锂电池储能系统的应用设计_李辉

锂电池储能系统的应用设计_李辉
锂电池储能系统的应用设计_李辉

储能系统设计方案

110KWh储能系统 技术方案

微电网:储能系统独立或与其他能源配合,给负载供电,主要解决供电可靠性问题。 本系统主要包含: * 储能变流器:1台50kW 离并网型双向储能变流器,在0.4KV交流母线并网,实现能量的双向流动。 * 磷酸铁锂电池:125KWH * EMS&BMS:根据上级调度指令完成对储能系统的充放电控制、电池SOC 信息监测等功能。

1、系统特点 (1)本系统主要用于峰谷套利,同时可作为备用电源、避免电力增容及改善电能质量。 (2)储能系统具备完善的通讯、监测、管理、控制、预警和保护功能,长时间持续安全运行,可通过上位机对系统运行状态进行检测,具备丰富的数据分析功能。 (2)BMS系统即跟EMS系统通信汇报电池组信息,也跟PCS采用RS485总线直接通信,在PCS的配合下完成对电池组的各种监控、保护功能。 (3)常规0.2C充放电,可离网或并网工作。 2、系统运行策略 ◇储能系统接入电网运行,可通过储能变流器的PQ模式或下垂模式调度有功无功,满足并网充放电需求。 ◇电价峰时段或负荷用电高峰期时段由储能系统给负荷放电,既实现了对电网的削峰填谷作用,又完成了用电高峰期的能量补充。 ◇储能变流器接受上级电力调度,按照峰、谷、平时段的智能化控制,实现整个储能系统的充放电管理。 ◇储能系统检测到市电异常时控制储能变流器由并网运行模式切换到孤岛(离网)运行模式。 ◇储能变流器离网独立运行时,作为主电压源为本地负荷提供稳定电电压和频率,确保其不间断供电。 3、储能变流器(PCS) 先进的无通讯线电压源并联技术,支持多机无限制并联(数量、机型)。 ●支持多源并机,可与油机直接组网。 ●先进的下垂控制方法,电压源并联功率均分度可达99%。 ●支持三相100%不平衡带载运行。 ●支持并、离网运行模式在线无缝切换。 ●具有短路支撑和自恢复功能(离网运行时)。 ●具有有功、无功实时可调度和低电压穿越功能(并网运行时)。 ●采用双电源冗余供电方式,提升系统可靠性。 ●支持多类型负载单独或混合接入(阻性负载、感性负载、容性负载)。

储能系统方案设计精编版

商用300KW储能方案 技术要求及参数 电倍率0.5C; 储能系统配置容量:300kWh。 电池系统方案 术语定义 池采集均衡单元:管理一定数量串联电池模块单元,进行电压和温度的采集,对本单元电池模块进行均衡管理。在本方案中管理计60支的电池。电池簇管理单元:管理一个串联回路中的全部电池采集均衡单元,同时检测本组电池的电流,在必要时采取保案中管理17台电池采集均衡单元。电池阵列管理单元:管理PCS下辖全部电池簇管理单元,同时与PCS和后台监控系统通信状态请求PCS调整充放电功率。在本方案中管理2个并联的电池簇。 池模块:由10支5并2串的单体电池组成。 1 电池成组示意图 电池系统集成设计方案 .1电池系统构成 照系统配置300kWh储存能量的技术需求,本储能系统项目方案共使用1台150kW的PCS。储能单元由一台PCS和2个电池簇组台电池阵列管理单元设备。每个电池簇由一台电池簇管理设备和17 个电池组组成。

.2 电池系统计算书项目单体电池模块电池组电池簇电池阵列 体电池数目 1 10 60 1020 2040 称电压(V) 3.2 6.4 38.4 652.8 652.8 量(Ah) 55 275 275 275 -- 定能量(kWh) 0.176 1.76 10.56 179.52 359.04 低工作电压(V) 2.5 5 30 510 510 高充电电压(V) 3.6 7.2 43.2 734.4 734.4 统配置裕量 (359.04kWh -300 kWh)/300 kWh =19.68% 于以上各项分析设计,300kWh 电池系统计算如下。 .3电池柜设计方案 池机柜内部主要安装电池箱和BMS主控管理系统、配套电线电缆、高低压电气保护部件等。机柜采用分组分层设计,机柜外观柜采用免维护技术、模数化组合的装配式结构,保证柜体结构具有良好的机械强度,整体结构能最大程度地满足整个系统的可。其中,三个电池架组成的示意图如图3所示,尺寸为3600mm×700mm×2300mm。

储能技术应用和发展前景

储能是智能电网、可再生能源接入、分布式发电、微电网以及电动汽车发展必不可少的支撑技术,可以有效地实现需求侧管理、消除昼夜峰谷差、平滑负荷,可以提高电力设备运行效率、降低供电成本,还可以作为促进可再生能源应用,提高电网运行稳定性、调整频率、补偿负荷波动的一种手段。智能电网的构建促进储能技术升级、推动储能需求尤其是大规模储能需求的快速增长,从而带来相应的投资机会。 随着储能技术的大量应用必将在传统的电力系统设计、规划、调度、控制方面带来变革。储能技术关系到国计民生,具有越来越重要的经济价值和社会价值,目前储能在中国的发展刚刚起步。国家应该尽快研究储能技术的相关产业标准,加强储能技术基础研究的投入,切实鼓励技术创新,掌握自主知识产权;从规模储能技术发展起始阶段就重视环境因素,防治环境污染;充分发挥储能在节能减排方面的作用,把对新能源的鼓励政策延伸到储能环节。 近年来,我国电网峰谷差逐年增大,多数电网的高峰负荷增长幅度在10%左右,甚至更高。而低谷负荷的增长幅度则维持在5%甚至更低。峰谷差的增加幅度大于负荷的增长幅度,在电网中引入储能系统成为了实现电网调峰的迫切需求。 储能技术拥有广泛的应用前景,但实现规模化储能当前仍是一个世界性难题。目前,我国约有40个储能示范项目,而规模在1000千瓦级的项目为数不多。这些储能项目多起到示范、探索性作用,并不具备产业化意义。 储能产业的发展机遇

