带传动的受力分析-工程.

带传动的受力分析-工程.
带传动的受力分析-工程.

带传动的受力分析 -工程

2019-01-01

一、带传动中的力

在安装带传动时,传动带即以一定的预紧力F0紧套在两个带轮上,

。由于预紧力F0的作用。带和带轮的接触面上就产生了正压力。带传动不工作时传动带两边的拉力相等,都等于F0(如下列左图所示)。

不工作时工作时带在工作时(如上列右图所示),设主动轮以带速n1转动,带与带轮的接触面间便产生摩擦力,主动轮作用在带上的摩擦力Ff的方向和主动轮的圆周速度方向相同,主动轮即靠此摩擦力驱动带运动;带作用在从动轮上的摩擦力的方向,显然与带的运动方向相同,带同样靠摩擦力Ff而驱动从动轮以转速n2转动。这时传动带两边的拉力也相应地发生了变化:带绕上主动轮的一边被拉紧,叫做紧边,紧边拉力由F0增加到F1;带绕上从动轮的一边被放松,叫做松边,松边拉力由F0减小到F 2,

《》()。如果近似地认为带工作时的总长度不便,则带的紧边拉力的增加量,应等于松变拉力的减小量,即F1-F0=F0-F2 或F1+F2

=2F0 若以主动轮一段为分离体,则有总摩擦力F f和两边拉力对轴心的力矩的代数和为零,从而可得出Ff=F1-F 2

在带传动中,有效拉力Fe并不是作用于某固定点的集中力,而是带和带轮接触面上的各点摩擦力的总和,故整个面上的总摩擦力Ff即等于带所传递的有效拉力,即有:

Fe=Ff=F1-F2

即带传动所能传递的功率P(单位为kW)为

P=Fev/1000

将上述公式整理可得F1=F0+ Fe/2 F2=F0- Fe/2

带传动的受力分析和传动时的应力分析

第七章 带传动 内容: 1、带传动的受力分析和传动时的应力分析 2、带传动弹性滑动和打滑 3、带传动的设计计算 难点:带传动的受力分析和传动时的应力分析 重点:带传动的设计计算 7.1 带传动概述 一、工作原理和应用 1 、工作原理:带装在轮上后,具有初拉力0F 。轮1靠摩擦力带动带,——带靠摩擦力带动轮2。 2、带传动的特点: 1)皮带具有弹性和扰性 2)过载时可打滑 3)中心距可较大 4)传动比不准确,且效率低 5)张紧力对轴和轴承压力大 3、带传动的类型 平带、V 带、多楔带、圆带 对V 型带:2 sin 2? N Q F F = 图7-1 磨擦型带传动工作原理 图7-3 带的传动类型和横截面形状 (a) 平带;(b) V 带;(c) 多楔带;(d) 圆形带

2 sin 2? Q N F F = Q q N f fvF fF fF F == =2 sin 2? 设2 sin ? f f v = 当量摩擦系数 4、V 带结构 普通V 带 5、应用:远距离 二、普通V 带型号和基本尺寸 1、型号: 2、尺寸 基准长度尺寸d L 7-2带传动工作情况分析 一、带传动受力分析 不工作时01=T 0F 工作时 01?T 图7-4 V 带的结构 表7-2 普通V 带截面基本尺寸

摩擦力()圆周力F F F F f =-=21 310FV P = P 为功率KW 2001F F F F --= 021F 2F F =+ αf e F F 21= 对V 带αfv 21F F e = 1 e 1e 2F F f f 0max +-=αα 二、带传动的应力分析 1、由紧边和松边拉力产生应力 A F 1 1= σ A F 2 2= σ 2、由离心力产生应力 A F A qv c l ==2σ 3、由带弯曲产生应力 2 d a b d h E h E =' =ρ σ 121max b σσσσ++= 三、带传动的弹性滑动 1、含义:由于带的弹性变形而引起带与带轮之间的相对滑动称弹性滑动。 2、后果 图7-5 带传动的受力分析 图7-6 带的弯曲应力 图7-7 带工作时应力变化

