高一数学必修一 第一章 知识点与习题讲解

高一数学必修一 第一章 知识点与习题讲解
高一数学必修一 第一章 知识点与习题讲解

必修1第一章集合与函数基础知识点整理

第1讲 §1.1.1 集合的含义与表示

¤学习目标:通过实例,了解集合的含义,体会元素与集合的“属于”关系;能选择自然语言、图形语言、

集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;掌握集合的表示方法、常用数集及其记法、集合元素的三个特征.

¤知识要点:

1. 把一些元素组成的总体叫作集合(set ),其元素具有三个特征,即确定性、互异性、无序性.

2. 集合的表示方法有两种:列举法,即把集合的元素一一列举出来,并用花括号“{ }”括起来,基本形式为123{,,,,}n a a a a ???,适用于有限集或元素间存在规律的无限集. 描述法,即用集合所含元素的共同特征来表示,基本形式为{|()x A P x ∈},既要关注代表元素x ,也要把握其属性()P x ,适用于无限集.

3. 通常用大写拉丁字母,,,A B C ???表示集合. 要记住一些常见数集的表示,如自然数集N ,正整数集*N 或N +,整数集Z ,有理数集Q ,实数集R .

4. 元素与集合之间的关系是属于(belong to )与不属于(not belong to ),分别用符号∈、?表示,例如3N ∈,2N -?.

¤例题精讲:

【例1】试分别用列举法和描述法表示下列集合:

(1)由方程2(23)0x x x --=的所有实数根组成的集合;

(2)大于2且小于7的整数. 解:(1)用描述法表示为:2{|(23)0}x R x x x ∈--=; 用列举法表示为{0,1,3}-.

(2)用描述法表示为:{|27}x Z x ∈<<; 用列举法表示为{3,4,5,6}.

【例2】用适当的符号填空:已知{|32,}A x x k k Z ==+∈,{|61,}B x x m m Z ==-∈,则有: 17 A ; -5 A ; 17 B .

解:由3217k +=,解得5k Z =∈,所以17A ∈; 由325k +=-,解得7

3

k Z =

?,所以5A -?; 由6117m -=,解得3m Z =∈,所以17B ∈. 【例3】试选择适当的方法表示下列集合:(教材P 6 练习题2, P 13 A 组题4) (1)一次函数3y x =+与26y x =-+的图象的交点组成的集合; (2)二次函数24y x =-的函数值组成的集合; (3)反比例函数2

y x =

的自变量的值组成的集合. 解:(1)3

{(,)|}{(1,4)}26y x x y y x =+?=?

=-+?

. (2)2{|4}{|4}y y x y y =-=≥-. (3)2{|}{|0}x y x x x

==≠.

点评:以上代表元素,分别是点、函数值、自变量. 在解题中不能把点的坐标混淆为{1,4},也注意对比(2)与(3)中的两个集合,自变量的范围和函数值的范围,有着本质上不同,分析时一定要细心.

*【例4】已知集合2{|1}2

x a

A a x +==-有唯一实数解,试用列举法表示集合A . 解:化方程

2

12

x a

x +=-为:2(2)0x x a --+=.应分以下三种情况:

⑴方程有等根且不是 △=0,得94a =-,此时的解为1

2

x =,合.

A B

B A A B A B A . B .

C .

D .

x =

代入得a =

1x =

⑶方程有一解为

x =

代入得a =

1x =,合.

综上可知,9{,4

A =-.

点评:运用分类讨论思想方法,研究出根的情况,从而列举法表示. 注意分式方程易造成增根的现

象.

第2讲 §1.1.2 集合间的基本关系

¤学习目标:理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中,了解全集与空集

的含义;能利用Venn 图表达集合间的关系.

¤知识要点:

1. 一般地,对于两个集合A 、B ,如果集合A 中的任意一个元素都是集合B 中的元素,则说两个集合有包含关系,其中集合A 是集合B 的子集(subset ),记作A B ?(或B A ?),读作“A 含于B ”(或“B 包含A ”).

2. 如果集合A 是集合B 的子集(A B ?),且集合B 是集合A 的子集(B A ?),即集合A 与集合B 的元素是一样的,因此集合A 与集合B 相等,记作A B =.

3. 如果集合A B ?,但存在元素x B ∈,且x A ?,则称集合A 是集合B 的真子集(proper subset ),记作A ≠

?B (或B ≠?A ).

4. 不含任何元素的集合叫作空集(empty set ),记作?,并规定空集是任何集合的子集.

5. 性质:A A ?;若A B ?,B C ?,则A C ?;

若A B A =,则A B ?;若A B A =,则B A ?. ¤例题精讲:

【例1】用适当的符号填空:

(1){菱形} {平行四边形}; {等腰三角形} {等边三角形}.

(2)? 2

{|20}x R x ∈+=; 0 {0}; ? {0}; N {0}. 解:(1), ;

(2)=, ∈, ,. 【例2】设集合1

,,}22

{|,{|n n x n n A x x B x =

∈=+∈==Z}Z ,

则下列图形能表示A 与B 关系的是( ).

解:简单列举两个集合的一些元素,3

113{,1,,0,,1,,}2

2

2

2

A =???---???,3113{,,,,,}2

222

B =???--???,

易知B ≠

?A ,故答案选A .

另解:由21

,}2

{|n x n B x +=

∈=Z ,易知B ≠?A ,故答案选A .

【例3】若集合{}{}2|60,|10M x x x N x ax =+-==-=,且N M ?,求实数a 的值.

解:由26023x x x +-=?=-或,因此,{}2,3M =-. (i )若0a =时,得N =?,此时,N M ?; (ii )若0a ≠时,得1{}N a =. 若N M ?,满足1123a a ==-或,解得1123

a a ==-或. 故所求实数a 的值为0或

12或1

3

-. 点评:在考察“A B ?”这一关系时,不要忘记“?” ,因为A =?时存在A B ?. 从而需要分情况讨

论. 题中讨论的主线是依据待定的元素进行.

【例4】已知集合A ={a ,a +b ,a +2b },B ={a ,ax ,ax 2}. 若A =B ,求实数x 的值.

解:若2

2a b ax a b ax

+=??

+=??a +ax 2-2ax =0, 所以a (x -1)2=0,即a =0或x =1.

当a =0时,集合B 中的元素均为0,故舍去; 当x =1时,集合B 中的元素均相同,故舍去.

若22a b ax a b ax

?+=?+=??2ax 2-ax -a =0. 因为a ≠0,所以2x 2-x -1=0, 即(x -1)(2x +1)=0. 又x ≠1,所以只有12

x =-. 经检验,此时A =B 成立. 综上所述12

x =-. 点评:抓住集合相等的定义,分情况进行讨论. 融入方程组思想,结合元素的互异性确定集合.

第3讲 §1.1.3 集合的基本运算(一)

¤学习目标:理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解在给定集合中一

个子集的补集的含义,会求给定子集的补集;能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.

¤知识要点:

集合的基本运算有三种,即交、并、补,学习时先理解概念,并掌握符号等,再结合解题的训练,而达到

B (读作“B (读作“{|B x x ={|B x x =

¤例题精讲:

【例1】设集合,{|15},{|39},,()U R A x x B x x A B A

B ==-≤≤=<<求e.

