二倍角的正弦余弦正切公式

二倍角的正弦余弦正切公式
二倍角的正弦余弦正切公式

二倍角的正弦余弦正切公式

教学目标

1.会推导二倍角的正弦、余弦、正切公式.(重点) 2.掌握二倍角公式及其变形公式的应用.(难点)

3.二倍角公式与两角和与差的正弦、余弦、正切公式的区别与联系.(易混点)

[基础·初探]

教材整理 二倍角的正弦、余弦、正切公式 阅读教材P 132~P 133例5以上内容,完成下列问题. 1.二倍角的正弦、余弦、正切公式

2.余弦的二倍角公式的变形

3.正弦的二倍角公式的变形

(1)sin αcos α=1

2sin 2α,cos α=sin 2α2sin α.

(2)1±sin 2α=(sin α±cos α)2.

1.判断(正确的打“√”,错误的打“×”)

(1)二倍角的正弦、余弦、正切公式的适用范围是任意角.( ) (2)存在角α,使得sin 2α=2sin α成立.( ) (3)对于任意的角α,cos 2α=2cos α都不成立.( ) 解:(1)×.二倍角的正弦、余弦公式对任意角都是适用的,而二倍角的正切公式,要求α≠π2+k π(k ∈Z )且α≠±π

4+k π(k ∈Z ),故此说法错误.

(2)√.当α=k π(k ∈Z )时,sin 2α=2sin α. (3)×.当cos α=1-3

2时,cos 2α=2cos α. 【答案】 (1)× (2)√ (3)×

2.已知cos α=1

3,则cos 2α等于________.

解:由cos α=13,得cos 2α=2cos 2

α-1=2×? ??

??132-1=-79.

【答案】 -7

9

化简求值.

(1)cos 4

α2-sin 4 α2;

(2)sin π24·cos π24·cos π

12; (3)1-2sin 2 750°;

(4)tan 150°+1-3tan 2 150°

2tan 150°

.

灵活运用倍角公式转化为特殊角或产生相消项,然后求得. 解:(1)cos 4

α2-sin 4

α2

=?

?????cos 2 α2-sin 2 α2? ?????cos 2 α2+sin 2 α2 =cos α.

(2)原式=12? ????

?2sin π24cos π24·cos π12

=12sin π12·cos π12=14?

?????2sin π12·cos π12 =1

4sin π6=18. ∴原式=1

8.

(3)原式=cos(2×750°)=cos 1 500° =cos(4×360°+60°)=cos 60°=1

2. ∴原式=1

2.

(4)原式=2tan 2150°+1-3tan 2 150°

2tan 150°

=1-tan 2 150°2tan 150°=1tan (2×150°)

=1tan 300°=1tan (360°-60°) =-1tan 60°

=-3

3.

∴原式=-3

3.

二倍角公式的灵活运用:

(1)公式的逆用:逆用公式,这种在原有基础上的变通是创新意识的体现.主要形式有:

2sin αcos α=sin 2α,sin αcos α=1

2sin 2α,

cos α=sin 2α2sin α,cos 2 α-sin 2

α=cos 2α,2tan α1-tan 2

α=tan 2α. (2)公式的变形:公式间有着密切的联系,这就要求思考时要融会贯通,有目的地活用公式.主要形式有:

1±sin 2α=sin 2 α+cos 2 α±2sin αcos α=(sin α±cos α)2,1+cos 2α=2cos 2

α,cos 2

α=1+cos 2α2,sin 2

α=1-cos 2α2

. [再练一题]

1.求下列各式的值: (1)sin π12cos π

12; (2)2tan 150°1-tan 2150°; (3)1sin 10°-3cos 10°; (4)cos 20°cos 40°cos 80°. 解:(1)原式=2sin π12cos π122

=sin π6

2=1

4.

(2)原式=tan(2×150°)=tan 300°=tan(360°-60°) =-tan 60°=- 3.

(3)原式=cos 10°-3sin 10°

sin 10°cos 10°

2? ??

?

?12cos 10°-3

2sin 10°sin 10°cos 10°

=4(sin 30°cos 10°-cos 30°sin 10°)

2sin 10°cos 10°

=4sin 20°sin 20°

=4. (4)原式=2sin 20°·cos 20°·cos 40°·cos 80°

2sin 20°

=2sin 40°·cos 40°·cos 80°4sin 20°

=2sin 80°·cos 80°8sin 20°=sin 160°8sin 20°=18.

利用二倍角公式解决求值问题

(1)已知sin α=3cos α,那么tan 2α的值为( )

A .2

B .-2

C .34

D .-34

(2)已知sin ? ????π6+α=13,则cos ? ??

??

2π3-2α的值等于( )

A .7

9 B .13

C .-79

D .-13

(3)(2016·天津高一检测)已知cos α=-34,sin β=2

3,α是第三

象限角,β∈? ??

??π

2

,π

. ①求sin 2α的值;②求cos(2α+β)的值. (1)可先求tan α,再求tan 2α;

(2)可利用23π-2α=2? ?????π3-α及π3-α=π2-? ??

???π6+α求值; (3)可先求sin 2α,cos 2α,cos β,再利用两角和的余弦公式求cos(2α+β).

解:(1)因为sin α=3cos α, 所以tan α=3,

所以tan 2α=2tan α

1-tan 2 α=2×3

1-3

2

=-3

4. (2)因为cos ?

???

??π3-α =sin ??????

??π2-? ?????π3-α =sin ?

?????π6+α=1

3, 所以cos ?

???

??

2π3-2α =2cos 2? ?

?

???

π

3-α-1

=2×? ??

??132-1=-79. 【答案】 (1)D (2)C

(3)①因为α是第三象限角,cos α=-3

4, 所以sin α=-

1-cos 2

α=-7

4,

所以sin 2α=2sin αcos α=2×? ????-74×? ????-34=37

8.

②因为β∈? ??

??

?π2,π,sin β=23,

所以cos β=-

1-sin 2 β=-5

3,

cos 2α=2cos 2 α-1=2×916-1=1

8, 所以cos(2α+β)=cos 2αcos β-sin 2αsin β =18×? ????-53-378×2

3=-5+6724.

直接应用二倍角公式求值的三种类型

(1)sin α(或cos α)――――――――――→同角三角函数的关系cos α(或sin α)――――――→二倍角公式sin 2α(或cos 2α).

(2)sin α(或cos α)――――――→二倍角公式cos 2α=1-2sin 2 α(或2cos 2 α-1).

(3)sin α(或cos α)――――――――――――→同角三角函数的关系

?????cos α(或sin α),

tan α――――――――→二倍角公式

tan 2α.

[再练一题]

2.(1)已知α∈? ??

??π2,π,sin α=5

5,则sin 2α=______,cos 2

α=________,tan 2α=________.

