变压器调压区均压环的设计与优化

变压器调压区均压环的设计与优化
变压器调压区均压环的设计与优化

小型变压器计算机辅助优化设计

小型变压器计算机辅助优化设计 张 利 郑文利 路 杰3 王国栋 刘相华 (东北大学 沈阳 110006) (沈阳化工学院3  沈阳 110021)摘要 采用模块编程技术,应用电磁学原理及用C 语言开发了一个基于Windows 平台 的功能较强的小型变压器(单相20kVA 以下,三相50kVA 以下)的CAD 系统,该系 统主要包括变压器的铁心选择、绕组的排列、几何参数和电磁参数的计算、总体结构 优化设计及参数化绘图等功能. 关键词: 小型变压器; 计算机辅助设计; 优化设计 分类号: TP 391.72 现代电器工业的发展要求小型变压器的设计具有更高的可靠性、快速性、灵敏性和精确性.国内各小型变压器厂尽管在单台容量和安装容量方面满足了生产实践的需要,但采用的设计方法基本上还是传统的手工设计方法,常用的方法有两种,即计算法和图解法.设计人员往往感到设计重复量大、设计效率低、精确性差.因此,我们开发了小型变压器(单相20kVA 以下,三相50kVA 以下)的计算机辅助优化设计系统,从而可以缩短设计周期,创造较好的经济效益,提高工厂的竞争能力. 1 系统结构 本系统参考了国内外有关小型变压器的设计方面的最新理论,应用计算机技术完成了1998年3月1日收稿 第12卷 第2期 1998.6沈 阳 化 工 学 院 学 报JOURNAL OF SHEN Y AN G INSTITU TE OF CHEMICAL TECHNOLO GY Vo.12 No.2J um.1998

总体功能的设计.在使用本系统时,只需输入初级电压、次级电压、次级电流、电源频率等数据,设计者便可按照计算机的提示进行变压器的铁心形式选择、绕组排列、铁心、绕组、导线等几何参数及电磁参数的计算.在此基础上,采用改进复合形法进行优化设计和采用ADS 进行参数化绘图.本系统分为8个模块,它们既相互独立,又可以通过数据文件的方式相互传递数据(如图1所示).这8个模块是: (1) 数据信息模块: 用来输入数据和保存数据. (2) 铁心参数计算: 选择铁心形式,计算铁心截面、窗口尺寸等参数. (3) 绕组计算模块: 主副绕组设计(正弦分布绕组) . 图1  软件模块 图2 设计框图 041沈 阳 化 工 学 院 学 报 1998年

对干式和油浸式变压器优化设计的研究

对干式和油浸式变压器优化设计的研究 发表时间:2017-07-04T15:28:50.517Z 来源:《电力设备》2017年第7期作者:刘建萍[导读] 摘要:我国干式变压器和油浸变压器的优化设计,是社会进步发展的必然选择。本文根据我国目前使用的干式变压器以及油浸变压器的特点,结合最新的科学技术,优化变压器的系统,并且对设计内容进行研究和阐述。 (山东泰开箱变有限公司 271000) 摘要:我国干式变压器和油浸变压器的优化设计,是社会进步发展的必然选择。本文根据我国目前使用的干式变压器以及油浸变压器的特点,结合最新的科学技术,优化变压器的系统,并且对设计内容进行研究和阐述。 关键词:干式变压器;油浸式变压器;优化设计 1. 干式和油浸式变压器优化的原因 变压器是电力系统的重要组成部分,其工作效率、工作能耗、生产成本是影响电力系统运行效率、运行线损、运行成本的关键。当前我国电力系统中干式和油浸式变压器占有极高比例,因此采用计算机辅助设计和最优化方法对上述两种变压器进行优化设计具有鲜明的显示意义。 2. 干式和油浸式变压器优化设计理念 我国较早使用的变压器系统设计工具是CAD。随着社会和科技的不断发展,CAD系统和技术也在不断地研发,加快了变压器的改革和优化进程。同时电力需求的增加,远距离、跨区域输变电工程大力建设发展,对变压器的要求也越来越高。所以我国需要优化变压器,我们秉承的理念是节约材料,,力求科学与自然地融合,提高干式变压器和油浸变压器的工作效率,实现远距离低损耗输电以及环境保护的目的。 3. 干式和油浸式变压器优化设计分析以及方法 3.1 干式和油浸式变压器优化设计分析 3.1.1 变压器优化设计使用工具 变压器的结构和系统比较复杂,尤其传统的变压器设计方法,其中的数据是分散式的,并不集中,对于变压器的控制和管理,以及设计都十分的不利。“工欲利其事,必先利其器”,所以想要优化变压器的设计方法,首先需要确定设计变压器的工具,使用正确的变压器设计工具,能够有效的提高变压器的设计效率,利用UML语言,以及变压器数据计算和IE型电源变压器自动设计软件,根据变压器系统的特点,以及数据模型的支持,可以制作有关数据计算的软件,体改手工计算。比如编制一个程序和公式,通过计算机,把电磁计算等流程的过程简化,加快计算效率和准确率。 3.1.2 变压器优化设计的理论依据 决定变压器性能的参数主要涉及电、磁、热以及结构,也就是说,变压器的优化也是根据这几方面来决定的。只要能够设计出这几方面的优化计划,就可以改变现有的变压器的系统和结构。因此,新型的变压器首先需要确定计算公式,根据计算公式来确定需要修改的参数和标准值,然后根据电、磁、热以及结构四方面理论,加入节能低碳等约束条件等,设置相关的离散型数值。因为变压器设计本身的特点,虽然设计系统使用的数值比较分散,但是在系统的管理之下,可以确定变压器系统使用的标准值,比如圆形铁心柱直径,就可以通过现有的系统进行计算得到。使用的公式为 通过公式可以知道,f(x)为目标函数,其中,变量为x1,x2,......xn,其中gi(x)为约束条件,首先需要根据约束条件,控制变压器的材料选择,这样能够改变变压器的工作功率。其中,约束条件就是技术性指标,也就是说,是硬性指标,该指标包括变压器的电压比,阻抗电压、空载耗损、空载电流只有变压器达到一定的标准,才能为商户和居民提供高质量的电能。比如,变压器的电阻比,主要是根据电阻率来计算的,即ρ=RS/L。常用单位几种金属导体及其在20℃时的电阻率 (Ω m) 为铜 1.75 × 10-8 ,铝 2.83 × 10-8 ,铁 9.78 × 10-8 。同种材料导电能力是和截面积成正比,与长度成反比。选择不同的变压器材质,对变压器的性能会产生不同的影响。 其次是材料性能约束,也就是说,变压器在设计的过程中,材料的选择需要满足国家和国际的标准。材料的性能不能影响到变压器的技术性能,选择的绝缘物质,也不能发生导电。不同绝缘材料的特性不同,其需要的电阻值以及绕组温升的值也不同,只有确定其范围,才能在保证变压器的设计优化更加合理科学。变压器的铜耗与铁耗与自身的材质是有关系的。在材料上的优化上,如果选择非晶态磁性材料,这种变压器能够大幅度的降低电损和涡损。