解:在数轴上表示出集合A 、B ,如右图所示: {|35}A B x x =<≤,

(){|1,9}U C A

B x x x =<-≥或, 【例2】设{|||6}A x Z x =∈≤,{}{}1,2,3,3,4,5,6B

C ==,求:

(1)()A B

C ; (2)()A A B

C e.

解:{}6,5,4,3,2,1,0,1,2,3,4,5,6A =------. (1)又{}3B C =,∴()A B C ={}3;

(2)又{}1,2,3,4,5,6B

C =,

得{}()6,5,4,3,2,1,0A C B C =------.

∴ ()A A

C B

C {}6,5,4,3,2,1,0=------.

【例3】已知集合{|24}A x x =-<<,{|}B x x m =≤,且A B A =,求实数m 的取值范围. 解:由A B A =,可得A B ?.

在数轴上表示集合A 与集合B ,如右图所示: 由图形可知,4m ≥.

点评:研究不等式所表示的集合问题,常常由集合之间的关系,

得到各端点之间的关系,特别要注意是否含端点的问题.

【例4】已知全集*{|10,}U x x x N =<∈且,{2,4,5,8}A =,{1,3,5,8}B =,求()U C A B ,()U C A B ,

()()U U C A C B , ()()U U C A C B ,并比较它们的关系.

解:由{1,2,3,4,5,8}A B =,则(){6,7,9}U C A

B =.

由{5,8}A

B =,则(){1,2,3,4,6,7,9}

U C A

B =

由{1,3,6,7,9}U C A =,{2,4,6,7,9}U C B =, 则()

(){6,7,9}U U C A C B =, ()

(){1,2,3,4,6,7,9}U U C A C B =.

由计算结果可以知道,()()()U U U C A C B C A

B =,

()()()U U U C A C B C A B =.

另解:作出Venn 图,如右图所示,由图形可以直接观察出来结果.

点评:可用Venn 图研究()()()U U U C A C B C A B =与()()()U U U C A C B C A B = ,在理解的基础记住

此结论,有助于今后迅速解决一些集合问题.

第4讲 §1.1.3 集合的基本运算(二)

¤学习目标:掌握集合、交集、并集、补集的有关性质,运行性质解决一些简单的问题;掌握集合运算中

的一些数学思想方法.

¤知识要点:

1. 含两个集合的Venn 图有四个区域,分别对应着这两个集合运算的结果. 我们需通过Venn 图理解和掌握各区域的集合运算表示,解决一类可用列举法表示的集合运算. 通过图形,我们还可以发现一些集合性质:()()()U U U C A B C A C B =,()()()U U U C A B C A C B =.

2. 集合元素个数公式:()()()()n A B n A n B n A B =+-.

3. 在研究集合问题时,常常用到分类讨论思想、数形结合思想等. 也常由新的定义考查创新思维. ¤例题精讲:

【例1】设集合{}

{}24,21,,9,5,1A a a B a a =--=--,若{}9A B =,求实数a 的值.

解:由于{}

{}24,21,,9,5,1A a a B a a =--=--,且{}9A

B =,则有:

当219 a -=时,

解得5a =,此时={4, 9, 25}={9, 0, 4}A B -,-,不合题意,故舍去; 当29a =时,解得33a =或-.

3 ={4,5,9} ={9,2,2}a A B =时,-,--,不合题意,故舍去;

3={4, 7 9}={9, 8, 4}a A B =-,--,,-,合题意. 所以,3a =-.

【例2】设集合{|(3)()0,}A x x x a a R =--=∈,{|(4)(1)0}B x x x =--=,求A B , A B .(教材P 14 B 组题2)

解:{1,4}B =.

当3a =时,{3}A =,则{1,3,4}A B =,A B =?; 当1a =时,{1,3}A =,则{1,3,4}A B =,{1}A B =; 当4a =时,{3,4}A =,则{1,3,4}A B =,{4}A B =;

当3a ≠且1a ≠且4a ≠时,{3,}A a =,则{1,3,4,}A B a =,A B =?.

点评:集合A 含有参数a ,需要对参数a 进行分情况讨论. 罗列参数a 的各种情况时,需依据集合的性质和影响运算结果的可能而进行分析,不多不少是分类的原则.

【例3】设集合A ={x |240x x +=}, B ={x |222(1)10x a x a +++-=,a R ∈},若A B =B ,求实数a 的值.

解:先化简集合A ={4,0}-. 由A B =B ,则B ?A ,可知集合B 可为?,或为{0},或{-4},或{4,0}-.

(i )若B =?,则224(1)4(1)0a a ?=+--<,解得a <1-; (ii )若0∈B ,代入得2a 1-=0?a =1或a =1-, 当a =1时,B =A ,符合题意;

当a =1-时,B ={0}?A ,也符合题意.

(iii )若-4∈B ,代入得2870a a -+=?a =7或a =1, 当a =1时,已经讨论,符合题意;

当a =7时,B ={-12,-4},不符合题意. 综上可得,a =1或a ≤1-.

点评:此题考查分类讨论的思想,以及集合间的关系的应用. 通过深刻理解集合表示法的转换,及集合之间的关系,可以把相关问题化归为解方程的问题,这是数学中的化归思想,是重要数学思想方法.解该题时,特别容易出现的错误是遗漏了A =B 和B =?的情形,从而造成错误.这需要在解题过程中要全方位、多角度审视问题.

【例4】对集合A 与B ,若定义{|,}A B x x A x B -=∈?且,当集合*{|8,}A x x x N =≤∈,集合{|(2)(5)(6)0}B x x x x x =---=时,有A B -= . (由教材P 12 补集定义“集合A 相对于全集U 的补集为{|,}U C A x x x A =∈?且”而拓展)

解:根据题意可知,{1,2,3,4,5,6,7,8}A =,{0,2,5,6}B =

由定义{|,}A B x x A x B -=∈?且,则 {1,3,4,7,8}A B -=.

点评:运用新定义解题是学习能力的发展,也是一种创新思维的训练,关键是理解定义的实质性内涵,这里新定义的含义是从A 中排除B 的元素. 如果再给定全集U ,则A B -也相当于()U A C B .

第5讲 §1.2.1 函数的概念

¤学习目标:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学

习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域.

¤知识要点:

1. 设A 、B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数(function ),记作y =()f x ,x A ∈.其中,x 叫自变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range ).

2. 设a 、b 是两个实数,且a

符号:“∞”读“无穷大”;“-∞”读“负无穷大”;“+∞”读“正无穷大”. 则

{|}(,)x x a a >=+∞,{|}[,)x x a a ≥=+∞,{|}(,)x x b b <=-∞,{|}(,]x x b b ≤=-∞,(,)R =-∞+∞. 3. 决定函数的三个要素是定义域、值域和对应法则. 当且仅当函数定义域、对应法则分别相同时,函数才是同一函数.

¤例题精讲:

【例1】求下列函数的定义域: (1)1

21

y x =

+-;(2)y =

.

解:(1)由210x +-≠,解得1x ≠-且3x ≠-, 所以原函数定义域为(,3)(3,1)(1,)-∞----+∞.

(2)由

30

20

x -≥??≠,解得3x ≥且9x ≠,

所以原函数定义域为[3,9)(9,)+∞.