由于我国的能源中心和电力负荷中心距离跨度大,电力系统一直遵循着大电网、大电机的发展方向,按照集中输配电模式运行,随着可再生能源发电的飞速发展和社会对电能质量要求的不断提高,储能技术应用前景广阔。储能技术主要的应用方向有:风力发电与光伏发电互补系统组成的局域网,用于偏远地区供电、工厂及办公楼供电;通信系统中作为不间断电源和应急电能系统;风力发电和光伏发电系统的并网电能质量调整;作为大规模电力存储和负荷调峰手段;电动汽车储能装置;作为国家重要部门的大型后备电源等。随着储能技术的不断进步,安全性好、效率高、清洁环保、寿命长、成本低、能量密度大的储能技术将不断涌现,必将带动整个电力行业产业链的快速发展,创造巨大的经济效益和社会效益。 国家电网公司近期确定的智能电网重点投资领域中包括了大量储能应用领域,如发电领域的风力发电和光伏发电中应用储能技术项目,配电领域储能技术,电动汽车充放电技术等。无论是风电还是太阳能发电,其自身都具有随机性和间歇性特征,其装机容量的快速增长必对电网调峰和系统安全带来不利影响,所以,必须要有可靠的储能技术作为支撑和缓冲。先进储能技术能够在很大程度上解决新能源发电的波动性问题,使风电及太阳能发电大规模的安全并入电网。 并网逆变器作为光伏电池与电网的接口装置,将光伏电池的直流电能转换成交流电能并传输到电网上,在光伏并网发电系统中起着至关重要的作用。并网逆变器性能对于系统的效率、可靠性,系统的寿命及降低光伏发电成本至关重要。 储能技术发展有利于推进风电就地消纳,在当前产业梯度转移的大背景下,可考虑在大型风电基地附近布局供热、高耗能产业,同时加快建立风电场与这些大电力用户和电力系统的协调运行机制。国家电网近期确定的智能电网重点投资

铅酸电池储能系统方案设计 (有集装箱)

技术方案 2014年1月

目录 1需求分析 (3) 2集装箱方案设计 (3) 2.1集装箱基本介绍 (3) 2.2集装箱的接口特性 (5) 2.3系统详细设计方案 (6) 2.4集装箱温控方案 (13) 3电池组串成组方案 (15) 3.1电池组串内部及组间连接方案 (17) 3.2系统拓扑图 (18) 4蓄电池管理系统(BMS) (19) 4.1BMS系统整体构架 (19) 4.2BMS系统主要设备介绍 (20) 4.3BMS系统保护方式 (23) 4.4BMS系统通信方案 (24)

1需求分析 集装箱式铅酸蓄电池成套设备供货范围包括铅酸蓄电池、附属设备、标准40尺集装箱、备品备件、专用工具和安装附件等。 每个标准40尺集装箱含管式胶体(DOD80 1200次以上)或富液式(DOD80 1400次以上)免维护铅酸蓄电池、电池架及附件、电池管理系统(含外电路)、电池直流汇流设备、设备间的连接电缆及电缆附件(包括铜鼻、螺栓、螺母、弹垫、平垫等)、动力及控制信号接口等。 根据标书要求,综合铅酸电池特性,对于储能系统进行如下设计: 每3个标准40尺集装箱承载2MWh,每个集装箱由336只2V1000Ah管式胶体铅酸电池串联而成,电压672V,电池串容量672kWh。每3个集装箱并联到一台500kWh 储能双向变流器。三个电池堆的总容量可达2MWh,故本方案中三个集装箱为一单元,每个单元配置一套BMS电池管理系统,可监控每颗单体电池工作情况。集装箱中另含烟感探头、消防灭火器、加热器、摄像头、温湿度监测等设备,以保证铅酸电池安全稳定的工作环境,实现远程监控。 2集装箱方案设计 2.1集装箱基本介绍 根据项目要求,同时考虑电池堆的成组方式、集装箱内辅助系统的设计、安装以及日常巡视和检修等各方面,选用40英尺标准集装箱。外部尺寸: 12192*2438*2591mm 。 本项目共需要42个40英尺标准集装箱。集装箱设计静态承重60t,最大 起吊承重45t。 集装箱的主要任务是将铅酸电池、通讯监控等设备有机的集成到1个标准的40尺集装箱单元中,该标准单元拥有自己独立的供电系统、温度控制系统、隔热系统、阻燃系统、火灾报警系统、电气联锁系统、机械连锁系统、安全逃生系统