变压器有载调压开关异常的分析和处理

变压器有载调压开关异常的分析和处理 有载分接开关可以在变压器带有负载的运行状态下改变分接位置,达到不停电改变变压比调整运行电压的目的。它由分头选择器和切换开关两部分组成,由统一的电动操作机构控制和协调工作。分头选择器的作用是先在无载状态下变换选择分头,然后由切换开关进行有负载的切换。 有载分接开关异常运行或故障的处理 1、调压开关拒动 发生拒动时应检查以下内容: (1)操作是否正确。 不正确的操作有: ①操作方式选择开关(如远方或就地操作选择开关,手动或自动 选择开关等)位置不正确,应将它们置于正确位置上; ②操作超越极限位置(已在最高位继续调增.或已在最低位继续 调减),应向发令人报告,改正错误。 (2)操作回路直流电源是否正常。 如不正常应处理恢复电源。 (3)操作机构交流电源是否正常。 不正常的情况可能有: ①机构动力电源三相或两相无电压(断路器未合或熔断器断开), 电动机不能启动;

②操作动力电源有一相无电压,电动机两相受电引起过电流使电 源接触器跳闸; ③机构交流控制电源无电压,控制回路不能动作; ④操作交流电源三相相序错误,使电动机反向旋转,有关保护动作使电源接触器跳闸。如属这种情况,将三相电源中两相互换,调正电源相序即可重新操作。如属①②③情况应排除电源故障,然后再启动调 压; ⑤控制回路是否闭锁。 闭锁的可能原因:交流失压,三相失步,调整时间过长或其它,根据直流控制回路的设计而定。应根据设计回路图及出现的信号,查明 并排除引起闭锁的原因。 2、有载分接开关机械故障。 有载分接开关机械故障包括切换开关或分头选择器故障、操作机 构机械故障在内,是一种严重故障,可能产生以下情况: (1)分头选择器带负荷转换。这种情况与带负荷分合隔离开关相似,将使变压器本体主瓦斯继电器动作跳闸。 (2)切换开关拒动或切换不到位。如果切换开关在切换中途长时间停止在某一中间位置,会使过渡电阻因长期通电而过热,可能使切换开关瓦斯继电器动作,将变压器跳闸. (3)切换开关或分头选择器触头接触不良过热。 发生以上类似情况时,应及时申请将变压器退出运行,进行检修。

电力变压器铁芯柱截面的优化设计

A 题 电力变压器铁心柱截面的优化设计 电力变压器的设计中很重要的一个环节就是铁心柱的截面如何设计。我国变压器制造业通常采用全国统一的标准铁心设计图纸。根据多年的生产经验,各生产厂存在着对已有设计方案的疑问:能否改进及如何改进这些设计,才能在提高使用效果的同时降低变压器的成本。 现在以心式铁心柱为例试图进行优化设计。 电力变压器铁心柱截面在圆形的线圈筒里面。为了充分利用线圈内空间又便于生产管理,心式铁心柱截面常采用多级阶梯形结构,如图1所示。截面在圆内上下轴对称,左右也轴对称。阶梯形的每级都是由许多同种宽度的硅钢片迭起来的。由于制造工艺的要求,硅钢片的宽度一般取为5的倍数(单位:毫米)。因为在多级阶梯形和线圈之间需要加入一定的撑条来起到固定的作用,所以一般要求第一级的厚度最小为26毫米,硅钢片的宽度最小为20毫米。 铁心柱有效截面的面积,等于多级铁心柱的几何截面积(不包括油道)乘以叠片系数。而叠片系数通常与硅钢片厚度、表面的绝缘漆膜厚度、硅钢片的平整度以及压紧程度有关。设计时希望有效截面尽量大,既节省材料又减少能量损耗。显然铁心柱的级数愈多,其截面愈接近于圆形,在一定的直径下铁心柱有效截面也愈大。但这样制造也工艺复杂,一般情况下铁心柱的级数可参照表1选取。 图1 铁心柱截面示意图

表1 铁心柱截面级数的选择 问题一:当铁心柱外接圆直径为650毫米时,如何确定铁心柱截面的级数、各级宽度和厚度,才能使铁心柱的有效截面积最大。 问题二:实际生产中线圈的内筒直径和铁心柱的外接圆直径不是精确地相等,而留有一定的间隙以便于安装和维修,设计的两个直径的取值范围称为各自的公差带。因此可以在设计铁心截面时稍微增加铁心柱的外接圆的直径以使得铁心柱有更好的截面形状。请结合铁心柱截面的设计而设计出二者的公差带。 问题三:铜导线在电流流过时发热造成的功率损耗简称为铜损;铁心在磁力线通过时发热造成的功率损耗简称为铁损。为了改善铁心内部的散热,铁心柱直径为380毫米以上时须设置冷却油道。简单地说,就是在某些相邻阶梯形之间留下6毫米厚的水平空隙(如图2所示),空隙里充满油,变压器工作时油上下循环带走铁心里的热量。具体油道数可按表2选取。 油道的位置应使其分割的相邻两部分铁心柱截面积近似相等。 分别针对问题一和问题二的情况,增加油道要求再给出设计,并指出油道的位置。 油道 图2 带油道的铁心柱截面