【例2】求下列函数的定义域与值域:(1)32

54x y x

+=

-; (2)22y x x =-++. 解:(1)要使函数有意义,则540x -≠,解得54x ≠. 所以原函数的定义域是5

{|}4

x x ≠.

32112813(45)233233305445445445444

x x x y x x x x ++-+==?=?=-+≠-+=-----,所以值域为3{|}4y y ≠-.

(2)22192()24y x x x =-++=--+. 所以原函数的定义域是R ,值域是9

(,]4

-∞.

【例3】已知函数1()1x

f x x

-=+. 求:

(1)(2)f 的值; (2)()f x 的表达式

解:(1)由

121x x -=+,解得13x =-,所以1

(2)3f =-. (2)设11x t x -=+,解得11t x t -=

+,所以1()1t f t t -=+,即1()1x

f x x

-=+. 点评:此题解法中突出了换元法的思想. 这类问题的函数式没有直接给出,称为抽象函数的研究,常常需

要结合换元法、特值代入、方程思想等.

【例4】已知函数2

2

(),1x f x x R x =∈+. (1)求1()()f x f x +的值;(2)计算:111

(1)(2)(3)(4)()()()234

f f f f f f f ++++++.

解:(1)由22222222

2

1

111()()1111111x x x x f x f x x x x x x ++=+=+==+++++.

(2)原式11117

(1)((2)())((3)())((4)())323422

f f f f f f f =++++++=+=

点评:对规律的发现,能使我们实施巧算. 正确探索出前一问的结论,是解答后一问的关键.

第6讲 §1.2.2 函数的表示法

¤学习目标:在实际情境中,会根据不同的需要选择恰当的方法(图象法、列表法、解析法)表示函数;

通过具体实例,了解简单的分段函数,并能简单应用;了解映射的概念.

¤知识要点:

1. 函数有三种表示方法:解析法(用数学表达式表示两个变量之间的对应关系,优点:简明,给自变量可求函数值);图象法(用图象表示两个变量的对应关系,优点:直观形象,反应变化趋势);列表法(列出表格表示两个变量之间的对应关系,优点:不需计算就可看出函数值).

2. 分段函数的表示法与意义(一个函数,不同范围的x ,对应法则不同).

3. 一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应:f A B →为从集合A 到集合B 的一个映射(mapping ).记作“:f A B →”. 判别一个对应是否映射的关键:A 中任意,B 中唯一;对应法则f .

¤例题精讲:

【例1】如图,有一块边长为a 的正方形铁皮,将其四个角各截去一个边长为x 的小正方形,然后折成一个无盖的盒子,写出体积V 以x 为自变量的函数式是_____,这个函数的定义域为_______.

解:盒子的高为x ,长、宽为2a x -,所以体积为V =2(2)x a x -.

又由20a x >-,解得2

a x <

. 所以,体积V 以x 为自变量的函数式是2(2)V x a x =-,定义域为{|0}2

a x x <<.

【例2】已知

f (x )=33x x

-+?? (,1)(1,)x x ∈-∞

∈+∞,求f [f (0)]的值.

解:∵ 0(,1)∈-∞, ∴

f

又 ∵

∴ f

(

3+(-3=2+

12=52,即f [f (0)]=52

. 【例3】画出下列函数的图象:

(1)|2|y x =-; (教材P 26 练习题3) (2)|1||24|y x x =-++.

解:(1)由绝对值的概念,有2,2

|2|2,2x x y x x x -≥?=

-=

?

-

.

所以,函数|2|y x =-的图象如右图所示.

(2)33,1|1||24|5,2133,2x x y x x x x x x +>??

=-++=+-≤≤??--<-?

所以,函数|1||24|y x x =-++的图象如右图所示.

点评:含有绝对值的函数式,可以采用分零点讨论去绝对值的方法,将函数式化为分段函数,然后根据定义域的分段情况,选择相应的解析式作出函数图象.

【例4】函数()[]f x x =的函数值表示不超过x 的最大整数,例如[ 3.5]4-=-,[2.1]2=,当( 2.5,3]x ∈-时,写出()f x 的解析式,并作出函数的图象.

解:3, 2.522,211,10()0,011,122,233,3

x x x f x x x x x --<<-??--≤<-?--≤

=≤

=?. 函数图象如右:

点评:解题关键是理解符号[]m 的概念,抓住分段函数的对应函数式.

第7讲 §1.3.1 函数的单调性

¤学习目标:通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;学会运用函数图像理

解和研究函数的性质. 理解增区间、减区间等概念,掌握增(减)函数的证明和判别.

¤知识要点:

1. 增函数:设函数y =f (x )的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1

2. 如果函数f (x )在某个区间D 上是增函数或减函数,就说f (x )在这一区间上具有(严格的)单调性,区间D 叫f(x )的单调区间. 在单调区间上,增函数的图象是从左向右是上升的(如右图1),减函数的图象从左向右

是下降的(如右图2). 由此,可以直观观察函数图象上升与下降的变化趋势,得到函数的单调区间及单调性.

3. 判断单调性的步骤:设x 1、x 2∈给定区间,且x 1

¤例题精讲:

【例1】试用函数单调性的定义判断函数2()1

x

f x x =

-在区间(0,1)上的单调性. 解:任取12,x x ∈(0,1),且12x x <. 则1221121212222()

()()11(1)(1)

x x x x f x f x x x x x --=-=----. 由于1201x x <<<,110x -<,210x -<,210x x ->,故12()()0f x f x ->,即12()()f x f x >.

所以,函数2()1

x

f x x =

-在(0,1)上是减函数. 【例2】求二次函数2()(0)f x ax bx c a =++<的单调区间及单调性. 解:设任意12,x x R ∈,且12x x <. 则

22121122()()()()f x f x ax bx c ax bx c -=++-++221212()()a x x b x x =-+-1212()[()]x x a x x b =-++.

若0a <,当122b x x a <≤-

时,有120x x -<,12b

x x a

+<-,即12()0a x x b ++>,从而12()()0f x f x -<,即12()()f x f x <,所以()f x 在(,2b a -∞-上单调递增. 同理可得()f x 在[,)2b

a

-+∞上单调递减.

【例3】求下列函数的单调区间:

(1)|1||24|y x x =-++;(2)22||3y x x

=

-

+

+.

解:(1)33,1|1||24|5,2133,2x x y x x x x x x +>??

=-++=+-≤≤??--<-?

,其图象如右.

由图可知,函数在[2,)-+∞上是增函数,在(,2]-∞-上是减函数.

(2)22

223,0

2||323,0x x x y x x x x x ?-++≥?=-++=?--+

,其图象如右.

由图可知,函数在(,1]-∞-、[0,1]上是增函数,在[1,0]-、[1,)+∞上是减函数.

点评:函数式中含有绝对值,可以采用分零点讨论去绝对值的方法,将函数式化为分段函数. 第2小题也可以由偶函数的对称性,先作y 轴右侧的图象,并把y 轴右侧的图象对折到左侧,得到(||)f x 的图象. 由图象研究单调性,关键在于正确作出函数图象.

【例4】已知31

()2x f x x +=+,指出()f x 的单调区间. 解:∵ 3(2)55

()322x f x x x +--==+

++, ∴ 把5

()g x x

-=的图象沿x 轴方向向左平移2个单位,再沿y 轴向上平移3个单位,

得到()f x 的图象,如图所示.