圆柱齿轮受力分析

轮齿的受力分析 1. 直齿圆柱齿轮受力分析 图为直齿圆柱齿轮受力情况,转矩T1由主动齿轮传给从动齿轮。若忽略齿面间的摩擦力,轮齿间法向力Fn的方向始终沿啮合线。法向力Fn在节点处可分解为两个相互垂直的分力:切于分度圆的圆周力Ft 和沿半径方向的径向力Fr 。 式中:T1-主动齿轮传递的名义转矩(N·mm),,Pl为主动齿轮传递的功率(Kw),n1为主动齿轮的转速(r/min); d1-主动齿轮分度圆直径(mm); α-分度圆压力角(o)。 对于角度变位齿轮传动应以节圆直径d`和啮合角α`分别代替式(9.44)中的d1 和α。 作用于主、从动轮上的各对力大小相等、方向相反。从动轮所受的圆周力是驱动力,其方向与从动轮转向相同;主动轮所受的圆周力是阻力,其方向与从动轮转向相反。径向力分别指向各轮中心(外啮合)。 2. 斜齿轮受力分析 图示为斜齿圆柱齿轮受力情况。一般计算,可忽略摩擦力,并将作用于齿面上的分布力用作用于齿宽中点的法向力Fn 代替。法向力Fn 可分解为三个相互垂直的分力,即圆周力Ft 、径向力Fr 及轴向力Fa 。它们之间的关系为

式中:αn-法向压力角(°); αt-端面压力角;(°) β-分度圆螺旋角(°); 作用于主、从动轮上的各对力大小相等、方向相反。圆周力Ft 和径向力Fr 方向的判断与直齿轮相同。轴向力Fa 的方向应沿轴线,指向该齿轮的受力齿面。通常用左右手法则判断:对于主动轮,左旋时用左手(右旋时用右手),四指顺着齿轮转动方向握住主动轮轴线,则拇指伸直的方向即为轴向力Fa1 的方向。 2 计算载荷和载荷系数 名义载荷上述所求得的各力是用齿轮传递的名义转矩求得的载荷。 计算载荷由于原动机及工作机的性能、齿轮制造及安装误差、齿轮及其支撑件变形等因素的影响,实际作用于齿轮上的载荷要比名义载荷大。因此,在计算齿轮传动的强度时,用载荷系数K对名义载荷进行修正,名义载荷与载荷系数的乘积称为计算载荷。

同步带传动受力情况的分析

同步带受力情况的分析张紧力1 。初拉同步带安装时必须进行适当的张紧,以使带具有一定的初拉力(张紧力)可能因拉力力过小会使同步带在运转中因齿合不良而发生跳齿现象,在跳齿的瞬间,带的振过大而使带断裂或带齿断裂;初拉力过小还会使同步带传递运动的精度降低,轴和轴承上的载荷而初拉力过大则会使带的寿命降低,传动噪音增大,动噪音变大。故控制同步带传动合宜的张紧力是保证同增大,加剧轴承的发热和使轴承寿命降低。步带传动正常工作的重要条件。FFF分别为带传动工作时带 的紧边拉、、设F为同步带传动时带的张紧力,210力、松边拉力、和有效拉力。 为了保证同步带在带轮上齿合可靠、不跳齿,同步带运紧边拉力的转时紧边带的弹性伸长量与松边带的弹性收缩量应保持近似相等。因此,增加量应等于松边拉力的减少量,即FFFFFFFFFF1-1 式=2 、=0.5(+ -=)-或+20020011212 压轴力 压轴力即为同步带作用在轴上的力,是紧边拉力与松边拉力的矢量和,如图2-1 所示: 图2-1同步带的压轴力、紧边拉力、松边拉力 据机械标准JB/T 7512.3-1994压轴力Q计算如下所示: K(F?F) N Q= 式2-1 2F1K?1.3时:当工况系数A K(F?F) 2-2 式Q=0.77 N 21F. K――矢量相加修正系数,如图2-2:式中:F 图2-2 矢量相加修正系数

