电磁场与电磁波论文

电磁场与电磁波论文
电磁场与电磁波论文

电磁场与电磁波论文

————电磁场与电磁波的应用

姓名王泽芳指导教师辛平秀

(吕梁高级实验中学理科1415班山西离石 033000)

摘要:磁是人类生存的要素之一。地球本身就是一个磁场,由于地球自身运动导致的两极缩短、赤道拉长、冰川融化、海平面上升等原因,地球的磁场强度正逐渐衰减。外加高楼林立、高压电网增多,人为地对地球磁力线造成干扰和破坏。所以,现在地球的磁场强度只有500年前的50%了,许多人出种种缺磁症状。科学家研究证实,远离地球的宇航员在太空中所患的“太空综合症’’就是因缺磁而造成的。由此可见磁对于生命的重要性。磁场疗法,又称“磁疗法”、“磁穴疗法”,是让磁场作用于人体一定部位或穴位,使磁力线透人人体组织深处,以治疗疾病的一种方法。磁疗的作用机制是加速细胞的复活更新,增强血细胞的生命力,净化血液,改善微循环,纠正内分泌的失调和紊乱,调节肌体生理功能的阴阳平衡。

关键词:磁疗电磁生物体生物磁场磁疗保健

电磁场与电磁波简介:电磁波是电磁场的一种运动形态。电与磁可说是一体两面,电流会产生磁场,变动的磁场则会产生电流。变化的电场和变化的磁场构成了一个不可分离的统一的场,这就是电磁场,而变化的电磁场在空间的传播形成了电磁波,电磁的变动就如同微风轻拂水面产生水波一般,因此被称为电磁波,也常称为电波。电磁场与电磁波在实际生产、生活、医学、军事等领域有着广泛的应用,具有不可替代的作用。如果没有发现电磁波,现在的社会生活将是无法想象的。生物电磁学是研究非电离辐射电磁波(场)与生物系统不同层次相互作用规律及其应用的边缘学科,主要涉及电磁场与微波技术和生物学。其意义在开发电磁能在医学、生物学方面的应用以及对电磁环境进行评价和防护。

生物电磁学的研究内容主要设计五个方面:1、电磁场(波)的生物学效应,研究在电磁场(波)作用下生物系统产生了什么;2、生物学效应机理,研究在电磁场(波)作用下为什么会产生什么;3、生物电磁剂量学,研究在什么条件下会产生什么;4、生物组织的电磁特性,研究在电磁场(波)作用下产生什么的生物学本质;5、生物学效应的作用,研究产生的效应做什么和如何做。

一.电磁场与电磁波理论的建立

在电磁学发展的早期,人们认识到带电体之间以及磁极之间存在作用力,而作为描述这种作用力的一种手段而引入的"场"的概念,并未普遍地被人们接受为一种客观的存在。现在人们已经认识清楚,电磁场是物质在一种形态,它可以和一切带电物质相互作用,产生出各种电磁现象。电磁场本身的运动服从波动的规律。这种以波动形式运动变化的电磁场称为电磁波。

库仑定律揭示了电荷间的静电作用力与它们之间的距离平方成反比。安培等人又发现电流元之间的作用力也符合平方反比关系,提出了安培环路定律。基于这与牛顿万有引力定律十分类似,泊松、高斯等人仿照引力理论,对电磁现象也引入了各种场矢量,如电场强度、电通量密度(电位移矢量)、磁场强度、磁通密度等,并将这些量表示为空间坐标的函数。但是当时对这些量仅是为了描述方便而提出的数学手段,实际上认为电荷之间或电流之间的物理作用是超距作用。直到法拉第,他认为场是真实的物理存在,电力或磁力是经过场中的力线逐步传递的,最终才作用到电荷或电流上。他在1831年发现了著名的电磁感应定律,并用磁力线的模型对定律成功地进行了阐述。1846年,法拉第还提出了光波是力线振动的设想。法拉第提出的电磁感应定律表明,磁场的变化要产生电场。这个电场与来源于库仑定律的电场不同,它可以推动电流在闭合导体回路中流动,即其环推动电流在闭合导体回路中流动,即其环路积分可以不为零,成为感应电动势。现代大量应用的电力设备和发电机、变压器等都与电磁感应作用有紧密联系。由于这个作用。时变场中的大块导体内将产生涡流及趋肤效应。电工中感应加热、表面淬火、电磁屏蔽等,都是这些现象的直接应用。继法拉第电磁感应定律之后,麦克斯韦提出了位移电流概念。电位移来源于电介质中的带电粒子在电场中受到电场力的作用。这些带电粒子虽然不能自由流动,但要发生原子尺度上的微小位移。麦克斯韦将这个名词推广到真空中的电场,并且认为;电位移随时间变化也要产生磁场,因而称一面积上电通量的时间变化率为位移电流,而电位移矢量D的时间导数为位移电流密度。它在安培环路定律中,除传导电流之外补充了位移电流的作用,从而总结出完整的电磁方程组,即著名的麦克斯韦方程组,描述了电磁场的分布变化规律。麦克斯韦方程组是在库仑定律(适用于静电)、毕奥-萨伐尔定律和法拉第电磁感应定律等实验定律的基础上建立起来的。通过提取上述实验定律中带普遍性的因素,并根据电荷守恒定律引入位移电流,就可以导出麦克斯韦方程组。J.C.麦克斯韦继承并发展了法拉第的这些思想,仿照流体力学中的方法,采用严格的数学形式,将电磁场的基本定律归结为4个微分方程,人们称之为麦克斯韦方程组。在方程中麦克斯韦对安培环路定律补充了位移电流的作用,他认为位移电流也能产生磁场。

麦克斯韦方程组给出了电磁场运动变化的规律,包括电荷电流对电磁场的作用。将麦克斯韦方程组、洛伦兹里公式和带电体的力学运动方程联立起来,就可以完全确定电磁场和带电体的运动变化。因此,麦克斯韦方程组和洛伦兹力公式构成了描述电磁场运动和电磁作用普遍规律的完整体系。

根据这组方程,麦克斯韦还导出了场的传播是需要时间的,其传播速度为有限数值并等于光速,从而断定电磁波与光波有共同属性,预见到存在电磁辐射现象。

静电场、恒定磁场及导体中的恒定电流的电场,也包括在麦克斯韦方程中,只是作为不随时间变化的特例。

二.在生产、生活上的应用

静电场的最常见的一个应用就是带电粒子的偏转,这样象控制电子或是质子的轨迹。很多装置,例如阴极射线示波器,回旋加速器,喷墨打印机以及速度选择器等都是基于这一原理的。阴极射线示波器中电子束的电量是恒定的,而喷墨打印机中微粒子的电量却随着打印的字符而变化。在所有的例子中带电粒子偏转都是通过两个平行板之间的电位差来实的。

1.磁悬浮列车

列车头部的电磁体N极被安装在靠前一点的轨道上的电磁体S极所吸引,同时又被安装在轨道上稍后一点的电磁体N极所排斥。列车前进时,线圈里流动的电流方向就反过来,即原来的S极变成N极,N极变成S极。循环交替,列车就向前奔驰。稳定性由导向系统来控制。

“常导型磁吸式”导向系统,是在列车侧面安装一组专门用于导向的电磁铁。列车发生左右偏移时,列车上的导向电磁铁与导向轨的侧面相互作用,产生排斥力,使车辆恢复正常位置。列车如运行在曲线或坡道上时,控制系统通过对导向磁铁中的电流进行控制,达到控制运行目的。“常导型”磁悬浮列车的构想由德国工程师赫尔曼·肯佩尔于1922年提出。“常导型”磁悬浮列车及轨道和电动机的工作原理完全相同。只是把电动机的“转子”布置在列车上,将电动机的“定子”铺设在轨道上。通过“转子”,“定子”间的相互作用,将电能转化为前进的动能。我们知道,电动机的“定子”通电时,通过电磁感应就可以推动“转子”转动。当向轨道这个“定子”输电时,通过电磁感应作用,列车就像电动机的“转子”一样被推动着做直线运动。

2.电磁泵

利用磁场和导电流体中电流的相互作用,使流体受电磁力作用而产生压力梯度,从而推动流体运动的一种装置。

实用中大多用于泵送液态金属,所以又称液态金属电磁泵。电磁泵按电源形式可分为交流泵和直流泵;按液态金属中电流馈给的方式可分为传导式电磁泵和感应式电磁泵;按结构不同可分为平面泵和圆柱泵等。传导式泵中,电流由外部电源经泵沟两侧的电极直接传导给液态金属;感应泵中,电流则由交变磁场感应产生。电磁泵没有转动部件,结构简单,密封性好,运转可靠,因此在化工、印刷行业中用于输送一些有毒的重金属,如汞、铅等;在原子能动力工业中用于输送化学性质特别活泼的金属,如钠、钾、钠钾合金;在铸造企业中可以用来做铝、镁等活泼金属的定量泵,但现在主要为军工等大型企业使用。