由图象得()f x 在(,2)-∞-单调递增,在(2,)-+∞上单调递增.

点评:变形后结合平移知识,由平移变换得到一类分式函数的图象. 需知()f x a b ++平移变换规律.

第8讲 §1.3.1 函数最大(小)值

¤学习目标:通过已学过的函数特别是二次函数,理解函数的最大(小)值及其几何意义;学会运用函数

图像理解和研究函数的性质. 能利用单调性求函数的最大(小)值.

¤知识要点:

1. 定义最大值:设函数()y f x =的定义域为I ,如果存在实数M 满足:对于任意的x ∈I ,都有()f x ≤M ;存在x 0∈I ,使得0()f x = M . 那么,称M 是函数()y f x =的最大值(Maximum Value ). 仿照最大值定义,可以给出最小值(Minimum Value )的定义.

2. 配方法:研究二次函数2

(0)y ax bx c a =++≠的最大(小)值,先配方成2

24()24b ac b y a x a a

-=++后,

当0a >时,函数取最小值为244ac b a -;当0a <时,函数取最大值2

44ac b a

-.

3. 单调法:一些函数的单调性,比较容易观察出来,或者可以先证明出函数的单调性,再利用函数的单

调性求函数的最大值或最小值.

4. 图象法:先作出其函数图象后,然后观察图象得到函数的最大值或最小值. ¤例题精讲:

【例1】求函数26

1y x x =

++的最大值.

解:配方为2613()24y x =++,由2133

()244x ++≥,得260813()24

x <

≤++. 所以函数的最大值为8.

【例2】某商人如果将进货单价为8元的商品按每件10元售出时,每天可售出100件. 现在他采用提高售出价,减少进货量的办法增加利润,已知这种商品每件提价1元,其销售量就要减少10件,问他将售出价定为多少元时,才能使每天所赚得的利润最大?并求出最大利润.

解:设他将售出价定为x 元,则提高了(10)x -元,减少了10(10)x -件,所赚得的利润为

(8)[10010(10)]y x x =---.

即2210280160010(14)360y x x x =-+-=--+. 当14x =时,max

360y =.

所以,他将售出价定为14元时,才能使每天所赚得的利润最大, 最大利润为360元. 【例3

】求函数2y x =的最小值.

解:此函数的定义域为[)1,+∞,且函数在定义域上是增函数, 所以当1x =

时,min 22y =,函数的最小值为2.

点评:

形如y ax b =+也可以用换元法研究.

t =,则0t ≥,21x t =+,所以22115222(48

y t t t =++=++,在0t ≥时是增函数,当0t =时,min 2y =,故函数的最小值为2.

【例4】求下列函数的最大值和最小值:

(1)25332,[,]22

y x x x =--∈-; (2)|1||2|y x x =+--.

解:(1)二次函数232y x x =--的对称轴为2b

x a

=-

,即1x =-. 画出函数的图象,由图可知,当1x =-时,max 4y =; 当32x =时,min 9

4y =-.

所以函数253

32,[,]22

y x x x =--∈-的最大值为4,最小值为94-.

(2) 3 (2)|1||2|2 1 (12)3 (1)

x y x x x x x ≥??

=+--=--<

作出函数的图象,由图可知,[3,3]y ∈-. 所以函数的最大值为3, 最小值为-3.

点评:二次函数在闭区间上的最大值或最小值,常根据闭区间与对称轴的关系,结合图象进行分析. 含绝对值的函数,常分零点讨论去绝对值,转化为分段函数进行研究. 分段函数的图象注意分段作出.

第9讲 §1.3.2 函数的奇偶性

¤学习目标:结合具体函数,了解奇偶性的含义;学会运用函数图像理解和研究函数的性质. 理解奇函数、

偶函数的几何意义,能熟练判别函数的奇偶性.

¤知识要点: 1. 定义:一般地,对于函数()f x 定义域内的任意一个x ,都有()()f x f x -=,那么函数()f x 叫偶函数(even function ). 如果对于函数定义域内的任意一个x ,都有()()f x f x -=-),那么函数()f x 叫奇函数(odd function ). 2. 具有奇偶性的函数其定义域关于原点对称,奇函数的图象关于原点中心对称,偶函数图象关于y 轴轴对称.

3. 判别方法:先考察定义域是否关于原点对称,再用比较法、计算和差、比商法等判别()f x -与()f x 的关系.

¤例题精讲:

【例1】判别下列函数的奇偶性:

(1)31

()f x x x

=-

; (2)()|1||1|f x x x =-++;(3)23()f x x x =-. 解:(1)原函数定义域为{|0}x x ≠,对于定义域的每一个x ,都有

3311

()()()()f x x x f x x x

-=--=--=--, 所以为奇函数.

(2)原函数定义域为R ,对于定义域的每一个x ,都有 ()|1||1||1||1|f x x x x x f x -=--+-+=-++=,所以为偶函数. (3)由于23()()f x x x f x -=+≠±,所以原函数为非奇非偶函数. 【例2】已知()f x 是奇函数,()g x 是偶函数,且1

()()1

f x

g x x -=+,求()f x 、()g x . 解:∵ ()f x 是奇函数,()g x 是偶函数, ∴ ()()f x f x -=-,()()g x g x -=

.

则1()()11()()1f x g x x f x g x x ?-=??+??---=?-+?,即1()()11()()1f x g x x f x g x x ?

-=??+??--=

?-+?

.

两式相减,解得2()1x f x x =-;两式相加,解得21

()1

g x x =-.

【例3】已知()f x 是偶函数,0x ≥时,2()24f x x x =-+,求0x <时()f x 的解析式.

解:作出函数22242(1)2,0y x x x x =-+=--+≥的图象,其顶点为(1,2). ∵ ()f x 是偶函数, ∴ 其图象关于y 轴对称.

作出0x <时的图象,其顶点为(1,2)-,且与右侧形状一致, ∴ 0x <时,22()2(1)224f x x x x =-++=--.

点评:此题中的函数实质就是224||y x x =-+. 注意两抛物线形状一致,则二次项系数a 的绝对值相同. 此类问题,我们也可以直接由函数奇偶性的定义来求,过程如下.

【另解】当0x <时,0x ->,又由于()f x 是偶函数,则()()f x f x =-,

所以,当0x <时,22()()2()4()24f x f x x x x x =-=--+-=--.

【例4】设函数()f x 是定义在R 上的奇函数,且在区间(,0)-∞上是减函数,实数a 满足不等式

22(33)(32)f a a f a a +-<-,求实数a 的取值范围.

解:∵ ()f x 在区间(,0)-∞上是减函数, ∴ ()f x 的图象在y 轴左侧递减. 又 ∵ ()f x 是奇函数,

∴()f x 的图象关于原点中心对称,则在y 轴右侧同样递减.

又 (0)(0)f f -=-,解得(0)0f =, 所以()f x 的图象在R 上递减.

∵ 22(33)(32)f a a f a a +-<-,

∴ 223332a a a a +->-,解得1a >.

点评:定义在R 上的奇函数的图象一定经过原点. 由图象对称性可以得到,奇函数在关于原点对称区间上单调性一致,偶函数在关于原点对称区间上的单调性相反.

