提高铝合金强度的技术途径和方法

提高铝合金强度的技术途径和方法
提高铝合金强度的技术途径和方法

提高铝合金强度的技术途径和方法

摘要:主要介绍了铝合金强化的位错机制,论述了铝合金强化的技术途径和方法,并进一步研究了高强铝合金的发展趋势。

1 前言

铝及铝合金具有密度小、耐蚀性和成型性好等一系列优点,在航天,航空、核工业及兵器工业等有着广泛的应用前景及不可替代的地位,因而铝和铝合金的研制技术被列为国防科技关键技术及重点发展的基础技术。现代工业和科学技术的迅速发展,对铝合金强化材料的性能提出了更高要求。铝合金强化以加工硬化和沉淀强化为重点,而其强化效果的判断则以铝合金材料在常温和高温下的强度、塑性指标为重要依据。本文对强化机理进行了探讨,并对强化方法进行了综合分类。

2铝合金强化的位错机制

强度是材料抵抗变形和破坏的能力,金属材料的强度主要取决于构成晶体的原子之间的结合力。这种结合力随原子和结合键性质的不同而有差异。材料的强度、塑性、韧性等力学性能除与键的强度有关外,还与晶体结构的完整性密切相关,即受晶粒、亚晶粒尺寸、第二相特征、晶体缺陷密度等因素影响,这些影响都可以用位错作用机制来解释。

3提高铝合金强度的技术途径和方法

铝合金强化主要是增加其对位错动作的抗力,所以铝合金强化途径有两条:液态处理和固态处理。

3.1液态处理方法

液态处理是通过合金化和化学反应在铝基体熔体中生成碳化物、硼化物、氮化物等弥散分布的强化相,这种由反应生成的强化相与基体间的界面洁净、结合较好、颗粒细小、分布均匀,

因此对合金的弥散强化效果较好。液态处理主要有合金强化和异相强化。合金强化是在铝合金中添加具有很低溶解度和扩散速率的过渡族金属和稀土金属元素,铸造时快速冷却,使这些元素保留在α(A1)固溶体中,随后加热析出非常稳定的非共格第二相弥散质点,通过弥散质点而使合金强化。几乎所有铝合金都分别或联合加入Ti,V,Cr,Mn,Zr等过渡族元素,这些元素形成弥散铝化物质点,产生弥散强化作用,这些质点一旦析出,很难继续溶解或聚集,有较大的弥散强化效果。此外弥散质点阻止再结晶,使加工硬化效果最大限度保留。异相强化是由结晶时生产难溶结晶相产生强化,由于第二相质点硬、脆和较粗大,使合金塑性损失大。

3.2固态处理方法

铝合金固态处理强化方法主要有弥散强化、固溶强化,沉淀强化、细晶强化、形变强化等。

弥散强化非共格硬颗粒弥散物对铝合金的强化称弥散强化。为了取得好的强化效果,要求弥散物在铝基体中有低的溶解度和扩散速率、高硬度的小颗粒。几乎所有的铝合金都分别或联合加入Ti、V、Cr、和Zr等过渡族元素,这些元素形成弥散铝化物质点,产生弥散强化作用。

固溶强化是依靠溶质原子溶入基体金属中并对位错产生钉扎来增加位错运动的摩擦阻力以提高其变形抗力。合金元素加入到纯铝中后,形成铝基固溶体,导致晶格发生畸变,增加了位错运动的阻力,由此提高铝的强度。固溶强化效果取决于溶质原子浓度和相对尺寸、固溶体类型和电子因素。溶质原子与铝原子的价电子数相差越大,固溶强化作用亦越大。选用固溶强化元素时,一定要考虑对塑性和韧性的影响。表1给出了主要合金元素在铝中的极限溶解度。

表1 主要合金元素在铝中的极限溶解度

元素 Zn Mg Cu Li Mn Si

极限固溶度/% 82.2 17.4 5.6 4.2 1.82 1.65

沉淀强化是通过过饱和固溶体析出稳定的第二相,形成溶质原子富集亚稳区的过渡相而产生强化。加热到一定温度的过饱和固溶体发生沉淀,生成共格的亚稳相质点则产生时效强化,由第二相沉淀产生的强化也叫析出强化。时效过程中,铝合金强度和硬度增加的沉淀强化效果和强化相的结构和特性有很大关系。铝合金中的沉淀强化相应满足的基本条件是:沉淀强化相是硬度高的质点;铝基固溶体中的沉淀相在高温下有较大的溶解度,随温度降低,其溶解度急剧减小,能析出较大体积分数的沉淀相;在时效过程中,沉淀相具有一系列介稳相,并且是弥散分布,与基体形成共格,在周围基体中产生较大的共格应变区。为充分第三或第四合金组元,构成复杂合金系,如A1—Cu—Mg、A1—Mg—Si、A1—Zn—Mg、A1—Li—Cu、A1—Cu—Mg—Zn、A1—Cu—Mg—Si等,以形成新的沉淀强化相。

细晶强化主要是利用晶界对位错的阻碍作用,通过细化晶粒来增加晶界或改善晶界性质,阻碍位错运动,提高材料强度。对于不能沉淀强化或沉淀效果不大的铝合金,常采用加入微量合金元素进行变质处理而细化组织的方法来提高合金的强度和塑性。例如在铝一硅合金中加入微量钠、钠盐或锑作为变质剂来细化组织,可使合金的塑性和强度显著提高。对于可沉淀强化的一些铝合金,加入微量Ti、Zr、Be或稀土等合金元素后,可形成难熔化合物,在合金结晶时作为非自发晶核,细化基体晶粒,从而提高合金的强度和塑性。细化晶粒是金属极为重要的强化方法。细化晶粒不仅提高强度还可以提高金属的塑性和韧性,降低脆性转变温度,是同时提高强度和塑性的唯一强化机制。

形变强化是通过塑性变形使合金产生亚结构和加工硬化获得高强度的强化方法。塑性变形时增加位错密度是变形强化的本质,位错密度越大,继续变形时增加位错密度是变形强化

的本质,位错密度越大,继续变形时位错在滑移过程中相互交割的机会越多,相互间的阻力越大,因而变形抗力也越大,合金强度也越高,而塑性却大大降低。

4高强铝合金的发展趋势

高强度铝合金是重要的轻质高强结构材料,具有广阔的应用前景。铝及铝合金的应用受到钛及钛合金和复合材料的挑战,但其作为主体结构材料的地位基本不变。目前,高强铝合金的发展趋势从以下几个方面开展:

⑴复合微合金化,添加微量过渡族元素以及稀土元素,开发出各种满足不同需要的新型铝合金高强材料。

⑵改进传统的铸锭冶金制备技术,采用和研究各种先进的熔体净化和变质处理方法,提高铸锭冶金质量。

⑶深入研究高溶质状态下合金的热处理工艺,研究合金强化固溶处理及多级多重相时效析出的沉淀强化机制,提高合金基体的过饱和固溶度提高沉淀相的体积分数,通过MPt、GBP和PEZ的最佳配合,使合金实现高强高韧,良好抗蚀性能的优化匹配。

我国铝及铝合金业相对应国外的研发水平还有相当大的差距,因此我国铝及铝合金的发展需要走一段相当长的路。可喜的是目前已对高性能铝基结构材料有了很大的重视。如“十五”、“863”、“973”等重大科研项目均对该类材料的开发研究列项研制。相信几年后,我国高性能金属材料的研制将达到国际先进水平。

混凝土强度不足时的处理措施.