110kv正泰有载调压变压器说明书

110kv 马泰壕变电站设备型号说明 一、主变压器 额定容量:25/25MVA 额定电压:110/10.5Kv 分接范围:110±(8x1.25%)/10.5kV 额定电流:131.2/1374.6A 连接组别:YNd11 额定频率:50Hz 相数:3 冷却方式:ONAN [1、油浸自冷(ONAN); 2、油浸风冷(ONAF); 3、强迫油循环风冷(OFAF); 4、强迫油循环水冷(OFWF); 5、强迫导向油循环风冷(ODAF); 6、强迫导向油循环水冷ODWF) ]。 绝缘水平:h.v.线路端子 LI/AC 480/200KV h.v.中性点端子 LI/AC 325/140KV l.v. 线路端子 LI/AC 75/35KV 二、主变试验项目 1、电压比测量及联结组别标号检定;(变比测试仪) 2、绕组电阻测量;(电阻测试仪) 3、绝缘电阻、电容、介损测量、外施耐压试验; 4、空载电流、空载损耗; 5、负载损耗、阻抗电压测量; 6、雷电冲击试验; 7、感应耐压试验; 8、声级测定; 9、空载电流电压谐波; 10、零序阻抗; 11、油试验、密封试验、有载分接开关试验; 三、主变使用说明 1、安装及装配注意事项 1.1装水银温度计、温度指示控制器,在安装的同时要将温度计座内注入变压器油,油量要能完全侵泡温包,以保证温度计反应准确。 1.2有密封胶条的法兰安装时,螺栓要均匀施力,使得密封条均匀受力。 1.3变压器注油时所有放气塞必须打开,冒油是再密封好。 1.4注入变压器油后,将散热器、气体继电器、套管(密封式套管除外)、观察窗、高压套管 一次侧额定电压110KV 额定容量25000 损耗等级10 有载调压 三相

高频变压器的设计与实验研究

高频变压器的设计与实验研究 刘修泉1,曾昭瑞2,黄平2 (1.广州番禺职业技术学院,广东广州511483;2.华南理工大学机械与汽车工程学院, 广东广州510640) 摘要:给出了感应电能传输系统高频变压器的设计方法,并进行了实验和分析。关键词:高频变压器;感应电能传输;损耗;温升中图分类号:TM402 文献标识码:B 文章编号:1001-8425(2009)03-0013-04 Design and Experimental Research of HF Transformer LIU Xiu 蛳quan 1,ZENG Zhao 蛳rui 2,HUANG Ping 2 (1.Guangzhou Panyu Polytechnic,Guangzhou 511483,China; 2.South China University of Technology,Guangzhou 510640,China ) Abstract :The design method of HF transformer for inductive electric energy transmission system is presented.The experiment and analysis are made. Key words :HF transformer ;Inductive electric energy transmission ;Loss ;Temperature rise 基金项目:广州市科技攻关项目(2005Z3-E0341) 1引言 移动机电设备,如电力机车和城市电车等,其传统供电方式一般为滑动接触方式,存在磨损和电火花等一系列问题。由此一种新的能量供应方式感应电能传输被提出来。感应电能传输系统可以无接触供电,消除了传统接触供电的安全隐患,提高了系统供电的灵活性[1]。感应电能传输系统主要是利用变压器来传递能量,利用耦合式电磁感应原理,电磁耦合结构相当于一个分离变压器,即变压器初级和次级绕组是分离的,存在空隙的。工频交流电经整流且逆变成高频交流电提供给初级绕组,根据电磁感应定律,次级绕组两端产生高频的感应电动势,经过整流和稳压等环节之后,为用电负载供应电能,实现电能传输。 感应电能传输系统变压器初、次级绕组的频率很高,其绕组参数受频率影响很大,电感和电阻均随着频率变化而变化,电感变化一般很小,但电阻变化很大,称为交流电阻,是直流电阻的几倍、几十倍甚至更大[2,3]。因此,高频变压器设计是感应电能 传输系统的核心。 笔者介绍了高频变压器设计中主要考虑的因素,根据面积法给出了设计高频变压器的一般方法,并对其进行了实验和分析。 2高频变压器设计中考虑的因素 在高频变压器的设计中,对铁心有以下要求:(1)高的饱和磁通密度或高的振幅磁导率。(2)在工作频率范围有低的铁心总损耗。软磁铁氧体满足上述要求,因此高频变压器铁心选择铁氧体PC30。但是在设计中必须考虑铁心损耗、绕组损耗和温升等问题,才能获得高效的系统。 2.1铁心损耗 铁心损耗取决于磁感应增量、频率和温度,在这里忽略温度的影响。软磁铁氧体铁心总损耗通常由三部分构成:磁滞损耗P h 、涡流损耗P e 和剩余损耗P r 。每种损耗产生的频率范围是不同的。但是铁心总损耗为[4]: P coreless =K p V core f m B n (1) 式中 K p ——— 铁心损耗系数,忽略温度变化时为常数第46卷第3期2009年3月 TRANSFORMER Vol.46March No.32009