3. 磁流体发电机

磁流体发电中的带电流体,它们是通过加热燃料、惰性气体、碱金属蒸气而得到的。在几千摄氏度的高温下,这些物质中的原子和电子的运动都很剧烈,有些电子甚至可以脱离原子核的束缚,结果,这些物质变成自由电子、失去电子的离子以及原子核的混合物,这就是等离子体。将等离子体以超音速的速度喷射到一个加有强磁场的管道里面,等离子体中带有正电荷、负电荷的高速粒子,在磁场中受到洛伦兹力的作用,分别向两极偏移,于是在两极之间产生电压,用导线将电压接入电路中就可以使用了。

磁流体发电的另一个好处是产生的环境污染少。利用火力发电,燃烧燃料产生的废气里

含有大量的二氧化硫,这是造成空气污染的一个重要原因。利用磁流体发电,不仅使燃料在高温下燃烧得更加充分,它使用的一些添加材料还可以和硫化合,生成硫酸钾,并被回收利用,这就避免了直接把硫排放到空气中,对环境造成污染。利用磁流体发电,只要加快带电流体的喷射速度,增加磁场强度,就能提高发电机的功率。人们使用高能量的燃料,再配上快速启动装置,就可以使发电机功率达到1000万kW,这就满足了一些需要大功率电力的场合。目前,中国,美国、印度、澳大利亚以及欧洲共同体等,都积极致力于这方面的研究。

4.微波炉微波炉(microwave oven/microwave)

顾名思义,就是用微波来煮饭烧菜的。微波炉是一种用微波加热食品的现代化烹调灶具。微波是一种电磁波。微波炉由电源,磁控管,控制电路和烹调腔等部分组成。电源向磁控管提供大约4000伏高压,磁控管在电源激励下,连续产生微波,再经过波导系统,耦合到烹调腔内。在烹调腔的进口处附近,有一个可旋转的搅拌器,因为搅拌器是风扇状的金属,旋转起来以后对微波具有各个方向的反射,所以能够把微波能量均匀地分布在烹调腔内。微波炉的功率范围一般为500~1000瓦。从而加热食物。

.三电磁场与电磁波在医学上的应用

1.电磁波在医疗上的应用

在科学上,称超过人体承受或仪器设备容许的电磁辐射为电磁污染。电磁辐射分二大类,一类是天然电磁辐射,如雷电、火山喷发、地震和太阳黑子活动引起的磁暴等,除对电气设备、飞机、建筑物等可能造成直接破坏外,还会在广大地区产生严重电磁干扰。另一类是人工电磁辐射,主要是微波设备产生的辐射,微波辐射能使人体组织温度升高,严重时造成植物神经功能紊乱。但是对电磁辐射,要正确认识,而且要科学防护。事实上,电磁波也如同大气和水资源一样,只有当人们规划、使用不当时才会造成危害。一定量的辐射对人体是有益的,医疗上的烤电、理疗等方法都是利用适量电磁波来治病健身

2.生物电磁场保健

将人体置于姜氏场导舱内接受载有青春信息的植物幼苗发射的生物电磁波。结果发现:人体红细胞膜的渗透脆性降低,韧性增强;甲状腺素、性激素分泌增加;免疫功能提高;肾上腺皮质激素分泌无明显变化。提示:植物幼苗电磁波有助于红细胞功能的发挥,促进机体新陈代谢,增加青春活力,提高性功能,增强免疫力从而对人体发挥返老还青和医疗保健作用。

3.激光治疗

激光是60年代初出现的一种新光源。已广泛应用于国防、农业、卫生医疗和科学研究,也是治疗肿瘤的一种新方法。用它既能切割组织,又能同时止血,能使肿瘤组织迅速气化和雾化,从而使肿瘤在瞬间消失。激光对组织具有热、压、光和电磁场效应的作用。

热效应:激光能使肿瘤组织在几秒种的短时间内,局部温度高达200-1000摄氏度,使其变性、凝固坏死,继而气化消失。

压力效应:激光本身的光压和由高热导致的组织膨胀引起的二次冲击波,加深了肿瘤组织破坏。

光效应:激光被肿瘤组织吸收后,可增强热效应,使肿瘤组织被破坏。

电磁场效应:激光是一种电磁波。能产生电磁场,可使肿瘤组织离化、核分解而被破坏死亡,如有残癌也可自行消退,这可能与免疫有关。激光制造成激光器、激光手术刀用于治疗体表肿瘤,眼耳鼻咽喉肿瘤、神经肿瘤等。

4.EMF系统

EMF系统是由(株)日本MDM公司开发研究生产的新一代脑外科手术器械。根据其作用原理,我们俗称之为“电磁刀”。EMF系统利用高频电磁能对机体组织进行汽化,切割和凝固。因该系统外周围优良组织的热损伤小且不需要对极板,因此尤其使用于脑外等精密外科。对硬性及深部微小脑瘤的去除极为有效。EMF系统与常规的电刀相比,在原理和设计上都有很大区别。EMF系统用于汽化,切割和凝固的输出功率很小(49W以下),为一般电刀所不及。不需要对极板这一特点使单极手术刀用于脑外手术成为可能。没有烧伤感电和破坏神经系统的危险,安全性高,使用方便。与激光刀相比,不需要眼球保护镜和其它保护附件,操作时对患者和医生均无危害。手术时与患部直接接触,医生可以灵活掌握调节。与超声波刀相比,EMF系统对于硬化深部微小肿瘤的汽化治疗效果尤为显著。HandPiece非常轻便且呈弯曲状,使视野不受影响,并有利于长时间手术。刀头部分可以任意弯曲,适用于各种手术需要。

5.微波治疗

微波是指波长在1毫米至1米范围内的非电离辐射高频电磁波。70年代后期微波技术在医疗上得到应用。

科学家研究发现,微波治疗有3种:

一是大剂量高热治疗肿瘤,能抑制肿瘤细胞的蛋白质合成,降降低肿瘤细胞分裂速度,增强化疗、放疗效果;

二是用于局部生物体组织的凝固治疗,具有不炭化、不产生烟雾的特点;

三是小剂量的温热治疗,可以解痉、止痛、消炎并促进伤恢复等。

6.电磁波消毒利用电磁波的场效应和热效应

在5-l0分钟内能迅速达到国家卫生部规定的消毒要求,对成捆、成扎的纸币、成叠的毛巾、医疗器械具有穿透力强,无残留药毒性的消毒特点,是当今消毒领域的新突破。

四.在军事上的应用

1.雷达

雷达是利用电磁波探测目标的电子设备。发射电磁波对目标进行照射并接收其回波,由

此获得目标至电磁波发射点的距离、距离变化率(径向速度)、方位、高度等信息。雷达所起的作用和眼睛和耳朵相似,当然,它不再是大自然的杰作,同时,它的信息载体是无线电波。事实上,不论是可见光或是无线电波,在本质上是同一种东西,都是电磁波,传播的速度都是光速C,差别在于它们各自占据的频率和波长不同。其原理是雷达设备的发射机通过天线把电磁波能量射向空间某一方向,处在此方向上的物体反射碰到的电磁波;雷达天线接收此反射波,送至接收设备进行处理,提取有关该物体的某些信息(目标物体至雷达的距离,距离变化率或径向速度、方位、高度等)。

测量距离实际是测量发射脉冲与回波脉冲之间的时间差,因电磁波以光速传播,据此就能换算成目标的精确距离。测量目标方位是利用天线的尖锐方位波束测量。测量仰角靠窄的仰角波束测量。根据仰角和距离就能计算出目标高度。

测量速度是雷达根据自身和目标之间有相对运动产生的频率多普勒效应原理。雷达接收到的目标回波频率与雷达发射频率不同,两者的差值称为多普勒频率。从多普勒频率中可提取的主要信息之一是雷达与目标之间的距离变化率。当目标与干扰杂波同时存在于雷达的同一空间分辨单元内时,雷达利用它们之间多普勒频率的不同能从干扰杂波中检测和跟踪目标。

2.电磁炮

电磁炮是利用电磁发射技术制成的一种先进的动能杀伤武器.与传统的大炮将火药燃气压力作用于弹丸不同,电磁炮是利用电磁系统中电磁场的作用力,其作用的时间要长得多,可大大提高弹丸的速度和射程.因而引起了世界各国军事家们的关注.自80年代初期以来,电磁炮在未来武器的发展计划中,已成为越来越重要的部分。

3.电子对抗

电子对抗也称“电子战”或“电子斗争”。敌对双方利用电子技术进行的作战行动。目的是削弱、破坏敌方电子设备的使用效能,以保护己方电子设备效能得到充分发挥。包括雷达对抗、无线电通信对抗、光电对抗等。基本内容有电子对抗侦察、电子干扰和电子防御。电子对抗是现代战争的重要作战手段。