混凝土强度不足时的处理措施 摘要:混凝土强度是确定新建和已建混凝土结构或构件承载能力等力学性能的关键因素,混凝土强度检测技术是工程结构检测中非常重要的一项内容。本文对混凝土强度不足的情况进行了探讨,提出了一些处理措施。 关键词:混凝土;处理;加固 1引言 混凝土强度的不足将对结构的承载能力、裂缝以及耐久性等诸多方面产生不利影响,应根据其不足的程度,采取相应的处理措施。选用的加固方法有3大类:直接加固法、间接加固法、综合加固法。 2直接加固法 直接加固法即通过各种途径增加结构抗力。加固前最好能在原结构上卸载,经加固后再恢复使用荷载,但在原结构上往往很难实现。工程中,国内、外直接加固技术主要有如下几种: 2.1增大截面加固法 增大截面加固法即采取增大结构或构筑物的截面面积,以提高其承载力和刚度,满足正常使用的一种加固方法。可广泛应用于混凝土、砖混等结构的梁、板、柱、墙等构件和一般构筑物的加固。 ⑴ 该方法优点: ① 传统加固方法,技术成熟,便于操作; ② 质量好,可靠性强; ③ 提高构件抗力R及刚度的幅度大,尤其对柱的稳定性提高较大。 ⑵ 该方法缺点: ① 如果设计中未能从整体结构角度上分析,仅仅为局部加大而加大,这样会造成整体结构其它部分形成薄弱层而发生重大破坏。 ② 加大构件截面,其质量和刚度将发生变化,结构的固有频率也随之改变,很有可能进入到地震或风震的频率中而产生共振现象。 ③ 现场湿作业工作量大,养护时间长,对生产和生活有一定的影响。 ④ 对原有结构的外形以及房屋使用空间上有一定的影响。 2.2外包钢加固法 外包钢加固法即在混凝土、砌体等构件四周包以型钢的加固方法(分干式、湿式两种形式)。适用于使用上不允许增大构件截面尺寸,而又需要大幅度地提高承载力和刚度的加固。此法主要适用于混凝土、砖混结构中的柱以及梁、桁架弦杆和腹杆的加固。这种加固方法的优点是施工方便,现场工作量少,工期短,受力可靠,对建筑物外观和净空影响小;缺点是用钢量较大,加固维修费用较高。当采用化学灌浆外包钢加固时,型钢表面温度不应超过60℃;当环境具有腐蚀性介质时,必须采取可靠防护措施,以提高其耐久性。

工程混凝土强度不足的原因及处理方案

工程混凝土强度不足的原因及处理 “结构混凝土的强度等级必须符合设计要求。”这是工程建设施工规范规定的强制性条文,必须严格执行。但是至今仍有一些工程的混凝土因强度不足而造成不少质量问题。混凝土强度低下造成的后果主要表现在以下两方面:一是结构构件承载力下降;二是抗渗、抗冻性能及耐久性下降。因此对混凝土强度不足问题必须认真分析处理。 一、混凝土强度不足的常见原因 1. 原材料质量问题 (1)水泥质量不良 1)水泥实际活性(强度)低:常见的有两种情况,一是水泥出厂质量差,而在实际工程中应用时又在水泥28d强度试验结果未测出前,先估计水泥强度等级配置混凝土,当28d水泥实测强度低于原估计值时,就会造成混凝土强度不足;二是水泥保管条件差,或储存时间过长,造成水泥结块,活性降低而影响强度。 2)水泥安定性不合格:其主要原因是水泥熟料中含有过多的游离氧化钙(CaO)或游离氧化镁(MgO),有时也可能由于掺入石膏过多而造成。因为水泥熟料中的CaO和MgO都是烧过的,遇水后熟化极缓慢,熟化所产生的体积膨胀延续很长时间。当石膏掺量过多时,石膏与水化后水泥中的水化铝酸钙反应生成水化铝硫酸钙,也使体积膨胀。这些体积变化若在混凝土硬化后产生,都会破坏水泥结构,大多数导致混凝土开裂,同时也降低了混凝土强度。尤其需要注意的是有些安定性不合格的水泥所配制的混凝土表面虽无明显裂缝,但强度极度低下。 (2)骨料(砂、石)质量不良 1)石子强度低:在有些混凝土试块试压中,可见不少石子被压碎,说明石子强度低于混凝土的强度,导致混凝土实际强度下降。 2)石子体积稳定性差:有些由多孔燧石、页岩、带有膨胀黏土的石灰岩等制成的碎石,在干湿交替或冻融循环作用下,常表现为体积稳定性差,而导致混凝土强度下降。 3)石子形状与表面状态不良:针片状石子含量高影响混凝土强度。而石子具有粗糙的和多孔的表面,因与水泥结合较好,而对混凝土强度产生有利的影响,尤其是抗弯和抗拉强度。最普通的一个现象是在水泥和水灰比相同的条件下,碎石混凝土比卵石混凝土的强度高10%左右。 4)骨料(尤其是砂)中有机杂质含量高:如骨料中含腐烂动植物等有机杂质(主要是鞣酸及其衍生物),对水泥水化产生不利影响,而使混凝土强度下降。