80922126752:有载调压变压器调压特性分

有载调压变压器调压特性分析 兴义供电局黄昌虎【562400】 摘要:文中对有载调压变压器的调压原理进行了详细分析,并对有载调压变压器的负调压特性和正调压特性进行了探讨。 关键词:有载调压变压器;调压特性;正调压效应;负调压效应 Abstract : In this paper, on-load tap-changing transformer voltage regulating principle is analyzed in detail, and the on-load tap-changing transformer negative pressure regulating characteristics and positive voltage characteristics were discussed. Key word : On-load transformer ; voltage characteristic; positive pressure regulating effect; negative pressure regulating effect 引言 电力系统为了将运行电压维持在一个合理的水平,采取了诸多调整电压的措施,其中由于有载调压变压器(OLTC)分接头比无载调压变压器分接头的调节范围大,具有调压无需测直流电阻,可以随着电网电压变化而自动有载调压等优点,因此通过有载调压变压器调整电压的方法得到了越来越广泛的应用。我国《电力系统技术导则》规定:对110kV及以下系统,宜考虑至少有一级电压的变压器采用有载调压方式。从国外来情况来看,无论对于哪一级电压的网络供电变压器,各国电力系统普遍都采用了有载调压方式,一些系统还采用了按母线电压自动调节的方式,也就是说利用有载调压变压器分接头自动调整系统电压在许多国家已经广泛使用,在我国也有逐渐推广使用的趋势。但是改变变压器变比调节电压是有条件的,这个条件就是:必须维持系统的无功功率平衡。离开这个条件,非但不能起到调压的作用,在严重情况下还可能引起系统电压的全面崩溃,使系统解裂,招致灾难性的后果。 1 有载调压变压器调压与负荷恢复 在讨论OLTC调压与负荷恢复得关系时由于OLTC为响应较慢的设备,因此,在研究OLTC 恢复负荷的特性时,快速响应的发电机和异步电动机就可以用它们的静态方程式来代替,这样就只要考虑OLTC的动态过程。 如图-1所示简单系统,图中为一台发电机通过输电线路对一台OLTC供电的情况。在图中用串联漏阻抗的理想变压来表示OLTC。为简单起见,忽略变压器绕组的铜损和铁损,与

变压器复习试题

《变压器》复习题 一、单项选择题 1.变压器是一种(D)的电气设备,它利用电磁感应原理将一种电压等级的交流电转变成同频率的另一种电压等级的交流电。 A.滚动 B.运动 C.旋转 D.静止 3.电力变压器按冷却介质可分为(A)和干式两种。 A.油浸式 B.风冷式 C.自冷式 D.水冷式 4.变压器的铁芯是(A)部分。 A.磁路 B.电路 C.开路 D.短路 5.变压器铁芯的结构一般分为(C)和壳式两类。 A.圆式 B.角式 C.心式 D.球式 6.变压器(C)铁芯的特点是铁轭靠着绕组的顶面和底面,但不包围绕组的侧面。 A.圆式 B.壳式 C.心式 D.球式 7.变压器的铁芯一般采用(C)叠制而成。 A.铜钢片 B.铁(硅)钢片 C.硅钢片 D.磁钢片 9.变压器的铁芯硅钢片(A)。 A.片厚则涡流损耗大,片薄则涡流损耗小 B.片厚则涡流损耗大,片薄则涡流损耗大 C.片厚则涡流损耗小,片薄则涡流损耗小 D.片厚则涡流损耗小,片薄则涡流损耗大 10.电力变压器利用电磁感应原理将(A)。 A.一种电压等级的交流电转变为同频率的另一种电压等级的交流电 B.一种电压等级的交流电转变为另一种频率的另一种电压等级的交流电 C.一种电压等级的交流电转变为另一种频率的同一电压等级的交流电 D.一种电压等级的交流电转变为同一种频率的同一电压等级的交流电 11.关于电力变压器能否转变直流电的电压,下列说法中正确的是(B)。 A.变压器可以转变直流电的电压 B.变压器不能转变直流电的电压 C.变压器可以转变直流电的电压,但转变效果不如交流电好 D.以上答案皆不对12.绕组是变压器的(A)部分,一般用绝缘纸包的铜线绕制而成。 A.电路 B.磁路 C.油路 D.气路 13.根据高、低压绕组排列方式的不同,绕组分为(A)和交叠式两种。 A.同心式 B.混合式 C.交叉式 D.异心式 14.对于(A)变压器绕组,为了便于绕组和铁芯绝缘,通常将低压绕组靠近铁芯柱。 A.同心式 B.混合式 C.交叉式 D.异心式 15.对于(D)变压器绕组,为了减小绝缘距离,通常将低压绕组靠近铁轭。 A.同心式 B.混合式 C.交叉式 D.交叠式 18.从变压器绕组中抽出分接以供调压的电路,称为(B)。 A.调频电路 B.调压电路 C.调流电路 D.调功电路 19.变压器中,变换分接以进行调压所采用的开关,称为(A)。 A.分接开关 B.分段开关 C.负荷开关 D.分列开关 20.变压器二次(D),一次也与电网断开(无电源励磁)的调压,称为无励磁调压。 A.带100%负载 B.带80%负载 C.带10%负载 D.不带负载 21.变压器二次带负载进行变换绕组分接的调压,称为(B)。 A.无励磁调压, B.有载调压 C.常用调压 D.无载调压 22.变压器的冷却装置是起(B)的装置,根据变压器容量大小不同,采用不同的冷却装置。 A.绝缘作用 B.散热作用 C.导电作用 D.保护作用 25.(B)位于变压器油箱上方,通过气体继电器与油箱相通。 A.冷却装置 B.储油柜 C.防爆管 D.吸湿器 26.(C)位于变压器的顶盖上,其出口用玻璃防爆膜封住。 A.冷却装置 B.储油柜 C.安全气道 D.吸湿器 27.(B)内装有用氯化钙或氯化钴浸渍过的硅胶,它能吸收空气中的水分。 A.冷却装置 B.吸湿器 C.安全气道 D.储油柜 28.(D)位于储油柜与箱盖的联管之间。 A.冷却装置 B.吸湿器 C.安全气道 D.气体(瓦斯)继电器 29.变压器内部的高、低压引线是经绝缘套管引到油箱外部的,它起着固定引线和(A)的作用。 A.对地绝缘 B.对高压引线绝缘 C.对低压引线绝缘 D.对绝缘套管绝缘 30.在闭合的变压器铁芯上,绕有两个互相(A)的绕组,其中,接入电源的一侧叫一次侧绕组,输出电能的一侧为二次侧绕组。 A.绝缘 B.导通 C.导体 D.半绝缘