集合与函数基础测试

一、选择题(共12小题,每题5分,四个选项中只有一个符合要求) 1.函数y ==x 2-6x +10在区间(2,4)上是( )

A .递减函数

B .递增函数

C .先递减再递增

D .选递增再递减. 2.方程组2

0{

=+=-y x y x 的解构成的集合是

( )

A .)}1,1{(

B .}1,1{

C .(1,1)

D .}1{

3.已知集合A ={a ,b ,c },下列可以作为集合A 的子集的是 ( ) A. a B. {a ,c } C. {a ,e } D.{a ,b ,c ,d } 4.下列图形中,表示N M ?的是 ( )

5.下列表述正确的是 ( ) A.}0{=? B. }0{?? C. }0{?? D. }0{∈?

6、设集合A ={x|x 参加自由泳的运动员},B ={x|x 参加蛙泳的运动员},对于“既参

M N A M

N B N M C M N D

加自由泳又参加蛙泳的运动员”用集合运算表示为 ( ) A.A∩B B.A ?B C.A ∪B D.A ?B

7.集合A={x Z k k x ∈=,2} ,B={Z k k x x ∈+=,12} ,C={Z k k x x ∈+=,14}又,,B b A a ∈∈则有( )

A.(a+b )∈ A

B. (a+b) ∈B

C.(a+b) ∈ C

D. (a+b) ∈ A 、B 、C 任一个

8.函数f (x )=-x 2+2(a -1)x +2在(-∞,4)上是增函数,则a 的范围是( ) A .a ≥5 B .a ≥3 C .a ≤3 D .a ≤-5 9.满足条件{1,2,3}?≠M ?≠

{1,2,3,4,5,6}的集合M 的个数是 ( )

A. 8 B . 7 C. 6 D. 5 10.全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 ,6 },那么集合 { 2 ,7 ,8}是 ( )

A. A B

B. B A

C. B C A C U U

D. B C A C U U 11.下列函数中为偶函数的是( )

A .x y =

B .x y =

C .2x y =

D .13+=x y

12. 如果集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是 ( ) A .0 B .0 或1 C .1 D .不能确定 二、填空题(共4小题,每题4分,把答案填在题中横线上) 13.函数f (x )=2×2-3|x |的单调减区间是___________.

14.函数y =

1

1

+x 的单调区间为___________. 15.含有三个实数的集合既可表示成}1,,{a

b

a ,又可表示成}0,,{2

b a a +,则=+20042003b a .

16.已知集合}33|{≤≤-=x x U ,}11|{<<-=x x M ,}20|{<<=x x N C U 那么集合=N ,=?)(N C M U ,=?N M .

三、解答题(共4小题,共44分)

17. 已知集合}04{2=-=x x A ,集合}02{=-=ax x B ,若A B ?,求实数a 的取值集合.

18. 设f (x )是定义在R 上的增函数,f (xy )=f (x )+f (y ),f (3)=1,求解不等式f (x )+f (x -2)>1.

19. 已知函数f (x )是奇函数,且当x >0时,f (x )=x 3+2x 2

—1,求f (x )在R 上的表达式.

20. 已知二次函数222)1(2)(m m x m x x f -+-+-=的图象关于y 轴对称,写出函数的解析表达式,并求出函数)(x f 的单调递增区间.

必修1 第一章 集合测试

集合测试参考答案:

一、1~5 CABCB 6~10 ABACC 11~12 cB 二、13 [0,

43],(-∞,-4

3) 14 (-∞,-1),(-1,+∞) 15 -1 16 03|{≤≤-=x x N 或}32≤≤x ;

}10|{)(<<=?x x N C M U ;

13|{<≤-=?x x N M 或}32≤≤x .

三、17 .{0.-1,1}; 18. 解:由条件可得f (x )+f (x -2)=f [x (x -2)],1=f (3). 所以f [x (x -2)]>f (3),又f (x )是定义在R 上的增函数,所以有x (x -2)>3,可解得x >3或x <-1.

答案:x >3或x <-1.

19. .解析:本题主要是培养学生理解概念的能力. f (x )=x 3

+2x 2

-1.因f (x )为奇函数,∴f (0)=-1.

当x <0时,-x >0,f (-x )=(-x )3

+2(-x )2

-1=-x 3

+2x 2

-1, ∴f (x )=x 3

-2x 2

+1.

20. 二次函数2

2

2)1(2)(m m x m x x f -+-+-=的图象关于y 轴对称,

∴1=m ,则1)(2

+-=x x f ,函数)(x f 的单调递增区间为(]0,∞-.

人教版高一数学必修1测试题(含答案)

人教版数学必修I 测试题(含答案) 一、选择题 1、设集合{}{}{}1,2,3,4,5,1,2,3,2,5U A B ===,则()U A C B =( ) A 、{}2 B 、{}2,3 C 、{}3 D 、{}1,3 2、已知集合{}{}0,1,2,2,M N x x a a M ===∈,则集合 M N ( ) A 、{}0 B 、{}0,1 C 、{}1,2 D 、{}0,2 3、函数()21log ,4y x x =+≥的值域是 ( ) A 、[)2,+∞ B 、()3,+∞ C 、[)3,+∞ D 、(),-∞+∞ 4、关于A 到B 的一一映射,下列叙述正确的是 ( ) ① 一一映射又叫一一对应 ② A 中不同元素的像不同 ③ B 中每个元素都有原像 ④ 像的集合就是集合B A 、①② B 、①②③ C 、②③④ D 、①②③④ 5、在221 ,2,,y y x y x x y x ===+=,幂函数有 ( ) A 、1个 B 、2个 C 、3个 D 、4个 6、已知函数()213f x x x +=-+,那么()1f x -的表达式是 ( ) A 、259x x -+ B 、23x x -- C 、259x x +- D 、21x x -+ 7、若方程0x a x a --=有两个解,则a 的取值范围是 ( ) A 、()0,+∞ B 、()1,+∞ C 、()0,1 D 、? 8、若21025x =,则10x -等于 ( ) A 、15- B 、15 C 、150 D 、 1 625 9、若()2log 1log 20a a a a +<<,则a 的取值范围是 ( )

高一数学必修一知识点整理归纳

高一数学必修一知识点整理归纳 【集合与函数概念】 一、集合有关概念 1.集合的含义 2.集合的中元素的三个特性: (1)元素的确定性如:世界上的山 (2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y} (3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合 3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} (1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。 注意:常用数集及其记法:https://www.360docs.net/doc/b63696745.html, 非负整数集(即自然数集)记作:N 正整数集:N*或N+ 整数集:Z 有理数集:Q 实数集:R 1)列举法:{a,b,c……} 2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{x?R|x-3>2},{x|x-3>2} 3)语言描述法:例:{不是直角三角形的三角形}

4)Venn图: 4、集合的分类: (1)有限集含有有限个元素的集合 (2)无限集含有无限个元素的集合 (3)空集不含任何元素的集合例:{x|x2=-5} 二、集合间的基本关系 1.“包含”关系—子集 注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA 2.“相等”关系:A=B(5≥5,且5≤5,则5=5) 实例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等” 即:①任何一个集合是它本身的子集。AíA ②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA) ③如果AíB,BíC,那么AíC ④如果AíB同时BíA那么A=B 3.不含任何元素的集合叫做空集,记为Φ 规定:空集是任何集合的子集,空集是任何非空集合的真子集。 4.子集个数: 有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集 三、集合的运算 运算类型交集并集补集 定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={x|xA,且xB}.

