

第一章概述 1、传感器是指能感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,通常由直接响应被测量的敏感元件,产生可用信号输出的转换元件及相应的信号调理电路组成。 1、下列不属于按工作原理进行分类的传感器是(B )。 A 、应变式传感器 B 、化学式传感器 C 、压电式传感器 D 、热电式传感器 第二章传感器的基本特征 1、要实现不失真测量,检测系统的幅频特性为常数,相频特性成线性关系。 2、某传感器为一阶系统,当受阶跃信号作用时,在t=0时,输出为10mv ;t →∞时,输出为100mv ;在t=5s 时,输出为50mv 。则该传感器的时间常数为7.11s 。 3、某温度传感器为时间常数τ =3s 的一阶系统。当传感器受突变温度 作用后,试求传感器指示出温度的3 1所需的时间-3ln 32。

第三章电阻式传感器 2、单位应变引起的电阻值的相对变化量称为电阻丝的灵敏系数。 3、应变式传感器是利用电阻应变片将应变转换为电阻变化的传感器。其由在弹性元件上的粘贴电阻应变敏感元件构成,弹性元件用来________ ; __________元件用来_____________。 4、减小或消除非线性误差的方法有提高桥臂比和采用差动电桥。第二章如果将100?的应变片贴在弹性元件上,若试件截面S=0.5×104-㎡,弹性模量E=2×1011N/㎡,若由5×104N的拉力引起的应变片电阻变化为1?,试求应变片的灵敏系数。 第三章环境温度的改变会给电阻应变片的测量带来误差,即温度误差。而电桥补偿法是最有效的补偿方法。其原理如下图所示。试从被测试件不承受和承受两个方面来分析其温度误差的补偿原理。 R 1 R 3 R 2 R 4 U o R 1 R 2 (a)(b) R 1 -工作应变片 R 2 -补偿应变片 F F ~ U a b

PE和IEPE加速度传感器的比较.doc

P E和I E P E加速度传感器的比较 PE是指电荷输出型压电式加速度传感器,IEPE是指内置处理电路的压电式加速度传感器,本文将要讨论二者各自的特点。 压电效应 压电式加速度传感器的工作原理是以某些物质的压电效应为基础的。当这些物质在某一方向上因受到拉力或压力的作用而产生变形时,其表面上会产生电荷;当去掉外力时,它们又会回到不带电的状态,这种现象就是压电效应。常用的压电材料有石英、钛酸钡、锆钛酸铅等等。实际上,当压电材料受到剪切力、横向拉力或压力时,也会产生压电效应。 PE加速度传感器 PE压电式加速度传感器的工作原理是:将质量块的加速度转换为其对压电材料所施加的力,通过测得该力的大小从而换算出加速度的值。 压电式加速度传感器的结构原理如下图所示。两片压电片组成了其压电元件,表面有镀银层,中间夹有一金属片,并焊有输出引线,另一输引线直接与基座相连。压电片上放有一个比重较大的质量块,并用一硬弹簧或螺栓对其施加预载荷。整个组件封装在一个金属壳体内部,基座一般较为厚重且刚度大。 测量时,传感器与被测物刚性固定在一起,当被测物振动时,传感器与基座也会产生相同的振动。由于质量块的质量相对较小,而弹簧的刚度相对很大,所以可认为质量块的惯性很小。因此质量块感受到与传感器基座相同的振动,并受到与加速度方向相反的惯性力的作用。于是,质量块就有一正比于加速度的交变力作用在压电片上,使其两个表面产生交变电荷。当振动频率远低于传感器的固有频率时,传感器的输出电荷与作用力成正比,亦即与被测物的加速度成正比。 由于PE传感器的输出量为电荷,因此其后端必须与电荷放大器或电压放大器连接,才能将电荷信号转换为电压信号,此电压信号经过后级放大、滤波等调理电路即可送入示波器等设备。由于PE传感器的输出阻抗较高,易受输出的电荷信号易受噪声干扰,因此必须使用特殊的低噪声电缆。 IEPE加速度传感器 由于PE加速度传感器有必须配接外部电荷放大器使用,并且信号在长距离传输过程中容易受干扰等一些缺点,因此出现了IEPE加速度传感器。 IEPE压电式加速度传感器的结构原理如上图所示,它其实就是将PE加速度传感器所需的处理电路集成到传感器内部,这样就可以直接输出一个高电平、低阻抗的电压信号,也有

压电式传感器测振动实验.