电子对抗就是敌对双方为削弱、破坏对方电子设备的使用效能、保障己方电子设备发挥效能而采取的各种电子措施和行动,又称电子战。电子对抗分3个方面:电子对抗侦察、电子干扰和电子防御。电子对抗侦察、电子干扰和电子防御。电子对抗按电子设备的类型可分为雷达对抗、无线电通信对抗、导航对抗、制导对抗、光电对抗和水声对抗等;按配置部位又可分为外层空间对抗、空中对抗、地面(包括海面)对抗和水下对抗。机载电子对抗系统是现代电子对抗的主要手段。随着弹道导弹和卫星的发展,外层空间是一个新的战场,电子对抗在未来的现代化战争中,将对战略攻防起到重要作用。

五.探测磁单极子实验的进展状况

由于探测磁单极子有重要意义,所以国外不少人员都在想方设法寻找它。各种探测方法都是根据目前在理论上预言的磁单极子的性质而提出的。其性质是:磁性强,容易被外磁场加速 ;电离能力比宇宙射线强得多;质量很大;正负磁单极子相遇而产生湮灭时会产生许多光子等等。最初,不少人企图用强磁场抽吸的办法,从岩石中寻找残存的磁单极子。岩样包括海

底岩石、月球上的岩石和各种陨石,但都没有成功。也有人利用大型粒子加速器大量观察宇宙射线,试图从中寻找磁单极子留下的径迹。

例如:1973年美国利用气球在约39千米的高空探测宇宙射线,气球上放置一台由33层塑料薄片、1层照像乳胶和1层照像底片组成的探测器,却并未发现磁单极子的径迹。美国研究人员还在人造卫星上装置探测器,同样也一无所获。这使很多物理学家对狄拉克的预言持怀疑态度,甚至狄拉克本人也说:“至今我是属于那些不相信磁单极子存在者之列。”但还是有不少物理学家对探测磁单极子极感兴趣。

1975年,一个由美国加利福尼亚大学和休斯敦大学组成的联合小组,在高空气球上安装了一个探测宇宙射线的装置,记录各种宇宙粒子的径迹。他们在对各种径迹进行显微分析后宣布,所观察的径迹中有一条电离性很强的粒子留下的径迹是磁单极子引起的。这个粒子的质量比质子约大200倍。这一事件在物理学界引起了极大轰动。但是,随后有不少人对他们的发现提出了不同看法,认为他们探测到的不是磁单极子,而是像铂这样的重原子核,或很重的反粒子。甚至还有一位参与该试验的研究人员出来证实,上述试验报告的部分论据引用了错误的实验数据,这次事件引起的轰动效应也随之烟消云散。

1982年,美国斯坦福大学的一个研究小组宣布,他们观察到一起“候补磁单极子事件”。他们的探测器是用直径01005厘米的铌导线绕制成的一个环形线圈,线圈直径5厘米、共4 匝,把它用作灵敏磁强计的传感探头。磁强计和线圈都放在一个直径20厘米、长 1米的圆筒形超导铅屏蔽之内,然后将它们装在阿姆科铁桶中。这种组合在超导情况下可以屏蔽外界磁场的干扰,如果有一个磁单极子穿过铌线圈,必然引起线圈磁通量的显著变化,从而激发起超导电流。这台探测器运行了38天,在1982年2月14日记录到一些磁通量的突然改变,其改变量恰好与满足狄拉克条件的磁单极子穿过铌线圈时引起的改变相同。为了慎重起见,他们并没有宣称发现了磁单极子,而是报告他们观察到一起“候补磁单极子事件”。此后,他们又启用了一个更先进的新探测器,但是至今没有听到其重复观测到磁单极子事件的报告。虽然如此,由于那次事件得到的结果与理论预言相符,又不能用磁单极子以外的事件做出较好的解释,因而仍然受到各国科学家的重视一事件增强了人们发现磁单极子的信心,所以有关磁单极子的理论研究和实验探索还在不断进行。然而,最终能否真正探测到磁单极子,仍然是一个谜。

总之,电磁场与电磁波在实际中应用广泛,以上所写只是实际应用中的一小部分。电磁场与电磁波有着强大的生命力和蓬勃的朝气,人们对它进行不断探索,创造出一个又一个具有强大功能的新工具。现代电子技术如通讯、广播、导航、雷达、遥感、测控、嗲面子对抗、电子仪器和测量系统,都离不开电磁场的发射,控制、传播和接收;从假期,工业自动化到地质勘测,从电力、交通等工业、农业到医疗卫生等国民经济领域,几乎全都涉及到电磁场理论的应用。不仅如此,电磁学一直是,将来仍是新兴科学的孕育点。从科学的角度来说,电磁波是能量的一种,凡是能够释出能量的物体,都会释出电磁波。正像人们一直生活在空气中而眼睛却看不见空气一样,人们也看不见无处不在的电磁波。

电磁波谱是无线电波,微波,红外线,可见光,紫外线,伦琴射线(X射线),伽玛射线。总而言之,电磁场理论在现代科技中的应用非常广泛,涉及的领域很多。从电磁场理论的发展历史到电磁场理论在现代科技中的应用,我们了解到的是电磁场理论的发展经历了很长时间,从初步的认识到完善,几代物理学家为之付出了很多的努力,然而它的发展还没有停止,还有很多被隐藏的真理等待我们去探索,电磁场理论应用的领域应该还可以被扩展,这

些都等待我们去发掘。

参考文献:

《生物电磁学》国防工业出版社,庞晓峰编著

《实用医疗学》国防工业出版社,周万松编

Electromagnetic field and electromagnetic wave

-- the application of electromagnetic field and electromagnetic wave

Name Wang Zefang tutor teacher Xin Pingxiu

(Lvliang senior middle school science experiment class 1415 Shanxi Lishi 033000)

Abstract:Magnet is one of the key elements of the human survival. The earth itself is a magnetic field, because the earth itself caused by the motion of the poles is shortened, the elongated, melting glaciers, sea level rise, the strength of the magnetic field of the earth is gradually decay. With high-rise buildings, high voltage power grid increases, people of the earth's magnetic field lines caused by interference and destruction so. Now, the earth's magnetic field strength is only 500 50% years ago, many people appear in a variety of short magnetic symptoms. Scientists confirmed that far away from the earth astronauts in space from the "space" is due to lack of magnetic syndrome "caused. Thus the importance of life. For magnetic field therapy, and Called "therapy", "magnetic acupoint therapy", is to make the magnetic field in certain parts of the body or point, the magnetic field penetration depths of human tissue, a method to treat the disease. The mechanism is to accelerate the revival of cell therapy updates, enhance blood cell vitality, purify the blood, improve microcirculation, correct endocrine the imbalance and disorder, balance of yin and Yang in regulating the body physiological function.

Key word:Magnetic electromagnetic biological organisms magnetic therapy health care

