电缆温度检测要点

电缆温度检测要点
电缆温度检测要点

电缆运行监视

1.电缆温度监视,电缆导体的温度应不超过最高允许温度,一般每月检查一次电缆表面温

度及周围温度,确定电缆有无过热现象。测量电缆温度应在最大负荷时进行,对直埋电缆应选择电缆排列最密处或散热条件最差处

2.电缆负荷的监视,电缆负荷应不超过允许载流量、测量负荷可用配电盘电流表或钳形电

流表,一般应选择有代表性的时间和负荷最特殊时间内进行测量。过负荷对电缆的安全运行危害极大,当发现异常现象时应紧急减轻负荷,确保电缆正常运行

3.电缆接地电阻的监视,电缆金属保护层对地电阻每年测量一次。单芯电缆护层一段接地

时,应每季测量一次金属保护层对地的电压。测量单芯电缆保护层电流及电压,应在电缆最大负荷时进行

4.电压监视,电缆线路的正常工作电压,一般不应超过额定电压的15%,以防止电缆觉云

过早老化,确保电缆线路的安全运行。如要升压运行,必须经过试验,并报上级技术管理部门审批。

5.在紧急事故时,电缆允许短时间内过负荷,但应满足下列条件:

1)3及以下电缆,只允许过负荷10%,并不得超过2h;

2)3~6kV电缆,只允许过负荷15%,不得超过2h;

6.直埋电缆表面温度:

电缆额定电压/kV 3及以下 6 10 35

7.电缆导体最高允许温度

额定电压

/kV

3及以下 6 10 35

电缆种类油纸绝缘橡胶或聚

氯乙烯绝

缘油纸或聚

氯乙烯绝

交联聚乙

烯绝缘

油纸绝缘交联聚乙

烯绝缘

油纸绝缘

线芯最高

允许温度

/℃

80 65 65 90 60 90 50

8.电缆同地下热力管道交叉或接近敷设时,电缆周围的土壤温度,在任何情况下不应高于

本地段其他地方同样深度的温度10℃以上。

9.电缆纸端头的引出线连接点,在长期负载下易导致过热,最终会烧坏接点,特别是在发

生故障时,在接点处流过较大的故障电流,更会烧坏接点。因此,在运行时对接点的温度检测是非常重要的,一般可用红外线测温仪或测温笔进行测量,使用测温笔是带电测温,在操作中应注意安全

10.在运行中发生短路故障时,通过的电流将突然增加很多倍,短路情况下的电缆导体允许

温度不超过下表。

电缆种类短路时电缆导体

允许温度/℃电缆种类短路时电缆导

体允许温度/℃

纸绝缘电缆10kV及以下220 聚氯乙烯绝缘电缆120 20~35kV 175 聚乙烯绝缘电缆140 充油绝缘160 天然橡皮绝缘电缆150

交联聚乙烯绝缘电缆铜导体230 铝导体200

电缆线路中有中间接头者,其短路容许温度为:焊锡接头:120℃

压接接头:150℃

电焊或气焊接头:与导体短路时允许温度相同。

温度检测技术及发展现状

1)薄膜温度传感器 在传感器结构改进方面,出现了薄膜温度传感器,它是随着薄膜技术的成熟而发展起来的新型微传感器,其敏感元件为微米级的薄膜,具有体积小、热扰动小、热动态响应时间短、灵敏度高、便于集成和安装的特点,并且具有耐磨、耐压、耐热冲击和抗剥离的优良性能,特别适合于微尺度或小空间温度测量、表面温度的测量等场合。近年来发展的陶瓷薄膜热电偶,可以测量更高的温度,克服了金属薄膜热电偶的一些催化效应和冶金效应等缺点,在高温表面温度测量领域应用更为广泛。 2)热电偶材料性能的提高 在热电偶丝材料方面,一些类型的热电偶性能得到了提高,并出现了一些新型热电偶类型。 (1)N型热电偶越来越受到重视。 与K型热电偶相比,N型热电偶的高温稳定性与使用寿命均明显提高。目前国外N 型热电偶得到了广泛的应用,而国内应用仍旧不是很普遍,但随着对加工产品质量控制要求的提高,N型热电偶使用将会越来越多。 (2)钨铼热电偶抗氧化技术得到了发展,拓宽了其应用领域。主要是采用热电偶丝材镀膜或采用高致密保护套管隔绝等技术,可以延长钨铼热电偶在氧化气氛下的使用时间,使之不局限在还原条件下使用,可在一定程度上取代铂铑等贵金属热电偶。 (3)一些非标准分度的金属、非金属热电偶正在研制并逐步得到应用。为了提高温度测量上限,一些非标准分度的铂铑、铱铑等贵金属热电偶已经在工程上得到应用。另外,一些非金属热电偶材料得到了人们的重视,其特点有:①热电动势和微分电势大;②熔点高,测温上限也高;③价格低;④选用合适的非金属材料,可制成抗氧化或抗碳化的热电偶,用于恶劣条件下温度的测量。其缺点是复现性和机械性能差。目前,取得进展的非金属热电偶有C-TiC (ZrB2、NbC、SiC)、SiC-SiC、ZrB2(NbC)-ZrC、MoSi2-WSi2以及B4C-C等。 3)温度传感器保护套管材料 保护套管材料在温度测量中对敏感元件起着保护作用,对其测量准确度和使用寿命有很大影响,可由金属、非金属或金属陶瓷等材料制成。近年来金属陶瓷保护套管材料性能得到了很大提高,如Al2O3基、MgO基、ZrO2基和碳化钛基等几种金属陶瓷,具有耐腐蚀、抗热冲击、耐高温性,可以在氧化、还原和中性气氛下使用,在冶金行业中可用于高温金属熔液温度的测量。 4)辐射测温技术