储能系统功能介绍及基本拓扑

储能系统功能介绍及基本拓扑 储能系统是一个可完成存储电能和供电的系统。本系统主要由两大单元组成:储能单元 和监控与调度管理单元。储能单元包含储能电池组、电池管理系统、PCS等;监控与调度管 理单元包括计算机、控制软件及显示终端。 储能系统PCS功能描述: 储能变流器又叫储能系统双向变流器,又可以称为功率变换系统(PCS。储能变流器 是储能单元中功率调节的执行设备,由若干个交直流变换模块及直流变换模块构成。储能系统中的能量转换系统(PCS处于交流380V三相电网和储能电池组之间,用于满足储能电池 组充放电控制的需要。在监控与调度系统的调配下,可满足额定的功率需求,并结合电池管理系统的信息,实施有效和安全的储电和放电管理。 储能系统电池管理系统功能描述:电池管理系统安装于储能电池组内,负责对储能电池组进行电压、温度、电流、容量等信息的采集,实时状态监测和故障分析,同时通过CAN总线与PCS监控与调度系统联机 通信,实现对电池进行优化的充放电管理控制。本系统每簇电池组各自配套一套电池管理系统,能达到有效和高效地使用每簇储能电池及整体合理调配的目的。 监控与调度管理系统: 监控与调度管理系统(以下简称监控调度系统,SDS,Supervision and Dispatch System )是储能单元的能量调度、管理中心,负责收集全部电池管理系统数据、储能变流器 数据及配电柜数据,向各个部分发出控制指令,控制整个储能系统的运行,合理安排储能变流器工作; 系统既可以按照预设的充放电时间、功率和运行模式自动运行,也可以接受操作员的即时指令运行。 电池管理系统主要功能-nego 使用的电池管理系统功能。 (1)单体电池电压的检测利用专用电压测量芯片,内含高精度A/D 转换模块。电池巡 检周期达到150ms,电压检测范围0~5V,精度%FSR从而精确及时监控电池在使用过程中的状态及变化。有效时防止电池的不正当使用。

光伏储能一体化充电站设计方案

光伏储能一体化充电站 设 计 方 案 : 项目名称: 项目编号: 版本: 日期: … 拟制: ^ 审阅: 批准:

目录 1 技术方案概述 (3) 1.1 项目基本情况 (3) 1.2 遵循及参考标准 (4) 1.3 系统拓扑结构 (5) 1.4 系统特点 (6) 2 系统设备介绍 (7) 2.1 250K W并离网型储能变流器 (7) 2.1.1 EAPCS250K型储能变流器特点 (7) 2.1.2 EAPCS250K型并离网逆变器技术参数 (7) 2.1.3 电路原理图 (8) 2.1.4 通讯方式 (9) 2.2 50K_DCDC变换器 (9) 2.2.1 50K_DCDC变换器特点 (9) 2.2.2 50K_DCDC变换器技术参数 (10) 2.3 光智能光伏阵列汇流箱 (11) 2.3.1汇流箱简介 (11) 2.3.2汇流箱参数 (12) 2.4 光伏组件系统 (13) 2.4.1 270Wp光伏组件 (13) 2.5 60KW双向充电桩 (15) 2.5.1 60KW充电柱概述 (15) 2.5.2 充电桩功能与特点 (15) 2.5.3 EVDC-60KW充电桩技术参数 (16) 2.6 消防系统 (17) 2.7 微网能量管理系统 (17) 2.7.1 能量管理 (18) 2.7.2 光电预测 (19) 2.7.3 负荷预测 (19) 2.7.4 储能调度 (20) 2.7.5 购售计划 (20) 2.7.6 管理策略 (20) 2.8 动环监控系统 (22) 2.9 电池系统 (23) 2.9.1 电池组 (23) 2.9.2电池模组与电池架设计 (23) 2.9.3电池系统参数表 (24) 2.10 定制集装箱 (25) 3 设备采购信息介绍 (26)

储能电源的应用及其意义

储能系统可以说是调节微电源性能、保证负荷供电质量、维持电网稳定地重要环节,因此研究储能系统设计、开发储能在微网技术中地应用具有十分重要地意义. 、微网地储能技术种类及其特性 伴随着科技地发展,已发明地储能技术形式多种多样.根据微网地特点,适用于微网地储能技术可以分为物理储能、电化学储能和电磁储能,电化学储能可以分为铅酸电池、镉镍电池、氢镍电池、锂离子电池等.物理储能包括抽水蓄能、压缩空气储能、飞轮储能,电磁储能包括超级电容储能和超导磁储能等.文档来自于网络搜索 .蓄电池储能系统构成 蓄电池储能系统主要由电池组、电池管理系统( )、()、隔离变压器、双向变流器、变流器监控装置及辅助设备.系统可以满足频繁充放电及微网孤岛运行功能地需求.系统可根据上级调度指令完成各种充电、放电等高级控制策略,在微电网中应用最为广泛且最具有发展前途.文档来自于网络搜索 能量控制装置控制器通过通信信道接收后台控制指令,根据功率指令地符号及大小控制变流器对电池进行充电或放电,实现对电网有功功率及无功功率地调节. 控制器通过接口与电池管理系统通讯,获取电池组状态信息,可实现对电池地保护性充放电,确保电池运行安全.文档来自于网络搜索 .铅酸电池 铅酸电池主要由铅及其氧化物构成,电解液是硫酸溶液.荷电状态下,主要成分为二氧化铅,主要成分为铅;放电状态下,正负极地主要成分均为硫酸铅,以密度为.~./ (浓度为%~%)地硫酸溶液作为电解液,统称为铅酸蓄电池(亦称“铅蓄电池”).目前铅酸蓄电池在电力系统应用领域地研究重点是电力调峰、提高系统运行稳定性和提高供电质量.阀控铅酸电池地电化学反应式如下:文档来自于网络搜索 充电: (电解池)阳极:,一一阴极:当溶液地密度升到.时,应停止充电:放电: (电解池)负极:一一正极:一文档来自于网络搜索 .锂离子电池 目前锂离子电池地负极一般采用石墨或其嵌锂化合物,正极为氧化钴锂:、:及等过渡金属氧化物,电解液采用锂盐液态非水电解液.锂离子电池地性能主要取决于正负极材料,磷酸铁锂作为新兴地正极材料,其安全性能与循环寿命较其它正极材料具有明显优势.锂电池具有以下几个特点:能量密度高,其理论比容量为/,产品实际比容量可超过 (.,℃);储能密度高;工作电压适中(单体工作电压为.或. );寿命长;正常使用条件下,次循环后电池放电容量不低于初始容量地%;无害,不含任何对人体有害地重金属元素;充放电转化率高(%以上).但是,锂离子电池性能易受工艺和环境温度等因素地影响.文档来自于网络搜索 .超级电容器 超级电容器是一种新型储能装置,通过极化电解质来储能.由于随着超级电容器放电,正、负极板上地电荷被泄放,电解液地界面上地电荷响应减少.由此可以看出:超级电容器地充放电过程始终是物理过程,没有化学反应,因此性能是稳定地,与利用化学反应地蓄电池是不同地.超级电容器具有比功率大、充电速度快地优点,适合大电流和短时间充放电地场合,且使用寿命长,不易老化,是一种绿色能源,缺点是能量存储率有限,价格较为昂贵,还不能完全取代蓄电池提供能源,在电力系统中多用于短时间、大功率功率输出地场合.文档来自于网络搜索 .飞轮储能技术 飞轮储能以动能地形式存储能量,经过功率变换器,完成机械能一电能相互转换.飞轮储能比功率一般大于/,比能量超过/,循环使用寿命长,工作温区较宽,无噪声,无污染,