(2)已知sin ? ????π4+αsin ? ????π

4

-α

=16,且α∈? ??

??

π

2

,π,求tan 4α的值.

解:(1)因为α∈? ??

??

?π2,π,sin α=55,所以cos α=-255,所以

sin 2α=2sin αcos α=2×55×? ????-255=-45,cos 2α=1-2sin 2

α=1-2×? ????552=35,tan 2α=sin 2αcos 2α

=-4

3. 【答案】 -45 35 -43

(2)因为sin ? ?????π4-α=sin ????????π2-?

?????π4+α =cos ?

??

?

??

π4+α, 则已知条件可化为sin ? ?????π4+αcos ?

???

??π4+α=1

6, 即12sin ???????

?2? ?????π4+α=16, 所以sin ?

??

?

??π2+2α=1

3, 所以cos 2α=13.因为α∈?

??

???π2,π,所以2α∈(π,2π),

从而sin 2α=-

1-cos 2

2α=-22

3,

所以tan 2α=sin 2α

cos 2α

=-22,

故tan 4α=2tan 2α

1-tan 22α=-421-(-22)2=42

7. 利用二倍角公式证明

求证:(1)cos 2(A +B )-sin 2(A -B )=cos 2A cos 2B ;

(2)cos 2θ(1-tan 2θ)=cos 2θ.

(1)可考虑从左向右证的思路:先把左边降幂扩角,再用余弦的和、差角公式转化为右边形式.

(2)证法一:从左向右:切化弦降幂扩角化为右边形式; 证法二:从右向左:利用余弦二倍角公式升幂后向左边形式转化. 解:

(1)左边=1+cos (2A +2B )2-1-cos (2A -2B )2 =cos (2A +2B )+cos (2A -2B )2

=1

2(cos 2A cos 2B -sin 2A sin 2B +cos 2A cos 2B +sin 2A sin 2B ) =cos 2A cos 2B =右边, ∴等式成立.

(2)法一:左边=cos 2

θ? ??

??1-sin 2θcos 2θ

=cos 2θ-sin 2θ=cos 2θ=右边. 法二:右边=cos 2θ=cos 2θ-sin 2θ

=cos 2

θ? ??

??1-sin 2θcos 2θ=cos 2θ(1-tan 2θ)=左边.

证明问题的原则及一般步骤:

(1)观察式子两端的结构形式,一般是从复杂到简单,如果两端都比较复杂,就将两端都化简,即采用“两头凑”的思想.

(2)证明的一般步骤是:先观察,找出角、函数名称、式子结构等方面的差异,然后本着“复角化单角”、“异名化同名”、“变量集中”等原则,设法消除差异,达到证明的目的.

[再练一题]

3.证明:1+sin 2α2cos 2 α+sin 2α=12tan α+1

2. 证明:左边=sin 2 α+cos 2 α+2sin αcos α2cos 2

α+2sin αcos α

(sin α+cos α)2

2cos α(sin α+cos α)

sin α+cos α2cos α

=12tan α+1

2=右边. 所以1+sin 2α

2cos 2

α+sin 2α

=12tan α+1

2成立. 倍角公式的灵活运用

探究1 在化简1+sin α-cos α1+sin α+cos α+1+cos α+sin α

1-cos α+sin α时,如何

灵活使用倍角公式?

【提示】 在化简时,如果只是从α的关系去整理,化简可能感觉无从下手,但如果将α看成α

2的倍角,可能会有另一种思路,

原式=

2sin α2?

??

??

?cos α2+sin α22cos α2?

??

??

?cos α2+sin α2+

2cos α2?

??

???cos α2+sin α22sin α2? ????

?sin α2+cos α2=sin α2cos α2+cos α2sin α2

=1sin α2cos α2

=2

sin α.

探究2 如何求函数f (x )=2cos 2x -1-23·sin x cos x (x ∈R )的最小正周期?

【提示】 求函数f (x )的最小正周期,可由f (x )=(2cos 2x -1)-3

×(2sin x cos x )=cos 2x -3sin 2x =2sin ?

??

?

??

π6-2x ,知其最小正周期为π

. 求函数f (x )=53cos 2x +3sin 2x -4sin x cos x ,x ∈

????

??

π4,7π24的最小值,并求其单调减区间.

化简f (x )的解析式→f (x )=A sin (ωx +φ)+B → ωx +φ的范围→求最小值,单调减区间 解:f (x )=53·1+cos 2x 2+3·1-cos 2x

2-2sin 2x =33+23cos 2x -2sin 2x

=33+4? ????32cos 2x -1

2sin 2x =33+4?

?????sin π3cos 2x -cos π3sin 2x =33+4sin ? ?????π3-2x =33-4sin ?

?????2x -π3, ∵π4≤x ≤7π24,∴π6≤2x -π3≤π4,

∴sin ?

?????2x -π3∈??????12,22,

所以当2x -π3=π4,即x =7π

24时, f (x )取最小值为33-2 2.

因为y =sin ? ?????2x -π3在???????

?π4,7π24上单调递增,

所以f (x )在?????

??

?π4,7π24上单调递减.

本题考查二倍角公式,辅助角公式及三角函数的性质.解决这类问题经常是先利用公式将函数表达式化成形如y =A sin(ωx +φ)的形

式,再利用函数图象解决问题.

[再练一题]

4.求函数y =sin 4x +23sin x cos x -cos 4 x 的最小正周期和最小值,并写出该函数在[0,π]上的单调递减区间.

解:y =sin 4x +23sin x cos x -cos 4x

=(sin 2x +cos 2x )(sin 2x -cos 2x )+23sin x cos x =-cos 2x +3sin 2x

=2? ????32sin 2x -1

2cos 2x

=2sin ?

?????2x -π6, 所以T =2π

2=π,y min =-2.

由2k π+π2≤2x -π6≤2k π+3π

2,k ∈Z , 得k π+π3≤x ≤k π+5π

6,k ∈Z ,

又x ∈[0,π],所以令k =0,得函数的单调递减区间为?

??????

?

π3,5π6. [构建·体系]

1.sin 22°30′·cos 22°30′的值为( ) A .22

B .24

C .-2

2

D .12

解:原式=12sin 45°=2

4. 【答案】 B

2.已知sin x =1

4,则cos 2x 的值为( ) A .78 B .18 C .12

D .22

解:因为sin x =1

4,

所以cos 2x =1-2sin 2

x =1-2×? ??

??142=7

8.

【答案】 A

3.?

????cos π12-sin π12? ????cos π12+sin π12的值为( ) A .-32 B .-12 C .12

D .32

解:原式=cos 2

π12-sin 2

π12=cos π6=32. 【答案】 D

4.已知tan α=-1

3,则sin 2α-cos 2α1+cos 2α

=________.