影响金属材料疲劳强度的八大因素

影响金属材料疲劳强度的八大因素 Via 常州精密钢管博客 影响金属材料疲劳强度的八大因素 材料的疲劳强度对各种外在因素和内在因素都极为敏感。外在因素包括零件的形状和尺寸、表面光洁度及使用条件等,内在因素包括材料本身的成分,组织状态、纯净度和残余应力等。这些因素的细微变化,均会造成材料疲劳性能的波动甚至大幅度变化。 各种因素对疲劳强度的影响是疲劳研究的重要方面,这种研究将为零件合理的结构设计、以及正确选择材料和合理制订各种冷热加工工艺提供依据,以保证零件具有高的疲劳性能。 应力集中的影响 常规所讲的疲劳强度,都是用精心加工的光滑试样测得的,然而,实际机械零件都不可避免地存在着不同形式的缺口,如台阶、键槽、螺纹和油孔等。这些缺口的存在造成应力集中,使缺口根部的最大实际应力远大于零件所承受的名义应力,零件的疲劳破坏往往从这里开始。 理论应力集中系数Kt :在理想的弹性条件下,由弹性理论求得的,缺口根部的最大实际应力与名义应力的比值。 有效应力集中系数(或疲劳应力集中系数)Kf:光滑试样的疲劳极限σ-1与缺口试样疲劳极限σ-1n的比值。 有效应力集中系数不仅受构件尺寸和形状的影响,而且受材料的物理性质、加工、热处理等多种因素的影响。 有效应力集中系数随着缺口尖锐程度的增加而增加,但通常小于理论应力集中系数。 疲劳缺口敏感度系数q:疲劳缺口敏感度系数表示材料对疲劳缺口的敏感程度,由下式计算。 q的数据范围是0-1,q值越小,表征材料对缺口越不敏感。试验表明,q并非纯粹是材料常数,它仍然和缺口尺寸有关,只有当缺口半径大于一定值后,q值才基本与缺口无关,而且对于不同材料或处理状态,此半径值也不同。 尺寸因素的影响

浅谈不增加水泥用量提高混凝土强度的方法与措施

浅谈不增加水泥用量 提高混凝土强度的方法与措施 混凝土做为建筑工程中使用量最大的建筑材料之一,在建筑工程中获得了极为广泛的应用。混凝土抗压强度的大小,主要取决于它的组成部分,组织结构和构造状态。混凝土的强度主要决定于水泥石的强度和水泥石与骨料之间的粘结强度。水泥石的强度主要取决于水泥标号与水灰比。水泥石与骨料的粘结力,也同样与水泥标号和水灰比有关。由此可见,水泥的强度等级及用量是影响混凝土强度的主要因素。但是如果水泥用量过大,一方面会造成水化热过大而产生裂缝,另一方面也不经济。那么在不增加水泥的用量的前提下如何提高混凝土强度?应主要从以下几个方面来处理。 1、加强对混凝土原材料的质量控制是提高混凝土强度的基础。 混凝土中的主要材料为水泥、粗、细集料、水、外加剂和掺合料。各种组成材料在混凝土中起着不同的作用,考虑不增加水泥用量,可以从以下几个方面来通过对原材料的控制来提高混凝土的强度。 (1)对水泥强度等级、水泥品种的选择:水泥强度等级的选用,不仅要使所配的混凝土强度达到要求,而且和易性和耐久性也必须满足施工和规范的要求,提高混凝土强度但不增加水泥用量,应尽量考虑使用高强度等级的水泥,但应注意满足和易性的要求。水泥品种的选用时应注意各种水泥的特性对混凝土结构强度和使用条件是否有不利影响。

(2)细集料的质量控制:通常混凝土中的细集料为砂子,根据细度模数分为粗砂、中砂、细砂。应注意到,砂子过粗,容易使新拌混凝土产生泌水现象,影响混凝土的和易性。由此可知,当混凝土的和易性要求为一定时,为了节省水泥而又能提高混凝土强度,应选用级配良好的中粗砂,另外,砂中的含泥量及泥块含量应满足国家标准的要求,对重要工程使用的砂,还应采用化学法和砂浆长度法进行骨料的碱活性检验。 (3)粗骨料的质量控制:通常混凝土中的粗骨料为石子。使用人工碎石比使用天然卵石可以增加混凝土强度,除此以外,在使用中应注意石子的最大粒径、颗粒级配、强度与坚固性等指标。粗骨料颗粒级配分为连续级配和间断级配,由于连续级配含有各种大小颗粒,互相搭配合理,拌制成的混凝土和易性较好,但由于石子总表面积比较大,所用水泥比较多。用间断级配来拌制混凝土,可以节约水泥,但和易性不好,容量产生泌水等离析现象。但对于低流动性和干硬性混凝土来说,如果采用强力振捣来施工时,则采用间断级配是较为适宜的。 (4)混凝土用水的控制:水是混凝土的主要组成材料之一。拌合用水不纯,可能产生多种有害作用。为了保证混凝土的质量,必须使用合格的水来拌制混凝土,凡符合国家标准的生活用水,均可用于拌制混凝土,地表水或地下水首次使用应进行适用性试验,合格才能使用,混凝土拌制用水应符合JGJ63-1989《混凝土拌合用水标准》的规定。 混凝土中的原材料的质量控制是提高混凝土强度的基础,在混凝土材料的选用上更应该确保质量,科学合理地选取,从而达到提高混凝土强度的目的。 2、合理进行混凝土配合比设计是提高混凝土强度的前提