温度传感器实验

实验二(2)温度传感器实验 实验时间 2017.01.12 实验编号 无 同组同学 邓奡 一、实验目的 1、了解各种温度传感器(热电偶、铂热电阻、PN 结温敏二极管、半导体热敏电阻、集成温度传感器)的测温原理; 2、掌握热电偶的冷端补偿原理; 3、掌握热电偶的标定过程; 4、了解各种温度传感器的性能特点并比较上述几种传感器的性能。 二、实验原理 1、热电偶测温原理 由两根不同质的导体熔接而成的,其形成的闭合回路叫做热电回路,当 两端处于不同温度时回路产生一定的电流,这表明电路中有电势产生,此电势即为热电势。 试验中使用两种热电偶:镍铬—镍硅(K 分度)、镍铬—铜镍(E 分度)。图2.3.5所示为热电偶的工作原理,图中:T 为热端,0T 为冷端,热电势为)()(0T E T E E AB AB t -=。 热电偶冷端温度不为0℃时(下式中的1T ),需对所测热电势进行修正,修正公式为:),(),(),(0110T T E T T E T T E +=,即: 实际电动势+测量所得电动势+温度修正电势 对热电偶进行标定时,以K 分度热电偶作为标准热电偶来校准E 分度热 电偶。 2、铂热电阻 铂热电阻的阻值与温度的关系近似线性,当温度在C 650T C 0?≤≤?时,

)1(20BT AT R R T ++=, 式中:T R ——铂热电阻在T ℃时的电阻值 0R ——铂热电阻在0℃时的电阻值 A ——系数(=C ??/103.96847-31) B ——系数(= C ??/105.847--71) 3、PN 结温敏二极管 半导体PN 结具有良好的温度线性,PN 结特性表达公式为: γln be e kT U =?, 式中,γ为与PN 结结构相关的常数; k 为波尔兹曼常数,K J /1038.1k 23-?=; e 为电子电荷量,C 1910602.1e -?=; T 为被测物体的热力学温度(K )。 当一个PN 结制成后,当其正向电流保持不变时,PN 结正向压降随温度 的变化近似于线性,大约以2mV/℃的斜率随温度下降,利用PN 结的这一特性可以进行温度的测量。 4、热敏电阻 热敏电阻是利用半导体的电阻值随温度升高而急剧下降这一特性制成的 热敏元件,灵敏度高,可以测量小于0.01℃的温差变化。 热敏电阻分为正温度系数热敏电阻PTC 、负温度系数热敏电阻NTC 和在 某一特定温度下电阻值发生突然变化的临界温度电阻器CTR 。 实验中使用NTC ,热敏电阻的阻值与温度的关系近似符合指数规律,为:)11(00e T T B t R R -=。式中: T 为被测温度(K),16.273t +=T 0T 为参考温度(K),16.27300+=t T T R 为温度T 时热敏电阻的阻值 0R 为温度0T 时热敏电阻的阻值 B 为热敏电阻的材料常数,由实验获得,一般为2000~6000K 5、集成温度传感器 用集成工艺制成的双端电流型温度传感器,在一定温度范围内按1uA/K 的恒定比值输出与温度成正比的电流,通过对电流的测量即可知道温度值(K 氏温度),经K 氏-摄氏转换电路直接得到摄氏温度值。

PN结温度传感器测温实验

实验三PN结温度传感器测温实验 实验目的:了解PN结温度传感器的特性及工作情况。 所需部件:主、副电源、可调直流稳压电源、-15V稳压电源、差动放大器、电压放大器、F/V 表、加热器、电桥、温度计。 旋钮初始位置:直流稳压电源±6V档,差放增益最小逆时针到底(1倍),电压放大器幅度最大4.5倍。 实验原理:晶体二极管或三极管的PN结电压是随温度变化的。例如硅管的PN结的结电压在温度每升高1℃时,下降约2.1mV,利用这种特性可做成各种各样的PN 结温度传感器。它具有线性好、时间常数小(0.2~2秒),灵敏度高等优点,测 温范围为-50℃~+150℃。其不足之处是离散性大互换性较差。 实验步骤:(1)了解PN结,加热器,电桥在实验仪所在的位置及它们的符号。 (2)观察PN结传感器结构、用数字万用表“二级管”档,测量PN结正反向的结电 压,得出其结果。 (3)把直流稳压电源V+插口用所配的专用电阻线(51K)与PN结传感器的正向端 相连,并按图37接好放大电路,注意各旋钮的初始位置,电压表置2V档。 图三 (4)开启主、副电源,调节W1电位器,使电压表指示为零,同时记下此时水银温度计的室温 值(△t)。 (5)将-15V接入加热器(-15V在低频振荡器右下角),观察电压表读数的变化,因PN结温度 传感器的温度变化灵敏度约为:-2.1mV/℃。随着温度的升高,其:PN结电压将下降△V,该 △V电压经差动放大器隔离传递(增益为1),至电压放大器放大4.5倍,此时的系统灵敏度S ≈10mV/℃。待电压表读数稳定后,即可利用这一结果,将电压值转换成温度值,从而演示出 加热器在PN结温度传感器处产生的温度值(△T)。此时该点的温度为△T+△t。 注意事项:(1)该实验仅作为一个演示性实验。 (2)加热器不要长时间的接入电源,此实验完成后应立即将-15V电源拆去,以免影响梁上的 应变片性能。 课后问题:(1)分析一下该测温电路的误差来源。 (2)如要将其作为一个0~100℃的较理想的测温电路,你认为还必须具备哪些条件?