实验二十一压电式传感器测振动实验 一、实验目的:了解压电传感器的原理和测量振动的方法。 二、基本原理:压电式传感器是一和典型的发电型传感器,其传感元件是压电材料,它以压电材料的压电效应为转换机理实现力到电量的转换。压电式传感器可以对各种动态力、机械冲击和振动进行测量,在声学、医学、力学、导航方面都得到广泛的应用。 1、压电效应: 具有压电效应的材料称为压电材料,常见的压电材料有两类压电单晶体,如石英、酒石酸钾钠等;人工多晶体压电陶瓷,如钛酸钡、锆钛酸铅等。 压电材料受到外力作用时,在发生变形的同时内部产生极化现象,它表面会产生符号相反的电荷。当外力去掉时,又重新回复到原不带电状态,当作用力的方向改变后电荷的极性也随之改变,如图21—1 (a) 、(b) 、(c)所示。这种现象称为压电效应。 (a) (b) (c) 图21—1 压电效应 2、压电晶片及其等效电路 多晶体压电陶瓷的灵敏度比压电单晶体要高很多,压电传感器的压电元件是在两个工作面上蒸镀有金属膜的压电晶片,金属膜构成两个电极,如图21—2(a)所示。当压电晶片受到力的作用时,便有电荷聚集在两极上,一面为正电荷,一面为等量的负电荷。这种情况和电容器十分相似,所不同的是晶片表面上的电荷会随着时间的推移逐渐漏掉,因为压电晶片材料的绝缘电阻(也称漏电阻)虽然很大,但毕竟不是无穷大,从信号变换角度来看,压电元件相当于一个电荷发生器。从结构上看,它又是一个电容器。因此通常将压电元件等效为一个电荷源与电容相并联的电路如21—2(b)所示。其中e a=Q/C a。式中,e a为压电晶片受力后所呈现的电压,也称为极板上的开路电压;Q为压电晶片表面上的电荷;C a为压电晶片的电容。 实际的压电传感器中,往往用两片或两片以上的压电晶片进行并联或串联。压电晶片并联时如图21—2(c)所示,两晶片正极集中在中间极板上,负电极在两侧的电极上,因而电容

压电式加速度传感器的信号输出形式

电荷输出型 传统的压电加速度计通过内部敏感芯体输出一个与加速度成正比的电荷信号。实际使用中传感器输出的高阻抗电荷信号必须通过二次仪表将其转换成低阻抗电压信号才能读取。由于高阻抗电荷信号非常容易受到干扰,所以传感器到二次仪表之间的信号传输必须使用低噪声屏蔽电缆。由于电子器件的使用温度范围有限,所以高温环境下的测量一般还是使用电荷输出型。北智BW-Sensor采用进口陶瓷的加速度计可在温度-40oC~250oC范围内长期使用。 低阻抗电压输出型(IEPE) IEPE型压电加速度计即通常所称的ICP型压电加速度计。压电传感器换能器输出的电荷通过装在传感器内部的前置放大器转换成低阻抗的电压输出。IEPE型传感器通常为二线输出形式,即采用恒电流电压源供电;直流供电和信号使用同一根线。通常直流电部分在恒电流电源的输出端通过高通滤波器滤去。IEPE型传感器的最大优点是测量信号质量好、噪声小、抗外界干扰能力强和远距离测量,特别是新型的数采系统很多已配备恒流电压源,因此,IEPE传感器能与数采系统直接相连而不需要任何其它二次仪表。在振动测试中IEPE传感器已逐渐取代传统的电荷输出型压电加速度计。 传感器的灵敏度,量程和频率范围的选择 压电型式的加速度计是振动测试的最主要传感器。虽然压电型加速度计的测量范围宽,但因市场上此类加速度计品种繁多,所以给正确的选用带来一定的难度。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城https://www.360docs.net/doc/b62409426.html,/