如何提高混凝土强度

如何提高混凝土的强度和耐久性 摘要:混凝土的耐久性又包括抗冻性,抗渗性,抗蚀性及抗碳化能力,而强度又和耐久性有着密切的联系 关键词:耐久性强度 (一)提高混凝土耐久性的措施主要有: 1)提高混凝土的密实度,控制水灰比及保证足够的水泥用量,是保证混凝土密实度并提高混凝土耐久性的关键,在一定范围内,水灰比越小,混凝土强度也越高,反之,水灰比越大,用水量越多,多余水分蒸发留下的毛隙孔越多,从而使强度降低。 2)改善粗细骨料的颗粒级配,砂的颗粒级配是指粒径不同的砂粒互相搭配的情况,级配良好的砂,空隙率较小,不仅可以节省水泥,而且可以改善混凝土拌和物的和易性,提高混凝土的密实度,强度和耐久性。 3)合理选择水泥品种,但是水泥的品种有很多,所以对水泥的选择又必须慎重,水泥石一旦受损,混凝土的耐久性就被破坏,因此水泥的选择需注意水泥品种的具体性能,选择碱含量小,水化热低,干缩性小,耐热性,抗水性,抗腐蚀性,抗冻性能好的水泥,并结合具体情况进行选择。水泥强度并非是决定混凝土强度和性能的唯一标准,如用较低标号水泥同样可以配制高标号混凝土。因此,工程中选择水泥强度的同时,需考虑其工程性能,有时,其工程性能比强度更重要。 4)保证混凝土的强度:尽管强度与耐久性是不同概念,但又密切相关,它们之间的本质联系是基于混凝土的内部结构,都与水灰比这个因素直接相关。在混凝土能充分密实条件下,随着水灰比的降低,混凝土的孔隙率降低,混凝土的强度不断提高。与此同时,随着孔隙率降低,混凝土的抗渗性提高,因而各种耐久性指标也随之提高。在现在的高性能混凝土中,除掺入高效减水剂外,还掺入了活性矿物材料,它们不但增加了混凝土的致密性,而且也降低或消除了游离氧化钙的含量。在大幅度提高混凝土强度的同时,也大幅度地提高了混凝土的耐久性。此外,在排除内部破坏因素的条件下,随着混凝土强度的提高,其抵抗环境侵蚀破坏的能力也越强。 5)掺入高效活性矿物掺料:普通水泥混凝土的水泥石中水化物稳定性的不足,是混凝土不能超耐久的另一主要因素。在普通混凝土中掺入活性矿物的目的,在于改善混凝土中水泥石的胶凝物质的组成。活性矿物掺料中含有大量活性Si02及活性Al203,它们能和波特兰水泥水化过程中产生的游离石灰及高碱性水化矽酸钙产生二次反映,生成强度更高、稳定性更优的低碱性水化矽酸钙,从而达到改善水化胶凝物质的组成,消除游离石灰的目的,使水泥石结构更为致密,并阻断可能形成的渗透路。此外,还能改善集料与水泥石的界面结构和界面区性能。这些重要的作用,对增进混凝土的耐久性及强度都有本质性的贡献。 6)掺入高效减水剂:在保证混凝土拌和物所需流动性的同时,尽可能降低用水量,减少水灰比,使混凝土的总孔隙,特别是毛细管孔隙率大幅度降低。水泥在加水搅拌后,会产生一种絮凝状结构。在这些絮凝状结构中,包裹着许多拌和水,从而降低了新拌混凝土的工作性。施工中为了保持混凝土拌和物所需的工作性,就必须在拌和时相应地增加用水量,这样就会促使水泥石结构中形成过多的孔隙。当加入减水剂的定向排列,使水泥质点表面均带有相同电荷。在电性斥力的作用下,不但使水泥体系处于相对稳定的悬浮状态,还在水泥颗粒表面形成一层溶剂化水膜,同时使水泥絮凝体内的游离水释放出来,因而达到减水的目的。许多研究表明,当水灰比降低到0.38以下时,消除毛细管孔隙的目标便可以实现,而掺入高效减水剂,完全可以将水灰比降低到0.38以下。

混凝土强度不足时的处理措施

混凝土强度不足时的处理措施摘要: 混凝土强度是确定新建和已建混凝土结构或构件承载能力等力学性能的关键因素, 混凝土强度检测技术是工程结构检测中非常重要的一项内容。本文对混凝土强度不足的情况进行了探讨, 提出了一些处理措施。 关键词: 混凝土; 处理;加固 1引言 混凝土强度的不足将对结构的承载能力、裂缝以及耐久性等诸多方面产生不利影响, 应根据其不足的程度, 采取相应的处理措施。选用的加固方法有3 大类: 直接加固法、间接加固法、综合加固法。 2直接加固法 直接加固法即通过各种途径增加结构抗力。加固前最好能在原结构上卸载, 经加固后再恢复使用荷载, 但在原结构上往往很难实现。工程中, 国内、外直接加固技术主要有如下几种: 2.1增大截面加固法 增大截面加固法即采取增大结构或构筑物的截面面积, 以提高其承载力和刚度, 满足正常使用的一种加固方法。可广泛应用于混凝土、砖混等结构的梁、板、柱、墙等构 件和一般构筑物的加固。 ⑴ 该方法优点: ①传统加固方法, 技术成熟, 便于操作; ②质量好, 可靠性强; ③提高构件抗力R及刚度的幅度大,尤其对柱的稳定性提高较大。 ⑵ 该方法缺点: ①如果设计中未能从整体结构角度上分析, 仅仅为局部加大而加大, 这样会造 成整体结构其它部分形成薄弱层而发生重大破坏。 ②加大构件截面, 其质量和刚度将发生变化, 结构的固有频率也随之改变, 很有可能进入到地震或风震的频率中而产生共振现象。 ③现场湿作业工作量大, 养护时间长, 对生产和生活有一定的影响。 ④对原有结构的外形以及房屋使用空间上有一定的影响。 2.2外包钢加固法外包钢加固法即在混凝土、砌体等构件四周包以型钢的加固方法 (分干式、 湿式两种形式)。适用于使用上不允许增大构件截面尺寸, 而又需要大幅度地提高承载力和刚度的加固。此法主要适用于混凝土、砖混结构中的柱以及梁、桁架弦杆和腹杆 的加固。这种加固方法的优点是施工方便, 现场工作量少, 工期短, 受力可靠,对建筑物外观和净空影响小;缺点是用钢量较大,加固维修费用较高。 当采用化学灌浆外包钢加固时,型钢表面温度不应超过60C ;当环境具有腐蚀性介质时, 必须采取可靠防护措施, 以提高其耐久性。

里氏硬度转化抗拉强度对照表

强度强度43081.915251872651.3528 43282.415452372851.6532 43482.815552973051.8535 43683.215753473252.1539 43883.615853473452.3543 4408416054073652.6547 44284.416154673852.8551 44484.816355174053.1555 44685.116455174253.3559 44885.516655774453.6563 45085.916856374653.8568 45286.316957074854.1572 45486.617157075054.3576 4568717357675254.5580 45887.417458275454.8584 46087.717658275655589 46288.117858975855.3593 46488.517959676055.5597 46688.818160376255.7602 46889.218360376456606 47089.518560976656.2610 47289.918661776856.5615 47490.318862477056.7619 47690.619062477256.9624 4789119263177457.2628 48091.319463977657.4633 48291.719564677857.6638 48492.119764678057.9642 48692.419965478258.1647 48892.820166278458.3652 49093.120366278658.6657 49293.520567078858.8662 49493.920767879059666 49694.320968679259.2671 49894.621169579459.5676 5009521369579659.7681 50295.421570379859.9686 50495.821770380060.1691 50696.221971280260.4697 50896.622172180460.6702 51019.89722373080660.8707