实验四 温度传感器一热电偶测温实验

实验四 温度传感器一热电偶测温实验 实验原理: 由两根不同质的导体熔接而成的闭合回路叫做热电回路,当其两端处于不同温度时,则回路中产生一定的电流,这表明电路中有电势产生,此电势即为热电势。 图中T 为热端,To 为冷端,热电势为 0()()t AB AB T E E E T =- 本实验中选用两种热电偶镍铬一镍硅(K 分度)和镍铬-铜镍(E 分度)。. 实验所需部件: K(也可选用其他分度号的热电偶)、E 分度热电偶、温控电加热炉、温度传感器实验模块、142位数字电压表〈自备〉 实验步骤: 1、 观察热电偶结构〈可旋开热电偶保护外套),了解温控电加热

器工作原理。 温控器:作为热源的温度指示、控制、定温之用。温度调节方式为时间比例式,绿灯亮时表示继电器吸合电炉加热,红灯亮时加热炉断电。 温度设定:拨动开关拨向“设定”位,调节设定电位器,仪表显示的温度值℃随之变化,调节至实验所需的温度时停止.然后将拨动开关扳向“测量”侧,接入热电偶控制炉温. (注:首次设定温度不应过高,以免热惯性造成加热炉温度过冲)。 2、首先将温度设定在50"C 左右,打开加热开关, (加热电炉电源插头插入主机加热电源出插座),热电偶插入电加热炉内,K 分度热电偶为标准热电偶,冷端接“测试”端, E 分度热电偶接“温控”端,注意热电偶极性不能接反,而且不能断偶,142位万用表置200mv 挡,当钮于开关倒向“温控”时测E 分度热电偶的热电势,并记录电炉温度与热电势E 的关系。 3、因为热电偶冷端温度不为0°C ,则需对所测的热电势值进行修正 010 (,)(,)()1,E T E T E T t T t =+ 实际电动势=测量所得电势+温度修正电势 查阅热电偶分度表,上述测量与计算结果对照。 4、继续将炉温提高到70°C 、90°C 、110°C 、130°C 和150°C ,重复上述实验,观察热电偶的测温性能。 注意事项: 加热炉温度请勿超过200°C ,当加热开始,热电偶一定要插入炉内,否则炉温会失控,同样做其它温度实验时也需用热电偶来控制加

温度传感器实验报告

温度传感器实验 姓名学号 一、目的 1、了解各种温度传感器(热电偶、铂热电阻、PN 结温敏二极管、半导体热敏电阻、集成温度传感器)的测温原理; 2、掌握热电偶的冷端补偿原理; 3、掌握热电偶的标定过程; 4、了解各种温度传感器的性能特点并比较上述几种传感器的性能。 二、仪器 温度传感器实验模块 热电偶(K 型、E 型) CSY2001B 型传感器系统综合实验台(以下简称主机) 温控电加热炉 连接电缆 万用表:VC9804A,附表笔及测温探头 万用表:VC9806,附表笔 三、原理 (1)热电偶测温原理 由两根不同质的导体熔接而成的闭合回路叫做热电回路,当其两端处于不同温度时则回路中产生一定的电流,这表明电路中有电势产生,此电势即为热电势。

图1中T 为热端,To 为冷端,热电势 本实验中选用两种热电偶镍铬—镍硅(K 分度)和镍铬—铜镍(E 分度)。 (2)热电偶标定 以K 分度热电偶作为标准热电偶来校准E 分度热电偶,被校热电偶热电势与标准热电偶热电势的误差为 式中:——被校热电偶在标定点温度下测得的热电势平均值。 ——标准热电偶在标定点温度下测得的热电势平均值。 ——标准热电偶分度表上标定温度的热电势值。

——被校热电偶标定温度下分度表上的热电势值。 ——标准热电偶的微分热电势。 (3)热电偶冷端补偿 热电偶冷端温度不为0℃时,需对所测热电势值进行修正,修正公式为: E(T,To)=E(T,t1)+E(T1,T0) 即:实际电动势=测量所得电势+温度修正电势 (4)铂热电阻 铂热电阻的阻值与温度的关系近似线性,当温度在0℃≤T≤650℃时, 式中:——铂热电阻T℃时的电阻值 ——铂热电阻在0℃时的电阻值 A——系数(=3.96847×10-31/℃) B——系数(=-5.847×10-71/℃2) 将铂热电阻作为桥路中的一部分在温度变化时电桥失衡便可测得相应电路的输出电压变化值。 (5)PN结温敏二极管 半导体PN 结具有良好的温度线性,根据PN 结特性表达公式 可知,当一个PN 结制成后,其反向饱和电流基本上只与温度有关,温度每升高一度,PN 结正向压降就下降2mv,利用PN 结的这一特性可以测得温度的变化。 (6)热敏电阻 热敏电阻是利用半导体的电阻值随温度升高而急剧下降这一特性制成的热敏元件。它呈负温度特性,灵敏度高,可以测量小于0.01℃的温差变化。图2为金属铂热电阻与热敏电阻温度曲线的比较。

仓库温湿度的检测技术

仓库温湿度检测系统的设计 摘要:采用单片机对温度、湿度等环境参数进行监测是一个农业生产中经常遇到的监测问题,它不仅具有监测方便、操作简单等优点,而且可以在节约成本的同时大幅度的提高监测质量。本设计以单片机AT89S52为控制核心,采用独特的单总线数字式温度传感器DS18B20进行温度采集,采用湿敏电容HS1101对湿度参数进行采集,利用LCD液晶显示屏对于当前的温度值和湿度值进行实时的显示,直观的了解所测得的仓库的温湿度的参数值。另外,还具有报警装置,对超过温湿度上下限的情况进行报警。设计后的系统具有造价低廉、操作方便、测量准确、控制灵活、体积小等优点。 关键词:温度传感器湿度传感器单片机AT89S52 LCD显示 Abstract Single-chip temperature, humidity and other environmental parameters monitoring is a frequently encountered in agricultural production monitoring issues, it not only has to monitor, easy to operate, etc., and can save costs while greatly improving the quality of monitoring. The design of a microcontroller AT89S52 as the control core, using a unique single-bus digital temperature sensor DS18B20 temperature acquisition, using capacitive humidity HS1101 humidity parameters for the collection, use LCD display for the current temperature and humidity values in real time display, intuitive understanding of the measured temperature and humidity storage parameters. In addition, it also has an alarm system, upper and lower limits of temperature and humidity on over the case to the police. After designing a system with low cost, easy operation, accurate measurement, flexible control, small size, etc.. Keywords:Temperature sensor Humidity sensor MCU AT89S52 LCD display 1 前言 防潮、防腐、防霉是仓库日常工作的重要内容,是衡量仓库管理质量的重要指标。它直接影响到储备物资的使用寿命和工作的可靠性。为了保证日常工作的顺利进行,首要问题是加强仓库内温度和湿度的监测工作。但传统的方法是用湿度表、毛发湿度表、双金属式测量计和湿度试纸等测试器材,通过人工进行检测,对不符合温度和湿度要求的库房进行通风、去湿和降温等工作。这种人工测试方法费时费力、效率低,且测试的温度和湿度误差大,随机性大。因此我们需要一种造价低廉、使用方便且测量准确的温湿度测量仪。 2 设计要求与设计方案的选择 2.1 系统的设计方案 本课题设计的是一个能够提供环境的温度、湿度并具有对温度、湿度超限报警功能的装