解:

sin 2α-cos 2α1+cos 2α

2sin αcos α-cos 2α1+2cos 2

α-1

2sin αcos α-cos 2α

2cos 2

α

tan α-12=-5

6. 【答案】 -5

6 5.求下列各式的值: (1)cos π5cos 2π5; (2)12-cos 2π8.

解:(1)原式=2sin π5cos π5cos 2π

5

2sin π5

=sin 2π5cos 2π52sin π5=sin 4π54sin π5=sin π5

4sin π5=1

4.

(2)原式=1-2cos 2

π

8

2

=-2cos 2

π

8-12

=-12cos π4=-24.

学业分层测评

[学业达标]

一、选择题

1.若sin α=3cos α,则sin 2α

cos 2α=( )

A .2

B .3

C .4

D .6

解:sin 2αcos 2α=2sin αcos αcos 2

α=2sin αcos α=6cos αcos α=6. 【答案】 D

2.(2016·铁岭高一检测)已知sin α=23,则cos(π-2α)=( ) A .-53 B .-19 C .19

D .53

解:因为sin α=2

3,

所以cos(π-2α)=-cos 2α=-(1-2sin 2

α)=-1+2×? ??

??232

=-

19.

【答案】 B

3.若sin α+cos αsin α-cos α=12,则tan 2α=( )

A .-34

B .34

C .-43

D .43

解:因为sin α+cos αsin α-cos α=1

2,

整理得tan α=-3,

所以tan 2α=2tan α

1-tan 2 α=2×(-3)

1-(-3)2=3

4. 【答案】 B

4.(2016·沈阳高一检测)若sin x ·tan x <0,则1+cos 2x 等于( ) A .2cos x B .-2cos x C .2sin x

D .-2sin x

解:因为sin x ·tan x <0,

所以x 为第二、三象限角,所以cos x <0, 所以

1+cos 2x =2cos 2 x =2|cos x |

=-2cos x . 【答案】 B

5.已知cos 2x

2cos ? ???

?x +π4=15

,则sin 2x =( ) A .-24

25 B .-45 C .2425

D .255

解:∵cos 2x

2cos ?

??

?

??x +π4

=1

5,

∴cos 2x -sin 2x cos x -sin x =15, ∴cos x +sin x =1

5, ∴1+sin 2x =1

25, ∴sin 2x =-24

25. 【答案】 A 二、填空题

6.(2016·广州高一检测)已知sin ? ??

??π4-x =3

5,则sin 2x 的值等于

________.

解:法一:∵sin ?

???

??π4-x =3

5, ∴cos ? ?????π2-2x =1-2sin 2? ?????

π4-x =1-2×? ????352=725,

∴sin 2x =cos ?

??

?

??π2-2x =725. 法二:由sin ? ??

??

?π4-x =35,得22(sin x -cos x )=-35,∴sin x -cos x

=-32

5,两边平方得

1-sin 2x =1825,∴sin 2x =7

25.

【答案】 7

25

7.已知sin 2α=1

4,α∈? ????π4,π2,则cos α-sin α=________.

解:因为α∈? ??

??

?

π4,π2,

所以sin α>cos α即cos α-sin α<0,又sin 2α=1

4,则有

cos α-sin α=-

(cos α-sin α)2

=-1-sin 2α=-1-14=-32.

【答案】 -3

2 三、解答题

8.化简:tan 70°cos 10°(3tan 20°-1). 解:原式

=sin 70°cos 70°·cos 10°·?

?

?

??

3sin 20°

cos 20°-1 =sin 70°

cos 70°·cos 10°·3sin 20°-cos 20°

cos 20° =sin 70°

cos 70°·cos 10°·2sin (-10°)cos 20° =-sin 70°cos 70°·sin 20°cos 20°

=-1.

9.求证:(1)1sin 10°-3

cos 10°=4;

(2)3tan 12°-3

sin 12°(4cos 12°-2)

=-4 3. 证明:(1)左边=1sin 10°-3

cos 10°=cos 10°-3sin 10°sin 10°cos 10°

2? ??

?

?12cos 10°-3

2sin 10°1

2sin 20°

=4sin (30°-10°)sin 20°=4=右边.

所以原等式成立.

(2)左边=3tan 12°-3

sin 12°(4cos 2

12°-2)

3sin 12°-3cos 12°cos 12°

2sin 12°(2cos 2

12°-1)

23? ??

?

?12sin 12°-3

2cos 12°2sin 12°cos 12°cos 24°

=23sin (12°-60°)sin 24°cos 24°

=-23sin 48°

12sin 48°=-43=右边.

所以原等式成立.

[能力提升]

1.(2016·牡丹江一中期末)已知α,β均为锐角,且3sin α=2sin

两角和与差的正弦余弦正切公式练习题

两角和差的正弦余弦正切公式练习题 知 识 梳 理 1.两角和与差的正弦、余弦和正切公式 sin(α±β)=sin_αcos_β±cos_αsin_β. cos(αβ)=cos_αcos_β±sin_αsin_β. tan(α±β)=tan α±tan β 1tan αtan β. 2.二倍角的正弦、余弦、正切公式 sin 2α=2sin_αcos_α. cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. tan 2α=2tan α 1-tan 2α . 3.有关公式的逆用、变形等 (1)tan α±tan β=tan(α±β)(1tan_αtan_β). (2)cos 2α= 1+cos 2α2,sin 2α=1-cos 2α2 . (3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α= 2sin ? ?? ?? α±π4. 4.函数f (α)=a sin α+b cos α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ),其中tan φ=b a 一、选择题 1.给出如下四个命题 ①对于任意的实数α和β,等式βαβαβαsin sin cos cos )cos(-=+恒成立; ②存在实数α,β,使等式βαβαβαsin sin cos cos )cos(+=+能成立; ③公式=+)tan(βαβ αβαtan tan 1tan ?-+an 成立的条件是)(2 Z k k ∈+≠ππα且)(2 Z k k ∈+≠ππβ; ④不存在无穷多个α和β,使βαβαβαsin cos cos sin )sin(-=-; 其中假命题是 ( ) A .①② B .②③ C .③④ D .②③④ 2.函数)cos (sin sin 2x x x y +=的最大值是 ( ) A .21+ B .12- C .2 D . 2