影响混凝土强度的因素的分析及确保强度的主要措施

影响混凝土强度的因素的分析及确保强度的主要措施 摘要:混凝土的强度是最重要的一项指性能指标,它作为结构设计的主要参数,也常用来作 为一般评定混凝土质量的指标。 关键词:混凝土强度;因素;确保措施 Abstract: the strength of concrete is one of the most important refers to the performance index, it for the structure the design of the main parameters, are also used to as a general assessment of the concrete quality indicators. Key words: the strength of concrete; Factors; Ensure that measures 中图分类号:TU37文献标识码:A 文章编号: 混凝土的强度有抗压、抗拉、抗弯及抗剪等,其中以抗压强度为最大,故混凝土主要用于承受压力。混凝土的抗压强度是最重要的一项性能指标,它常作为结构设计的主要参数,也常来作为一般评定混凝土质量的指标。目前我国以立方体抗压强度作为混凝土的强度特征值。(根据标准实验方法,标准试件,标准养护条件,标准龄期测定其抗压强度来确定) 混凝土是多项的,非匀质的混合材料。普通混凝土由水、水泥、砂子(细骨料)、石子(粗骨料)、外加剂及掺和料,按适当比例,经搅拌振捣而成。其组成基本原理是:水泥(交结材料)加水形成水泥浆,填充骨料空隙,并包裹骨料表面。水泥浆未凝前具有一定的流动性,便于施工,水泥浆凝结后,将其松散骨料粘结成为一坚实人工石材。实践证明:在一般生产工艺条件下,普通混凝土只要在完 全密实状态时其强度与水灰比为线性关系W/C=α a ·α b /(f cu·o +α a ·α b· ·f ce )强 度关系式。从这个经验公式中得知,普通混凝土的主要决定因素是:水泥砂浆(强度)的高低;水灰比的大小;密实度优劣等,这三个因素不是孤立的,也不是唯一的,它依赖于下列条件:即原材料质量的好坏;配合比计算是否合理;搅拌、

钢材抗拉强度与硬度的对照表.docx

根据德国标准DIN50150, 以下是常用范围的钢材抗拉强度与维氏硬度、布氏硬度、洛氏硬度的对照表。 抗拉强度维氏硬度布氏硬度洛氏硬度Rm HV HB HRC N/mm 2 25080-27085-28590-30595-320100-335105-350110105-370115109-380120114-400125119-415130124-430135128-450140133-465145138-480150143-490155147-510160152-530165156-545170162-560175166-575180171-595185176-610190181-625195185-640200190-660205195-675210199-690215204-705220209-720225214-740230219-755235223-770240228 785245233

800250238 820255242 835260247 850265252 865270257 880275261 900280266 915285271 930290276 950295280 965300285 995310295 1030320304 1060330314 1095340323 1125350333 1115360342 1190370352 1220380361 1255390371 1290400380 1320410390 1350420399 1385430409 1420440418 1455450428 1485460437 1520470447 1555480(456) 1595490(466) 1630500(475) 1665510(485) 1700520(494) 1740530(504) 1775540(513) 1810550(523) 1845560(532) 1880570(542) 1920580(551) 1955590(561)

混凝土强度的提高措施

混凝土强度不足时的处理措施 1 引言 混凝土强度的不足将对结构的承载能力、裂缝以及耐久性等诸多方面产生不利影响,应根据其不足的程度,采取相应的处理措施。选用的加固方法有3大类,直接加固法、间 接加固法、综合加固法。 2 直接加固法 直接加固法即通过各种途径增加结构抗力。加固前最好能在原结构上卸载,经加固后再恢复使用荷载,但在原结构上往往很难实现。工程中,国内、外直接加固技术主要有如 下几种, 2.1增大截面加固法 增大截面加固法即采取增大结构或构筑物的截面面积,以提高其承载力和刚度,满足正常使用的一种加固方法。可广泛应用于混凝土、砖混等结构的梁、板、柱、墙等构件和 一般构筑物的加固。 (1)该方法优点, ①传统加固方法,技术成熟,便于操作; ②质量好,可靠性强; ③提高构件抗力R及刚度的幅度大,尤其对柱的稳定性提高较大。 (2)该方法缺点, ①如果设计中未能从整体结构角度上分析,仅仅为局部加大而加大,这样会造成整体 结构其它部分形成薄弱层而发生重大破坏。 ②加大构件截面,其质量和刚度将发生变化,结构的固有频率也随之改变,很有可能 进入到地震或风震的频率中而产生共振现象。 ③现场湿作业工作量大,养护时间长,对生产和生活有一定的影响。 ④对原有结构的外形以及房屋使用空间上有一定的影响。 2.2外包钢加固法 外包钢加固法即在混凝土、砌体等构件四周包以型钢的加固方法(分干式、湿式两种形式)。适用于使用上不允许增大构件截面尺寸,而又需要大幅度地提高承载力和刚度的加固。此法主要适用于混凝土、砖混结构中的柱以及梁、桁架弦杆和腹杆的加固。这种加固方法的优点是施工方便,现场工作量少,工期短,受力可靠,对建筑物外观和净空影响

混凝土强度评定计算方法

混凝土强度评定计算方法 2009年05月25日星期一 21:46 混凝土强度评定计算方法mfcu: 同一验收批强度平均值 fcu,k:设计要求强度值 fcu,min: 同一验收批强度最小值 1、非统计法:mfcu≥1.15fuc,k fcu,min≥0.95 fcu,k 2、统计方法: mfcu-λ 1 Sfcu≥0.9 fcu,k fcu,min≥λ 2 fcu,k Sfcu=每组试验值的方差 (N=10-14: λ 1=1.7 λ 2 =0.9) (N=15-25: λ 1=1.65 λ 2 =0.85) (N=25组以上: λ 1=1.6 λ 2 =0.85) 混凝土强度检验评定标准 GBJ107-87 第一章总则 第1.0.1条为了统一混凝土强度的检验评定方法,促进企业提高管理水平,确保混凝土强度的质量,特制定本标准。 第1.0.2条本标准适用于普通混凝土和轻骨料混凝土抗压强度的检验评定。 有特殊要求的混凝土,其强度的检验评定尚应符合现行国家标准的有关规定。 第1.0.3条混凝土强度的检验评定,除应遵守本标准的规定外,尚应符合现行国家标准的有关规定。 注:对按《钢筋混凝土结构设计规范》(TJ10—74)设计的工程,使用本标准进行混凝土强度检验评定时,应按本标准附录一的规定,将设计采用的混凝土标号换算为混凝土强度等级。施工时的配制强度也应按同样原则进行换算。 第二章一般规定