高中数学知识点总结(精华版)

高中数学知识点总结 1. 元素与集合的关系 U x A x C A ∈??,U x C A x A ∈??. 2.德摩根公式 ();()U U U U U U C A B C A C B C A B C A C B ==. 3.包含关系 A B A A B B =?=U U A B C B C A ???? U A C B ?=ΦU C A B R ?= 4.容斥原理 ()()card A B cardA cardB card A B =+- ()()card A B C cardA cardB cardC card A B =++- ()()()()card A B card B C card C A card A B C ---+. 5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1 个;非空的真子集有2n –2个. 6.二次函数的解析式的三种形式 (1)一般式2 ()(0)f x ax bx c a =++≠; (2)顶点式2 ()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式 ()N f x M <- ? 11 ()f x N M N >--. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(210时,若[]q p a b x ,2∈- =,则{}min max max ()(),()(),()2b f x f f x f p f q a =-=; []q p a b x ,2?- =,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =.

2020高一数学知识点总结归纳精选5篇

2020高一数学知识点总结归纳精选5 篇 高一数学是很多同学的噩梦,知识点众多而且杂,对于高一的同学们很不友好,建议同学们通过总结知识点的方法来学习数学,这样可以提高学习效率。下面就是给大家带来的高一数学知识点总结,希望能帮助到大家! 高一数学知识点总结(一) (1)指数函数的定义域为所有实数的集合,这里的前提是a 大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。 (2)指数函数的值域为大于0的实数集合。 (3)函数图形都是下凹的。 (4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。 (5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴

的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。 (6)函数总是在某一个方向上无限趋向于X轴,永不相交。 (7)函数总是通过(0,1)这点。 (8)显然指数函数无界。 奇偶性 定义 一般地,对于函数f(x) (1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。 (2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。 (3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。

(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。 高一数学知识点总结(二) 对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性: 首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q 是偶数,函数的定义域是[0,+)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x0,函数的定义域是(-,0)(0,+).因此可以看到x所受到的限制****于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道: 排除了为0与负数两种可能,即对于x0,则a可以是任意实数; 排除了为0这种可能,即对于x0和x0的所有实数,q不能是偶数; 排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。

高中数学必修一测试题

2012届锐翰教育适应性考试数学试卷 满分150分,考试时间:120分钟 一. 选择题(每题4分,共64分): 1. 若集合}8,7,6{=A ,则满足A B A =?的集合B 的个数是( d ) A. 1 B. 2 C. 7 D. 8 2.方程062=+-px x 的解集为M,方程062=-+q x x 的解集为N,且M ∩N={2},那么p+q 等于( ) A.21 B.8 C.6 D.7 3. 下列四个函数中,与y=x 表示同一函数的是( ) A.()2x y = B.y=33x C.y=2x D.y=x x 2 4.已知A={x|y=x,x ∈R},B={y|2x y =,x ∈R},则A ∩B 等于( ) A.{x|x ∈R} B.{y|y ≥0} C.{(0,0),(1,1)} D.? 5. 32)1(2++-=mx x m y 是偶函数,则)1(-f ,)2(-f ,)3(f 的大小关系为( ) A. )1()2()3(->->f f f B. )1()2()3(-<-=0,30,log )(2x x x x f x ,则)] 41 ([f f 的值是( ) A. 91 B. 9 C. 9- D. 91 - 7. 已知A b a ==53,且2 1 1=+b a ,则A 的值是( ) A. 15 B. 15 C. 15± D. 225 8、f(x)=(m-1)x 2+2mx+3为偶函数,则f(x)在(2,5)上是( ) A.增函数 B.减函数 C.有增有减 D.增减性不确定 9.函数 f(x)=x 2-4x+5在区间 [0,m]上的最大值为5,最小值为1,则m 的取值范围是( ) A . ),2[+∞ B .[2,4] C .(]2,∞- D. [0,2]

高一数学必修一各章知识点总结

高一数学必修1各章知识点总结 第一章集合与函数概念 一、集合有关概念 1.元素的三个特性: (1)元素的确定性如:世界上最高的山 (2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y} (3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合 2. 3.集合的表示:{ …集合的含义 集合的中} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} (1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。 ◆注意:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 1)列举法:{a,b,c……} 2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x∈R| x-3>2} ,{x| x-3>2} 3)语言描述法:例:{不是直角三角形的三角形} 4)Venn图: 4、集合的分类: (1)有限集含有有限个元素的集合 (2)无限集含有无限个元素的集合 (3)空集不含任何元素的集合例:{x|x2=-5} 二、集合间的基本关系 1.“包含”关系—子集 A?有两种可能(1)A是B的一部分,;(2)A与B是注意:B 同一集合。 ?/B 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A ?/A 或B 2.“相等”关系:A=B (5≥5,且5≤5,则5=5) 实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。A?A ②真子集:如果A?B,且A≠B那就说集合A是集合B的真子集,记作A B(或B A) ③如果 A?B, B?C ,那么 A?C ④如果A?B 同时 B?A 那么A=B 3. 不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集,空集是任何非空集合的真子集。 ◆有n个元素的集合,含有2n个子集,2n-1个真子集 三、集合的运算

高中数学必修一测试题及答案

一. 选择题(4×10=40分) 1. 若集合}8,7,6{=A ,则满足A B A =?的集合B 的个数是( ) A. 1 B. 2 C. 7 D. 8 2. 如果全集}6,5,4,3,2,1{=U 且}2,1{)(=?B C A U ,}5,4{)()(=?B C A C U U , }6{=?B A ,则A 等于( ) A. }2,1{ B. }6,2,1{ C. }3,2,1{ D. }4,2,1{ 3. 设},2|{R x y y M x ∈==,},|{2 R x x y y N ∈==,则( ) A. )}4,2{(=?N M B. )}16,4(),4,2{(=?N M C. N M = D. N M ≠? 4. 已知函数)3(log )(2 2a ax x x f +-=在),2[+∞上是增函数,则实数a 的取值围是( ) A. )4,(-∞ B. ]4,4(- C. ),2()4,(+∞?--∞ D. )2,4[- 5. 32)1(2 ++-=mx x m y 是偶函数,则)1(-f ,)2(-f ,)3(f 的大小关系为( ) A. )1()2()3(->->f f f B. )1()2()3(-<-b f a f D. )()(b f a f 的符号不定 7. 设)(x f 为奇函数且在)0,(-∞是减函数,0)2(=-f ,且0)(>?x f x 的解集为( ) A. ),2()0,2(+∞?- B. )2,0()2,(?--∞ C. ),2()2,(+∞?--∞ D. )2,0()0,2(?-

高一数学必修一检测(完整资料)