(完整版)两角和与差的正弦、余弦、正切公式及变形

两角和与差的正弦、余弦、正切公式及变形 1.两角和与差的正弦、余弦、正切公式 (1)公式 ①cos(α-β)=cos_αcos_β+sin_αsin_β(C (α-β)) ②cos(α+β)=cos_αcos_β-sin_αsin_β(C (α+β)) ③sin(α-β)=sin_αcos_β-cos_αsin_β(S (α-β)) ④sin(α+β)=sin_αcos_β+cos_αsin_β(S (α+β)) ⑤tan(α-β)=tan α-tan β 1+tan αtan β(T (α-β)) ⑥tan(α+β)=tan α+tan β 1-tan αtan β(T (α+β)) (2)公式变形 ①tan α+tan β=tan(α+β)(1-tan αtan β). ②tan α-tan β=tan(α-β)(1+tan αtan β). 2.二倍角公式 (1)公式 ①sin 2α=2sin_αcos_α, ②cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α, ③tan 2α= 2tan α 1-tan 2α . (2)公式变形 ①cos 2 α=1+cos 2α2,sin 2 α=1-cos 2α2 ; ②1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin )4(π α±. 3.判断下列结论的正误(正确的打“√”,错误的打“×”) (1)两角和与差的正弦、余弦公式中的角α,β是任意的.(√) (2)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.(√) (3)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定.(×) (4)公式tan(α+β)=tan α+tan β 1-tan αtan β 可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意

二倍角正弦、余弦、正切公式教案

二倍角的正弦、余弦、正切 王业奇

α 1tan tan 二、提出问题:若β = α 让学生板演得下述二倍角公式:

一、例题: 例一、(公式巩固性练习)求值: 1.sin22 30’cos22 30’=4 2 45sin 21= 2.=-π 18 cos 22 224cos = π 3.=π -π8 cos 8sin 22 224cos - =π- 4.=ππππ12 cos 24cos 48 cos 48 sin 8 2 16sin 12cos 12sin 212cos 24cos 24sin 4=π=ππ=πππ 例二、 1.5555(sin cos )(sin cos )12121212ππππ +- 2 25553 sin cos cos 121262 πππ=-=-=

2.=α-α2sin 2cos 44 α=α -αα+αcos )2 sin 2)(cos 2sin 2(cos 2222 3. =α+-α-tan 11tan 11α=α -α 2tan tan 1tan 22 4.=θ-θ+2cos cos 21221cos 2cos 2122=+θ-θ+ 例三、若tan = 3,求sin2 cos2 的值。 解:sin2 cos2 = 57 tan 11tan tan 2cos sin cos sin cos sin 22 22222=θ +-θ+θ=θ+θθ-θ+θ 例四、 条件甲:a =θ+sin 1,条件乙:a =θ +θ2 cos 2sin , 那么甲是乙的什么条件? 解:= θ+sin 1a =θ +θ2)2 cos 2(sin 即a =θ +θ|2 cos 2sin | 当 在第三象限时,甲 乙;当a > 0时,乙 甲 ∴甲既不是乙的充分条件,也不是乙的必要条件。 例五、(P43 例一) 已知),2 (,135sin ππ ∈α= α,求sin2,cos2,tan2的值。 解:∵),2 (,135sin ππ ∈α=α ∴1312 sin 1cos 2-=α--=α ∴sin2 = 2sin cos = 169 120 -

二倍角的正弦余弦和正切公式教学设计

二倍角的正弦、余弦和正切公式 一、教学目标 以两角和正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式,理解推导过程,掌握其应用. 二、教学重、难点 教学重点:以两角和的正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式; 教学难点:二倍角的理解及其灵活运用. 三、学法与教学用具 学法:研讨式教学 四、教学设想: (一)复习式导入:大家首先回顾一下两角和的正弦、余弦和正切公式, ()sin sin cos cos sin αβαβαβ+=+; ()cos cos cos sin sin αβαβαβ+=-; ()tan tan tan 1tan tan αβαβαβ ++=-. 我们由此能否得到sin 2,cos 2,tan 2ααα的公式呢?(学生自己动手,把上述公式中β看成α即可), (二)公式推导: ()sin 2sin sin cos cos sin 2sin cos ααααααααα=+=+=; ()22cos2cos cos cos sin sin cos sin ααααααααα=+=-=-; 思考:把上述关于cos2α的式子能否变成只含有sin α或cos α形式的式子呢?22222cos 2cos sin 1sin sin 12sin αααααα=-=--=-; 22222cos 2cos sin cos (1cos )2cos 1αααααα=-=--=-.

()2tan tan 2tan tan 2tan 1tan tan 1tan ααααααααα+=+= =--. 注意:2,22k k π π απαπ≠+≠+ ()k z ∈ (三)例题讲解 例1、已知5sin 2,,1342ππαα= <<求sin 4,cos 4,tan 4ααα的值. 解:由,42π π α<<得22π απ<<. 又因为5sin 2,13α =12cos 213α===-. 于是512120sin 42sin 2cos 221313169 ααα??==??-=- ???; 225119cos 412sin 21213169αα??=-=-?= ???;120sin 4120169tan 4119cos 4119169ααα- ===-. 例2、已知1tan 2,3α= 求tan α的值. 解:22tan 1tan 21tan 3 ααα==-,由此得2tan 6tan 10αα+-= 解得tan 2α=- tan 2α=- (四)小结:本节我们学习了二倍角的正弦、余弦和正切公式,我们要熟记公式,在解题过程中要善于发现规律,学会灵活运用. (五)作业: 15034.P T T -

二倍角的正弦、余弦和正切公式

二倍角的正弦、余弦和正切公式(基础) 【学习目标】 1.能从两角和的正弦、余弦、正切公式推导出二倍角的正弦、余弦、正切公式,并了解它们之间的内在联系. 2.能熟练运用二倍角公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式.但不要求记忆),能灵活地将公式变形并运用. 3.通过运用公式进行简单的恒等变换,进一步提高运用联系的观点、化归的思想方法处理问题的自觉性,体会换元思想、方程思想等在三角恒等变换中的作用. 【要点梳理】 要点一:二倍角的正弦、余弦、正切公式 1.二倍角的正弦、余弦、正切公式 2sin 22sin cos ()S αααα=? 22222cos 2cos sin () 2cos 112sin C αααααα =-=-=- 22 2tan tan 2()1tan T αα αα = - 要点诠释: (1)公式成立的条件是:在公式22,S C αα中,角α可以为任意角,但公式2T α中,只有当 2 k π απ≠ +及()4 2 k k Z π π α≠ + ∈时才成立; (2)倍角公式不仅限于2α是α的二倍形式,其它如4α是2α的二倍、 2α是4 α 的二倍、3α是 32 α 的二倍等等都是适用的.要熟悉多种形式的两个角的倍数关系,才能熟练地应用好二倍角公式,这是灵活运用公式的关键. 如:2 cos 2 sin 2sin α α α=; 1 1 sin 2sin cos ()2 2 2 n n n n Z α α α ++=∈ 2.和角公式、倍角公式之间的内在联系 在两角和的三角函数公式βαβαβαβα=+++中,当T C S ,,时,就可得到二倍角的三角函数公式,它们的内在联系如下:

二倍角的正弦余弦和正切公式教案

§3.1.3二倍角的正弦、余弦和正切公式(1)教案 珠海市田家炳中学:温世明 一、知识与技能 1. 能从两角和的正弦、余弦、正切公式导出二倍角的正弦、余弦、正切公式,了解它们的内在联系;理解化归思想在推导中的作用。 2. 能正确运用(顺向、逆向、变形运用)二倍角公式求值、化简、证明,增强学生灵活运用数学知识和逻辑推理能力; 3.揭示知识背景,引发学生学习兴趣,激发学生分析、探求的学习态度,强化学生的参与意识,并培养学生综合分析能力. 4.结合三角函数值域求函数值域问题。 二、过程与方法 1.让学生自己由和角公式而导出倍角公式,领会从一般化归为特殊的数学思想,体会公式所蕴涵的和谐美,激发学生学数学的兴趣;通过例题讲解,总结方法.通过做练习,巩固所学知识. 2.通过公式的推导,了解它们的内在联系,从而培养逻辑推理能力;通过综合运用公式,掌握有关技巧,提高分析问题、解决问题的能力。 三、情感、态度与价值观 1.通过本节的学习,使同学们对三角函数各个公式之间有一个全新的认识;理解掌握三角函数各个公式的各种变形,增强学生灵活运用数学知识、逻辑推理能力和综合分析能力.提高逆用思维的能力. 2.引导学生发现数学规律,培养学生思维的严密性与科学性等思维品质. 四、教学重、难点 教学重点:以两角和的正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式; 教学难点:二倍角的理解及其灵活运用. 五、学法与教学用具 学法:研讨式教学,多媒体教学; 六、教学设想: (一)复习式导入:大家首先回顾一下两角和(差)的正弦、余弦和正切公式, ()βαβαβαsin sin cos cos cos =±;()βαβαβαsin cos cos sin sin ±=±; ()β αβ αβαtan tan 1tan tan tan ±= ±. (二) 复习练习: (三)公式推导: 我们由此能否得到sin 2,cos 2,tan 2ααα的公式呢?(学生自己动手,把上述公式中β看成α即可), ()sin 2sin sin cos cos sin 2sin cos ααααααααα=+=+= ()22cos2cos cos cos sin sin cos sin ααααααααα=+=-=-; 思考:把上述关于cos2α的式子能否变成只含有sin α或cos α形式的式子呢 ?

正弦 余弦 正切二倍角公式及变形升降幂公式(完全版)

§3.1.3二倍角的正弦、余弦和正切公式 一、教学目标 以两角和正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式,理解推导过程,掌握其应用. 二、教学重、难点 教学重点:以两角和的正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式; 教学难点:二倍角的理解及其灵活运用. 三、学法与教学用具 学法:研讨式教学 四、教学设想: (一)复习式导入:大家首先回顾一下两角和的正弦、余弦和正切公式, ()sin sin cos cos sin αβαβαβ+=+; ()cos cos cos sin sin αβαβαβ+=-; ()tan tan tan 1tan tan αβ αβαβ++=-. (二)公式推导: ()sin 2sin sin cos cos sin 2sin cos ααααααααα =+=+=; ()22cos 2cos cos cos sin sin cos sin ααααααααα=+=-=-; 22222cos 2cos sin 1sin sin 12sin αααααα=-=--=-; 22222cos 2cos sin cos (1cos )2cos 1αααααα=-=--=-. ()2tan tan 2tan tan 2tan 1tan tan 1tan ααααααααα+=+= =--. 升降幂公式 2 )cos (sin 2sin 1ααα±=±

αα2cos 22cos 1=+αα2sin 22cos 1=-2 2cos 1cos 2α α+=22cos 1sin 2α α-=}}升幂降角公式 降幂升角公式

半角的正弦余弦正切公式

半角的正弦、余弦和正切 学习目标: 1.了解由二倍角的变形公式推导半角的正弦、余弦和正切公式的过程; 2. 掌握半角的正弦、余弦和正切公式,能正确运用这些公式进行简单三角函数式的化简、求值和证明恒等式. 学习重点: 掌握半角的正弦、余弦、正切公式的结构特点,灵活用公式. 学习难点:半角与倍角公式之间的内在联系及运用公式时正负号的选取. 知识链接: 1. 复习二倍角的正弦、余弦、正切公式 sin 2α= ; cos 2α= = = ; tan 2α= . 一、预习案: 问题1:若7cos 25α=,且α为锐角,则sin 2 α= , cos 2α = ,tan 2α = . 1?在α-=α2sin 212cos 中,以α代2α,2α代α即得2sin 2 α= 2?在1cos 22cos 2-α=α 中,以α代2α,2α代α即得2cos 2 α= 3?以上结果相除得2tan 2α= 半角公式:sin 2 α= (1) cos 2α= (2) tan 2α = = = (3) 问题2:半角公式的特点及使用公式时应该注意什么问题?

问题3:你能根据上面的公式解答下列问题吗? 1、求值:(1)sin15 (2)cos15 (3)tan 8π 二、学习案: 例1:已知sin θ=45,且5π2<θ<3π,求cos θ2和tan θ2 的值. 跟踪训练:已知sin φcos φ=60169,且π4<φ<π2 ,求sin φ,cos φ的值. 例2:化简: 1. (1+sin α+cos α)? ????sin α2-cos α22+2cos α (180°<α<360°) 2.cot tan 1tan tan .222αααα????-+? ??????? 跟踪训练: 化简: 1cos sin 1cos sin 1cos sin 1cos sin αααααααα +---+--+-

(二倍角的正弦·余弦·正切公式)教学设计方案

“二倍角的正弦、余弦、正切”教学设计 设计理念:根据皮亚杰的认知发展理论,在个体从出生到成熟的发展过程中,智力发展可以分为具有不同的质的四个主要阶段:激活原有认知结构、构建新的认知结构、尝试新的认知结构、发展新的认知结构。发展的各个阶段顺序是一致的,前一阶段总是达到后一阶段的前提。阶段的发展不是间断性的跳跃,而是逐渐、持续的变化。皮亚杰的认知发展阶段论为发展性辅导中学生智力发展水平的评估和诊断,提供了重要的理论依据。 教学内容:《普通高中课程标准实验教科书(数学)》必修4(人教A版),第三章、第一节、第145-148页。 “二倍角的正弦、余弦、正切”是在研究了两角和与差的三角函数的基础上研究具有“二倍角”关系的正弦、余弦、正切公式,它既是两角和的正弦、余弦、正切公式的特殊化,又为以后求三角函数值、化简和证明提供了非常有用的理论工具,通过对二倍角公式的推导知道:二倍角公式的内涵是“揭示具有倍数关系的两个角的三角函数的运算规律”,通过推导还让学生了解高中数学中由“一般”到“特殊”的化归数学思想,因此这节课也是培养学生运算和逻辑推理能力的重要内容,对培养学生的探索精神和创新能力都有重要意义。 教学目标:根据新课程标准的要求、本节教材的特点和学生对三角函数的认知特点,我们把本节课的教学目标确定为: 1、能从两角和的正弦、余弦、正切公式出发推导出二倍角的正弦、余弦、正切公式,理解它们的内在联系,从中体会数学的化归思想和数学规律的发现过程。 2、掌握二倍角的正弦、余弦、正切公式,通过对二倍角公式的正用、逆用、变形使用,提高三角变形的能力,以及应用转化、化归、换元等数学思想方法解决问题的能力。 3、通过一题多解、一题多变,激发学生的学习兴趣,培养学生的发散性思维、创新意识和数学情感,提高数学素养。 学情分析:我们的学生从认知角度上看,已经比较熟练的掌握了两角和与差的三角函数的基础上。从学习情感方面看,大部分学生愿意主动学习。从能力上看,学生主动学习能力、探究的能力、较弱。