储能系统方案设计doc资料

储能系统方案设计

商用300KW储能方案 技术要求及参数 电倍率0.5C; 储能系统配置容量:300kWh。 电池系统方案 术语定义 池采集均衡单元:管理一定数量串联电池模块单元,进行电压和温度的采集,对本单元电池模块进行均衡管理。在本方案中管计60支的电池。电池簇管理单元:管理一个串联回路中的全部电池采集均衡单元,同时检测本组电池的电流,在必要时采取本方案中管理17台电池采集均衡单元。电池阵列管理单元:管理PCS下辖全部电池簇管理单元,同时与PCS和后台监控系统池组状态请求PCS调整充放电功率。在本方案中管理2个并联的电池簇。 池模块:由10支5并2串的单体电池组成。 1 电池成组示意图 电池系统集成设计方案 .1电池系统构成 照系统配置300kWh储存能量的技术需求,本储能系统项目方案共使用1台150kW的PCS。储能单元由一台PCS和2个电池簇组台电池阵列管理单元设备。每个电池簇由一台电池簇管理设备和17 个电池组组成。

.2 电池系统计算书项目单体电池模块电池组电池簇电池阵列 体电池数目 1 10 60 1020 2040 称电压(V) 3.2 6.4 38.4 652.8 652.8 量(Ah) 55 275 275 275 -- 定能量(kWh) 0.176 1.76 10.56 179.52 359.04 低工作电压(V) 2.5 5 30 510 510 高充电电压(V) 3.6 7.2 43.2 734.4 734.4 统配置裕量 (359.04kWh -300 kWh)/300 kWh =19.68% 于以上各项分析设计,300kWh 电池系统计算如下。 .3电池柜设计方案 池机柜内部主要安装电池箱和BMS主控管理系统、配套电线电缆、高低压电气保护部件等。机柜采用分组分层设计,机柜外观柜采用免维护技术、模数化组合的装配式结构,保证柜体结构具有良好的机械强度,整体结构能最大程度地满足整个系统的可。其中,三个电池架组成的示意图如图3所示,尺寸为3600mm×700mm×2300mm。

300KW储能系统初步设计方案和配置

中山铨镁能源科技有限公司 储能系统项目 初 步 设 计 方 案 2017年06月

目录 1项目概述 (3) 2项目方案 (3) 2.1智能光伏储能并网电站 (3) 3.2储能系统 (5) 3.2.1磷酸铁锂电池 (5) 3.2.2电池管理系统(BMS (5) 3.2.3储能变流器(PCS (6) 3.2.4 隔离变压器 (9) 3.3能量管理监控系统 (9) 3.3.1微电网能量管理 (9) 3.3.2 系统硬件结构 (10) 3.3.3系统软件结构 (11) 3.3.4系统应用功能 (12)

一、项目概述 分布式能源具有间歇性、波动性、孤岛保护等特点,分布式能源电能质量差,分布式能源设备利用率没有被充分发掘。微电网是为整合分布式发电的优势、削弱分布式发电对电网的冲击和负面影响而提出的一种新的分布式能源组织方式和结构,能有效改善分布式能源电能质量差、分布式能源设备利用率不能被充分发掘等分布式能源的不足。 微电网通过整合分布式发电单元与配电网之间关系,在一个局部区域内直接将分布式发电单元、电力网络和终端用户联系在一起,可以方便地进行结构和配置以及电力调度的优化,优化和提高能源利用效率,减轻能源动力系统对环境的影响,推动分布式电源上网,降低大电网的负担,改善可靠安全性,并促进社会向绿色、环保、节能方向发展。微电网是当前国际国内能源和电力专家普遍认可的解决方案。 本项目拟建设一套锂电池储能系统,通过低压配电柜给部分办公楼宇负荷供电,可实现对各个设备接口采集相关信息,并通过智能配电柜对各个环节进行投切,在并网及孤岛情况下实现发电、储能及负荷的控制,保持微电网系统的平衡运行。 二、项目方案 2.1智能光伏储能并网电站 本电站系统目的在于拟建设中山铨镁能源科技有限公司储能并离网系统示范工程,通过接入办公楼宇的日常照明等真实负载,可演示离网状态下正常供电系统示范;分布式光伏多余电量进行储能示范;以及后台监控及能量调度等示范。 本项目拟建设的储能系统,系统由锂电池储能系统、控制系统、监控系统以及能量管理系统构成。其中控制系统可实现对分布式电源、负载装置和储能装置的远程控制,监控系统对分布式电源实时运行信息、报警信息进行全面的监视并进行多方面的