变压器优化设计软件开发

变压器优化设计软件开发 摘要:本软件编程语言为Visual Basic和C++,编程语言和变压器设计原理相结合。采用分层遗传算法实现变压器的优化设计,并以220kV两圈变压器为实例进行验证,改进的MLGA比单层传统GA成本节省了3.02%,比手工设计方案节约9.48%。开发了10-220kV等级变压器的优化设计软件及界面,实现变压器设计人员由手工计算向计算机软件计算转变。 关键词:Visual Basic;变压器设计原理;分层遗传算法;变压器优化设计 1 概述 变压器优化设计软 件节约设计成本,提高设计质量,缩短产品的开发周期,将人工智能技术、数据库技术应用于设计中去,快速设计其结构方案,进一步提高公司的技术水平、企业形象和在市场中的核心竞争力。研究基于知识工程的计算机集成系统对变压器制造企业在“以市场需求为中心”的激烈竞争中有着很强的应用价值,对我国变电设 备制造企业和国民经济的发展有重要的现实意义[1]。 2 分层遗传算法的原理 本软件采用改进的分层遗传算法进行优化设计,传统的遗传算法是将所有设计优化变量进行编码形成一个向量(染色体),然后由染色体组成一个种群进行进化操作;分层遗传算法的基本思想是将设计优化变量根据工程实际权重或优化先后顺序分类并进行独立编码,放置在不同的层中,每层中可以有多个种群进行并行的遗传操作,因此每个种群可以采用不同的遗传算子、不同的遗传参数,并行的设计。不失一般性,这里以三层遗传优化算法为例,简要介绍分层遗传算法原理[2]。如图1所示。 第一层GA1是控制其他模块的独立遗传算法,第二层GA2和第三层GA3分别由一系列的模块组成,每个模块对应一个子问题,每个子问题对应一个独立的GA,且同一层中的各个模块的编码相同。一个独立的GA可以用以下格式来描述: GA=(PO,PS,IS,FIT,SO,CO,MO) (1)其中PO、PS、IS、FIT,分别表初始种群、种群大小、编码长度以及适应度值,SO、CO、MO分别代表选择、交叉、变异,故分层遗传算法可以用下式描述: GAij=(POij,PSij,ISij,FITij,SOij,COij,MOij) (2) 其中下标i和j表示分层遗传算法第i层第j个模块,GAij表示用独立遗传算法求解第i层第j个模块。由于上层和下层以及同层相邻模块之间的影响,考虑上层和下层之间的影响,GAij可以表示为式(3)。 GAij={POij(GAi-1,j),PSij(GAi-1,j),ISij(GAi-1,j),FITij(GAi-1,j),SOij (GAi-1,j),COij(GAi-1,j),MOij(GAi-1,j)}(3) 如果考虑同层相邻模块的影响则GAij表示为式(4)。 GAij={POij(GAi-1,j,GAi-1,j,GAi-1,j),PSij(GAi-1,j,GAi,j-1,GAi,j +1), ISij(GAi-1,j,GAi,j-1,GAi,j +1),FITij(GAi-1,j,GAi,j-1,GAi,j +1), SOij(GAi-1,j,GAi,j-1,GAi,j +1),COij(GAi-1,j,GAi,j-1,GAi,j +1), MO(GAi-1,j,GAi,j-1,GAi,j +1)}(4)

主变压器结构、各部件作用

运行培训教案 主变压器结构、各部件作用 运行部 二〇一〇年八月

主变压器结构、各部件作用 一、变压器的基本结构与分类 变压器是一种改变交流电源的电压、电流而不改变频率的静止电气设备,它具有两个(或几个)绕组,在相同频率下,通过电磁感应将一个系统的交流电压和电流转换为另一个(或几个)系统的交流电压和电流而借以传送电能的电气设备。通常,它所连接的至少两个系统的交流电压和电流值是不相同的。 由此可见,变压器是一种通过电磁感应而工作的交流电气设备。主变压器系统由线圈、铁芯、主变油箱、变压器油、调压装置、瓦斯继电器、油枕及油位计、压力释放器、测温装置、冷却系统、潜油泵等组成。另外,主变压器还安装了气相色谱在线监测装置,每周对变压器油进行溶解气体检测,以便判断设备运行状况。 变压器的分类有多种方法:按用途不同可分为电力变压器、工业用变压器及其他特种用途的专用变压器;按绕组与铁芯的冷却介质不同可分为油浸式变压器与干式变压器;按铁芯的结构型式不同可分为心式变压器与壳式变压器;按调压方式不同可分为无励磁调压变压器与有载调压变压器;按相数不同可分为三相变压器与单相变压器;按铁芯柱上的绕组数不同可分为双绕组变压器与多绕组变压器;按不同电压的绕组间是否有电的连接可分为独立绕组变压器与自耦变压器等等。 二、变压器的各部件作用 我厂500kV主变压器由日本三菱公司生产,共19台(一台备用)型号为SUW的单相、双卷、油浸式水冷无载分接升压壳式变压器组,三台单相变压器以Y0/△—11型接线组成与发电机组成单元接线,额定容量3×214MVA,额定电压550/18kV,无载分接范围550—4×%,阻抗电压15%。高压侧出线经高压套管与SF6绝缘封闭母线联接,变压器中性点三相经穿墙套管联接在 B 相主变室经电缆接地;变压器的冷却方式为强迫油循环水冷(ODWF);每台单相变压器共三组冷却器,运行方式为两台优先、一台备用。主变压器高压侧中性点直接接地方式,低压侧经软连接辫与离相封闭母线联接,高压侧通过SF6管道母线与500kV电缆联接。 表1.主变压器主要参数