最新3.1.3二倍角的正弦余弦正切公式教案

马鞍山中加双语学校数学组学引用清教学设计 学科: 数学 年级: 高一 授课时间: 一课时 主备人:朱坤坤 总课题 第三章 三角恒等变换 课时 1 课 题 3.1.3二倍角的正弦、余弦和正切公式 课型 新授课 教学目标 知识与技能: 会以两角和正弦、余弦和正切公式为基础,推导二倍角正弦、 余弦和正切公式 理解推导过程,了解它们的内在联系,并能运用上述公式进行简单的恒等变换. 过程与方法: 引导学生积极参与到推导过程当中 情感态度价值观: 树立辩证思维的能力,培养学生创新能力。 教学重点 以两角和的正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式 教学难点 二倍角的理解及其灵活运用 教 学 内 容 操作细则 一、引入新课及学习目标展示[3分钟] 1. 引入新课:一、复习准备: 大家首先回顾一下两角和的正弦、余弦和正切公式, ()sin sin cos cos sin αβαβαβ+=+; ()cos cos cos sin sin αβαβαβ+=-; ()tan tan tan 1tan tan αβ αβαβ ++= -. 2.学习目标展示[2分钟] 1,会借助于两角和的正弦、余弦、正切公式推导二倍角的正弦、余弦、正切公式 2,灵活运用二倍角公式进行简单的恒等变换. 二、自学指导[30分钟] 我们已经知道两角和的正弦、余弦、正切公式 ()sin sin cos cos sin αβαβαβ+=+; ()cos cos cos sin sin αβαβαβ+=-; ()tan tan tan 1tan tan αβ αβαβ ++= -. 导入部分: 激发学生学习兴趣,使学生对本节课要学内容有大概了解 使学生对本节课所学内容和要达到的目标有清晰的了解

高一数学二倍角的正弦余弦正切

课 题:47 二倍角的正弦、余弦、正切(3) 教学目的: 要求学生能较熟练地运用公式进行化简、求值、证明,增强学生灵活运用数学知识和逻辑推理能力 教学重点:二倍角公式的应用 教学难点:灵活应用和、差、倍角公式进行三角式化简、求值、证明恒等式 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 二倍角公式: αααcos sin 22sin =;)(2αS ααα22 sin cos 2cos -=;)(2αC α α α2 tan 1tan 22tan -= ;)(2αT 1cos 22cos 2 -=αα αα2 sin 212cos -=)(2 αC ' 2 2cos 1sin ,2 2cos 1cos 22α -= αα+= α 二、讲解新课: 1.积化和差公式的推导 sin(α + β) + sin(α - β) = 2sin αcos β ? sin αcos β = 2 1 [sin(α + β) + sin(α - β)] sin(α + β) - sin(α - β) = 2cos αsin β ? cos αsin β = 2 1 [sin(α + β) - sin(α - β)] cos(α + β) + cos(α - β) = 2cos αcos β ? cos αcos β = 2 1 [cos(α + β) + cos(α - β)] cos(α + β) - cos(α - β) = - 2sin αsin β

? sin αsin β = - 2 1 [cos(α + β) - cos(α - β)] 2.和差化积公式的推导 若令α + β = θ,α - β = φ,则2φ+θ=α,2 φ -θ=β 代入得: )sin (sin 2 1)]22sin()22[sin(212cos 2sin φ+θ=φ-θ-φ+θ+φ-θ+φ+θ=φ-θφ+θ ∴2cos 2sin 2sin sin φ -θφ+θ=φ+θ 2sin 2cos 2sin sin φ -θφ+θ=φ-θ 2cos 2cos 2cos cos φ -θφ+θ=φ+θ 2 sin 2sin 2cos cos φ -θφ+θ-=φ-θ 3.半角公式 α +α -±=αα+±=αα-±=αcos 1cos 12tan ,2cos 12cos ,2cos 12sin α α -= α+α=αsin cos 1cos 1sin 2tan 证:1?在 α-=α2 sin 212cos 中,以α代2α, 2α 代α 即得: 2sin 21cos 2α-=α ∴2 cos 12sin 2α-= α 2?在 1cos 22cos 2 -α=α 中,以α代2α,2 α代α 即得: 12 cos 2cos 2-α=α ∴2cos 12cos 2α+=α 3?以上结果相除得:α+α-= αcos 1cos 12tan 2 4? 2tan 2cos 2sin 2 cos 2 sin 2) 2sin 21(1sin cos 12ααα α α α α α == --=- 2 tan 2 cos 2sin 12cos 212cos 2 sin 2cos 1sin 2ααα ααα α α ==-+= +

两角和与差的正弦、余弦和正切公式及二倍角公式专题复习

两角和与差的正弦、余弦和正切公式及二倍角公式专题复习 一、知识要点: 1.两角和与差的正弦、余弦、正切公式 (1)():sin()sin cos cos cos S αβαβαβαβ±±=±; (2)():cos()cos cos sin sin C αβαβαβαβ±±=; (3)()tan tan :tan()1tan tan T αβαβαβαβ ±±±=. 2.二倍角的正弦、余弦、正切公式 (1)(2):sin 22sin cos S αααα=α; (2)2222(2):cos2cos sin 2cos 112sin C αααααα=-=-=-; (3)(2)22tan :tan 21tan T αααα =-. 3.常用的公式变形 (1)tan tan tan()(1tan tan )αβαβαβ±=±; (2)221cos 21cos 2cos ,sin 22 αααα+-==; (3)221sin 2(sin cos ),1sin 2(sin cos )αααααα+=+-=-,sin cos )4π ααα±=±. 4.函数()sin cos (,f x a x b x a b =+为常数),可以化为())),f x x x ?θ=+=-其中()?θ可由,a b 的值唯一确定. 两个技巧 (1)拆角、拼角技巧:(2)化简技巧:切化弦、“1”的代换等. 【双基自测】