电池储能系统在电力系统中的应用

电池储能系统在电力系统中的应用 孔令怡1,廖丽莹1,张海武2,赵家万3 (1.广西大学电气工程学院,南宁530004;2.德清县供电局,德清313200;3.遵义 供电局,遵义市563000) 摘要:电池储能系统(BESS)是一种新兴的FACTS器件。具有控制有功功率流的能力,能够同时对接入点的有功功率和无功功率进行调节,为高压输电系统提供快速的响应容量,有效提高了电力系统的稳定性、可靠性和电能质量。介绍了电池储能系统的基本原理、特点和国外的应用情况,并对它在电力系统中的不同应用进行了综述。 1引言 迄今为止,由于电力系统缺乏有效地大量储存电能的手段,发电、输电、配电与用电必须同时完成,这就要求系统始终处于动态的平衡状态中,瞬间的不平衡就可能导致安全稳定问题。大功率逆变器的出现为储能电源和各种可再生能源与交流电网之间提供了一个理想的接口。从长远的角度看,由各种类型的电源和逆变器组成的储能系统可以直接连接在配电网中用户负荷附近,构成分布式电力系统,通过其快速响应特性,迅速吸收用户负荷的变化,从根本上解决电力系统的控制问题。 可用在电力系统中的储能电源种类繁多,比较常见的有超导储能(SMES)、电池储能(BESS)、飞轮储能、超级电容器储能、抽水储能、压缩空气储能等。在各种类型的储能电源当中,电池储能系统是一种比较适合电力系统使用的储能电源,具有技术相对成熟、容量大、安全可靠、无污染、噪声低、环境适应性强、便于安装等优点。 2电池储能系统的基本原理 电池储能系统主要有电池组和变流器两部分组成,其变流器主要是基于电压源型变流器,其基本结构如图1所示。

电池组部分一般采用技术比较成熟的钠硫电池或铅酸电池,其中钠硫电池在能量密度、使用寿命、运行效率上有较明显优势,所以钠硫电池的应用更广泛。钠硫电池与铅酸电池特性参数比较如表1所示。 变流器的实质是大容量的电压逆变器,它是连接储能电池和接入电网之间的接口电路,实现了电池直流能量和交流电网之间的双向能量传递。电池储能系统的电路原理图如图2所示。 图2中电池储能系统等效为一个理想的电压源,其电压的幅值为U1,电压相角为H;串联的R、L代表总的功率损耗、线路损耗等;电池储能系统注入电力系统的电流的幅值为I L,电流相角为U;电力系统的接入点的电压幅值为U S,电压相角为D。 在电池储能系统中,电压幅值U1和电压相角H都是可以控制的,当我们需要向系统注入有功功率时,便可以控制H>D,这时电池储能系统的电压相角超前于系统接入点的电压相角,所以有功功率由电池储能系统流入系统;反之亦然。当我们需要向系统注入无功功率时,便可以控制U1>U S,这时电池储能系统的电压幅值高于系统接入点的电压幅值,所以无功功率由电池储能系统流入系统;反之亦然。可见,适当的调整换流器来控制电池储能系统的电压幅值U1和相角H,便可以实现电池储能系统与接入的电力系统之间的有功功率和无功功率的交换。 3电池储能系统在电力系统中应用的目的 电池储能系统在电力系统中有着极为广泛的应用,因为它本身可以快速的对接入点的有功功率和无功功率进行调节,所以可以用来提高系统的运行稳定性、提高供电的质量,当其容量足够大时,甚至可以发挥电力调峰的作用。