简析500kV变电站所用变压器的优化设计

简析500kV变电站所用变压器的优化设计 发表时间:2016-07-01T15:15:50.023Z 来源:《电力设备》2016年第7期作者:龙晓慧罗栋梁邵贤[导读] 500kV电网系统的加强,设计和制造技术的提高及产品的不断改进。 龙晓慧罗栋梁邵贤(国核电力规划设计研究院)0引言500kV电网系统的加强,设计和制造技术的提高及产品的不断改进,所用电系统的可靠性也越来越高,通过对山东省已运行的3座500kV变电站所用电系统实际应用情况进行了调查、分析、研究,有必要对所用电系统中的所用变压器容量、台数及其一次接线方式作进一步优化设计。1所用变压器容量及台数的选择500kV变电站远景规模一般为2~4台主变压器,500kV出线4~回,220kV出线10~16回,主变压器低压侧接6~12组无功补偿装置,所用变压器容量大多在630~1000kVA之间[1-3]。安装3台所用变压器,近期安装2台所用变压器,其容量均按100%负荷考虑。所用变压器容量按下式计算[4]:S≥K1.P1+P2+P3 式中:S—所用变压器容量(kVA);K1—所用动力负荷换算系数,一般取K1=0.85;P1—所用动力负荷之和(kW);P2—所用电热负荷之和(kW);P3—所用照明负荷之和(kW)。根据变电站负荷统计及计算结果,在500kV变电站设计中,站用变压器一般选择630kVA或800kVA。由于负荷计算均按远景规模,而近期建设规模主变压器最多为2台,如淄博500kV变电站为2台主变压器;济南、潍坊500kV变电站均为1主变压器。主变压器各侧电压等级的出线回路也较少,这样所用变压器所带负荷也相对较少,如果所用变压器容量选择较大就不利于所用变压器的经济运行。从调查已运行的变电站所用电系统负荷情况与按远景规模所用负荷计算的结果相比较看,按远景规模所用负荷计算的结果要大的多, 主要原因如下: (1)真空滤油机和真空泵负荷,一般在主变压器大修时才使用。(2)主变压器冷却负荷,在计算负荷时按ODAF冷却方式,全部冷却器都运行,而实际情况主变压器负荷轻只有部分冷却器运行。(3)各电压等级配电装置断路器、隔离开关操作机构等加热负荷,由于各电压等级单元数量较少,达不到远景计算负荷。从所用变低压侧380V/220V接线方式来考虑,一般均采用单母线分段接线,一段母线上接一台工作所用变,正常运行时两台所用变分裂运行,基本上各带一半全所用电负荷。重要负荷都按双回路设计,另外随着制造厂技术水平不断提高,主变压器的可靠性越来越高,主变压器大修的可能性变的更少。鉴于上述分析的情况及所用变压器本身故障率极小,500kV变电站所用变压器我们推荐选用2所用变压器。每台所用变压器容量按全所负荷的100%考虑。若仍选用3台所用变压器,其一,考虑实际所用电负荷应用情况。其二,考虑低压侧380V/220V一般采用单母线分段接线,一段接一台工作所用变,备用所用变低压侧有两台自动开关分别接两段母线上。正常工作时两台工作所用变同时运行,分段开关断开。任一台工作所用变故障、退出或检修时可投入备用所用变;当仅有一台所用变运行时合上分段开关,此时一台所用变带全所负荷。一台所用变压器运行的可能性是非常小的,这种情况的出现只有在一台主变压器检修时才会出现上述情况,即便如此,在考虑其它负荷的同时率后,一台所用变带全所负荷也是适宜的。因此我们建议采用3台所变时,从初期到远景每台所用变压器容量都按全所负荷66.7%来选择。 2所用变压器一次接线方式对于选用2台所用变压器,初期建设只有1台主变压器时,装设1台从所外可靠电源引接的所用变压器。当第二台主变压器安装后,此外引的所用变压器从第二台主变压器低压侧引接。因为两台主变压器同时故障的可能性很小,若出现这种可能,我们从接线方式上考虑外引电源通过隔离刀闸与主变压器低压母线上引接隔离刀闸,相互切换来实现对全所供电。其接线方式如下: 这种接线方式,正常时由主变压器低压母线供电;母线或主变压器故障检修时,由外引电源来供电。母线隔离刀闸与外引电源进线隔离刀闸之间可实现电气闭锁,来保证母线或主变压器故障检修时,其低压侧不带电。当500kV变电站最终规模选用3台所用变压器时,与以往工程接线相同,即两台工所用变高压侧分别接于主变压器三次侧母线上,备用所用变压器采用外引电源。3技术经济比较从技术上来讲,选用两台所用变压器是完全可行的,正常时,两台所用变压器同时向全所负荷供电;当一台所用变压器故障、检修退出运行时,另一台所用变压器可带全所负荷。从经济上来讲,选用两台所用变压器可节省一台所用变压器约16,一台带套管电流互感器的断路器约12.5万元,另外还可适当节约占地,共计节省投资约30万元左右。4结论

变压器有载调压的原理

变压器有载调压的原理: 变压器的高压绕组终端区隔一些线匝就抽出一个接头,电源接在不同的抽头上,高压绕组的实际线匝数就不同,而低压绕组的线匝数是固定的,这样,变化的高压绕组匝数和不变的低压绕组匝数就构成了不同的变比,根据变压器变压的原理,低压绕组就可以随高压绕组接不同的抽头而变出不同的电压;高压绕组的抽头可以在线圈的电源侧,也可以在中心点侧,这都能不能改变其基本原理。所以220KV以下的变压器抽头一般设在电源侧,更高电压的变压器抽头就设在高压绕组的中心点侧了; 变压器一般都带抽头,以便现场根据实际电压来调整电压值。但是无载调压占多数,主要是一般地区的电压变化不是那么频繁和幅度那么大,可以不用时时调整;但是有些地方对于电压要求比较严,有些地方的电压常常变化,就得使用有载调压了。 有载调压就是将上述绕组抽头都接在有灭弧能力的开关上,在外部通过远方控制手的或自动调节电源好这些抽头的连接,从而达到随时调整低压绕组输出电压的目的。调整时,这些开关先与需要的那个抽头接上,然后断开原来接通的抽头,因为有电压好运行电流的存在,所以跳开的开关与我们使用的其他电源开关一样,要灭弧后断开。 什么情况下不允许调整变压器有载调压装置的分接头? (1)变压器过负荷运行时(特殊情况除外); (2)有载调压装置的轻瓦斯动作报警时; (3)有载调压装置的油耐压不合格或油标中无油时; (4)调压次数超过规定时;