电磁场论文

电 磁 场 论 文 电子072202H 王焱 200722070223

高新技术与电磁场理论 摘要本文就最近发展的高新技术中有关电磁场和电磁波问题展开探讨,并在此基础上对当前高新技术的发展与电磁场理论的关系进行了较全面的概括,同时提出了作者的个人看法。电磁场理论是电工学和电子学的一门十分重要的基础课程。无论是电机、电器、高压输电、测量仪表以及一切无线电工程系统,例如,通信、广播、雷达、导航等的无线收发、讯号传输、电波传播等等,大到宇宙空间的星体辐射,小到集成电路的布线位置都牵涉到电磁场理论的问题,这一点大家都已很清楚了。这里我准备就最近发展的高新技术中有关电磁场和电磁波的问题谈谈自己的一点认识。 1.电子学方面的高新技术在1991年的海湾战争中得到了最集中和最充分的表演。 在这场战争中号称世界第四大军事强国的伊拉克在以美国为首的多国部队的电子战的打击下,一开始整个电子指挥系统,包括通信,武器装备,重要设防等就遭到严重的干扰和破坏,呈现瘫痪挨打的被动局面。因此只打了42天战争就损失兵员30万,财产1000~2000亿美元,最后不得不答应无条件投降。相反,多国部队在这场投下炸弹为当年在日本投下的原子弹几十倍的激烈战争中,在80万兵员中只死亡149人。这一奇迹,充分显示出电子战的重大威力。因而有人称海湾战争是一场“频谱战争”,是“电子战争”,是“信息战争”。这场电子战的主要手段包括电子侦察与精确定位(包括全球定位系统(GPS)和辐射源定位),电子干扰、精密制导、隐身飞机、C3I系统等等。这些高新技术都牵涉到电波与天线的问题。与过去不同的是地空一体化,把遥远分开的作战分部统一指挥控制,统一协调起来。对武器的性能指标要求精密度更高,响应时间更短,抗干扰的能力更强。因此对自适应天线,相控阵天线、毫米波天线、微带天线、卫星通信、移动通信等等提出了更高的要求。而这些研究课题的基础离不开电磁场理论。 2.隐身技术是目前国防军事的热门话题。 在海湾战争中美军使用F-117A隐身飞机成功地突破伊拉克的空防线完成了许多危险性最大的战略性攻击任务,占攻击目标的40%,命中率高达85%。参战的44架F117A型隐身飞机共出动1300次,飞行6900小时,没有一架被击落,可见其隐身的有效性。飞机在鼻锥方向对微波雷达的RCS只有0 .0 2 5m2 ,为常规战斗机的1 / 2 0 0。隐身技术的很重要一个方面的内容是电磁波的散射问题。电磁波投射到飞行目标上将发生散射。散射回来的电磁波究竟有多大场强,怎样减少回波的强度以达到隐身的目的,这些问题引起了广大从事电磁场研究工作人员的关注。因此目前大量的研究工作集中在如何计算电磁波投射到各种不同材料组成的各种形状物体的散射场上。根据最近报导,用碳化硅烧结出来的陶瓷,能有效地吸收频率从1 0MHz到10 . 2Gz的电磁波,吸收率达到99. 2 %。电磁散射的研究不只是为了隐身的目的,对地下资源和地层结构的勘探,对目标识别,对天线辐射,对电磁兼容等都有非常重要的意义。逆散射是由已知散射场的分布反过来确定波源和散射体的位置形状和组成。目标识别形状重建和微波成像都是逆散理论的具体应用。 3.核爆炸产生强大的电磁脉冲,这种冲击波将摧毁在其周围的电子仪器的正常工作。 研究这种瞬时暴发的冲击波的传播规律、作用距离、场强大小和散射特性等无疑会对保护人身安全,保护仪器设备,采用屏蔽措施等等起到重要的指导作用。这种具有强大摧毁力的脉冲现在又被试图用作战争中的杀伤武器,即所谓高功率微波弹,其单个输出脉冲峰值功率可到15GW。如果辐射的能量密度达到3~13mW/cm2 ,就可使人产生神经紊乱,心力衰竭并致盲。而对于电子仪器只要有0 . 01~1μW/cm2 的能量密度,仪器就不能正常运转。此外,人们发现,利用冲击脉冲的宽广频谱,可以从散射波形中提取大量的信息,从而可以识别目标。大功率的脉冲源可以利用光导开关和集成阵列达到空间合成的一致性要求。小功率的冲击波雷达,由于设备简单,成本低,已在诸如地下探测,汽车防撞和机场管制等方面

电磁场与电磁波概念题汇总解读

电磁场与电磁波概念题汇总 1.请写出B-D形式的场定律的微分形式及其相应的边界条件,并阐明每个方程(包括边界条件)的物理意义。(20分) 答:B-D形式的场定律的微分形式为 其物理意义为: (1式:时变的磁场是电场的涡旋源,可以产生涡旋电场; (2式:电流和时变的电场是磁场的涡旋源,可以产生涡旋磁场; (3式:电荷可以产生电场通量,电荷只有正、负两种; (4式:磁场没有通量源:磁荷; (5式:当空间点上的电荷密度减少时,必有电流密度的净通量。 在介质分界面上满足的边界条件为 其物理意义为: 边界两边电场切向分量连续;

边界上存在面电流时,两边磁场切向分量不连续; 边界上有面电荷存在时,电位移矢量法向分量不连续; 边界两边磁感应强度法向分量连续; 电荷守恒定律在边界上也是成立的。 2.写出简单媒质中关于正弦律时变场的复数形式的场定律。(10分) 答:简单媒质中关于正弦律时变场的复数形式的场定律为 3.写出时变电磁场的基本方程,并解释为什么电磁场的边值关系只能从积分形式的麦克斯韦方程组导出? 4.写出坡印廷矢量的定义式及微分形式坡印廷定理,并给出定理的物理解释。(P286~291)答:定义 微分形式 物理解释:电磁场在空间某点对运动电磁荷所提供的电磁功率密度等于该点电磁场能密度的减少率与外界向这点提供的电磁功率密度之和。 积分形式 物理解释:V内的电磁荷对电磁场所提供的总功率等于V内电磁场能量的增加率与从V内流出的电磁功率之和。 5.什么是均匀平面波?什么是TEM波?均匀平面波是TEM波吗?TEM波是均匀平面波吗?写出无源自由空间条件下均匀平面波的五个传播特性。 答:等相面与等幅面重合且为平面的电磁波称为均匀平面波;电场强度和磁场强度矢量在传播方向上分量为零的电磁波称为TEM波;均匀平面波是TEM波;TEM波不一定是均匀平面,如均匀柱面波、均匀平面波等都是TEM波。 无源自由空间条件下均匀平面波的五个传播特性(P355)

电磁场与电磁波理论 概念归纳

A.电磁场理论B基本概念 1.什么是等值面?什么是矢量线? 等值面——所有具有相同数值的点组成的面 ★空间中所有的点均有等值面通过; ★所有的等值面均互不相交; ★同一个常数值可以有多个互不相交的等值面。 矢量线(通量线)---- 一系列有方向的曲线。 线上每一点的切线方向代表该点矢量场方向, 而横向的矢量线密度代表该点矢量场大小。 例如,电场中的电力线、磁场中的磁力线。 2.什么是右手法则或右手螺旋法则?本课程中的应用有哪些?(图) 右手定则是指当食指指向矢量A的方向,中指指向矢量B的方向,则大拇指的指向就是矢量积C=A*B的方向。 右手法则又叫右手螺旋法则,即矢量积C=A*B的方向就是在右手螺旋从矢量A转到矢量B的前进方向。 本课程中的应用: ★无限长直的恒定线电流的方向与其所产生的磁场的方向。 ★平面电磁波的电场方向、磁场方向和传播方向。 3.什么是电偶极子?电偶极矩矢量是如何定义的?电偶极子的电磁场分布是怎样的? 电偶极子——电介质中的分子在电场的作用下所形成的一对等值异号的点电荷。 电偶极矩矢量——大小等于点电荷的电量和间距的乘积,方向由负电荷指向正电荷。

4.麦克斯韦积分和微分方程组的瞬时形式和复数形式; 积分形式: 微分方式: (1)安培环路定律 (2)电磁感应定律 (3)磁通连续性定律 (4)高斯定律 5.结构方程

6.什么是电磁场边界条件?它们是如何得到的?(图) 边界条件——由麦克斯韦方程组的积分形式出发,得到的到场量在不同媒质交界面上应满足的关系式(近似式)。 边界条件是在无限大平面的情况得到的,但是它们适用于曲率半径足够大的光滑曲面。 7.不同媒质分界面上以及理想导体表面上电磁场边界条件及其物理意义; (1)导电媒质分界面的边界条件 ★ 导电媒质分界面上不存在传导面电流,但可以有面电荷。 在不同媒质分界面上,电场强度的切向分量、磁场强度的切向分量和磁感应强度的法向分量永远是连续的 (2)理想导体表面的边界条件 ★ 理想导体内部,时变电磁场处处为零。导体表面可以存在时变的面电流和面电荷。

电磁波的应用 电磁场与电磁波研究型学习论文

电磁波的应用 摘要: 本文从电磁波频段使用的角度介绍了电磁波在生活中的应用,包括通讯方面的应用、医疗保健方面的应用、家用电器方面的应用,信息化战争的应用。 This paper introduces the electromagnetic wave from the Angle of the electromagnetic spectrum used in the application of life, including communications applications, the application of health care, home appliance applications, the application of information war. 引言 随着信息技术的飞速发展,电磁场与电磁波理论在通信,广播,电视,导航遥感遥测等方面有着越来越多的应用。要想在电磁场与电磁波的应用上有所作为,首先我们需要了解电磁波的基本概念,了解它目前现有的应用,再对电磁波应用在其他领域进行可行的预测。 正文 1电磁波的简要介绍: 电磁波,又称电磁辐射。是由同相振荡且互相垂直的电场与磁场在空间中以波的形式传递能量和动量,其传播方向垂直于电场与磁场构成的平面。电磁辐射的载体为光子,不需要依靠介质传播,在真空中的传播速度为光速。只要是本身温度大于绝对零度的物体,都可以发射电磁辐射,而世界上并不存在温度等于或低于绝对零度的物体。因此,人们周边所有的物体时刻都在进行电磁辐射。尽管如此,只有处于可见光频域以内的电磁波,才可以被人们肉眼看到。电磁波主要用以下参数描述:(1)周期T——相邻两个波峰或波谷通过某一固定点所需要的时间间隔,单位为s(秒).(2)频率f——单位时间内通过传播方向上某一点的波峰或波谷数目,即单位时间内电磁波振动的次数。f=1/T=w/2π(Hz)。(3)波长——波是由很多前后相继的波峰和波谷所组成,两个相邻的波峰或波谷之间的距离称为波长。频率与波长成反比: 其中,是波速(在真空里是光速;在其它介质里,小于光速),是频率,是波长。(4)波数k——表示在波的传播方向上单位距离滞后的相位,也称作相移常数。k=2π/λ(rad/m)。(5)光电子能量E——电磁辐射拥有像粒子的性质。电磁辐射是由离散能量的波包形成的,这波包又称为量子,或光子。光子的能量与电磁辐射的频率成正比。由于光子可以被带电粒子吸收或发射,光子承担了一个重要的角色:能量的传输者。根据普朗克关系式,光子的能量是 ;其中,是能量,是普朗克常数,是频率。电磁辐射可按照频率分类,从低频率到高频率,包括有无线电波、微波、红外线、可见光、紫外线、X射线和伽马射线等等。人眼可接收到的电磁辐射,波长大约在380至780纳米之间,称为可见光。按照在空间固定的场点,电场矢量末端随时间变化的轨迹不同,电磁波的极化可分为直线极化,圆极化和椭圆极化三种状态。 2 电磁波的应用