一种大容量电池储能系统的优化设计方案

一种大容量电池储能系统的优化设计方案 周志超1,2,许伟2,潘磊2 (1.天津大学电气与自动化工程学院,天津 300072;2.国电联合动力技术有限公司,北京 100039) 摘要:大容量锂电池储能系统由大量的电池单体串、并联组成,储能双向换流器的设计必须充分考虑电池成组的优化 接入,为储能系统的安全、高效及长寿命周期运行提供必要前提。在对电力系统中大容量电池储能系统的技术特点进 行分析的基础上,提出并分析讨论了几种适合于电池储能的电网接入技术。结果表明,支持独立多分组接入的单级式 并联换流器拓扑结构是大容量锂电池储能系统的一个优选方案。 关键词:电池储能系统;能量转换系统;电力系统;拓扑 An Optimal Design Solution for Large Scale Lithium Battery Energy Storage System ZHOU Zhi-chao1,2,XU Wei2,PAN Lei2 (1.Tianjin University,Tianjin 300072,China; 2.GuoDian United Power Technology Company LTD.,Beijing 100039,China) Abstract: Large scale lithium battery energy storage system (BESS) consists of large amount of battery cells in series and parallel. The design of the bi-directional power conversion system (PCS) must fully consider the optimization of the characteristics of li-ion batteries before and after grouped, it is very important for the safe, efficient and high life-cycle use of BESS. On the basis of analyzing the characteristics of the grid-connected BESS, several grid access solutions suited for power system are proposed and discussed in this paper. The results show that, the multi-DC/AC parallel converter is an optimal solution for large scale BESS, as it provides the interface for independent multi-serial batteries. Key words: Battery Energy Storage System(BESS),Power Conversion System(PCS), Power System, Topology 1 引言 储能技术已被视为电网运行过程中“采-发-输-配-用-储”六大环节中的重要组成部分。由于电池储能系统具备灵活的有功、无功功率控制能力,因此可应用于不同的发电、输电、配电场合,起到削峰填谷、提高新能源并网能力、孤岛运行、电网调频及备用电源等作用[1-3]。 锂电池具有能量效率高、能源密度大、存储性能优秀等特点,但单体容量较小。在兆瓦级大规模电池储能应用中,为了达到一定的电压、功率和能量等级,锂电池需要大量串并联成组使用。电池串联使用可以提高电池输出端电压,电池并联使用可以倍增电池组的容量。近年来,大容量锂电池储能系统在电力系统领域获得了较好应用[4-6]。 能量转换系统是实现锂电池储能系统与电网双向功率交换的核心部件。由于在电池大规模成组过程中,由于电池单体的不一致性,会带来系统可靠性、效率及寿命等方面的一系列问题。同时,电池组端电压在不同充放电状态下的变化范围较宽,且能量双向流动。因此,传统的变流器产品已经满足不了电池储能系统的要求[7]。 本文针对大容量锂电池储能系统的技术特点,深入分析比较适合于大容量电池储能的电网接入技术,以期为大容量电池储能系统的电网接入方案设计提供参考。 2 锂电池储能系统的构成

BMS储能系统用户手册(V1.0)-磷酸铁锂要点

储能电站电池管理系统 (BMS) 用户手册V1.0 (磷酸铁锂电池) 深圳市光辉电器实业有限公司

目录 1、概述?错误!未定义书签。 2、系统特点.............................................................................................................. 错误!未定义书签。 3、储能电站系统组成?错误!未定义书签。 4、电池管理系统主要组成 (4) 4.1 储能电池管理模块ESBMM ......................................................................... 错误!未定义书签。 4.1.1 ESBMM-12版本?错误!未定义书签。 4.1.2 ESBMM-24版本........................................................................... 错误!未定义书签。 4.2 电池组控制模块ESGU................................................................................ 错误!未定义书签。 4.3 储能系统管理单元ESMU ............................................................................... 错误!未定义书签。 5、安装及操作注意事项?错误!未定义书签。 19 附录A:产品操作使用界面?

9_已阅_全钒液流电池储能进展与应用

中国储能网讯:作为解决可再生能源大规模接入、传统电力系统削峰填谷、分布式区域能源系统负荷平衡的关键支撑技术,大容量储能技术已成为世界未来能源技术创新的制高点。由于产业链长、产业规模大,储能产业已成为战略性新兴产业,得到了工业发达国家产业界的重点关注。 2016年4月1日国家能源局颁布的《2016年能源工作指导意见》中明确提出“加快全钒液流电池”等领域技术定型。这些无疑为全钒液流电池储能技术的研究开发和商业化应用的提供了重大机遇。 技术特点 对于大规模储能技术而言,由于系统功率和容量大,有其自身的技术要求,主要包括以下三个方面:安全性好;生命周期的性价比高(生命周期的经济性好);生命周期的环境负荷小(生命周期的环境友好)。全钒液流电池储能技术能很好地满足上述要求。

对规模储能技术而言,由于系统功率和容量大,发生安全事故造成的危害和损失大,因此规模储能技术的首要要求是安全可靠性。 全钒液流电池是通过钒离子的价态变化,实现化学能到电能的往复转换,从而实现电能存储与释放的一种储能技术。与其他储能技术相比,全钒液流电池储能技术具有以下优点: 安全性好:全钒液流电池的储能活性物质为钒离子的水溶液,常温常压运行,不会发生燃烧。经过长时间运行,即使离子传导膜发生破裂,正负极活性物质发生互混,也不会发生爆炸和燃烧。系统运行过程中,电解液在电堆和电解液储罐之间循环流动,电堆产生的热量可以有效排出,热管理简单。全钒液流电池体系的技术特性使得单体电池间一致性好,消除了像锂离子电池那样因为一致性差而导致的系统安全性问题。 循环寿命长:全钒液流储能电池的充放电循环寿命可达13000次以上,日历寿命超过15年。由于全钒液流储能电池的活性物质——钒离子存在于液态的电解液中,在电池反应过程中,钒离子仅发生价态变化,而无相变,且电极材料本身不参与反应,因此电池寿命较长。日本住友电工制造的25kW的全钒液流电池模块在实验室中运行,充放电循环次数超过16000次。与风电场配合使用的4MW/6MWh电池系统,在3年的应用中实现充放电循环27万次。在1MW/5MWh全钒液流电池储能系统中,电解液的成本约占整个成本的45%,由于电解液可循环使用,所以生命周期的性价比高。

储能电站总体技术方案设计

储能电站总体技术方案 2011-12-20

目录 1.概述 (3) 2.设计标准 (4) 3.储能电站(配合光伏并网发电)方案 (6) 3.1系统架构 (6) 3.2光伏发电子系统 (7) 3.3储能子系统 (7) 3.3.1储能电池组 (8) 3.3.2 电池管理系统(BMS) (9) 3.4并网控制子系统 (12) 3.5储能电站联合控制调度子系统 (14) 4.储能电站(系统)整体发展前景 (16)