(5)调压装置发生异常时。 500kV变压器也是用的有载调压?厉害! 单从有功潮流方向还不能确切判断如何调整,还得看无功方向,我仅凭经验简单说明一下,但还得进行深层分析,以500kV侧CT为参考点: 第一相限:即有功、无功由500kV流向220kV,500侧电压高说明500kV侧无功过剩,可根据电网运行数据计算需方的无功需量,这种情况一般来讲,调底有载开关档位起不到多大作用,应降低500kV侧系统(发电机无功出力)或投电抗器来实现; 第二相限:即有功由220流向500,无功由500流向220,500侧电压高还是说明500kV侧无功过剩,调节方式同上; 第三相限:即有功、无功均由220流向500,这种情况一般不会导致500kV 过压,除非220侧电压超得太多,也可以调高有载开关档位(类似升压变);第四相限:即有功由500流向220,无功由220流向500,说明220侧无功过剩,也可以调高有载开关档位,或投电抗器或降低220侧系统无功; 有载开关调节都很困难,500kV一般都由电容、电抗器来调节或调发电机AVR,很方便。 以上内容仅为鄙人观点,若有错误,尽请谅解,能力有限,请多指教。 主变压器的有载调压开关操作规程 6.1??110kV主变使用的ZY-I-III300/110-±8有载调压分接开关是镶入型的,具有单独油箱和小油枕的开关。 6.2 有载分接开关的油温不得高于100℃,不低于-25℃。触头中各单触头的接触电阻不大于 500μΩ。 6.3 检修后及新安装的有载调压开关投入使用前,必须进行下述程序进行操作试验检查。 1. 投入使用前必须熟悉使用说明书的各项要求,先手动操作后电动操作。 2. 操作试验:在电动机控制回路施加电压之前,检查供给电源的额定值是否与所要求的数值一致。检查电动机的电源相序是否正确,若电源相序错,则断路器跳闸后再扣不上,或者断路器再扣后机构

电力变压器铁芯柱截面的优化设计

电力变压器铁芯柱截面的优化设计 摘要 针对变压器铁心柱截面优化设计,建立数学模型,利用动态规划法计算变压器铁心柱截面最优解,通过matlab程序实现。当直径为650毫米,叠片系数为0.98的时候,计算出级数为14级的时候有效面积最大,铁心柱截面的最大有效面积为314163.5平方毫米,面积利用率为94.72%。 运用动态规划方法计算任何铁心直径截面的最优解,既准确又快捷。利用vb进行编程,导出可执行软件。只要输入铁心柱的直径,级数,最小片宽还有叠片系数就能很快的算出铁心几何面积和有效截面积,以及各级的宽度和厚度。 而对于线圈的内筒直径和铁心柱的外接圆的公差带的设计,结合前一题的铁心柱截面的设计,对铁心柱直径的基本尺寸至500mm的,我们根据二者的最优配合,得出其上下偏差和公差,继而得到它们的公差带。对于基本尺寸500mm至3150mm的没有推荐的最优配合,综合考虑各因素的影响,可采用其常用配合,得出他们的公差带。同样利用vb进行编程,导出可执行软件,只用输入基本尺寸,然后选择公差代号和过程等级,就可上下偏差和公差。 根据铁心柱直径确定要增加的油道数,根据油道使分割相邻两边的面积近似相等,算出各个被分割的面积的大小,确定油道的位置。 关键词:动态规划最优解公差带基本尺寸有效面积 一问题的重述 电力变压器的设计中很重要的一个环节就是铁心柱的截面如何设计 为了充分利用线圈内空间又便于生产管理,心式铁心柱截面常采用多级阶梯形结构,截面在圆内上下轴对称,左右也轴对称。阶梯形的每级都是由许多同种宽度的硅钢片迭起来的。如何构造各个小矩形,使几何截面积最大?这就是电力变压器铁心柱截面积的优化问题。 为了改善铁心柱内部的散热,在某些相邻阶梯形之间留下一些水平空隙,放入冷却油。油道的位置应使其分割的各部分铁心柱截面积近似相等。因此在确定各级的设计后,还要考虑油道的设计。 问题一:当铁心柱外接圆直径为650毫米时,如何确定铁心柱截面的级数、各级宽度和厚度,才能使铁心柱的有效截面积最大。 问题二:实际生产中线圈的内筒直径和铁心柱的外接圆直径不是精确地相等,而留有一定的间隙以便于安装和维修,设计的两个直径的取值范围称为各自的公差带。因此可以在设计铁心截面时稍微增加铁心柱的外接圆的直径以使得铁心柱有更好的截面形状。请结合铁心柱截面的设计而设计出二者的公差带。 问题三:铜导线在电流流过时发热造成的功率损耗简称为铜损;铁心在磁力线通过时发热造成的功率损耗简称为铁损。为了改善铁心内部的散热,铁心柱直径为380毫米以上时须设置冷却油道。简单地说,就是在某些相邻阶梯形之间留下6毫米厚的水平空隙,空隙里充满油,变压器工作时油上下循环带走铁心里的热量。具体油道数可按表2选取。油道的位置应使其分割的相邻两部分铁心柱截