电磁场与电磁波理论基础自学指导书

电磁场与电磁波理论基础自学指导书 课程简介:电磁场理论是通信技术的理论基础,是通信专业本科学生必须具备的知识结构的重要组成部分之一。使学生掌握电磁场的有关定理、定律、麦克斯韦方程等的物理意义及数学表达式。使学生熟悉一些重要的电磁场问题的数学模型(如波动方程、拉氏方程等)的建立过程以及分析方法。培养学生正确的思维方法和分析问题的能力,使学生对"场"与"路"这两种既密切相关又相距甚远的理论有深刻的认识,并学会用"场"的观点去观察、分析和计算一些简单、典型的场的问题。为以后的学习和工作打下坚实的理论基础。 第一章矢量分析场论初步 1主要内容 本章从矢量分析入手,介绍了标量场和矢量场的基本概念,学习了矢量的通量、散度以及散度定理,矢量的环流、旋度以及斯托克斯定理,标量的梯度,以及上述的物理量在圆柱和球坐标系下的表达形式,最后介绍了亥姆霍兹定理,该定理说明了研究一个矢量场从它的散度和旋度两方面入手。通过本章的学习,使学生掌握场矢量的散度、旋度和标量的梯度的概念和数学计算为以后的电磁场分析打下基础。 2学习要求 深刻理解标量场和矢量场的概念;深刻理解散度、旋度和梯度的概念、物理意义及相关定理; 熟练使用直角坐标、圆柱坐标和球坐标进行矢量的微积分运算; 了解亥姆霍兹定理的内容。 3重点及难点 重点:在直角坐标、圆柱坐标和球坐标中计算矢量场的散度和旋度、标量场的梯度以及矢量的线积分、面积分和体积分。 难点:正确理解和掌握散度、旋度和梯度的概念及定理,可以借助流体的流量和涡旋等自然界中比较具体而形象的相似问题来理解。 4思考题合作业 1.4, 1.8, 1.9, 1.11, 1.14, 1.16, 1.24 第二章静电场 1主要内容 本章我们从点电荷的库仑定律发,推导出静电场的基本方程(微分表达及积分表达),该基本方程第一组与静电场的散度和通量有关(高斯定律),第二组有关静电场的环量和旋度,推导的过程运用了叠加原理。由静电场的基本方程中的环量和旋度的基本方程,我们引入了电位的概念,并给出了电场强度与电位之间的关系以及电位的计算公式。运用静电场的基本方程及电位可以解决静电场中的场源互求问题(已知源求场或已知场求源)。然后介绍了电偶极子的概念,推导了电偶极子的电场强度与电位的表达式。接着介绍了介质的极化,被极化的分子可等效为电偶极子,所以介质极化产生的电位就可以借用电偶极子的相关结论。由极化介质的电位公式我们推导了介质中的高斯定律,在该定律中引入了一个新的量—

电磁场与电磁波基础知识总结

第一章 一、矢量代数 A ?B =AB cos θ A B ?= AB e AB sin θ A ?(B ?C ) = B ?(C ?A ) = C ?(A ?B ) ()()()C A C C A B C B A ?-?=?? 二、三种正交坐标系 1. 直角坐标系 矢量线元x y z =++l e e e d x y z 矢量面元=++S e e e x y z d dxdy dzdx dxdy 体积元d V = dx dy dz 单位矢量的关系?=e e e x y z ?=e e e y z x ?=e e e z x y 2. 圆柱形坐标系 矢量线元=++l e e e z d d d dz ρ?ρρ?l 矢量面元=+e e z dS d dz d d ρρ?ρρ? 体积元dz d d dV ?ρρ= 单位矢量的关系?=??=e e e e e =e e e e z z z ρ??ρ ρ? 3. 球坐标系 矢量线元d l = e r d r + e θ r d θ + e ? r sin θ d ? 矢量面元d S = e r r 2sin θ d θ d ? 体积元 ?θθd d r r dV sin 2= 单位矢量的关系?=??=e e e e e =e e e e r r r θ? θ??θ 三、矢量场的散度和旋度 1. 通量与散度 =?? A S S d Φ 0 lim ?→?=??=??A S A A S v d div v 2. 环流量与旋度 =??A l l d Γ max n rot =lim ?→???A l A e l S d S 3. 计算公式 ????= ++????A y x z A A A x y z 11()z A A A z ?ρρρρρ?????= ++????A 22111()(s i n )s i n s i n ????= ++????A r A r A A r r r r ? θ θθθθ? x y z ? ????= ???e e e A x y z x y z A A A 1z z z A A A ρ?ρ?ρρ?ρ? ?? ??= ???e e e A

电磁场与电磁波论文

电磁场与电磁波论文 院系:电子信息学院 班级:电气11003班 学号:201005792 序号:33 姓名:张友强

电磁场与电磁波的应用 摘要: 磁是人类生存的要素之一。地球本身就是一个磁场,由于地球自身运动导致的两极缩短、赤道拉长、冰川融化、海平面上升等原因,地球的磁场强度正逐渐衰减。外加高楼林立、高压电网增多,人为地对地球磁力线造成干扰和破坏。所以,现在地球的磁场强度只有500年前的50%了,许多人出现种种缺磁症状。科学家研究证实,远离地球的宇航员在太空中所患的“太空综合症’’就是因缺磁而造成的。由此可见磁对于生命的重要性。磁场疗法,又称“磁疗法”、“磁穴疗法”,是让磁场作用于人体一定部位或穴位,使磁力线透人人体组织深处,以治疗疾病的一种方法。磁疗的作用机制是加速细胞的复活更新,增强血细胞的生命力,净化血液,改善微循环,纠正内分泌的失调和紊乱,调节肌体生理功能的阴阳平衡。 关键词:磁疗、电磁生物体、生物磁场、磁疗保健 电磁场与电磁波简介: 电磁波是电磁场的一种运动形态。电与磁可说是一体两面,电流会产生磁场,变动的磁场则会产生电流。变化的电场和变化的磁场构成了一个不可分离的统一的场,这就是电磁场,而变化的电磁场在空间的传播形成了电磁波,电磁的变动就如同微风轻拂水面产生水波一般,因此被称为电磁波,也常称为电波。电磁场与电磁波在实际生产、生活、医学、军事等领域有着广泛的应用,具有不可替代的作用。如果没有发现电磁波,现在的社会生活将是无法想象的。生物电磁学是研究非电离辐射电磁波(场)与生物系统不同层次相互作用规律及其应用的边缘学科,主要涉及电磁场与微波技术和生物学。其意义在开发电磁能在医学、生物学方面的应用以及对电磁环境进行评价和防护。。生物电磁学与工程电磁场与微波技术的不同主要体现在:1、后者的作用对象是具有个体差异的生命物质;2、后者的作用对象是根据人为需要而选取并加工的电磁媒质或单元而前者的作用要让测量系统服从于作用对象。生物电磁学的研究内容主要设计五个方面:1、电磁场(波)的生物学效应,研究在电磁场(波)作用下生物系统产生了什么;2、生物学效应机理,研究在电磁场(波)作用下为什么会产生什么;3、生物电磁剂量学,研究在什么条件下会产生什么;4、生物组织的电磁特性,研究在电磁场(波)作用下产生什么的生物学本质;5、生物学效应的作用,研究产生的效应做什么和如何做。 正文: (一)在生产、生活上的应用 静电场的最常见的一个应用就是带电粒子的偏转,这样象控制电子或是质子的轨迹。很多装置,例如阴极射线示波器,回旋加速器,喷墨打印机以及速度选择器等都是基于这一原理的。阴极射线示波器中电子束的电量是恒定的,而喷墨打印机中微粒子的电量却随着打印的字符而变化。在所有的例子中带电粒子偏转都是通过两个平行板之间的电位差来实的。 1.磁悬浮列车 列车头部的电磁体N极被安装在靠前一点的轨道上的电磁体S极所吸引,同时又被