此文档下载后即可编辑 数学必修一检测 一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只 有一项是符合题目要求的。 1、设全集为实数集R ,{} R x x x M ∈+≤=,21,{ }4,3,2,1=N ,则=?N M C R A .{}4 B .{}4,3 C . {}4,3,2 D .{ }4,3,2,1 2、设集合{ } R x y y S x ∈==,31,{ } R x x y y T ∈-==,12 ,则T S ?为 A .S B .T C .Φ D .R 3、已知集合{}x y y x A ==),(,{} x y y x B ±==),(,则A 与B 的关系是 A . B A B .A B C .A=B D .A B ? 4、a=0是函数a x x f -=)(在区间 [0,+∞)上为增函数的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 5、已知44:≥-≤a a p 或,12:-≥a q ,若""q p 或是真命题,""q p 且是假命题, 则a 的取值范围是 A .(-∞, -4]∪[4,+∞) B .[-12,-4]∪[4,+∞) C .(-∞,-12)∪(-4,4) D .[-12,+∞) 6、设函数)(x f 定义在R 上,它的图像关于直线x=1对称,且当1≥x 时,13)(-=x x f ,则有 A .)32()23()31(f f f << B .)31 ()23()32(f f f << C .)23()31()32(f f f << D .)3 1()32()23(f f f << 7、二次函数6)1(32 +-+=x a x y 在区间(-∞,1]上是减函数,则a 的取值范围是 A .1>a B .6≥a C .5-≤a D .5-

2020最全高一数学知识点总结归纳

2020最全高一数学知识点总结归纳 高一新生刚接触到高中数学时都会很不适应,应为高中数学和以往初中和小学的数学都不一样,高中数学更加灵活多变,思维也更加广阔,而高一数学也是整个高中数学的基础,必须要学好,所以下面就是给大家带来的高一数学知识点总结,希望能帮助到大家! 高一数学知识点总结(一) 1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解. 2.在应用条件时,易A忽略是空集的情况 3.你会用补集的思想解决有关问题吗? 4.简单命题与复合命题有什么区别?四种命题之间的相互 关系是什么?如何判断充分与必要条件? 5.你知道“否命题”与“命题的否定形式”的区别.

6.求解与函数有关的问题易忽略定义域优先的原则. 7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称. 8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域. 9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调.例如:. 10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法 11.求函数单调性时,易错误地在多个单调区间之间添加符号“”和“或”;单调区间不能用集合或不等式表示. 12.求函数的值域必须先求函数的定义域。 13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗? 14.解对数函数问题时,你注意到真数与底数的限制条件了吗? (真数大于零,底数大于零且不等于1)字母底数还需讨论

高中数学知识点大全

高中数学常用公式及常用结论 1. 元素与集合的关系 U x A x C A ∈??,U x C A x A ∈??. 2.德摩根公式 ();()U U U U U U C A B C A C B C A B C A C B == . 3.包含关系 A B A A B B =?= U U A B C B C A ???? U A C B ?=Φ U C A B R ?= 4.容斥原理 ()()card A B cardA cardB card A B =+- ()()card A B C cardA cardB cardC card A B =++- ()()()()card A B card B C card C A card A B C ---+ . 5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1 个;非空的真子集有2n –2个. 6.二次函数的解析式的三种形式 (1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2 ()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式 ()N f x M <- ? 11 ()f x N M N >--. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(210时,若[]q p a b x ,2∈- =,则{}m i n m a x m a x ()(),()(),()2b f x f f x f p f q a =-=; []q p a b x ,2?- =,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. (2)当a<0时,若[]q p a b x ,2∈-=,则{}m i n ()m i n (),()f x f p f q =,若

高一数学必修1集合单元测试题

敬业中学高一 集合单元测试 班级 姓名 得分 一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1 下列各项中,不可以组成集合的是( ) A 所有的正数 B 等于2的数 C 充分接近0的数 D 不等于0的偶数 2 下列四个集合中,是空集的是( ) A }33|{=+x x B },,|),{(2 2 R y x x y y x ∈-= C }0|{2 ≤x x D },01|{2 R x x x x ∈=+- 3 下列表示图形中的阴影部分的是( ) A ()()A C B C B ()() A B A C C ()()A B B C D ()A B C 4 若集合{},,M a b c =中的元素是△A B C 的三边长,则△A B C 一定不是( ) A 锐角三角形 B 直角三角形 C 钝角三角形 D 等腰三角形 5 若全集{}{}0,1,2,32U U C A ==且,则集合A 的真子集共有( ) A 3个 B 5个 C 7个 D 8个 6. 下列命题正确的有( ) (1)很小的实数可以构成集合; (2)集合{}1 |2 -=x y y 与集合(){}1 |,2 -=x y y x 是同一个集合; (3)361 1, ,,,0.5242 -这些数组成的集合有5个元素;

(4)集合(){}R y x xy y x ∈≤,,0|,是指第二和第四象限内的点集 A 0个 B 1个 C 2个 D 3个 7. 若集合}1,1{-=A ,}1|{==mx x B ,且A B A =?,则m 的值为( ) A 1 B 1- C 1或1- D 1或1-或0 8 若集合{}{}2 2 (,)0,(,)0,,M x y x y N x y x y x R y R =+==+=∈∈,则有( ) A M N M = B M N N = C M N M = D M N =? 9. 方程组? ??=-=+91 22y x y x 的解集是( ) A ()5,4 B ()4,5- C (){}4,5- D (){}4,5- 10. 下列表述中错误的是( ) A 若A B A B A =? 则, B 若B A B B A ?= ,则 C ) (B A A )(B A D ()()()B C A C B A C U U U = 二、填空题:本大题共5小题,每小题5分,共25分。 11.设集合{=M 小于5的质数},则M 的子集的个数为 . 12 设{}{}34|,|,<>=≤≤==x x x A C b x a x A R U U 或,则___ ___,==b a 13.已知{15},{4} A x x x B x a x a =<->=≤<+或,若A ?≠B,则实数a 的取值范 围是 . 14. 某班有学生55人,其中体育爱好者43人,音乐爱好者34人,还有4人既不爱好体育也不爱好音乐,则该班既爱好体育又爱好音乐的人数为 人_______________ 15. 若{}{}2 1,4,,1,A x B x ==且A B B = ,则x = 三、解答题:本大题共6分,共75分。

高一数学知识点总结归纳5篇最新

高一数学知识点总结归纳5篇最新 一、集合有关概念 1.集合的含义 2.集合的中元素的三个特性: (1)元素的确定性如:世界上的山 (2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y} (3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合 3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} (1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。 注意:常用数集及其记法:https://www.360docs.net/doc/b63696745.html, 非负整数集(即自然数集)记作:N 正整数集:N_或N+ 整数集:Z 有理数集:Q 实数集:R 1)列举法:{a,b,c……} 2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{x?R|x-3>2},{x|x-3>2} 3)语言描述法:例:{不是直角三角形的三角形} 4)Venn图:

4、集合的分类: (1)有限集含有有限个元素的集合 (2)无限集含有无限个元素的集合 (3)空集不含任何元素的集合例:{x|x2=-5} 二、集合间的基本关系 1.“包含”关系—子集 注意:有两种可能 (1)A是B的一部分,; (2)A与B是同一集合。 反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA 2.“相等”关系:A=B(5≥5,且5≤5,则5=5)实 例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等” 即: ①任何一个集合是它本身的子集。AíA ②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA) ③如果AíB,BíC,那么AíC ④如果AíB同时BíA那么A=B 3.不含任何元素的集合叫做空集,记为Φ 规定:空集是任何集合的子集,空集是任何非空集合的真子集。 4.子集个数:

高一数学必修1综合测试题(1)

高一数学必修1综合测试题(一) 1.集合{|1,}A y y x x R ==+∈,{|2,},x B y y x R ==∈则A B 为( ) A .{(0,1),(1,2)} B .{0,1} C .{1,2} D .(0,)+∞ 2.已知集合{ } 1| 1242 x N x x +=∈<?? ? 是 (,)-∞+∞上嘚减函数,那么a 嘚取值范围是 ( ) A (0,1) B 1 (0,)3 C 11[,)73 D 1 [,1)7 8.设 1a >,函数()log a f x x =在区间 [,2]a a 上嘚最大值与最小值之差为 1 2 ,则 a =( )

高一数学知识点归纳

集合与函数概念 一、集合有关概念 1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。 2、集合的中元素的三个特性: 1.元素的确定性; 2.元素的互异性; 3.元素的无序性 说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。 (3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。 (4)集合元素的三个特性使集合本身具有了确定性和整体性。 3、集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} 1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} 2.集合的表示方法:列举法与描述法。 注意啊:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集N*或N+ 整数集Z 有理数集Q 实数集R 关于“属于”的概念 集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作aA 列举法:把集合中的元素一一列举出来,然后用一个大括号括上。 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。 ①语言描述法:例:{不是直角三角形的三角形} ②数学式子描述法:例:不等式x-3>2的解集是{xR| x-3>2}或{x| x-3>2} 4、集合的分类: 1.有限集含有有限个元素的集合 2.无限集含有无限个元素的集合 3.空集不含任何元素的集合例:{x|x2=-5} 二、集合间的基本关系 1.“包含”关系—子集 注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A 2.“相等”关系(5≥5,且5≤5,则5=5) 实例:设A={x|x2-1=0} B={-1,1} “元素相同” 结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B 的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B

高一数学各章知识点总结

高一数学必修1各章知识点总结————第一章 集合与函数概念 一、集合有关概念 1. 集合的含义 2. 集合的中元素的三个特性: (1) 元素的确定性如:世界上最高的山 (2) 元素的互异性如:由HAPPY 的字母组成的集合{H,A,P,Y} (3) 元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合 3.集合的表示:{ … } 如{我校篮球队员},{太平洋,大西洋,印度洋} (1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2) 集合的表示方法:列举法与描述法。 ◆ 注意:常用数集及其记法:非负整数集(即自然数集) 记作:N 正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 1) 列举法:{a,b,c ……} 2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x ∈R| x-3>2} ,{x| x-3>2} 3) 语言描述法:例:{不是直角三角形的三角形} 4) Venn 图: 4、集合的分类: (1) 有限集 含有有限个元素的集合 (2) 无限集 含有无限个元素的集合 (3) 空集 不含任何元素的集合 例:{x|x 2 =-5} 二、集合间的基本关系 1.“包含”关系—子集 注意:B A ?有两种可能(1)A 是B 的一部分,;(2)A 与 B 是同一集合。 反之: 集合A 不包含于集合B,或集合B 不包含集合A,记作A ?/B 或B ?/A 2.“相等”关系:A=B (5≥5,且5≤5,则5=5) 实例:设 A={x|x 2 -1=0} B={-1,1} “元素相同则两集合相等” 即:① 任何一个集合是它本身的子集。A ?A ②真子集:如果A ?B,且A ≠ B 那就说集合A 是集合B 的真子集,记作A B(或B A) ③如果 A ?B, B ?C ,那么 A ?C ④ 如果A ?B 同时 B ?A 那么A=B 3. 不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。 ◆ 有n 个元素的集合,含有2n 个子集,2n-1 个真子集 运算类型 交 集 并 集 补 集 定 义 由所有属于A 且属于B 的元素所组成的集合,叫做A,B 的交集.记作A I B (读作‘A 交B ’),即A I B={x|x ∈A ,且x ∈B }. 由所有属于集合A 或属于集合B 的元素所组成的集合,叫做A,B 的并集.记作:A Y B (读作‘A 并B ’),即A Y B ={x|x ∈A ,或x ∈B}). 设S 是一个集合,A 是S 的一个子集,由S 中所有不属于A 的元素组成的集合,叫做S 中子集A 的补集(或余集) 记作A C S ,即 C S A=},|{A x S x x ?∈且 韦 恩 图 示 A B 图1 A B 图2 性 质 A I A=A A I Φ=Φ A I B=B I A A I B ?A A I B ?B A Y A=A A Y Φ=A A Y B=B Y A A Y B ?A A Y B ?B (C u A) I (C u B) = C u (A Y B) (C u A) Y (C u B) = C u (A I B) A Y (C u A)=U A I (C u A)= Φ. A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数 2.集合{a ,b ,c }的真子集共有 个 3.若集合M={y|y=x 2 -2x+1,x ∈R},N={x|x ≥0},则M 与N 的关系是 . 4.设集合A=} {12x x <<,B=} { x x a <,若A ?B ,则a 的取值范围是 5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有 人。 6. 用描述法表示图中阴影部分的点(含边界上的点)组成的集合M= . 7.已知集合A={x| x 2+2x-8=0}, B={x| x 2-5x+6=0}, C={x| x 2-mx+m 2 -19=0}, 若B ∩C ≠Φ,A ∩C=Φ,求m 的值 二、函数的有关概念 1.函数的概念:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作: y=f(x),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域. 注意: 1.定义域:能使函数式有意义的实数x 的集合称为函数的定义域。 求函数的定义域时列不等式组的主要依据是: (1)分式的分母不等于零; (2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零; (4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x 的值组成的集合. (6)指数为零底不可以等于零, (7)实际问题中的函数的定义域还要保证实际问题有意义. ◆ 相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备) 2.值域 : 先考虑其定义域1)观察法 (2)配方法(3)代换法 3. 函数图象知识归纳 (1)定义:在平面直角坐标系中,以函数 y=f(x) , (x ∈A)中的x 为横坐标,函数值y 为纵坐标的点P (x ,y)的集合C ,叫做函数 y=f(x),(x ∈A)的图象.C 上每一点的坐标(x ,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x 、y 为坐标的点(x ,y),均 在C 上 . (2) 画法: 描点法 图象变换法 常用变换方法有三种:平移变换 伸缩变换 对称变换 4.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间 的数轴表示. .映射:一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射。记作“f (对应关系):A (原象)→B (象)” 对于映射f :A →B 来说,则应满足: (1)集合A 中的每一个元素,在集合B 中都有象,并且象是唯一的; (2)集合A 中不同的元素,在集合B 中对应的象可以是同一个; (3)不要求集合B 中的每一个元素在集合A 中都有原象。 6.分段函数 (1)在定义域的不同部分上有不同的解析表达式的函数。(2)各部分的自变量的取值情况. (3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集. 补充:复合函数:如果y=f(u)(u ∈M),u=g(x)(x ∈A),则 y=f[g(x)]=F(x)(x ∈A) 称为f 、g 的复合函数。 二.函数的性质1.函数的单调性(局部性质) (1)增函数:设函数y=f(x)的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个 自变量x 1,x 2,当x 1

相关文档
最新文档