变压器的压力释放阀、变压器有载调压开关的瓦斯(气体)继电器、变压器本体瓦斯(气体)继电器的作用

变压器的压力释放阀、变压器有载调压开关的瓦斯(气体)继电器、变压器本体瓦斯(气体)继电器的作用分别是什么? 我在变压器瓦斯保护?回答过瓦斯继电器的问题。 变压器的压力释放阀是变压器非电量保护的安全装置。 压力释放阀是用来保护油浸电气设备的装置。即在变压器油箱内部发生故障时,油箱内的油被分解、气化,产生大量气体,油箱内压力急剧升高,此压力如不及时释放,将造成变压器油箱变形、甚至爆裂。安装压力释放阀可使变压器在油箱内部发生故障、压力升高至压力释放阀的开启压力时,压力释放阀在2ms内迅速开启,使变压器油箱内的压力很快降低。当压力降到关闭压力值时,压力释放阀便可靠关闭,使变压器油箱内永远保持正压,有效地防止外部空气、水份及其他杂项进入油箱。 变压器瓦斯保护: 工作原理 瓦斯保护是变压器内部故障的主要保护元件,对变压器匝间和层间短路、铁芯故障、套管内部故障、绕组内部断线及绝缘劣化和油面下降等故障均能灵敏动作。当油浸式变压器的内部发生故障时,由于电弧将使绝缘材料分解并产生大量的气体,其强烈程度随故障的严重程度不同而不同。瓦斯保护就是利用反应气体状态的瓦斯继电器(又称气体继电器)来保护变压器内部故障的。 在瓦斯保护继电器内,上部是一个密封的浮筒,下部是一块金属档板,两者都装有密封的水银接点。浮筒和档板可以围绕各自的轴旋转。在正常运行时,继电器内充满油,浮筒浸在油内,处于上浮位置,水银接点断开;档板则由于本身重量而下垂,其水银接点也是断开的。当变压器内部发生轻微故障时,气体产生的速度较缓慢,气体上升至储油柜途中首先积存于瓦斯继电器的上部空间,使油面下降,浮筒随之下降而使水银接点闭合,接通延时信号,这就是所谓的“轻瓦斯”;当变压器内部发生严重故障时,则产生强烈的瓦斯气体,油箱内压力瞬时突增,产生很大的油流向油枕方向冲击,因油流冲击档板,档板克服弹簧的阻力,带动磁铁向干簧触点方向移动,使水银触点闭合,接通跳闸回路,使断路器跳闸,这就是所谓的“重瓦斯”。重瓦斯动作,立即切断与变压器连接的所有电源,从而避免事故扩大,起到保护变压器的作用。 瓦斯继电器有浮筒式、档板式、开口杯式等不同型号。目前大多采用QJ-80型继电器,其信号回路接上开口杯,跳闸回路接下档板。所谓瓦斯保护信号动作,即指因各种原因造成继电器内上开口杯的信号回路接点闭合,光字牌灯亮。 保护范围 瓦斯保护是变压器的主要保护,它可以反映油箱内的一切故障。包括:油箱内的多相短路、绕组匝间短路、绕组与铁芯或与外壳间的短路、铁芯故障、油面下降或漏油、分接开关接触不良或导线焊接不良等。瓦斯保护动作迅速、灵敏可靠而且结构简单。但是它不能反映油箱外部电路(如引出线上)的故障,所以不能作为保护变压器内部故障的唯一保护装置。另外,瓦斯保护也易在一些外界因素(如地震)的干扰下误动作。 变压器有载调压开关的瓦斯继电器与主变的瓦斯继电器作用相同、安装位置不

有载调压变压器工作原理及注意事项

有载调压变压器工作原理及注意事项 北极星电力网技术频道作者: 2012-1-16 15:00:59 (阅572次) 所属频道: 电网关键词: 有载调压变压器 有载调压变压器可根据系统运行情况,在带负荷的条件下随时切换分接头开关,保证电压质量,而且分接头数目多、调节范围比较大,采用有载调压变压器时,可以根据最大负荷和最小负荷时分接头电压来分别选择各自合适的分接头。这样就能缩小二次(侧)电压的变化幅度,甚至改变电压变化的趋势。 为了防止可动触头在切换过程中产生电弧使变压器绝缘油劣化,甚至烧毁有载分接开关,调压绕组通过并联触头Q1、Q2与高压主绕组串联。可在带负荷的情况下进行分接头的切换。在可动触头Q1、Q2回路接入接触器KM1、KM2的工作触头并放在单独的油箱里。在调节分接头时,先断开接触器KM1,将可动触头Q1切换到另一分接头上,然后接通KM1。另 一可动触头Q2也采用同样的步骤,移到这个相邻的分接头上,这样进行移动,直到Q1和 Q2都接到所选定的分接头位置为止。当切换过程中Q1、Q2分别接在相邻的两个分接头位置时,电抗器L限制了回路中流过的环流大小。110kV及以上电压等级变压器的调压绕组 放在中性点侧,使调节装置处于较低电位。 1、有载分接开关运行一年或切换2000~4000次后,应取切换开关油箱中的抽样进行工频耐压试验(不低于30KV),试验应合格,否则更换合格变压器绝缘油。 2、新投入的分接开关,在切换5000次后,应将切换开关吊出检查,以后可按实际情况确定检查周期。 3、运行中的分接开关动作5000次后或绝缘油的击穿电压低于25kV时,应更换切换开关油箱的绝缘油。 4、为了防止分接开关在严重过负荷或系统短路时进行切换,宜在有载分接开关控制回 路中加装电流闭锁装置,其整定值不超过变压器额定电流的1.5倍。 5、电动操作机构应经常保持良好状态,有载分接开关配备的瓦斯保护及防爆装置均应 运行正常。当保护装置动作时应查明原因。 6、分接开关的切换开关箱应严格密封,不得渗漏。如发现其油位升高异常或满油位, 说明变压器与有载分接开关切换箱窜油。应保持变压器油位高于分接开关的油位,防止开关箱体油渗入变压器本体,影响其绝缘油质,并及时安排停电处理。电工之家 在变压器有载分接开关操作过程中,应遵守如下规定:

相关文档
最新文档