电磁场与电磁波名词解释

学习必备欢迎下载 电磁场与电磁波名词解释: 1.亥姆赫兹定理(P26):在有限区域内,矢量场由它的散度、旋度及边界条件唯一地确定,这就是亥姆赫兹定理的核心内容。 2.洛伦兹力(P40):当一个电荷既受到电场力同时又受到磁场力的作用时,我们称这样的合力为洛伦兹力。 3.传导电流(P48):自由电荷在导电媒质中作有规则运动而形成。 4.运流电流(P49):电荷在无阻力空间作有规则运动而形成。 5.位移电流(P49):电介质内部的分子束缚电荷作微观位移而形成。 6.电介质(P65):电介质实际上就是绝缘材料,其中不存在自由电荷,带电粒子是以束缚电荷形式存在的。 7.电介质的极化(P64):当把一块电介质放入电场中时,它会受到电场的作用,其分子或原子内的正、负电荷将在电场力的作用下产生微小的弹性位移或偏转,形成一个个小电偶极子,这种现象称为电介质的极化。 8.电介质的磁化(P64):当把一块介质放入磁场中时,它也会受到磁场的作用,其中也会产生一个个小的磁偶极子,这种现象称为介质的磁化。 9.对偶原理(P105):如果描述两种物理现象的方程具有相同的数学形式,并且有相似的边界条件或对应的边界条件,那么它们的数学解的形式也将是相同的,这就是对偶原理。10.叠加原理(P106):若φ1和φ2分别满足拉普拉斯方程,即▽2φ1=0和▽2φ2=0,则φ1和φ2的线性组合φ=aφ1+bφ2也必然满足拉普拉斯方程,即▽2(aφ1+bφ2)=0。11.唯一性原理(P107):对于任一静态场,在边界条件给定后,空间各处的场也就唯一地确定了,或者说这时拉普拉斯方程的解是唯一的。 12.镜像法(P107):通过计算由源电荷和镜象电荷共同产生的合成电场,而得到源电荷与实际的感应电荷所产生的合成电场,这种方法称为镜象法。 13.电磁波谱(P141):为了对各种电磁波有个全面的了解,人们按照波长或频率的顺序把这些电磁波排列起来,这就是电磁波谱。 14.相速(P155):我们将速度v (介质中的波速)称为相速,即正弦波的最大速度。一般情况下,速度v 是恒定相位面在波中向前推进的速度,所以也可以根据电场极小值通过空间一固定点的速度来定义这个速度。 15.群速(P159):定义为Vg=dw/dk。 16.色散现象(P157):不同频率的波将以不同的速率在介质中传播的现象称为色散 17.耗散介质(P148):非理想介质是有损耗介质也称为耗散介质,在这里是指电导率,但仍然保持均匀、线性及各向同性等特性。 18.穿透深度(P165):将电磁波的振幅衰减到e^-1时它的导电介质的深度定义为趋肤深度(穿透深度) 19.等离子体(P175):是除气体、液体和固体以外的第四种物态,它是由电子、负离子、正离子和未电离的中性分子组成的混合体。 20.全折射(P195):当电磁波以某一入射角入射到两种媒质交界面上时,如果反射系数为0,则全部电磁能量都进入到第二种媒质,这种情况称为全折射。 21.全反射(P195):当电磁波入射到两种媒质交界面上时,如果反射系数|R|=1,则投射到界面上的电磁波将全部反射回第一种媒质中,这种情况称为全反射。

[笔记]电磁场与电磁波考题整理

[笔记]电磁场与电磁波考题整理 1、在给定尺寸的矩形波导中,传输模式的阶数越高,相应的截止频率 ( A )A、越高 B、越低 C、与阶数无关 2、假定磁荷不存在的情况下,稳恒电流磁场是( D ) A、无源无旋场 B、有源无旋场 C、有源有旋场 D、无源有旋场 3、时变电磁场中,在理想导体表面,( B ) A、电场与磁场的方向都垂直于表面 B、电场的方向垂直于表面,磁场的方向都平行于表面 0 C、电场的方向平行于表面,磁场的方向垂直于表面在两个夹角为60的接地导体 D、电场与磁场的方向都平行于表面 TE(,,,,,,,,)10x004、在传输模的矩形空波导观众,当填充电介质后,设工作频率不 ZTE,变,其波阻抗将( B ) A、变大 B、变小 C、不变 ,,3,,1rr5、一圆极化电磁波从媒质参数为的介质入射到空气中,要使电场的平行极化分量不产生反射,入射角应为( B ) ,,,,15304560A、 B、 C、 D、 ,,,,,jkzE,(2e,3e)Ee0xy6、已知均匀平面电磁波的电场强度矢量为,由此可知,该平面电磁波是( C ) A. 沿Z轴正方向传播的左旋椭圆极化波 B. 沿Z轴负方向传播的右旋圆极化波 C. 沿Z轴正方向传播的线极化波 D. 沿Z轴负方向传播的线极化波

vvv--j-2jkzp/27、已知均匀平面电磁波电场复振幅分量为,由此可知, Ee5ee10e=+ 2()xy 该平面电磁波是 ( 貌似题目有误 ) A. 沿Z轴正方向传播的右旋椭圆极化波 B. 沿Z轴负方向传播的左旋圆极化波 C. 沿Z轴正方向传播的线极化波 D. 沿Z轴负方向传播的线极化波 8、按照麦克斯韦的电磁场理论,以下说法中正确的是( C ) A. 恒定的电场周围产生恒定的磁场 B. 恒定的磁场周围产生恒定的电场 C. 变化的电场周围产生磁场,变化的磁场周围产生电 9、谐变电磁场所满足的麦克斯韦方程组中,能反映“变化的电场产生磁场”和“变化的磁场产生电场”这一物理思想的两个方程是 ( B ) ,,,,,,,,,,H,0,,,E,(A) (B),,H,J,j,,E,,,E,,j,,H, ,,,,,,,,H,0,,,E,(C)(D) ,,H,J,,,E,0, ,,dq,JdS,,,0,sdt,,J,01、写出电流连续方程在电流恒定时,积分形式:;微分形式:. ,,,B,,,E,,,,D,,0,t2、麦克斯韦方程组中的和表明:不仅___自由电荷__要产生电场,而且__变化的磁场____也要产生电场。 3、已知电场中一闭合面上的电通量密度,(电位移)D的通量不等于零,则意味着该面内一定存在自由电荷。(?) 4、坡印廷矢量等于电通密度矢量和磁通密度矢量的点积。(×) 5、波导管的高通滤波特性是指一定的波导管只能让频率__大于____某一特定值的电磁波通过,该特定频率成为___截止频率____。

电磁场和电磁波的应用

本科生学年论文(课程设计)题目:电磁场与电磁波的应用 学院物理科学与技术学院 学科门类理学 专业应用物理 学号2012437019 姓名郭天凯 指导教师闫正 2015年11月18日

电磁场与电磁波的应用 摘要 随着社会的不断进步与发展,科学技术的不断改革创新,电磁场与电磁波已经应用于社会生活的方方面面,受到了越来越多人的高度重视和关注。电子通信产品的随处可见,手机通信,微波通讯以及无线电视等;电磁波极化在雷达信号滤波、检测、增强、抗干扰和目标鉴别/识别等方面的应用;电磁场在金属材料加工、合成与制备中的应用;电磁波随钻遥测技术在钻井中的应用;电磁场的生物效应在电磁治疗方面的应用等都离不开电磁成与电磁波。本文将进一步对电磁场与电磁波在通讯、科技开发、工业生产、生物科学、材料科学等方面的应用展开分析和探讨。 关键词:电磁场;电磁波;极化;电子通信技术;电磁波的应用

目录 1 电磁场与电磁波的概况 (1) 2 电磁场与电磁波在通讯方面的应用 (2) 2.1 在无线电广播中的应用 (2) 2.2 在电视广播中的应用 (2) 2.3 在移动通信中的应用 (2) 2.4 在卫星通信中的应用 (2) 3 电磁波极化的应用 (3) 3.1 利用极化实现最佳发射和接收 (3) 3.2 利用极化技术提高通信容量 (3) 3.3 极化在雷达目标识别、检测和成像中的应用 (3) 3.4 极化在抗干扰中的应用 (4) 4 电磁波随钻遥测技术在钻井中的应用 (5) 4.1 采用数据融合技术,优化产品性能,提高传输深度 (5) 4.2 采用广播芯片技术,提高信息传输能力 (5) 5 在生物医学中的应用 (6) 5.1 电磁场的生物效应及其发展 (6) 5.2 电磁场作用的机理 (6) 6 电磁场在材料科学中的应用 (7) 7 结束语 (7) 参考文献 (8)