第2.0.1条混凝土的强度等级应按立方体抗压强度标准值划分.混凝土强度等级采用符号C与立方体抗压强度标准值(以N/m㎡计)表示. 第2.0.2条立方体抗压强度标准值系指对按标准方法制作和养护的边长为150mm的立方体试件,在28d龄期,用标准试验方法测得的抗压强度总体分布中的一个值,强度低于该值的百分率不超过5%。 第2.0.3条混凝土强度应分批进行检验评定.一个验收批的混凝土应由强度等级相同、龄期相同以及生产工艺条件和配合比基本相同的混凝土组成。对施工现场的现浇混凝土,应按单位工程的验收项目划分验收批,每个验收项目应按照现行国家标准《建筑安装工程质量检验评定标准》确定。 第2.0.4条预拌混凝土厂、预制混凝土构件厂和采用现场集中搅拌混凝土的施工单位,应按本标准规定的统计方法评定混凝土强度。对零星生产的预制构件的混凝土或现场搅拌的批量不大的混凝土,可按本标准规定的非统计方法评定。 第2.0.5条为满足混凝土强度等级和混凝土强度评定的要求,应根据原材料、混凝土生产工艺及生产质量水平等具体条件,选择适当的混凝土施工配制强度。混凝土的施工配制强度可按照本标准附录二的规定,结合本单位的具体情况确定。 第2.0.6条预拌混凝土厂、预制混凝土构件厂和采用现场集中搅拌混凝土的施工单位,应定期对混凝土强度进行统计分析,控制混凝土质量。可按本标准附录三的规定,确定混凝土的生产质量水平。 第三章混凝土的取样,试件的制作、养护和试验 第3.0.1条混凝土试样应在混凝土浇筑地点随机抽取,取样频率应符合下列规定: 一、每100盘,但不超过100 的同配合比的混凝土,取样次数不得少于一次; 二、每一工作班拌制的同配合比的混凝土不足100盘时其取样次数不得少于一次。 注:预拌混凝土应在预拌混凝土厂内按上述规定取样。混凝土运到施工现场后,尚应按本条的规定抽样检验。 第3.0.2条每组三个试件应在同一盘混凝土中取样制作。其强度代表值的确定,应符合下列规定: 一、取三个试件强度的算术平均值作为每组试件的强度代表值; 二、当一组试件中强度的最大值或最小值与中间值之差超过中间值的15%时,取中间值作为该组试件的强度代表值; 三、当一组试件中强度的最大值和最小值与中间值之差均超过中间值的15%时,该组

工程混凝土强度不足的原因及处理措施

工程混凝土强度不足的原因及处理措施 “结构混凝土的强度等级必须符合设计要求。”这是工程建设施工规范规定的强制性条文,必须严格执行。但是至今仍有一些工程的混凝土因强度不足而造成不少质量问题。 混凝土强度低下造成的后果主要表现在以下两方面: 一是结构构件承载力下降; 二是抗渗、抗冻性能及耐久性下降。 因此对混凝土强度不足问题必须认真分析处理。 一、混凝土强度不足的常见原因 1. 原材料质量问题 (1)水泥质量不良

1)水泥实际活性(强度)低:常见的有两种情况,一是水泥出厂质量差,而在实际工程中应用时又在水泥28d强度试验结果未测出前,先估计水泥强度等级配置混凝土,当28d水泥实测强度低于原估计值时,就会造成混凝土强度不足;二是水泥保管条件差,或储存时间过长,造成水泥结块,活性降低而影响强度。 2)水泥安定性不合格:其主要原因是水泥熟料中含有过多的游离氧化钙(CaO)或游离氧化镁(MgO),有时也可能由于掺入石膏过多而造成。因为水泥熟料中的CaO和MgO都是烧过的,遇水后熟化极缓慢,熟化所产生的体积膨胀延续很长时间。当石膏掺量过多时,石膏与水化后水泥中的水化铝酸钙反应生成水化铝硫酸钙,也使体积膨胀。这些体积变化若在混凝土硬化后产生,都会破坏水泥结构,大多数导致混凝土开裂,同时也降低了混凝土强度。尤其需要注意的是有些安定性不合格的水泥所配制的混凝土表面虽无明显裂缝,但强度极度低下。 (2) 骨料(砂、石)质量不良 1)石子强度低:在有些混凝土试块试压中,可见不少石子被压碎,说明石子强度低于混凝土的强度,导致混凝土实际强度下降。 2)石子体积稳定性差:有些由多孔燧石、页岩、带有膨胀黏土的石灰岩等制成的碎石,在干湿交替或冻融循环作用下,常表现为体积稳定性差,而导致混凝土强度下降。

提高零件疲劳强度的方法

提高零件疲劳强度的方法 【摘要】机械零件的抗疲劳破坏是造成机械运行故障的主要原因,因此,提高机械零件的疲劳强度是机械结构设计中不容忽视的问题。针对影响零件疲劳强度的因素并结合实际,对在设计过程中如何提高零件的疲劳强度的方法及措施做简要的叙述和相关分析,且对工程中常见的问题,提出相应的控制方法和解决措施。【关键词】疲劳强度;应力集中 1概述 在19世纪初,随着蒸汽机车的发明和铁路建设的迅速发展,机车车辆的疲劳破坏现象时有发生,使工程技术人员认识到交变应力对金属强度的不良影响。很多结构物都承受交变应力的作用,例如飞机,火车,船舶等交通运输工具由于大气紊流,波浪及道路不平引起的颠簸都承受交变应力,即使是房屋,桥梁等看来似乎完全不动的结构物也同样承受变应力作用,因为桥梁上驶过车辆时,房屋中的机器设备运转和振动时,甚至刮风等均会引起交变应力。所以交变应力对于结构物来说是经常遇到的。 绝大多数的机械零件是在循环变应力作用下工作的,如弹簧,齿轮,轴等都是在循环载荷下工作的,承受交变应力或重复应力,如在工作过程中工作应力低于屈服强度时就会发生疲劳破坏,造成重大的经济损失。为避免这些现象的发生,提高零件的疲劳强度,在设计阶段应考虑它的使用环境和受力状态,材料性能,加工工艺等因素。我将基于材料的疲劳特性,对提高零件疲劳强度的方法及措施进行简要的叙述。 2零件的疲劳特性 材料的疲劳特性可用最大应力,应力循环次数,应力比(循环特性)来表述。 10时,属静应力强度,当循环次数在在一定的应力比下,当循环次数低于3 4 310 10时属于低周疲劳,然而一般零件承受变应力时,其应力循环次数通常大~ 10,属高周疲劳,此阶段,如果作用的变应力小于持久疲劳极限,无论应力于4 变化多少次,材料都不会破坏。由于零件受加工质量及强化因素等影响,使得零件的疲劳极限小于材料的疲劳极限,通常等于材料疲劳极限与其疲劳极限的综合影响系数的比值。故可通过改善零件受力状况,将作用在零件上的变应力降低到持久疲劳极限以下,对延长材料的使用寿命具有重要的意义。 3提高零件疲劳强度的方法 影响零件的疲劳强度的因素很多,比如材料的最大应力,工作环境,应力状态,加工质量与加工工艺等。为提高零件的疲劳强度,经查阅资料得出以下方法。(1)材料的选择 材料的选择原则是:在满足静强度要求的同时,还应具备良好的抗疲劳性能。过去静强度选材的一个基本原则是要求强度高,但在疲劳设计中,需从疲劳强度的观点选材: a在达到使用期限的应力值时,材料的疲劳极限必须满足要求。 b材料的切口敏感性和擦伤疲劳敏感性小,在交变载荷作用处要特别注意。 c裂纹扩展速率慢,许用临界裂纹大些,及要求零件的断裂韧性值大,使零件或结构在使用中出现裂纹后,不会很快导致灾难性的破坏。