温度传感器实验

DH-SJ5温度传感器设计性实验装置 使 用 说 明 书 杭州大华科教仪器研究所 杭州大华仪器制造有限公司

一、温度传感器概述 温度是表征物体冷热程度的物理量。温度只能通过物体随温度变化的某些特性来间接测量。测温传感器就是将温度信息转换成易于传递和处理的电信号的传感器。 一、测温传感器的分类 1.1电阻式传感器 热电阻式传感器是利用导电物体的电阻率随温度而变化的效应制成的传感器。热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。它分为金属热电阻和半导体热电阻两大类。金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即 R t =R t0[1+α (t-t 0)] 式中,R t 为温度t 时的阻值;R t0为温度t 0(通常t 0=0℃)时对应电阻值;α为温度系数。 半导体热敏电阻的阻值和温度关系为 t B t Ae R = 式中R t 为温度为t 时的阻值;A 、B 取决于半导体材料的结构的常数。 常用的热电阻有铂热电阻、热敏电阻和铜热电阻。其中铂电阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。 金属铂具有电阻温度系数大,感应灵敏;电阻率高,元件尺寸小;电阻值随温度变化而变化基本呈线性关系;在测温范围内,物理、化学性能稳定,长期复现性好,测量精度高,是目前公认制造热电阻的最好材料。但铂在高温下,易受还原性介质的污染,使铂丝变脆并改变电阻与温度之间的线性关系,因此使用时应装在保护套管中。用铂的此种物理特性制成的传感器称为铂电阻温度传感器,利用铂的此种物理特性制成的传感器称为铂电阻温度传感器,通常使用的铂电阻温度传感器零度阻值为100Ω,电阻变化率为0.3851Ω/℃,TCR=(R 100-R 0)/(R 0×100) ,R 0为0℃的阻值,R 100为100℃的阻值,按IEC751国际标准,温度系数TCR=0.003851,Pt100(R 0=100Ω)、Pt1000(R 0=1000Ω)为统一设计型铂电阻。铂热电阻的特点是物理化学性能稳定。尤其是耐氧化能力强、测量精度高、应用温度范围广,有很好的重现性,是中低温区(-200℃~650℃)最常用的一种温度检测器。 热敏电阻(Thermally Sensitive Resistor,简称为Thermistor),是对温度敏感的电阻的总称,是一种电阻元件,即电阻值随温度变化的电阻。一般分为两种基本类型:负温度系数热敏电阻NTC (Negative Temperature Coefficient )和正温度系数热敏电阻PTC (Positive Temperature Coefficient )。NTC 热敏电阻表现为随温度的上升,其电阻值下降;而PTC 热敏电阻正好相反。 NTC 热敏热电阻大多数是由Mn(锰)、Ni(镍)、Co(钴)、Fe(铁)、Cu(铜)等金属的氧化物经过烧结而成的半导体材料制成。因此,不能在太高的温度场合下使用。不竟然,其使用范围有的也可以达到了-200℃~700℃,但一般的情况下,其通常的使用范围在-100℃~300℃。 NTC 热敏热电阻热响应时间一般跟封装形式、阻值、材料常数(热敏指数)、热时间常数有关。材料常数(热敏指数)B 值反映了两个温度之间的电阻变化,热敏电阻的特性就是由它的大小决定的,B 值(K )被定义为:2 12 1212111lg lg 3026.211ln ln T T R R T T R R B --?=--= ; R T1:温度 T 1(K )时的零功率电阻值;R T2 :温度 T 2(K )时的零功率电阻值;T 1,T 2 :