d?d??21。为小带轮包角,上图中?57.3??180??11aK为工况系数,对于医疗 机械,其值如图2-3所示:A 图2-3 医疗机械的工况系数 KK)FF?(K值大于0.5。对于医疗机械,取=1.2,所以有压轴力Q= N,其中FA21F FFF)。+=0.5(另外由式1-1有张紧力201由此可看出压轴力大于张紧力,故设计时只需 计算传动中所受的压轴力,K(F?F) N 。Q= 21F而带的紧边 张力与松边张力分别由下面公式所得: PF?1250V/N 式2-3 d1F?250P/V2-4 式N d2. m/s;V为带速,式中: PP?KP,KW;为工况系数,为设计功率,P为需传递的名义K AddA功率(KW)。 所以压轴力为: 1500KKP AF N 式2-5 Q?V需视具体情况修正工对于频繁正反装、 严重冲击、紧急停机等非正常传动,况系数。在匀速时,减速”的过程。另外 步进电机在工作时其工作过程是“加速-匀速-如电机电机加速时主要考虑惯性负载;电机所受负载为工件与导轨的滑动负载;电机的滑动负载和惯性负载均跳到 所规定的转速时,直接启动,即转速直接从0所以对于频繁正反要考虑。一般情 况下电机传递的负载约为滑动负载的2~3倍。同步带需传递的名义功率应是同步 带正转、设计计算时:严重冲击的传动机构,倍。常传动需传递的功率的2~3? 电机在加速时的加速转矩:式2-6 ?JT?式中:T——电机加速时的加速 转矩; J——负载的运动惯量与同步轮的转动惯量折算到电机轴上的转动惯量; ?——电机在加速时的角加速度。 从结构上讲:如所需的压轴力小于步进电机轴容许的悬挂负载,即可不必加联轴器。 下表为东方马达步进电机容许悬挂负载及容许轴向负载:

带传动的受力分析及运动特性

带传动的受力分析及运动特性 newmaker 一、带传动的受力分析 带传动安装时,带必须张紧,即以一定的初拉力紧套在两个带轮上,这时传动带中的拉力相等,都为初拉力F0(见图7–8a )。 图7-8 带传动的受力情况 a)不工作时 b)工作时 当带传动工作时,由于带和带轮接触面上的摩擦力的作用,带绕入主动轮的一边被进一步拉紧,拉力由F0增大到F1,这一边称为紧边;另一边则被放松,拉力由F0降到F2,这一边称为松边(见图7–8b )。两边拉力之差称为有效拉力,以F 表示,即 F =F1–F2 (7–4) 有效拉力就是带传动所能传递的有效圆周力。它不是作用在某一固定点的集中力,而是带和带轮接触面上所产生的摩擦力的总和。带传动工作时,从动轮上工作阻力矩T¢2所产生的圆周阻力F¢为 F¢=2 T'2 /d2 正常工作时,有效拉力F 和圆周阻力F¢相等,在一定条件下,带和带轮接触面上所能产生的摩擦力有一极限值,即最大摩擦力(最大有效圆周力)Fmax ,当Fmax≥F¢时,带传动才能正常运转。如所需传递的圆周阻力超过这一极限值时,传动带将在带轮上打滑。 刚要开始打滑时,紧边拉力F1和松边拉力F2之间存在下列关系,即 F1=F2?e f?a (7–5) 式中 e –––自然对数的底(e≈2.718); f –––带和轮缘间的摩擦系数;