砼强度不足加固方法 原理和案例

砼强度不足加固方法原理和案例 第一部分砼强度不足基本知识 1)概述 因施工和使用不当而引起的混凝土强度不足,将会使结构的 承载能力和刚度下降,挠曲变形加大,同时使结构的抗裂、抗 渗和耐久性降低,影响结构使用。下图是两例砼强度不足的图片。2)引起混凝土强度不足的表现 强度不足的表现:混凝土强度不够必将伴随有抗渗能力降低,耐久性降低,更重要的会影响结构的承载能力。主要表现为三方面: 1降低结构强度、刚直下降。 2抗裂性差、产生大量宽裂缝。 3构件变形,变形大到影响正常使用。 3)引起混凝土强度不足的原因 1 原材料质量差: (1)水泥质量不良:1.水泥实际活性低;2.水泥安定性不合格; (2)骨料(砂、石)质量不良:1.石子强度低;2.石子体积稳定性差;3.石子形状与表面状态不良;4.砂、石中有机杂 质含量高、粉尘含量高,砂中云母含量高; (3)拌合水质量不合格;

(4)外加剂质量不合格或组成配比不当 2 混凝土配合比不当: 混凝土配合比是决定强度的重要因素之一,其中水灰比的大少直接影响混凝土强度,其他如用水量、砂率、骨灰比等也影响混凝土的各种性能,从而造成强度不足事故。 (1)用水量加大:较常见的有搅拌机上加水装置计量不准;不扣除砂、石中的含水量;甚至在浇灌地点任意加水等; (2)随意套用配合比; (3)外加剂掺量不准; (4)外加剂使用不当; (5)砂石计量不准和水泥用量不足。 3 施工工艺不正确 (1)搅拌不佳,时间过短或过长造成不匀; (2)浇筑时水泥浆漏失严重;混凝土假凝、初凝;振捣不实; (3)养护不当;如早期缺水干燥,受冻等. 4 试块未经标准养护或未按规定制作 对于混凝土强度不足的补救和处理一般采用测定实际强度,利用后期强度,减少结构荷载,结构加固、分析验算,至拆除重建等。 4)典型加固方法及适用范围: 混凝土结构强度不足的加固分为直接加固与间接加固两类,

提高混凝土强度的方法

影响混凝土强度的因素和提高措施 1混凝土原料构成及其作用 混凝土是一种由水泥、砂、石骨料、水及其它外加材料按一定比例均匀拌和,经一定时间硬化而形成的人造石材。在混凝土中,砂石起骨架作用称为骨料,水泥与水形成水泥浆,水泥浆包裹在骨料表面并填充其空隙。在硬化前,水泥浆起润滑作用,赋予拌和物一定的和易性,便于施工。水泥浆硬化后,则将骨料胶结成一个坚实的整体。 混凝土强度的高低,直接影响到建筑物结构安全,情况严重的将造成建筑物倒塌,严重危害到人们的生命安全。因此,在施工中对混凝上的强度应有足够的重视。 2混凝土强度等级与混凝土强度平均值及其标准差的关系 混凝土强度等级是根据混凝土强度分布的平均值减去1.645倍标准差确定的,保证混凝土强度标准值具有95%的保证率,低于该标准值的概率不大于5%,充分地保证结构的安全。从这个定义推定,抽样检验的N组件的混凝土强度平均值一定不小于混凝土设计强度等级,而强度平均值的大小取决于标准差的大小。因此施工人员必须明确,不但要使混凝土强度平均值大于混凝土强度的变异性,更要使混凝土强度标准差降低到最低值。这样既保证了工程质量又降低了工程造价,是行之有效的节约措施。 3影响混凝土强度的因素 普通混凝土受力破坏一般出现在骨料和水泥石的分界面上,是常见的粘结面破坏的形式。在普通混凝土中,骨料最先破坏的可能性小,因为骨料强度通常大大超过水泥石和粘结面的强度。所以混凝土的强度主要决定于水泥石强度及其与骨料表面的粘结强度。而水泥石强度及其与骨料的粘结强度又与水泥标号、水灰比、及骨料的性质有密切关系。当水泥石强度较底时,水泥石本身容易受到破坏。此外混凝土的强度还受施工质量、养护条件及龄期的影响。 3.1水灰比和水泥标号是决定混凝土强度的主要因素 水泥是混凝土中的活性成分,其强度的大小直接影响着混凝土强度的高低。从混凝土强度表达式:fcu.o=A?fce(C/W-B)可以看出,在配合比相同的条件下,所用的水泥标号越高,制成的混凝土强度越高。当水泥相同时,混凝土的强度取决于水灰比。当水泥水化时所需的结合水,一般只占水泥重量的23%左右。如果结合水较大(约占水泥重量的40~70%),混凝土硬化后,多余的水分残留在混凝土中形成气泡或蒸发后形成气孔,大大地减少了混凝土抵抗荷载的实际有效断面,可能在空隙周围产生应力集中。因此,在水泥标号相同的情况下,水灰比愈小,水泥石的强度愈高,与骨料粘结力愈大,混凝土的强度就愈高。如果加水太少,拌和物过于干硬,在一定的捣实成型条件下,无法保证浇灌质量,混凝土中将出现较多的蜂窝孔洞,混凝土强度也将下降。 3.2粗骨料的影响