电磁场与电磁波课设解读

目录 1.课程设计的目的与作用 1 1.1设计目的 1 1.2设计作 用 (1) 2 设计任务及所用maxwell软件环境介绍 2 2.1设计任务2 2.2maxwell软件环境: 2 3电磁模型的建立 3 4电磁模型计算及仿真结果后处理分析 7 5 设计总结和体会 12 6 参考文献13 1.课程设计的目的与作用 1.1设计目的: 随着经济的发展和社会的进步,人们的日常生活水平不断的提高,人们在充分享用现代生活方便,舒适的同时也越来越离不开电子产品了。对电子产品本身来

说,只要通电,就存在电磁之类干扰的问题,而电子产品对外界来说又存在着电磁辐射等问题,如何解决这类问题,趋利避害,更好地让电子产品为我们的服务器真是我们需要做的工作。 电磁场与电磁波课程理论抽象、数学计算繁杂,将Maxwell软件引入教学中,通过对典型电磁产品的仿真设计,并模拟电磁场的特性,将理论与实践有效结合,强化学生对电磁场与电磁波的理解和应用,提高教学质量。 1.2设计作用: 电磁场与电磁波主要介绍电磁场与电磁波的发展历史、基本理论、基本概念、基本方法以及在现实生活中的应用,内容包括电磁场与电磁波理论建立的历史意义、静电场与恒流电场、电磁场的边值问题、静磁场、时变场和麦克斯韦方程组、准静态场、平面电磁波的传播、导行电磁波以及谐振器原理等。全书沿着电磁场与电磁波理论和实践发展的历史脉络,将历史发展的趣味性与理论叙述和推导有机结合,同时介绍了电磁场与电磁波在日常生活、经济社会以及科学研究中的广泛应用。书中的大量例题强调了基本概念并说明分析和解决典型问题的方法;每章末的思考题用于测验学生对本章内容的记忆和理解程度;每章的习题可增强学生对于公式中不同物理量的相互关系的理解,同时也可培养学生应用公式分析和解决问题的能力。 2 设计任务及所用Maxwell软件环境介绍 2.1设计任务: 平板电容器电场仿真 平板电容器模型描述: 上下两极板尺寸:25mm×25mm×2mm,材料:pec(理想导体) 介质尺寸:25mm×25mm×1mm,材料:mica(云母介质)

哈工大电磁场与电磁波课程总结

电磁场与电磁波课程总结 时代背景 麦克斯韦方程组是英国物理学家詹姆斯·麦克斯韦在19世纪建立的一组描述电场、磁场与电荷密度、电流密度之间关系的偏微分方程。它由四个方程组成:描述电荷如何产生电场的高斯定律、论述磁单极子不存在的高斯磁定律、描述电流和时变电场怎样产生磁场的麦克斯韦-安培定律、描述时变磁场如何产生电场的法拉第感应定律。麦克斯韦方程组在电磁学中的地位,如同牛顿运动定律在力学中的地位一样。它揭示出电磁相互作用的完美统一,而这个理论被广泛地应用到技术领域。 1831年,法拉第发现了电磁感应现象,揭示了电与磁之间的重要联系,为电磁场完整方程组的建立打下了基础。截止到1845年,关于电磁现象的三个最基本的实验定律:库仑定律(1785年),安培-毕奥-萨伐尔定律(1820年),法拉第定律(1831-1845年)已被总结出来,法拉第的“电力线”和“磁力线”概念已发展成“电磁场概念”。场是一种看不见摸不着而又确实存在的东西,它可以用来描述空间中的物体分布情况,进而用空间函数来表征。“场”概念的提出,使得人们从牛顿力学的束缚中摆脱出来,从而对微观以及高速状态等人类无法用肉眼观测的世界,有了更加深入的认识。1864年,麦克斯韦集以往电磁学研究之大成,创立了电磁场的完整方程组。1868年,麦克斯韦发表了《关于光的电磁理论》这篇短小而重要的论文,明确地将光概括到电磁理论中,创立了“光的电磁波学说”。这样,原来相互独立发展的电、磁和光就被巧妙地统一在电磁场这一优美而严整的理论体系中,实现了物理学的又一次大综合。 德国物理学家赫兹深入研究了麦克斯韦电磁场理论,决定用实验来验证它。通过多年的实验探索,于1886年首先发现了“电磁共振”现象,紧接着在1888年发表了《论动电效应的传播速度》一文,以确凿的实验事实证实了麦克斯韦关于电磁波的预言和光的电磁理论的正确性,到此,麦克斯

电磁场与电磁波理论(第二版)(徐立勤,曹伟)第2章习题解答

第2章习题解答 2.2已知半径为a 、长为l 的圆柱体内分布着轴对称的体电荷,已知其电荷密度()0V a ρρρρ =, ()0a ρ≤≤。试求总电量Q 。 解:2π20000 2d d d d π3 l a V V Q V z la a ρρ ρρρ?ρ= ==? ? ?? 2.3 半径为0R 的球面上均匀分布着电荷,总电量为Q 。当球以角速度ω绕某一直径(z 轴)旋转时,试求 其表面上的面电流密度。 解:面电荷密度为 2 04πS Q R ρ= 面电流密度为 002 00 sin sin sin 4π4πS S S Q Q J v R R R R ωθ ρρωθωθ=?== = 2.4 均匀密绕的螺旋管可等效为圆柱形面电流0S S J e J ?=。已知导线的直径为d ,导线中的电流为0I ,试 求0S J 。 解:每根导线的体电流密度为 00 22 4π(/2)πI I J d d = = 由于导线是均匀密绕,则根据定义面电流密度为 04πS I J Jd d == 因此,等效面电流密度为 04πS I J e d ?= 2.6 两个带电量分别为0q 和02q 的点电荷相距为d ,另有一带电量为0q 的点电荷位于其间。为使中间的 点电荷处于平衡状态,试求其位置。当中间的点电荷带电量为-0q 时,结果又如何? 解:设实验电荷0q 离02q 为x ,那么离0q 为x d -。由库仑定律,实验电荷受02q 的排斥力为 12 214πq F x ε= 实验电荷受0q 的排斥力为 022 1 4π()q F d x ε= - 要使实验电荷保持平衡,即21F F =,那么由0022 211 4π4π() q q x d x εε=-,可以解得 d d x 585.01 22=+= 如果实验电荷为0q -,那么平衡位置仍然为d d x 585.01 22=+=。只是这时实验电荷与0q 和02q 不 是排斥力,而是吸引力。 2.7 边长为a 的正方形的三个顶点上各放置带电量为0q 的点电荷,试求第四个顶点上的电场强度E 。 解:设点电荷的位置分别为()00,0,0q ,()0,0,0q a 和()00,,0q a ,由库仑定律可得点(),,0P a a 处的电 场为 ( ) ( 00 2 22 00001114π4π4π221x y y x x y q q q E e e e e a a q e e εεε? =+++ ?+=+

电磁场与电磁波-知识点总结

已经将文本间距加为 24磅 第18章:电磁场与电磁波 、知识网络 LC 回路中电磁振荡过程中电荷、电场。 电路电流与磁场的变化规律、电场能与磁场能相互变化。 分类:阻尼振动和无阻尼振动。 <振荡周期:T 2 JLC 。改变L 或C 就可以改变T 。 、重、难点知识归纳 1 ?振荡电流和振荡电路 (1) 大小和方向都随时间做周期性变化的电流叫振荡电流。能够产生振荡电流的电路 叫振荡电路。自由感线圈和电容器组成的电路, 是一种简单的振荡电路, 简称LC 回路。 在振荡电路里产生振荡电流的过程中,电容器极板上的电荷,通过线圈的电流以及跟电 荷和电流相联系的电场和磁场都发生周期性变化的现象叫电磁振荡。 (2) LC 电路的振荡过程:在LC 电路中会产生振荡电流,电容器放电和充电,电路中的 电流强度从小变大,再从大变小,振荡电流的变化符合正弦规律.当电容器上的带电量 变小时,电路中的电流变大,当电容器上带电量变大时,电路中的电流变小 ⑶LC 电路中能量的转化 : a 电磁振荡的过程是能量转化和守恒的过程?电流变大时,电场能转化为磁场能, 麦克斯 韦电磁 场理论 {变化的电场产生磁场 变化的磁场产生电场 特点:为横波,在真空中的速度为 3.0 x 108m/s r 目的:传递信息 发射J 调制:调幅和调频 发射电路:振荡器、调制器和开放电路。 电磁波遇到导体会在导体中激起同频率感应电流 电谐振 从接收到的电磁波中“检”出需要的信号。 原理 选台 检波 I 接收电路:接收天线、调谐电路和检波电路 应用:电视、雷达。 场与电磁波