1.概述 大容量电池储能系统在电力系统中的应用已有20多年的历史,早期主要用于孤立电网的调频、热备用、调压和备份等。电池储能系统在新能源并网中的应用,国外也已开展了一定的研究。上世纪90年代末德国在Herne 1MW的光伏电站和Bocholt 2MW的风电场分别配置了容量为1.2MWh的电池储能系统,提供削峰、不中断供电和改善电能质量功能。从2003年开始,日本在Hokkaido 30.6MW 风电场安装了6MW /6MWh 的全钒液流电池(VRB)储能系统,用于平抑输出功率波动。2009年英国EDF电网将600kW/200kWh锂离子电池储能系统配置在东部一个11KV配电网STATCOM中,用于潮流和电压控制,有功和无功控制。 总体来说,储能电站(系统)在电网中的应用目的主要考虑“负荷调节、配合新能源接入、弥补线损、功率补偿、提高电能质量、孤网运行、削峰填谷”等几大功能应用。比如:削峰填谷,改善电网运行曲线,通俗一点解释,储能电站就像一个储电银行,可以把用电低谷期富余的电储存起来,在用电高峰的时候再拿出来用,这样就减少了电能的浪费;此外储能电站还能减少线损,增加线路和设备使用寿命;优化系统电源布局,改善电能质量。而储能电站的绿色优势则主要体现在:科学安全,建设周期短;绿色环保,促进环境友好;集约用地,减少资源消耗等方面。

储能电站技术方案设计

储能电站总体技术方案

2011-12-20 目录 1.概述 (2) 2.设计标准 (3) 3.储能电站(配合光伏并网发电)方案 (6) 3.1系统架构 (6) 3.2光伏发电子系统 (7) 3.3储能子系统 (7) 3.3.1储能电池组 (7) 3.3.2 电池管理系统(BMS) (8) 3.4并网控制子系统 (11) 3.5储能电站联合控制调度子系统 (13) 4.储能电站(系统)整体发展前景 (15)

1.概述 大容量电池储能系统在电力系统中的应用已有20多年的历史,早期主要用于孤立电网的调频、热备用、调压和备份等。电池储能系统在新能源并网中的应用,国外也已开展了一定的研究。上世纪90年代末德国在Herne 1MW的光伏电站和Bocholt 2MW的风电场分别配置了容量为1.2MWh的电池储能系统,提供削峰、不中断供电和改善电能质量功能。从2003年开始,日本在Hokkaido 30.6MW风电场安装了6MW /6MWh 的全钒液流电池(VRB)储能系统,用于平抑输出功率波动。2009年英国EDF电网将600kW/200kWh锂离子电池储能系统配置在东部一个11KV配电网STATCOM中,用于潮流和电压控制,有功和无功控制。 总体来说,储能电站(系统)在电网中的应用目的主要考虑“负荷调节、配合新能源接入、弥补线损、功率补偿、提高电能质量、孤网运行、削峰填谷”等几大功能应用。比如:削峰填谷,改善电网运行曲线,通俗一点解释,储能电站就像一个储电银行,可以把用电低谷期富余的电储存起来,在用电高峰的时候再拿出来用,这样就减少了电能的浪费;此外储能电站还能减少线损,增加线路和设备使用寿命;优化系统电源布局,改善电能质量。而储能电站的绿色优势则主要体现在:科学安全,建设周期短;绿色环保,促进环境友好;集约用地,减少资源消耗等方面。

铅酸电池储能系统设计方案设计[有集装箱]

技术方案

2014年1月 目录 目录 (2) 1 需求分析 (3) 2 集装箱方案设计 (3) 2.1 集装箱基本介绍 (3) 2.2 集装箱的接口特性 (5) 2.3 系统详细设计方案 (7) 2.4 集装箱温控方案 (14) 3 电池组串成组方案 (16) 3.1 电池组串部及组间连接方案 (18) 3.2 系统拓扑图 (19) 4 蓄电池管理系统(BMS) (20)

4.1 BMS系统整体构架 (20) 4.2 BMS系统主要设备介绍 (22) 4.3 BMS系统保护方式 (24) 4.4 BMS系统通信方案 (25) 1需求分析 集装箱式铅酸蓄电池成套设备供货围包括铅酸蓄电池、附属设备、标准40尺集装箱、备品备件、专用工具和安装附件等。 每个标准40尺集装箱含管式胶体(DOD80 1200次以上)或富液式(DOD80 1400次以上)免维护铅酸蓄电池、电池架及附件、电池管理系统(含外电路)、电池直流汇流设备、设备间的连接电缆及电缆附件(包括铜鼻、螺栓、