温度检测仪表的应用与作用

温度检测仪表的应用与作用 一、温度测量的基本概念温度是表征物体冷热程度的物理量。温度只能通过物体随温度变化的某些特性来间接测量,而用来量度物体温度数值的标尺叫温标。它规定了温度的读数起点(零点)和测量温度的基本单位。目前国际上用得较多的温标有华氏温标、摄氏温标、热力学温标和国际实用温标。华氏温标(oF)规定:在标准大气压下,冰的熔点为32度,水的沸点为212度,中间划分180等分,每第分为报氏1度,符号为oF。摄氏温度(℃)规定:在标准大气压下,冰的熔点为0度,水的沸点为100度,中间划分100等分,每第分为报氏1度,符号为℃。热力学温标又称开尔文温标,或称绝对温标,它规定分子运动停止时的温度为绝对零度,记符号为K。国际实用温标是一个国际协议性温标,它与热力学温标相接近,而且复现精度高,使用方便。目前国际通用的温标是1975年第15届国际权度大会通过的《1968年国际实用温标-1975年修订版》,记为:IPTS-68(Rev-75)。但由于IPTS-68温示存在一定的不足,国际计量委员会在18届国际计量大会第七号决议授权予1989年会议通过了1990年国际温标ITS-90,ITS-90温标替代IPTS-68。我国自1994年1月1日起全面实施ITS-90国际温标。1990年国际温标(ITS-90)简介如下。1.温度单位热力学温度(符号为T)是基本功手物理量,它的单位为开尔文(符号为K),定义为水三相点的热力学温度的1/273.16。由于以前的温标定义中,使用了与273.15 K(冰点)的差值来表示温度,因此现在仍保留这各方法。根据定义,摄氏度的大小等于开尔文,温差亦可以用摄氏度或开尔文来表示。国际温标ITS-90同时定义国际开尔文温度(符号为T90)和国际摄氏温度(符号为t90)2.国际温标ITS-90的通则ITS-90由0.65K向上到普朗克辐射定律使用单色辐射实际可测量的最高温度。ITS-90是这样制订的,即在全量程中,任何温度的T90值非常接近于温标采纳时T的最佳估计值,与直接测量热力学温度相比,T90的测量要方便得多,而且更为精密,并具有很高的复现性。3.ITS-90的定义第一温区为0.65K到5.00K之间,T90由3He和4He的蒸气压与温度的关系式来定义。第二温区为3.0K到氖三相点(24.5661 K)之间T90是用氦气体温度计来定义.第二温区为平衡氢三相点(13.8033 K)到银的凝固点(961.78℃)之间,T90是由铂电阻温度计来定义.它使用一组规定的定义固定点及利用规定的内插法来分度.银凝固点(961.78℃)以上的温区,T90是按普朗克辐射定律来定义的,复现仪器为光

温度传感器实验

实验二(2)温度传感器实验 实验时间 实验编号 无 同组同学 邓奡 一、实验目的 1、了解各种温度传感器(热电偶、铂热电阻、PN 结温敏二极管、半导体热敏电阻、集成温度传感器)的测温原理; 2、掌握热电偶的冷端补偿原理; 3、掌握热电偶的标定过程; 4、了解各种温度传感器的性能特点并比较上述几种传感器的性能。 二、实验原理 1、热电偶测温原理 由两根不同质的导体熔接而成的,其形成的闭合回路叫做热电回路,当两端处于不同温度时回路产生一定的电流,这表明电路中有电势产生,此电势即为热电势。 试验中使用两种热电偶:镍铬—镍硅(K 分度)、镍铬—铜镍(E 分度)。图所示为热电偶的工作原理,图中:T 为热端,0T 为冷端,热电势为 )()(0T E T E E AB AB t -=。

热电偶冷端温度不为0℃时(下式中的1T ),需对所测热电势进行修正,修正公式为:),(),(),(0110T T E T T E T T E +=,即: 实际电动势+测量所得电动势+温度修正电势 对热电偶进行标定时,以K 分度热电偶作为标准热电偶来校准E 分度热电偶。 2、铂热电阻 铂热电阻的阻值与温度的关系近似线性,当温度在C 650T C 0?≤≤?时, )1(20BT AT R R T ++=, 式中:T R ——铂热电阻在T ℃时的电阻值 0R ——铂热电阻在0℃时的电阻值 A ——系数(=C ??/103.96847-31) B ——系数(=C ??/105.847--71) 3、PN 结温敏二极管

半导体PN 结具有良好的温度线性,PN 结特性表达公式为: γln be e kT U = ?, 式中,γ为与PN 结结构相关的常数; k 为波尔兹曼常数,K J /1038.1k 23-?=; e 为电子电荷量,C 1910602.1e -?=; T 为被测物体的热力学温度(K )。 当一个PN 结制成后,当其正向电流保持不变时,PN 结正向压降随温度的变化近似于线性,大约以2mV/℃的斜率随温度下降,利用PN 结的这一特性可以进行温度的测量。 4、热敏电阻 热敏电阻是利用半导体的电阻值随温度升高而急剧下降这一特性制成的热敏元件,灵敏度高,可以测量小于℃的温差变化。 热敏电阻分为正温度系数热敏电阻PTC 、负温度系数热敏电阻NTC 和在某一特定温度下电阻值发生突然变化的临界温度电阻器CTR 。 实验中使用NTC ,热敏电阻的阻值与温度的关系近似符合指数规律,为: )11(00 e T T B t R R -=。式中: T 为被测温度(K),16.273t +=T 0T 为参考温度(K),16.27300+=t T T R 为温度T 时热敏电阻的阻值 0R 为温度0T 时热敏电阻的阻值

常用温度测量仪表分类

温度测量仪表的分类 温度测量仪表按测温方式可分为接触式和非接触式两大类。通常来说接触式测温仪表比较简单、可靠,测量精度较高;但受耐高温材料的限制,不能应用于很高的温度测量。非接触式仪表测温是通过热辐射原理来测量温度的,测温元件不需与被测介质接触,测温范围广,不受测温上限的限制,也不会破坏被测物体的温度场,反应速度一般也比较快;但受到物体的发射率、测量距离、烟尘和水气等外界因素的影响,其测量误差较大。 按工作原理分为膨胀式、电阻式、热电式,辐射式。 玻璃管温度计是根据液体热膨胀原理测温,双金属温度计是根据固体热膨胀原理测温,热电阻根据热阻效应原理测温,热电偶根据热电效应原理测温,辐射高温计根据热辐射原理测温。 一、热电偶 热电偶是工业上最常用的温度检测元件之一。其优点是: ①测量精度高、热惯性小。因热电偶直接与被测对象接触,不受中间介质的影响。 ②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③构造简单,使用方便。 ④输出信号为电信号,便于远传。 1.热电偶测温基本原理

将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在 回路中形成一个电流,这种现象称为热电效应。热电偶就是利用这一效应来工 S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。 工业用热电偶的测温范围见下表: 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃,B偶不用补偿导线,用普通的屏蔽线。