a–––传动带在带轮上的包角(rad)。 上式即为柔韧体摩擦的欧拉公式。 (7-5)式的推导: 下面以平型带为例研究带在主动轮上即将打滑时紧边拉力和松边拉力之间的关系。 假设带在工作中无弹性伸长,并忽略弯曲、离心力及带的质量的影响。 如图7–9所示,取一微段传动带dl,以dN表示带轮对该微段传动带的正压力。微段传动带一端的拉力为F,另一端的拉力为F+dF,摩擦力为f·dN,f为传动带与带轮间的摩擦系数 (对于V带,用当量摩擦系数fv,,f为带轮轮槽角)。则 因da很小,所以sin(da/2)?da/2,且略去二阶微量dF?sin(da/2),得 dN=F?da 又 取cos(da/2)?1,得f?dN=dF或dN=dF/f,于是可得 F?da=dF/f 或dF/F=f?da 两边积分

同步带传动受力情况的分析

同步带传动受力情况的分析轴力与张 紧力的计算) 同步带受力情况的分析 1张紧力 同步带安装时必须进行适当的张紧,以使带具有一定的初拉力(张紧力)。初拉 力过小会使同步带在运转中因齿合不良而发生跳齿现象,在跳齿的瞬间,可能因拉力过大而使带断裂或带齿断裂;初拉力过小还会使同步带传递运动的精度降低,带的振动噪音变大。而初拉力过大则会使带的寿命降低,传动噪音增大,轴和轴承上的载荷增大,加剧轴承的发热和使轴承寿命降低。故控制同步带传动合宜的张紧力是保证同步带传动正常工作的重要条件。 设F o为同步带传动时带的张紧力,F i、F2、F分别为带传动工作时带的紧边拉力、松边拉力、和有效拉力。为了保证同步带在带轮上齿合可靠、不跳齿,同步带运转时紧边带的弹性伸长量与松边带的弹性收缩量应保持近似相等。因此,紧边拉力的增加量应等于松边拉力的减少量,即 F I-F°=F°-F2或F i + F2=2F。、F o=O.5(F i+ F2)式1-1

2压轴力 压轴力即为同步带作用在轴上的力,是紧边拉力与松边拉力的矢量和,如图2-1 图2-1同步带的压轴力、紧边拉力、松边拉力 据机械标准JB/T 7512.3-1994压轴力Q计算如下所示: Q=K F(F1 F2)N 式2-1当工况系数K A 1.3时:

式中: K F ――矢量相加修正系数,如图 2- 图2-2矢量相加修正系数 上图中1为小带轮包角,1 180 d2 di 57.3 a K A 为工况系数,对于医疗机械,其值如图 2-3所示: X 13-1-6S 工况幕 inn GB/T 11362—JB/T 7512. 3—]9

链传动受力分析

安装链传动时,只需不大的张紧力,主要是使链松边的垂度不致过大,否则会产生显著振动、跳齿和脱链。若不考虑传动中的动载荷,作用在链上的力有:圆周力(即有效拉力)F、离心拉力FC和悬垂拉力Fy 。如图所示。 链在传动中的主要作用力有: (1)链的紧边拉力为F1=F+FC+Fy(N)(12.8)(2)链的松边拉力为F2=FC+Fy(N) (12.9)(3)围绕在链轮上的链节在运动中产生的离心拉力 FC=qv2(N)(12.10)式中:q为链的每米长质量,Kg/m,见表12.1;v为链速m/s 。 (4)悬垂拉力可利用求悬索拉力的方法近似求得 Fv=Kvqga (N) (12.11) 式中:a为链传动的中心距,m ;g为重力加速度, g=9.81m/s2;Kv为下垂量y=0.02a 时的垂度系数,与安装角β有关(图12.12),见表12.3。链作用在轴上的压力FQ可近似地取为FQ=(1.2~1.3)F,有冲击和振动时取大值。 链传动的受力分析 链在传动中的主要作用力有:(1)链的紧边拉力为F1=F+FC+Fy(N)(12.8)(2)链的松边拉力为F2=FC+Fy(N)(12.9)(3)围绕在链轮上的链节在运动.. 公司动态 - 天津鼎新盛泰进口轴承销售公司 - 2009-12-16 19:15:46 轴承生产中的链传动的受力分析 (1)轴承生产中的链的紧边拉力为F1=F+FC+Fy(N) (12.8)(2)轴承生产中的链的松边拉力为F2=FC+Fy(N) (12.9)(3)围绕在链轮上的链节在运动中产生..