螺母、弹垫、平垫等)、动力及控制信号接口等。 根据标书要求,综合铅酸电池特性,对于储能系统进行如下设计: 每3个标准40尺集装箱承载2MWh,每个集装箱由336只2V1000Ah 管式胶体铅酸电池串联而成,电压672V,电池串容量672kWh。每3个集装箱并联到一台500kWh 储能双向变流器。三个电池堆的总容量可达2MWh,故本方案中三个集装箱为一单元,每个单元配置一套BMS电池管理系统,可监控每颗单体电池工作情况。集装箱中另含烟感探头、消防灭火器、加热器、摄像头、温湿度监测等设备,以保证铅酸电池安全稳定的工作环境,实现远程监控。 2集装箱方案设计 2.1集装箱基本介绍 根据项目要求,同时考虑电池堆的成组方式、集装箱辅助系统的设计、安装以及日常巡视和检修等各方面,选用40英尺标准集装箱。外部尺寸 :12192*2438*2591mm 。 本项目共需要42个40英尺标准集装箱。集装箱设计静态承重60t,最大起吊承重45t。 集装箱的主要任务是将铅酸电池、通讯监控等设备有机的集成到1个标准的40尺集装箱单元中,该标准单元拥有自己独立的供电系统、温度控制系统、隔热系统、阻燃系统、火灾报警系统、电气联锁系统、机械连锁系统、安全逃生系统、应急系统、消防系统等自动控制和安全保障系统。 铅酸电池安装在电池支架上,支架采用螺栓固定的方式安装在箱底。BMS柜及空调采用落地安装。动环监控柜采用壁挂式安装,部整合了智能控制单元。动力配电箱采用壁挂式安装方式。 集装箱动力供电线及环境设备监控电线采用走线的方式,表面无走线槽及走线管;蓄电池动力输出和BMS监控及接口线采用线槽式走线,方便维护。

锂电池储能领域用途

锂电池储能领域应用 锂电池储能系统可以作为多种电力能源与稳定的电力需求之间的缓冲器,可以增加像风能、太阳能等不稳定电源的发电能力。风力发电系统由于风速的变化而导致输出功率振荡,而储能系统可以通过快速的响应速度、几乎相等的充放电周期等特性为风机输出提供稳定性以及无功补偿。与此同时,储能系统可以调节电压并在离网发电系统中控制系统频率。 从经济的意义上来讲,不确定功率输出带来的直接后果就是顾客支付意愿的下降或者由此导致的资本信用降低。为风力发电机配臵储能系统将波动性并向电网提供稳定的电力输出,这将提升风力发电的电价水平。 铁锂电池系统组件 控制系统 铁锂电池能量存储系统由可编程逻辑控制器(PLC)和人机界面(HMI)进行控制。PLC系统的关键功能之一是控制储能系统的充电时

间和速率。例如:PLC可以接收用电价格的真实时间数据,并且根据允许的最大用电需求、充电状态以及用电高峰/非高峰时的价格对比,决定怎样快速地给电池系统重新充电。这个决策是动态的而且能够根据具体情况优化。通过标准化的通信输入、控制信号和电力供应,它与系统其余部分集成在一起。它可以通过拨号或因特网进行访问。它有多重防卫层以限制对它的不同功能的访问,并且为远程监控提供定制的报告和报警功能。 电力转换系统(PCS) 电力转换系统的功能是对电池进行充电和放电,并且为本地电网提供改善的供电质量、电压支持和频率控制。它有一个能进行复杂而快速地动作、多象限、动态的控制器(DSP),带有专用控制算法,能够在设备的整个范围内转换输出,即循环地从全功率吸收到全功率输出。对无功功率以及有功与无功功率的任意需求组合,它都能正常工作。 铁锂电池电堆 电堆是由若干单电池组成。铁锂电池能源存储系统能够经济地存储并按照需求提供大规模电力,主要模式是固定方式。它是一种长寿命、少维护、高效率的技术,支持电力与储能容量的无级扩展。储能系统对于可再生能源供应商、电网企业和终端用户尤为有效。铁锂电池储能系统能够应用于电力供应价值链的各个环节,可将诸如风能、太阳能等间歇性可再生能源电力转化为稳定的电力输出;偏远地区电力供应的最优化解决方式;

工商业并离网储能系统典型设计方案精编版

工商业并离网储能系统典型设计方案 太阳能并离网储能系统广泛应用于工厂、商业等峰谷价差较大、或者经常停电的场所。系统由太阳电池组件组成的光伏方阵、汇流箱,太阳能并离网一体机、蓄电池组、风力发电机、负载、电网等构成。光伏方阵在有光照的情况下将太阳能转换为电能,通过太阳能控制逆变一体机给负载供电,同时给蓄电池组充电,多余的电还可以送入电网;在无光照时,由电网给负载供电;当电网停电时,由蓄电池通过逆变一体机给负载供电。 并离网光伏储能发电系统示意图 一、系统主要组成 (1) 太阳电池组件 是太阳能供电系统中的主要部分,也是太阳能供电系统中价值最高的部件,其作用是将太阳的辐射能量转换为直流电能;

(2) 太阳能并离网一体机 主要功能分为2部分,MPPT太阳能控制器和双向DC/AC变流器,其作用是对太阳能电池组件所发的电能进行调节和控制,对蓄电池进行充电,并对蓄电池起到过充电保护、过放电保护的作用。同时把组件和蓄电池的直流电逆变成交流电,给交流负载使用,在适当的时候,电网也可以向蓄电池充电。 (3) 蓄电池组:其主要任务是贮能,以便在电网停电时保证负载用电。 二、主要组成部件介绍 2.1 太阳电池组件介绍 单晶硅 Mono-Crystalline多晶硅 Poly Crystalline薄膜 Thin film 太阳电池组件是将太阳光能直接转变为直流电能的阳光发电装置。根据用户对功率和电压的不同要求,制成太阳电池组件单个使用,也可以数个太阳电池组件经过串联(以满足电压要求)和并联(以满足电流要求),形成供电阵列提供更大的电功率。太阳电池的发电量随着日照强度的增加而按比例增加。随着组件表面的温度升高而略有下降。随着温度的变化,电池组件的电流、电压、功率也将发生变化,组件串联设计时必须考虑电压负温度系数。

相关文档
最新文档