温度传感器

实验九温度传感器设计 传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。传感器一般由敏感元件、转换元件和基本转换电路三部分组成。其中,敏感元件用于感知被测量,并输出与被测量成确定关系的某一物理量;转换元件将敏感元件的输出量转换成电路参量;转换电路将上述电路参量转换成电学量进行输出。 物理学中的温度用以表征物体的冷热程度。而温度在具体的计量时,一般需要通过物体随温度变化的某些特性来间接测量。温度传感器就是将温度信息转换成易于传递和处理的电信号的传感器。 在科技日新月异的今天,温度传感器的应用尤其广泛。在工业方面,温度传感器可应用于各种对温度有要求的产业,如金属冶炼,用于控制加热熔炉的温度以及冷却金属;航天领域,用于检测顶流罩、航天服等的耐热及耐寒程度等。在化学方面,关于对温度有严格要求的化学反应,需要高精度的温度传感器帮助控制反应过程中的特定温度。在农业方面,温度传感器可以应用在温室培养的温度控制,对于农作物新品种开发及温室栽培起着重要作用。在军事方面,可应用温度传感器对热源进行探测,起到侦查作用。在医疗方面,温度传感器可用于体温探热器等探测体温的仪器。 【实验目的】 1、了解Pt100铂电阻、Cu50铜电阻的温度特性及其测温原理。 2、学习运用不同的温度传感器设计测温电路。 【实验原理】 热电阻传感器是利用导体的电阻随温度变化的特性,对温度和温度有关的参数进行检测的装置。热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。大多数热电阻在温度升高1℃时电阻值将增加0.4% ~ 0.6%。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在也逐渐采用镍、锰和铑等材料制造热电阻。能够用于制作热电阻的金属材料必须具备以下特性:(1)电阻温度系数要尽可能大和稳定,电阻值与温度之间应具有良好的线性关系;(2)电阻率高,热容量小,反应速度快;(3)材料的复现性和工艺性好,价格低;(4)在测量范围内物理和化学性质稳定。 1、Pt100铂电阻的测温原理 金属铂具有电阻温度系数大,感应灵敏;电阻率高,元件尺寸小;电阻值随温度变化基本呈线性关系;在测温范围内,物理、化学性能稳定,长期复现性好,测量精度高,是目前公认制造热电阻的最好材料。但铂在高温下,易受还原性介质的污染,使铂丝变脆并改变电阻与温度之间的线性关系,因此使用时应装在保护套管中。利用铂的此种物理特性制成的传感器称为铂电阻温度传感器。铂电阻温度传感器精度高,稳定性好,应用温度范围广,是中低温区(-200~650℃)最常用的一种温度检测器,不仅广泛应用于工业测温,

温度检测技术及发展现状

摘要温度测量是工业、农业、国防和科研等部门最普遍的测量项目。它在工农业生产、现代科学研究及高新技术开发过程中也是一个极其普遍而重要的测量参数。本文就温度测量的发展现状进行了深入的探讨,具有一定的参考价值。关键词温度测量;发展现状;薄膜温度传感器0 引言 温度是表征物体冷热程度的物理量,是国际单位制中7个基本物理量之一,它与人类生活、工农业生产和科学研究有着密切关系。随着科学技术水平的不断提高,温度测量技术也得到了不断的发展。 1 温标的发展 在生产和科学研究中,为了便于测量结果准确一致,需要给物体冷热程度以定量的描述。因此,有必要建立适当的标尺来衡量物体的冷热程度,以便科学地描述物体各种性能随温度变化的关系。温标就是温度的数值表示方法,它是借助于随温度变化而变化的物理量来定义温度数值的。各种各样温度计的数值都是由温标来决定的。所以可以说温标就是温度的标尺。温标是表示温度数值的一套规则,它明确了温度的单位。温度测量离不开温标的概念,温标是温度测量中的参照标准。随着社会生产及科学技术的进步,温标的复现也在不断地发展。大约每20年对温标作一次较大的修改或更新。1990年国际温标是根据第18届国际计量大会第7号决议的要求,由第77届国际计量委员会于1989年会议通过的。 本世纪初国际权度局制定的“标准温标”范围从0℃~100℃,其复现性为℃,随着科学技术的发展,标准温标的复现精度大幅提高,前苏联计量科学研究院在 0℃~400℃范围内温标定点精度达℃,美国标准局水三相点的温度复现性达℃。

2 温度测量的成果 在温度测量方面各国均取得了许多可喜的成果,其中前苏联的压电石英频率温度 计分辨能力可达℃,理论上可达℃,而且在-40℃~230℃范围内具有温度与频率的 线性特性;日本利用所谓石英温度频率转换器-80℃~200℃的温度范围,最大分辨 率达℃;美国标准局研制的电阻温度计25欧标准铂电阻温度计,电桥分辨℃;我国生产的石英温度传感器分辨率达到℃,误差在℃以内,中国航天工业总公司702所研制的5901(STP-1000)型粘贴式测温片,其静态测温精度为%,快速响应时间小于。 3 温度测量技术近年来的发展重点 传统的热电偶、热电阻测温方法以其技术成熟、结构简单、使用方便等特点,在未来温度测量领域中,依然能够广泛使用。随着新材料、新工艺以及一些新技术的发展,其应用范围更加拓展。 1)薄膜温度传感器 在传感器结构改进方面,出现了薄膜温度传感器,它是随着薄膜技术的成熟而发展起来的新型微传感器,其敏感元件为微米级的薄膜,具有体积小、热扰动小、热动态响应时间短、灵敏度高、便于集成和安装的特点,并且具有耐磨、耐压、耐热冲击和抗剥离的优良性能,特别适合于微尺度或小空间温度测量、表面温度的测量等场合。近年来发展的陶瓷薄膜热电偶,可以测量更高的温度,克服了金属薄膜热电偶的一些催化效应和冶金效应等缺点,在高温表面温度测量领域应用更为广泛。2)热电偶材料性能的提高