1.(人教A 版教材习题改编)下列各式的值为14 的是( ). A .22cos 112π- B .20 12sin 75- C.0 202tan 22.51tan 22.5- D .00sin15cos15 2.0000 sin 68sin 67sin 23cos68-=( ) A .2- B.2.1 3.(2011·福建)若tan 3,α=则2sin 2cos αα =( ). A .2 B .3 C .4 D .6 4.已知2sin ,3 α=则cos(2)πα-=( ). A ..19- C.195.(2011·辽宁)设1sin(),43 πθ+=则sin 2θ= ( ). A .79- B .19- C.19 D.79 6.0000tan 20tan 4020tan 40++=________. 7.若2tan(),45 πα+=则tan α=t________. 考向一 三角函数式的化简与求值 [例1] 求值:①00 00cos15sin15cos15sin15 -+;②00sin 50(1). [例2] 已知函数()2sin(),36 x f x x R π=-∈.

两角和与差的正弦余弦正切公式练习题(含答案)

两角和差的正弦余弦正切公式练习题 一、选择题 1.给出如下四个命题 ①对于任意的实数α和β,等式βαβαβαsin sin cos cos )cos(-=+恒成立; ②存在实数α,β,使等式βαβαβαsin sin cos cos )cos(+=+能成立; ③公式=+)tan(βαβ αβαtan tan 1tan ?-+an 成立的条件是)(2 Z k k ∈+≠ππα且)(2 Z k k ∈+≠ππβ; ④不存在无穷多个α和β,使βαβαβαsin cos cos sin )sin(-=-; 其中假命题是 ( ) A .①② B .②③ C .③④ D .②③④ 2.函数)cos (sin sin 2x x x y +=的最大值是 ( ) A .21+ B .12- C .2 D . 2 3.当]2 ,2[π π- ∈x 时,函数x x x f cos 3sin )(+=的 ( ) A .最大值为1,最小值为-1 B .最大值为1,最小值为2 1- C .最大值为2,最小值为-2 D .最大值为2,最小值为-1 4.已知)cos(,3 2 tan tan ,7)tan(βαβαβα-= ?=+则的值 ( ) A .2 1 B . 2 2 C .2 2- D .2 2± 5.已知 =-=+=-<<<αβαβαπαβπ 2sin ,53 )sin(,1312)cos(,432则 ( ) A .6556 B .-6556 C .5665 D .-56 65 6. 75sin 30sin 15sin ??的值等于 ( ) A . 4 3 B . 8 3 C .8 1 D . 4 1 7.函数)4 cot()(,tan 1tan 1)(),4tan()(x x h x x x g x x f -=-+= +=π π其中为相同函数的是 ( ) A .)()(x g x f 与 B .)()(x h x g 与 C .)()(x f x h 与 D .)()()(x h x g x f 及与 8.α、β、γ都是锐角,γβαγβα++=== 则,8 1 tan ,51tan ,21tan 等于 ( )

《二倍角的正弦、余弦、正切公式》教案

《二倍角的正弦、余弦、正切公式》教学设计 高一A 组 韩慧芳 年级:高一 科目:数学 内容:二倍角的正弦、余弦、正切公式 课型:新课 一、教学目标 1、知识目标: (1)在理解两角和的正弦、余弦和正切公式的基础上,能够推导二倍角的正弦、余弦和正切公式,并能运用这些公式解决简单的三角函数问题。 (2)通过公式的应用(正用、逆用、变形用),使学生掌握有关化简技巧,提高分析、解决问题的能力。 2、能力目标:通过二倍角公式的推导,了解知识之间的内在联系,完善知识结构, 培养逻辑推理能力。 3、情感目标:通过二倍角公式的推导,感受二倍角公式是和角公式的特例,进一步体会从一般化归为特殊的基本数学思想。在运用二倍角公式的过程中体会换元的数学思想。 二、教学重难点、关键 1、教学重点:以两角和的正弦、余弦和正切公式为基础,推导二倍角的正弦、余弦和正切公式 2、教学难点:二倍角的理解及其正用、逆用、变形用。 3、关键:二倍角的理解 三、学法指导 学法:研讨式教学 四、教学设想: 1、问题情境 复习回顾两角和的正弦、余弦、正切公式 ()sin sin cos cos sin αβαβαβ+=+; ()cos cos cos sin sin αβαβαβ+=-; ()tan tan tan 1tan tan αβαβαβ ++=-。

思考:在这些和角公式中,如果令βα=,会有怎样的结果呢? 2、建构数学 公式推导: ()sin 2sin sin cos cos sin 2sin cos ααααααααα=+=+=; ()22cos 2cos cos cos sin sin cos sin ααααααααα=+=-=-; 思考:把上述关于cos2α的式子能否变成只含有sin α或cos α的式子呢? 22222cos 2cos sin 1sin sin 12sin αααααα=-=--=-; 22222cos 2cos sin cos (1cos )2cos 1αααααα=-=--=-. 以上这些公式都叫做倍角公式,从形式上看,倍角公式给出了αα与2的三角函数之间的关系。既公式中等号左边的角是右边角的2倍。所以,确切地说,这组公式是二倍角的正弦、余弦、正切公式,这正是本节课要研究的内容。二倍角的正弦、余弦、正切公式有时简称二倍角公式。 3、知识运用 例1、(公式的正用) (1)已知3sin ,,52 πααπ=<<求sin 2,cos 2,tan 2ααα的值. (2)已知3sin 2,,542ππαα= <<求sin 4,cos 4,tan 4ααα的值.

关于正弦函数和余弦函数的计算公式

关于正弦函数和余弦函数的计算公式 同角三角函数的基本关系式 倒数关系: 商的关系:平方关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α 诱导公式 sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα (其中k∈Z) 两角和与差的三角函数公式万能公式 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ tanα+tanβ tan(α+β)=—————— 1-tanα·tanβ tanα-tanβ tan(α-β)=—————— 1+tanα·tanβ 2tan(α/2) sinα=—————— 1+tan2(α/2) 1-tan2(α/2) cosα=—————— 1+tan2(α/2) 2tan(α/2) tanα=—————— 1-tan2(α/2) 二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosα

正弦余弦换算公式

三角函数诱导公式常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与-α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα 诱导公式记忆口诀 ※规律总结※ 上面这些诱导公式可以概括为:

对于k·π/2±α(k∈Z)的个三角函数值, ①当k是偶数时,得到α的同名函数值,即函数名不改变; ②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan. (奇变偶不变) 然后在前面加上把α看成锐角时原函数值的符号。 (符号看象限) 例如: sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。 当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。 所以sin(2π-α)=-sinα 上述的记忆口诀是: 奇变偶不变,符号看象限。 公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α所在象限的原三角函数值的符号可记忆 水平诱导名不变;符号看象限。 各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦;三为切;四余弦”. 这十二字口诀的意思就是说: 第一象限内任何一个角的四种三角函数值都是“+”; 第二象限内只有正弦是“+”,其余全部是“-”; 第三象限内只有正切是“+”,其余全部是“-”; 第四象限内只有余弦是“+”,其余全部是“-”. 上述记忆口诀,一全正,二正弦,三正切,四余弦 1.诱导公式 sin(-a)=-sin(a) cos(-a)=cos(a) sin(2π-a)=cos(a) cos(2π-a)=sin(a) sin(2π+a)=cos(a) cos(2π+a)=-sin(a) sin(π-a)=sin(a) cos(π-a)=-cos(a) s in(π+a)=-sin(a) cos(π+a)=-cos(a) tgA=tanA=sinAcosA 2.两角和与差的三角函数 sin(a+b)=sin(a)cos(b)+cos(α)sin(b) cos(a+b)=cos(a)cos(b)-sin(a)sin(b) sin(a-b)=sin(a)cos(b)-cos(a)sin(b) cos(a-b)=cos(a)cos(b)+sin(a)sin(b)

正弦、余弦、正切的二倍角公式

§3.1.3 二倍角的正弦、余弦和正切公式 学习目标 1、以两角和的正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式; 2、二倍角的理解及其灵活运用. 重点:二倍角正弦、余弦和正切公式; 难点:二倍角正弦、余弦和正切公式的灵活运用. 预习案 (预习教材P132—P134) 复习引入:请大家首先回顾一下两角和的正弦、余弦和正切公式: =+)sin(βα =+)cos(βα =+)tan(βα 探索新知 问题:由两角和的正弦、余弦和正切公式能否得到sin 2,cos 2,tan 2ααα的公式呢? 探究1:推导sin2α,cos2α sin2α= cos2α= 思考:把上述关于cos2α的式子能否变成只含有sin α或cos α形式的式子呢?; cos2α= cos2α= 探究2:推导tan2α;(注意:2,22k k π π απαπ≠+≠+ ()k z ∈) tan2α=

课中案 例1、已知5 sin 2,,1342π π αα=<<求sin 4,cos 4,tan 4ααα的值. 变式:已知1 tan 2,3α=求tan α的值. 例2、求下列各式的值 (1)??15cos 15sin (2)8sin 8cos 22π π-

例3、在△ABC 中,54 cos =A ,。B A B 的值求)22tan(,2tan += 当堂检测 。,,的值求、已知4tan ,4cos ,4sin )128(54 8cos 1α α α παπα ??-= 。、的值求已知ααπ2cos ,53 )sin(2=-

.tan 2sin 2sin 3的值求、αππ ααα),,(,∈-= 4、已知),2(,135 sin ππ ∈α=α,求sin2α,cos2α,tan2α的值。 5、已知的值求)2tan(,31 tan ,71 tan βαβα+== 6、求值020 5.22tan 15.22tan 2)1(- (2)12cos 24cos 48cos 48sin 8π π ππ 课堂总结: 熟记二倍角的正弦、余弦和正切公式,在解题过程中要善于发现规律,学会灵活运用.

两角和与差的正弦余弦正切公式

两角和与差的正弦余弦正切公式教学目标 1.能根据两角差的余弦公式推导出两角和与差的正弦、余弦公式,并灵活运用.(重点) 2.能利用两角和与差的正弦、余弦公式推导出两角和与差的正切公式.(难点) 3.掌握两角和与差的正切公式及变形应用.(难点、易错点) [基础·初探] 教材整理1两角和与差的余弦公式 阅读教材P128“思考”以下至“探究”以上内容,完成下列问题. cos 75°cos 15°-sin 75°sin 15°的值等于________. 【解析】逆用两角和的余弦公式可得 cos 75°cos 15°-sin 75°sin 15°=cos(75°+15°)=cos 90°=0. 【答案】0

教材整理2两角和与差的正弦公式 阅读教材P128“探究”以下内容,完成下列问题. 1.公式 2.重要结论-辅助角公式 y=a sin x+b cos x x+θ)(a,b不同时为0),其中cos sin θ θ (1)两角和与差的正弦、余弦公式中的角α,β是任意的.() (2)存在α,β∈R,使得sin(α-β)=sin α-sin β成立.() (3)对于任意α,β∈R,sin(α+β)=sin α+sin β都不成立.() (4)sin 54°cos 24°-sin 36°sin 24°=sin 30°.() 解:(1)√.根据公式的推导过程可得. (2)√.当α=45°,β=0°时,sin(α-β)=sin α-sin β. (3)×.当α=30°,β=-30°时,sin(α+β)=sin α+sin β成立. (4)√.因为sin 54°cos 24°-sin 36°sin 24°

二倍角的正弦余弦正切公式

二倍角的正弦余弦正切公式 教学目标 1.会推导二倍角的正弦、余弦、正切公式.(重点) 2.掌握二倍角公式及其变形公式的应用.(难点) 3.二倍角公式与两角和与差的正弦、余弦、正切公式的区别与联系.(易混点) [基础·初探] 教材整理 二倍角的正弦、余弦、正切公式 阅读教材P 132~P 133例5以上内容,完成下列问题. 1.二倍角的正弦、余弦、正切公式 2.余弦的二倍角公式的变形 3.正弦的二倍角公式的变形 (1)sin αcos α=1 2sin 2α,cos α=sin 2α2sin α. (2)1±sin 2α=(sin α±cos α)2.

1.判断(正确的打“√”,错误的打“×”) (1)二倍角的正弦、余弦、正切公式的适用范围是任意角.( ) (2)存在角α,使得sin 2α=2sin α成立.( ) (3)对于任意的角α,cos 2α=2cos α都不成立.( ) 解:(1)×.二倍角的正弦、余弦公式对任意角都是适用的,而二倍角的正切公式,要求α≠π2+k π(k ∈Z )且α≠±π 4+k π(k ∈Z ),故此说法错误. (2)√.当α=k π(k ∈Z )时,sin 2α=2sin α. (3)×.当cos α=1-3 2时,cos 2α=2cos α. 【答案】 (1)× (2)√ (3)× 2.已知cos α=1 3,则cos 2α等于________. 解:由cos α=13,得cos 2α=2cos 2 α-1=2×? ?? ??132-1=-79. 【答案】 -7 9 化简求值. (1)cos 4 α2-sin 4 α2; (2)sin π24·cos π24·cos π 12; (3)1-2sin 2 750°; (4)tan 150°+1-3tan 2 150° 2tan 150° .

相关文档
最新文档