电流变小时,磁场能转化为电场能。 b、电容器充电结束时,电容器的极板上的电量最多,电场能最大,磁场能最小;电容器放电结束时,电容器的极板上的电量为零,电场能最小,磁场能最大. c、理想的LC回路中电场能E电和磁场能E磁在转化过程中的总和不变。回路中电流越大时,L中的磁场能越大。极板上电荷量越大时,C中电场能越大(板间场强越大、两板间电压越高、磁通量变化率越大) 。 (4) LC电路的周期公式及其应用LC回路的固有周期和固有频率,与电容器带电量、极板间电压及电路中电流都无关,只取决于线圈的自感系数L及电容器的电容C。 周期的决定式:T 2x, LC 1 频率的决定式:f ——1一 2n'LC 2、电磁场 麦克斯韦电磁理论:变化的磁场能够在周围空间产生电场(这个电场叫感应电场或涡旋场,与由电荷激发的电场不同,它的电场线是闭合的,它在空间的存在与空间有无导体无关),变化的电场能在周围空间产生磁场。 a、均匀变化的磁场产生稳定的电场,均匀变化的电场产生稳定的磁场; b、不均匀变化的磁场产生变化的电场,不均匀变化的电场产生变化的磁场。 c、振荡的(即周期性变化的)磁场产生同频率的振荡电场,振荡的电场产生同频率的振荡磁 场。 d、变化的电场和变化的磁场总是相互联系着、形成一个不可分离的统一体,称为电磁场。 电场和磁场只是这个统一的电磁场的两种具体表现。 3、电磁波: (1)变化的电场和变化的磁场不断地互相转 化,并且由近及远地传播出去。这种变化的电磁场在空间以一定的速度传播的过程叫做电磁波。 (2)电磁波是横波。E与B的方向彼此垂直,而且都跟波的传播方向垂直,因此电磁波是横 波。电磁波的传播不需要靠别的物质作介质,在真空中也能传播。在真空中的波速为c=3.0 x 108m/s。振荡电路发射电磁波的过程,同时也是向外辐射能量的过程. (3)电磁波三个特征量的关系:v=入f

电磁场与电磁波论文

电磁场与电磁波 —电能的无线传输 姓名:李明 班级:电科1101班 学号:20113011

引言 电能的传输长期以来主要是由导线直接接触进行传输,随着用电设备对供电品质、可靠性、方便性等要求的不断提高,还有特殊场合、殊地理环境的供电,使得接触式电能传输方式,越来越不能满足实际需要;便携式电子设备和家电对快捷方便地获取电能的需求越来越强烈。因此,无线电能传输越来越受到人们的关注,并被美国《技术评论》杂志评选为未来十大科研方向之一。 无线电能传输技术最早由著名电气工程师(物理学家)尼古拉·特斯拉提出,就是借助于电磁场或电磁波进行能量传递的一种技术。按照电能传输原理的不同,无线电能传输分为:电磁感应式、电磁共振式和电磁辐射式。通过该项技术可以实现以探讨将远程无线功率传输系统做成电子式互感器,研究其在高压测量方面的应用,还可以探讨更远的距离使将来室内电器实现无线化,所有室内电器设备都装有无接触功率传输系统,电气设备通过无接触功率接收装置远距离高效率的接收电能工作,而电能发射装置是可以装在墙壁内或者地板下的,使电气设备摆脱电线插座的束缚。此外,无线输电技术在特殊的场合也具有广阔的应用前景。例如可以给一些难以架设线路或危险的地区供电;可以解决地面太阳能电站、风力电站、原子能电站的电能输送问题。深入了解其无线传输电能的意义和方向,具有十分积极的意义。 一、电能无线传输技术的简介 1.1电能无线传输的现状 1.1.1电能无线传输的研究现状 一、国外研究现状 国外对无线电能传输技术的研究较早,早在20 世纪70 年代中期就出现了无线电动牙刷,随后发布了几项有关这类设备的美国专利。20世纪90 年代初期,新西兰奥克兰大学对感应耦合功率传输技术(ICPT)进行研究,经过十多年的努力,该技术在理论和实践上已经获得重大突破。研究主要集中在给移动设备,特别是在恶劣环境下工作的设备的供电问题,如电动汽车、起重机、手提充电器、电梯、传送带、运货行车,以及水下、井下设备。其能量等级、距离、效率等指标都在不断提高,目前实用设备己达200kW、数千米的传输距离和85%的以上的传输效率。 二、国内研究现状 国内在无线输电技术方面研究还处于起步阶段,近年来,中科院院士严陆光和西安交通大学的王兆安等人也开始对该新型电能接入技术进行研究。重庆大学自动化学院非接触电能传输技术研发课题组自2001 年便开始了对国内外非接触式电能接入技术相关基础理论与实用技术的密切跟踪和研究,并与国际上在该领域研发工作处于领先水平的新西兰奥克兰大学波依斯教授为首的课题组核心成员Patrick AiguoHu 博士进行了深层次的学术交流与科技合作,在理论和技术成果上有了较大的突破。2007年2月,课题组攻克了非接触感应供电的关键技术难题,建立了完整的理论体系,并研制出了非接触电能传输装置,该装置能够实现600 至1000W 的电能输出,传输效率为70%,并且能够向多个用电设备同时供电,

电磁场与电磁波理论(第二版)(徐立勤,曹伟)第1章习题解答

第1章习题解答 1.4 计算下列标量场u 的梯度u ? : (1)234u x y z =; (2)u xy yz zx =++; (3)222323u x y z =-+。 解:(1) 34224233234x y z x y z u u u u e e e e xy z e x y z e x y z x y z ????=++=++??? (2)()()()x y z x y z u u u u e e e e y z e x z e y x x y z ????=++=+++++??? (3)646x y z x y z u u u u e e e e x e y e z x y z ????=++=-+??? 1.6 设()22,,1f x y z x y y z =++。试求在点()2,1,3A 处f 的方向导数最大的方向的单位矢量及其方向导 数。方向导数最小值是多少?它在什么方向? 解: ()2222x y z x y z f f f f e e e e xy e x yz e y x y z ????=++=+++??? 因为410x y z x y z A f f f f e e e e e e x y z ????=++=++??? 所以 ( max 410l x y z f e e e e l ?==++? ( min 410l x y z f e e e e l ?==-++? 1.10 求下列矢量场在给定点的散度值: (1)()x y z A xyz e x e y e z =++ 在()1,3,2M 处; (2)242x y z A e x e xy e z =++ 在()1,1,3M 处; (3)())1222x y z A e x e y e z x y z =++++ 在()1,1,1M 处。 解:(1) 222636y x z M A A A A xyz xyz xyz xyz A x y z ?????=++=++=??=??? (2)42212y x z M A A A A x z A x y z ?????= ++=++??=??? (3)y x z A A A A x y z ?????=++ ??? ( )( )( ) 2222 2222 2222 3 3 3 x y z x x y z y x y z z ++-++-++ -= + + = M A ??=

电磁场与电磁波知识点

电磁场与电磁波知识点 (一) 矢量分析和场论基础 1、理解标量场与矢量场的概念; 场是描述物理量在空间区域的分布和变化规律的函数。 点积 cos A B AB 结果为标量 x x y y z z A e A e A e A ,x x y y z z B e B e B e B ++x x y y z z A B A B A B A B P4 1.2.4 叉积 sin n A B e AB 结果为矢量 x y z x y z x y z e e e A B A A A B B B P4 1.2.5 矢量A 在矢量B 的投影 B A e B B e B 2、理解矢量场的散度和旋度、标量场的梯度的概念,熟练掌握散度、旋度和梯度的计算公式和方法(直角坐标系)。 (,,)u u x y z 梯度:x y z u u u u x y z e e e , 结果为矢量 P12 1.3.7 物理意义:梯度的方向是标量u 随空间坐标变化最快的方向; 梯度的大小:表示标量u 的空间变化率的最大值。

方向导数: u 沿方向l 的方向导数 P11 x x y y z z l e l e l e l 大小 l 单位矢量 =l x y z l l e e e e l 方向导数 ()l u u e l 通量 S A dS 结果为标量 P16 1.4.5 通量的意义 判断闭合曲面内的通量源 P17 散度:单位空间体积中的通量源,有时也简称为通量密度, x x y y z z A e A e A e A y x z A A A x y z A P19 1.4.8 散度定理(高斯定理)的意义 高斯定理: () () V S dV d A A S , P19 1.4.12 环流(环量) = C A dl 结果为标量 P20 1.5.1 环量的意义 描述矢量场的漩涡源 P21 旋度:其数值为某点的环流量面密度的最大值,其方向为取得环量密度最大值时面积元的法线方向。 P21 x y z y y x x z z x y z x y z A A A A A A x y z y z z x x y A A A e e e A e e e P23 1.5.7 斯托克斯定理: () () S L d d A S A l P24 1.5.12

相关文档
最新文档