实验三 热电阻、热点偶测温特性实验

实验三热电阻、热电偶测温特性实验 一、实验目的:了解热电阻的特性与应用,了解热电偶测量温度的性能与应用范围。。 二、基本原理: 1、热电阻: 利用导体电阻随温度变化的特性,热电阻用于测量时,要求其材料电阻温度系数大,稳定性好,电阻率高,电阻与温度之间最好有线性关系。常用铂电阻和铜电阻在0-630.74℃以内,电阻Rt与温度t的关系为: R t=R0(1+A t+B t2) R0系温度为0℃时的电阻。本实验R0=100℃,A t=3.9684×10-2/℃,B t=-5.847×10-7/℃2,铂电阻现是三线连接,其中一端接二根引线主要为消除引线电阻对测量的影响。 2、热电偶 当两种不同的金属组成回路,如二个接点有温度差,就会产生热电势,这就是热电效应。温度高的接点称工作端,将其置于被测温度场,以相应电路就可间接测得被测温度值,温度低的接点就称冷端(也称自由端),冷端可以是室温值或经补偿后的0℃、25℃。 三、需用器件与单元:加热源、K型热电偶(红+,黑-)、P t100热电阻、温度控制单元、温度传感器实验模板、数显单元、万用表,热电偶K型、E 型、加热源。 四、实验步骤: (一)热电阻: 1、注意:首先根据实验台型号,仔细阅读“温控仪表操作说”,学会基 本参数设定。 2、将热电偶插入台面三源板加热源的一个传感器安置孔中。将K型热电偶自由端引线插入主控面板上的热电偶EK插孔中,红线为正极,黑色为负极,注意热电偶护套中已安置了二支热电偶,K型和E型,它们热电势值不同,从热电偶分度表中可以判别K型和E型(E型热电势大)热电偶。E型(蓝+,绿-);k型(红+,黑-) 3、将加热器的220V电源插头插入主控箱面板上的220V控制电源插座上。

温度传感器的温度特性测量实验

温度传感器的温度特性测量实验 【目的要求】 测量PN结温度传感器的温度特性;测试PN结的正向电流与正向电压的关系(指数变化规律)并计算出玻尔兹曼常数。 【实验仪器】 FD-ST-TM温度传感器温度特性实验模块(需配合FD-ST系列传感器测试技术实验仪)含加热系统、恒流源、直流电桥、Pt100铂电阻温度传感器、NTC1K热敏电阻温度传感器、PN结温度传感器、电流型集成 温度传感器AD590、电压型集成温度传感器LM35、实验插接线等)。 【实验原理】 “温度”是一个重要的热学物理量,它不仅和我们的生活环境密切相关,在科研及生产过程中,温度的变化对实验及生产的结果至关重要,所以温度传感器应用广泛。温度传感器是利用一些金属、半导体等材料与温度相关的特性制成的。常用的温度传感器的类型、测温范围和特点见下表。

PN结温度传感器 1.测试PN结的Vbe与温度变化的关系,求出灵敏度、斜率及相关系数 PN结温度传感器是利用半导体PN结的结电压对温度依赖性,实现对温度检测的,实验证明在一定的电流通过情况下,PN结的正向电压与温度之间有良好的线性关系。通常将硅三极管b、c极短路,用b、e 极之间的PN结作为温度传感器测量温度。硅三极管基极和发射极间正向导通电压Vbe一般约为600mV (25℃),且与温度成反比。线性良好,温度系数约为℃,测温精度较高,测温范围可达-50——150℃。缺点是一致性差,互换性差。 通常PN结组成二极管的电流I和电压U满足(1)式

[] 1/-=kT qU S e I I (1) 在常温条件下,且1/??KT qU e 时,(7)式可近似为 kT qU S e I I /= (2) (7)、(8)式中: T 为热力学温度 ; Is 为反向饱和电流; 正向电流保持恒定条件下,PN 结的正向电压U 和温度t 近似满足下列线性关系 U=Kt+Ugo (3) (3)式中Ugo 为半导体材料参数,K 为PN 结的结电压温度系数。实验测量如下图。图中用恒压源串接51K 电阻使流过PN 结的电流近似恒流源。 2.玻尔兹曼常数测定 PN 结的物理特性是物理学和电子学的重要基础之一。模块通过专用电路来测量研究PN 结扩散电流与结电压的关系,证明此关系遵循指数变化规律,并准确的推导出玻尔兹曼常数(物理学的重要常数之一)。 由半导体物理学可知,PN 结的正向电流——电压关系满足式(1),式(1)中,I 是通过PN 结的正向电流,I S 是不随电压变化的常数(漏电流)。T 是热力学温度。e 是电子的电荷量,U 为PN 结正向压降。由于在常温(300K )时KT/e ≈,而PN 结正向压降约为几百毫伏,则exp(eU/KT)>>1,则式(1)中-1项可忽略,于是有: kT qU S e I I /= (2) 即:PN 结正向电流随正向电压按指数规律变化。如测出PN 结I-U 关系值,则利用式(1)可以求出e/KT 。在测得实际温度T 后就可以得到e/K 常数,把电子电荷量代入即可求得玻尔兹曼常数K 。 在实际测量中,二极管的PN 结I-U 关系虽也满足指数关系,但求得的K 往往偏小,这是因为通过二极管电流一般包括三个成分:[1]扩散电流,它严格遵循式(8);[2]耗尽层复合电流,它正比于exp(eU/2KT);[3]表面电流,它是由Si 和SiO 2界面中杂质引起的。其值正比于exp(eU/mKT),一般m>2。因此为了准确的推导出K ,不宜采用二极管,而采用硅三极管,且接成共基极电路。因为此时三极管C 和B 短接,C 极电流仅仅是扩散电流,复合电流主要在B 极中出现。这样测量E 极电流就能得到满意的结果。 【实验内容】 为电子电量, C q ;10602.119-?=为玻尔兹曼常数,K J k /10381.123-?=