实验 压电式传感器实验

实验压电式传感器实验 实验项目编码: 实验项目时数:2 实验项目类型:综合性()设计性()验证性(√) 一、实验目的 本实验的主要目的是了压电式传感器的结构特点;熟悉压电传感器的工作原理;掌握压电传感器进行振动和加速度测量的方法。 二、实验内容及基本原理 (一)实验内容 1.压电传感器进行振动和加速度测量的方法 (二)实验原理 压电式传感器是一和典型的发电型传感器,其传感元件是压电材料,它以压电材料的压电效应为转换机理实现力到电量的转换。压电式传感器可以对各种动态力、机械冲击和振动进行测量,在声学、医学、力学、导航方面都得到广泛的应用。 1.压电效应: 具有压电效应的材料称为压电材料,常见的压电材料有两类压电单晶体,如石英、酒石酸钾钠等;人工多晶体压电陶瓷,如钛酸钡、锆钛酸铅等。 压电材料受到外力作用时,在发生变形的同时内部产生极化现象,它表面会产生符号相反的电荷。当外力去掉时,又重新回复到原不带电状态,当作用力的方向改变后电荷的极性也随之改变,如图1 (a) 、(b) 、(c)所示。这种现象称为压电效应。 (a) (b) (c) 图1 压电效应 2.压电晶片及其等效电路 多晶体压电陶瓷的灵敏度比压电单晶体要高很多,压电传感器的压电元件是在两个工作面上蒸镀有金属膜的压电晶片,金属膜构成两个电极,如图2(a)所示。当压电晶片受到力的作用时,便有电荷聚集在两极上,一面为正电荷,一面为等量的负电荷。这种情况和电容器十分相似,所不同的是晶片表面上的电荷会随着时间的推移逐渐漏掉,因为压电晶片材料的绝缘电阻(也称漏电阻)虽然很大,但毕竟不是无穷大,从信号变换角度来看,压电元件相当于一个电荷发生器。从结构上看,它又是一个电容器。因此通常将压电元件等效为一个电荷源与电容相并联的电路如2(b)所示。其中ea=Q/Ca 。式中,ea为压电晶片受力后所呈现的

压电式传感器论文

自动检测换技术 相关知识: 电感式传感器的概述; 电感式传感器的基本工作原理; 电感式传感器的测量转换电路; 典型事例; 电感式传感器的应用领域;

电感式传感器 电感式传感器是一种利用线圈自感或互感的变化来实现测量的一种传感器装置,常用来测量位移、振动、力、应变、流量、加速度等物理量。 电感式传感器是基于电磁感应原理来进行测量的。 电感式传感器的分类 自感型——变磁阻式传感器; 互感型——差动变压器式传感器; 涡流式传感器——自感型和互感型都有; 高频反射式——自感型; 低频透射式——互感型电感式传感器; 电感式传感器的概述: 由铁心和线圈构成的将直线或角位移的变化转换为线圈电感量变化的传感器,又称电感式位移传感器。这种传感器的线圈匝数和材料导磁系数都是一定的,其电感量的变化是由于位移输入量导致线圈磁路的几何尺寸变化而引起的。当把线圈接入测量电路并接通激励电源时,就可获得正比于位移输入量的电压或电流输出。常用电感式传感器有变间隙型、变面积型和螺管插铁型。在实际应用中,这三种传感器多制成差动式,以便提高线性度和减小电磁吸力所造成的附加误差。 为什么电感式传感器,一般采用差动形式?

采用差动式结构:1、可以改善非线性、提高灵敏度,提高了测量的准确性。2、电源电压、频率的波动及温度变化等外界影响也有补偿作用,作用在衔铁上的电磁力,由于是两个线圈磁通产生的电磁力之差,所以对电磁吸力有一定的补偿作用,提高抗干扰性。 目录 1 简介 2 特点 3 种类

电感式传感器- 简介 由铁心和线圈构成的将直线或角位移的变化转换为线圈电感量变化的传感器,又称电感式位移传感器。这种传感器的线圈匝数和材料导磁系数都是一定的,其电感量的变化是由于位移输入量导致线圈磁路的几何尺寸变化而引起的。当把线圈接入测量电路并接通激励电源时,就可获得正比于位移输入量的电压或电流输出。 电感式传感器- 特点 ①无活动触点、可靠度高、寿命长; ②分辨率高; ③灵敏度高; ④线性度高、重复性好; ⑤测量范围宽(测量范围大时分辨率低); ⑥无输入时有零位输出电压,引起测量误差; ⑦对激励电源的频率和幅值稳定性要求较高; ⑧不适用于高频动态测量。电感式传感器主要用于位移测量和可以转换成位移变化的机械量(如力、张力、压力、压差、加速度、振动、应变、流量、厚度、液位、比重、转矩等)的测量。 电感式传感器- 种类 常用电感式传感器有变间隙型、变面积型和螺管插铁型。在实际应用中,这三种传感器多制成差动式,以便提高线性度和减小电磁吸