[提高混凝土强度的方法] 提高混凝土强度的措施有哪些

影响混凝土强度的因素和提高措施 1 混凝土原料构成及其作用 混凝土是一种由水泥、砂、石骨料、水及其它外加材料按一定比例均匀拌和,经一定时间硬化而形成的人造石材。在混凝土中,砂石起骨架作用称为骨料,水泥与水形成水泥浆,水泥浆包裹在骨料表面并填充其空隙。在硬化前,水泥浆起润滑作用,赋予拌和物一定的和易性,便于施工。水泥浆硬化后,则将骨料胶结成一个坚实的整体。 混凝土强度的高低,直接影响到建筑物结构安全,情况严重的将造成建筑物倒塌,严重危害到人们的生命安全。因此,在施工中对混凝上的强度应有足够的重视。 2 混凝土强度等级与混凝土强度平均值及其标准差的关系 混凝土强度等级是根据混凝土强度分布的平均值减去645倍标准差确定的,保证混凝土强度标准值具有95%的保证率,低于该标准值的概率不大于5%,充分地保证结构的安全。从这个定义推定,抽样检验的N组件的混凝土强度平均值一定不小于混凝土设计强度等级,而强度平均值的大小取决于标准差的大小。因此施工人员必须明确,不但要使混凝土强度平均值大于混凝土强度的变异性,更要使混凝土强度标准差降低到最低值。这样既保证了工程质量又降低了工程造价,是行之有效的节约措施。 3 影响混凝土强度的因素 普通混凝土受力破坏一般出现在骨料和水泥石的分界面上,是常见的粘结面破坏的形式。在普通混凝土中,骨料最先破坏的可能性小,因为骨料强度通常大大超过水泥石和粘结面的强度。所以混凝土的强度主要决定于水泥石强度及其与骨料表面的粘结强度。而水泥石强度及其与骨料的粘结强度又与水泥标号、水灰比、及骨料的性质有密切关系。当水泥石强度较底时,水泥石本身容易受到破坏。此外混凝土的强度还受施工质量、养护条件及龄期的影响。 1 水灰比和水泥标号是决定混凝土强度的主要因素 水泥是混凝土中的活性成分,其强度的大小直接影响着混凝土强度的高低。从混凝土强度表达式fcu.o=A?fce(C/W-B)可以看出,在配合比相同的条件下,所用的水泥标号越高,制成的混凝土强度越高。当水泥相同时,混凝土的强度取决于水灰比。当水泥水化时所需的结合水,一般只占水泥重量的23%左右。如果结合水较大(约占水泥重量的40~70%),混凝土硬化后,多余的水分残留在混凝土中形成气泡或蒸发后形成气孔,大大地减少了混凝土抵抗荷载的实际有效断面,可能在空隙周围产生应力集中。因此,在水泥标号相同的情况下,水灰比愈小,水泥石的强度愈高,与骨料粘结力愈大,混凝土的强度就愈高。如果加水太少,拌和物过于干硬,在一定的捣实成型条件下,无法保证浇灌质量,混凝土中将出现较多的蜂窝孔洞,混凝土强度也将下降。 2 粗骨料的影响 粗骨料对混凝土强度也有一定的影响。当石质强度相等时,决定于骨料的表面粗糙度。

疲劳强度设计方法研究

疲劳强度设计方法研究

摘要 疲劳强度是当前机械产品的主要失效形式,在机械强度设计中占有重要的位置。正确地应用疲劳理论于强度设计上,可以得到合理的设计,包括选材、结构尺寸及加工工艺等,或根据工况及给定的零部件估算其寿命。本文从疲劳断裂的过程出发,通过对疲劳强度三种思路的分析,介绍了相应疲劳强度设计及寿命估算的三种方法。 关键词:疲劳强度,寿命估算,疲劳设计,S-N曲线

1. 引言 所谓疲劳,是指材料或构件在长期的循环变应力作用下的失效现象,也称疲劳破坏。当循环变应力远小于强度极限时,经过一定的循环周次,也能使构件发生疲劳破坏。疲劳破坏是机械工程中常见的失效形式。近数十年来,疲劳破坏危及各个领域,飞机由于疲劳破坏而造成机毁人亡的灾难性事故;二次世界大战期间有上万艘焊接船舶、几十座焊接桥梁毁于疲劳破坏;对于车轴、车轨以及机架,曲轴,齿轮、螺栓联接等的疲劳破坏事故更是屡见不鲜。据统计,现代工业中零部件的失效80%是由于疲劳引起的。因此,疲劳问题引起了人们的极大关注。 对在循环变应力作用下的构件,以往的机械设计常常采用静强度设计,靠选取较大的安全系数来保证其使用的可靠性。而实际上是在变载荷作用下的构件由于强度储备大,在按静强度设计有时会将疲劳问题暂时掩盖起来。随着近代机械向高速、高温、大功率和轻重量的方向发展,对机械产品的零构件采用合理的疲劳设计,是提高设计水平、保证产品质量和提升经济效益的一个重要环节。 2. 疲劳断裂的形成 现行的疲劳设计思想与疲劳断裂的过程有关。从疲劳断裂的破坏过程来看一般分为三个阶段: (1)裂纹萌生阶段,或称裂纹成核或形成阶段 由于观察仪器的精密度和分辨率不同,所能观察到的裂纹长度也

强度与硬度对照表

抗拉强度与硬度对照表 抗拉强度N/mm2 维氏硬 度 布氏硬度洛氏硬度 抗拉强度 N/mm2 维氏硬 度 布氏硬度洛氏硬度 Rm HV HB HRC Rm HV HB HRC 2508076122038036138.8 2708580.7125539037139.8 2859085.2129040038040.8 3059590.2132041039041.8 32010095135042039942.7 33510599.8138543040943.6 350110105142044041844.5 370115109145545042845.3 380120114148546043746.1 400125119152047044746.9 41513012415557480-45647 4301351281595490-46648.4 4501401331630500-47549.1 4651451381665510-48549.8 4801501431700520-49450.5 4901551471740530-50451.1 5101601521775540-51351.7 5301651561810550-52352.3 5451701621845560-53253 5601751661880570-54253.6 5751801711920580-55154.1 5951851761955590-56154.7 6101901811995600-57055.2 6251951852030610-58055.7

6402001902070620-58956.3 6602051952105630-59956.8 6752101992145640-60857.3 6902152042180650-61857.8 70522020966058.3 72022521467058.8 74023021968059.2 75523522369059.7 77024022820.370060.1 78524523321.372061 80025023822.274061.8 82025524223.176062.5 83502602472478063.3 85026525224.880064 86527025725.682064.7 88027526126.484065.3 90028026627.186065.9 91528527127.888066.4 93029027628.590067 95029528029.292067.5 96530028529.894068 99531029531 103032030432.2 106033031433.3 109534032334.4 112535033335.5 111536034236.6 119037035237.7

相关文档
最新文档