常用温度测量仪表分类

常用温度测量仪表分类文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

温度测量仪表的分类 温度测量仪表按测温方式可分为接触式和非接触式两大类。通常来说接触式测温仪表比较简单、可靠,测量精度较高;但受耐高温材料的限制,不能应用于很高的温度测量。非接触式仪表测温是通过热辐射原理来测量温度的,测温元件不需与被测介质接触,测温范围广,不受测温上限的限制,也不会破坏被测物体的温度场,反应速度一般也比较快;但受到物体的发射率、测量距离、烟尘和水气等外界因素的影响,其测量误差较大。 按工作原理分为膨胀式、电阻式、热电式,辐射式。 玻璃管温度计是根据液体热膨胀原理测温,双金属温度计是根据固体热膨胀原理测温,热电阻根据热阻效应原理测温,热电偶根据热电效应原理测温,辐射高温计根据热辐射原理测温。 一、热电偶 热电偶是工业上最常用的温度检测元件之一。其优点是: ①测量精度高、热惯性小。因热电偶直接与被测对象接触,不受中间介质的影响。 ②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③构造简单,使用方便。 ④输出信号为电信号,便于远传。 1.热电偶测温基本原理

将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,当导体A 和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个电流,这种现象称为热电效应。热电偶就是利用这一效应来工S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。 工业用热电偶的测温范围见下表: 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃,B偶不用补偿导线,用普通的屏蔽线。 2、热电偶的结构 一般由热电极、绝缘套管、保护管、接线盒组成。普通型热电偶按其安装时的固定形式可分为固定螺纹连接、固定法兰连接、活动法兰连接无固定装置等多种形式。 热电极:一般金属Φ~,昂贵金属Φ~,长度与被测物质有关,一般为 300~2000mm,通常在350mm左右; 绝缘管:隔离热电偶与被测物,一般在室温下要5MΩ左右; 保护套管:避免受被测介质的化学腐蚀和机械损伤; 接线盒:固定接线座,连接补偿导线。 3、非标准型热电偶 ①铠装热电偶 铠装热电偶将热电偶丝用无机物绝缘及金属套管封装,压实成可挠的坚实组合体,惯性小,挠性、机械强度及耐压性能好,结构坚实可耐强烈的振动和冲击,可用于快速测温或热熔量很小的物体的测温部位,还可用于高压设备测温。 ②钨铼系热电偶

实验3 温度传感器特性实验

实验3 温度传感器特性实验 【实验目的】 1、研究Pt100铂电阻、Cu50铜电阻的温度特性及其测温原理。 2、研究比较不同温度传感器的温度特性及其测温原理。 3、掌握单臂电桥及非平衡电桥的原理,及其应用。 4.研究热电偶的温差电动势。 5.、学习热电偶测温的原理及其方法。 【实验仪器】 九孔板,DH-VC1直流恒压源恒流源,DH-SJ5型温度传感器实验装置,数字万用表,电阻箱。 【实验原理】 1、Pt100铂电阻的测温原理 金属铂(Pt)的电阻值随温度变化而变化,并且具有很好的重现性和稳定性,利用铂的此种物理特性制成的传感器称为铂电阻温度传感器,通常使用的铂电阻温度传感器零度阻值为100Ω,电阻变化率为0.3851Ω/℃。铂电阻温度传感器精度高,稳定性好,应用温度范围广,是中低温区(-200~650℃)最常用的一种温度检测器,不仅广泛应用于工业测温,而且被制成各种标准温度计(涵盖国家和世界基准温度)供计量和校准使用。 2、Cu50铜电阻温度特性原理 铜电阻是利用物质在温度变化时本身电阻也随着发 生变化的特性来测量温度的。铜电阻的受热部分(感温元件)是用细金属丝均匀地双绕在绝缘材料制成的骨架上,当被测介质中有温度梯度 存在时,所测得的温度是感温元件所在范围内介质层中的平 均温度。 3.热电偶测温原理 热电偶亦称温差电偶,是由A、B两种不同材料的金属丝

的端点彼此紧密接触而组成的。当两个接点处于不同温度时,在回路中就有直流电动势产生,该电动势称为温差电动势或热电动势。当组成热电偶的材料一定时,温差电动势Ex 仅与两接点处的温度有关,并且两接点的温差在一定的温度范围内有如下近似关系式: E X ≈α( t-t 0 ) (1) 式中α称为温差电系数,对于不同金属组成的热电偶,α是不同的,其数值上等于两接点温度差为1℃时所产生的电动势。t 为工作端 的温度,t 0为冷端的温度。 为了测量温差电动势,就需要在图中的回 路中接入电位差计,但测量仪器的引入不能影 响热电偶原来的性质,例如不影响它在一定的 温差t-t 0下应有的电动势E X 值。要做到这一点, 实验时应保证一定的条件。根据伏打定律,即 在A 、B 两种金属之间插入第三种金属C 时,若 它与A 、B 的两连接点处于同一温度t 0,则该闭合回路的温差电动势与上述只有 A 、 B 两种金属组成回路 时的数值完全相同。 所以,我们把A 、B 两根不同化学成份的金属丝的一端焊在一起,构成热电偶的热端(工作端)。将另两端各与铜引线(即第三种金属C)焊接,构成两个同温度(t 0)的冷端(自由端)。铜引线与电 位差计相连,这样就组成一个热电偶温度计。如图所示。通常将冷端置于冰水混合物中,保持t 0 = 0℃,将热端置于待测温度处,即可测得相应的温差电动势, 再根据事先校正好的曲线或数据来求出温度t 。热电偶温度计的优点是热容量小,灵敏度高,反应迅速,测温范围广,还能直接把非电学量温度转换成电学量。因此,在自动测温、自动控温等系统中得到广泛应用。 在本实验的热电偶为铜-康铜热电偶,属于T 型热电偶。其测温范围-270~400℃;优点有:热电动势的直线性好;低温特性良好;再现性好,精度高;但是(+)端的铜易氧化。 【实验内容与步骤】

相关文档
最新文档