压电传感器的应用

压电传感器的应用 摘要:传感器是获取自然和生产领域中信息的主要途径与手段。在现代工业生产尤其是自动化生产过程中,要用各种传感器来监视和控制生产过程中的各个参数,使设备工作在正常状态或最佳状态,并使产品达到最好的质量。传感器的种类非常广泛,其中压电传感器是基于材料的压电效应而制成的器件,其有较长的发展历史。压电材料的种类由最初的压电晶体发展到压电陶瓷、进而发展到压电聚合物及其复合材料。随着物理学、材料科学与各个学科的交叉发展,压电材料被用以研制成了多种用途的传感器,被广泛应用于工程技术各领域,在测量技术中被用来测量力和加速度。 Abstract:Sensor is the main ways and means to obtain information in the field of natural and production . In modern industrial production, especially automated production process, useing a variety of sensors to monitor and control the production process of various parameters,which enable the device to work in a normal state or the best condition, and to achieve the best quality products. Types of sensors is very broad, of which the piezoelectric sensor is based on the piezoelectric effect devices made of material which has a long history of development. Types of piezoelectric material from the initial development of the piezoelectric ceramic piezoelectric crystal, and thus the development of piezoelectric polymers and their composites. With the development of cross-physics, materials science and various disciplines, piezoelectric materials are used for research into a variety of uses sensors are widely used in various

第三章 压电式传感器_改

第3章压电式传感器 §3.1 压电效应及材料 §3.1.1 压电效应 §3.1.2 压电材料 §3.1.2.1 压电晶体 §3.1.2.2 压电陶瓷 §3.1.2.3 新型压电材料 §3.1.3 压电振子 §3.2 压电传感器等效电路和测量电路 §3.2.1 等效电路 §3.2.2 测量电路 §3.2.2.1 电压放大器 §3.2.2.2 电荷放大器 §3.2.2.3 谐振电路 §3.3 压电式传感器及其应用 §3.3.1 压电式加速度传感器 §3.3.1.1 结构类型 §3.3.1.2压电加速度传感器动态特性§3.3.2 压电式力传感器 §3.3.3压电角速度陀螺 §3.4 声波传感技术 §3.4.1 SAW 传感器 §3.4.1.l SAW传感器特点 §3.4.1.2 SAW传感器的结构与工作原理 §3.4.1.3 SAW振荡器 §3.4.2超声检测 §3.4.2.1超声检测的物理基础 §3.4.2.2 超声波探头 §3.4.2.3 超声波检测技术的应用 思考题

第3章压电式传感器 压电式传感器是一种能量转换型传感器。它既可以将机械能转换为电能,又可以将电能转化为机械能。压电式传感器是以具有压电效应的压电器件为核心组成的传感器。 §3.1压电效应及材料 §3.1.1 压电效应 压电效应(piezoelectric effect)是指某些介质在施加外力造成本体变形而产生带电状态或施加电场而产生变形的双向物理现象,是正压电效应和逆压电效应的总称,一般习惯上压电效应指正压电效应。当某些电介质沿一定方向受外力作用而变形时,在其一定的两个表面上产生异号电荷,当外力去除后,又恢复到不带电的状态,这种现象称为正压电效应(positive piezodielectric effect)。其中电荷大小与外力大小成正比,极性取决于变形是压缩还是伸长,比例系数为压电常数,它与形变方向有关,在材料的确定方向上为常量。它属于将机械能转化为电能的一种效应。压电式传感器大多是利用正压电效应制成的。当在电介质的极化方向施加电场,某些电介质在一定方向上将产生机械变形或机械应力,当外电场撤去后,变形或应力也随之消失,这种物理现象称为逆压电效应(reverse piezodielectric effect),又称电致伸缩效应,其应变的大小与电场强度的大小成正比,方向随电场方向变化而变化。它属于将电能转化为机械能的一种效应。用逆压电效应制造的变送器可用于电声和超声工程。1880-1881年,雅克(Jacques)和皮埃尔·居里(Piere Curie)发现了这两种效应。图3-1为压电效应示意图。 (a)正压电效应;(b)压电效应的可逆性 图3-1压电效应 由物理学知,一些离子型晶体的电介质(如石英、酒石酸钾钠、钛酸钡等)不仅在电场力作用下,而且在机械力作用下,都会产生极化现象。为了对压电材料的压电效应进行描述,表明材料的电学量(D、E)力学量(T、S)行为之间的量的关系,建立了压电方程。正压电效应中,外力与因极化作用而在材料表面存储的电荷量成正比。即: σ=(3. 1) D dT =或dT 式3.1中D、σ—电位移矢量、电荷密度,单位面积的电荷量,C/m2; T—应力,单位面积作用的应力,N/m2; d—正压电系数,C/N。 逆压电效应中,外电场作用下的材料应变与电场强度成正比。即:

压电式力传感器的设计

设计任务书 一、题目:压电式力传感器的设计 二、设计要求: 1.小型低频的单向力传感器 2.最大测力为400千克 3.压电材料采用石英晶体 三、设计成果要求: 1.设计说明书一份 2.设计参数合理,设计步骤完整。结果标准,论述充分,思路清楚,有条理, 给出相应的参考文献。

设计摘要 此次压电式力传感器设计说明书是按照长春理工大学材料科学与工程学院2010年教学计划的要求设计编写的,其中主要阐述了压电式力传感器的具体设计过程。 设计过程主要包括设计格式、设计要求及设计过程中有关压电式力传感器的设计,还有在整个设计过程中的有关计算、与传感器相连的测试电路。 本压电式传感器采用压缩型单项里传感器结构,利用纵向压电效应进行工作,在设计中压电材料采用石英晶体。由于安装中需施加预紧力,以保证该传感器的线性度良好,故留出一定的过载量,本设计中重点考虑了各部分的面积、刚度等参数,未讨论预紧力的选用范围,可能还存在一些其他因素,如安装误差等可以影响设计传感器的性能,属于正常范围内,使用中可忽略。

目录 引言 (1) 第一章传感器的结构设计 (2) 第二章传感器的参数计算 (3) 第三章测量电路 (6) 总结 (7) 参考文献 (8)

引言 压力传感器是工业实践中最为常用的一种传感器,其广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业,在工业中有着不可少的作用。压电式传感器也广泛应用在生物医学测量中,比如说心室导管式微音器就是由压电传感器制成的,因为测量动态压力是如此普遍,所以压电传感器的应用就非常广泛。 传感器原理与应用作为一门课程,我们在认真学好理论课程的同时,还要与实际结合起来,只有这样才能对压电式传感器的使用有更好的理解。 通过对传感器的设计来加深对理论课程的理解,这是学院要求我们进行课程设计的目的。做到理论联系实际,从而学会正确分析传感器使用过程中出现的问题,不断总结经验,进而用来来指导实践,这样我们才能将学好的知识得到很好的应用。也为我们日后再该领域的进一步研究打下坚实的基础。

第三章常用感器

第三章 常用传感器 (一)填空题 1、 属于能量控制型的传感器有 等,属于能量转换型的传感器有 等(每个至少举例两个)。 2、 金属电阻应变片与半导体应变片的物理基础的区别在于:前者利用 引起的电阻变化,后者利用 变化引起的电阻变化。 3、 为了提高变极距电容式传感器的灵敏度、线性度及减小外部条件变化对测量精度的影响,实际应用时常常采用 工作方式。 4、 压电式传感器的测量电路(即前置放大器)有两种形式: 放大器和 放大器,后接 放大器时,可不受连接电缆长度的限制。 5、 涡流式传感器的变换原理是利用了金属导体在交流磁场中的 效应。 6、 磁电式速度计的灵敏度单位是 。 7、 压电式传感器是利用某些物质的 而工作的。 (二)选择题 1、 电阻应变片的输入为 。 (1)力 (2) 应变 (3)速度 (4)加速度 2、 结构型传感器是依靠 的变化实现信号变换的。 (1)本身物理性质 (2)体积大小 (3)结构参数 (4)电阻值 3、 不能用涡流式传感器进行测量的是 。 (1)位移 (2)材质鉴别 (3)探伤 (4)非金属材料 4、 变极距面积型电容传感器的输出与输入,成 关系。 (1)非线性 (2)线性 (3)反比 (4)平方 5、 半导体式应变片在外力作用下引起其电阻变化的因素主要是 。 (1)长度 (2)截面积 (3)电阻率 (4)高通 6、 压电式传感器输出电缆长度的变化,将会引起传感器的 产生变化。 (1)固有频率 (2)阻尼比 (3)灵敏度 (4)压电常数 7、 在测量位移的传感器中,符合非接触测量,而且不受油污等介质影响的是 传感器。 (1)电容式 (2)压电式 (3)电阻式 (4)电涡流式 8、 自感型可变磁阻式传感器,当气隙δ变化时,其灵敏度S 与δ之间的关系是:S = 。 (1)δ1 k (2)δk (3)2-δk (4)2--δk 9、 光电倍增管是利用 效应制成的器件。 (1)内光电 (2)外光电 (3)光生伏特 (4)阻挡层 (三)判断对错题(用√或×表示) 1、 滑线变阻器式传感器不适于微小位移量测量。( ) 2、 涡流式传感器属于能量控制型传感器( ) 3、 压电加速度计的灵敏度越高,其工作频率越宽。( ) 4、 磁电式速度拾振器的上限工作频率取决于其固有频率。( )

常用加速度传感器有哪几种分类

1、常用加速度传感器有哪几种分类各有什么特点 答:加速度传感器按工作原理可分为压电式、压阻式和电容式。 压电式传感器是通过利用某些特殊的敏感芯体受振动加速度作用后会产生与之成正比的电荷信号的特性,来实现振动加速度的测量的,这种传感器一般都具有测量频率范围宽、量程大、体积小、重量轻、结构简单坚固、受外界干扰小以及产生电荷信号不需要任何外界电源等优点,它最大的缺点是不能测量零频率信号。 压阻式传感器的敏感芯体为半导体材料制成电阻测量电桥来实现测量加速度信号,这种传感器的频率测量范围和量程也很大,体积小重量轻,但是缺点也很明显,就是受温度影响较大,一般都需要进行温度补偿。 电容式传感器中一般有个可运动质量块与一个固定电极组成一个电容,当受加速度作用时,质量块与固定电极之间的间隙会发生变化,从而使电容值发生变化。它的优点很突出,灵敏度高、零频响应、受环境(尤其是温度)影响小等,缺点也同样突出,主要是输入输出非线形对应、量程很有限以及本身是高阻抗信号源,需后继电路给予改善。 相比之下,压电式传感器应用更为广泛一些,压阻式也有一定程度的应用,而电容式主要专用于低频测量。 2、压电式传感器又分哪几种 答:压电式传感器有多种分类方式。 按敏感芯体材料分为压电晶体(一般为石英)和压电陶瓷两类。压电陶瓷比压电晶体的压电系数要高,而且各项机电系数随温度时间等外界条件的变化相对较小,因此一般更常用的是压电陶瓷。 按敏感芯体结构形式分为压缩式、剪切式和弯曲变形梁式。压缩式结构最简单,价格便宜,但是不能有效排除各种干扰;剪切式受干扰影响最小,目前最为常用,但是制造工艺要求较高,所以价格偏高;弯曲变形梁式比较少见,其结构能够产生较大的电荷输出信号,但是测量频率范围较低,受温度影响易产生漂移,因此不推荐使用。 按信号输出的方式分为电荷输出式和低阻抗电压输出式(ICP)。电荷输出式直接输出高阻抗电荷信号,必须通过二次仪表转换成低阻抗电压读取,而高阻抗电荷信号较容易受干扰,所以对测试环境、连接线缆等的要求较高; 而ICP型传感器内部安装了前置放大器,直接转换成电压信号输出,所以相对有信号质量好、噪声小、抗干扰能力强、能实现远距离测量等优点,目前正逐步取代电荷输出式传感器。 3、选择压电式加速度传感器时有哪些基本原则 答:选择一般应用场合的压电式加速度传感器时,要从三个方面全面考虑: ①振动量值的大小②信号频率范围③测试现场环境。 作为一般的原则,灵敏度高的传感器量程范围小,反之灵敏度低的量程范围大,而且一般情况下,灵敏度越高,敏感芯体的质量块越大,其谐振频率也越低,如果谐振波叠加在被测信号上,会造成失真输出,因此选择时除

相关文档
最新文档