技术中心 - 天津进口轴承公司 - 2009-12-15 21:39:01 滚子链传动的主要失效形式 链传动的主要失效形式有以下几种: (1)链板疲劳破坏 链在松边拉力和紧边拉力的反复作用下,经过一定的循环次数,链板会发生疲劳破坏。正常润滑条件下,疲劳强度是限定链传动承载能力的主要因素。 (2)滚子套筒的冲击疲劳破坏 链传动的啮入冲击首先由滚子和套筒承受。在反复多次的冲击下,经过一定的循环次数,滚子、套筒会发生冲击疲劳破坏。这种失效形式多发生于中、高速闭式链传动中。 (3)销轴与套筒的胶合 润滑不当或速度过高时,销轴和套筒的工作表面会发生胶合。胶合限定了链传动的极限转速。 (4)链条铰链磨损 铰链磨损后链节变长,容易引起跳齿或脱链。开式传动、环境条件恶劣或润滑密封不良时,极易引起铰链磨损,从而急剧降低链条的使用寿命。 (5)过载拉断 这种拉断常发生于低速重载或严重过载的传动中。 请教链传动受力分析!! 为了校核轴的强度需要分析链轮的受力状况,查资料知链传动紧边拉力=有效圆周力+离心力引起的拉力+悬垂拉力, 1. 请问这三个力的方向都是沿圆周方向吗?? 2.往轴上平移这些力的时候还需要考虑松边受力吧?? 3.压轴力的方向怎么确定?? 现在主要是将链轮受力转到轴上来,不知道怎么分析了,书上也没,呵呵 请教各位前辈了!!!!!

同步带传动受力情况的分析

同步带受力情况的分析 1 张紧力 同步带安装时必须进行适当的张紧,以使带具有一定的初拉力(张紧力)。初拉力过小会使同步带在运转中因齿合不良而发生跳齿现象,在跳齿的瞬间,可能因拉力过大而使带断裂或带齿断裂;初拉力过小还会使同步带传递运动的精度降低,带的振动噪音变大。而初拉力过大则会使带的寿命降低,传动噪音增大,轴和轴承上的载荷增大,加剧轴承的发热和使轴承寿命降低。故控制同步带传动合宜的张紧力是保证同步带传动正常工作的重要条件。 设0F 为同步带传动时带的张紧力,1F 、2F 、F 分别为带传动工作时带的紧边拉力、松边拉力、和有效拉力。为了保证同步带在带轮上齿合可靠、不跳齿,同步带运转时紧边带的弹性伸长量与松边带的弹性收缩量应保持近似相等。因此,紧边拉力的增加量应等于松边拉力的减少量,即 1F -0F =0F -2F 或 1F +2F =20F 、0F =(1F +2F ) 式1-1 2 压轴力 压轴力即为同步带作用在轴上的力,是紧边拉力与松边拉力的矢量和,如图2-1所示: 图2-1同步带的压轴力、紧边拉力、松边拉力 据机械标准JB/T 压轴力Q 计算如下所示: Q=12()F K F F + N 式2-1 当工况系数A K ≥时: Q=12()F K F F + N 式2-2 式中: F K ――矢量相加修正系数,如图2-2: 图2-2 矢量相加修正系数

上图中1α为小带轮包角,21118057.3d d a α-≈?-??。 A K 为工况系数,对于医疗机械,其值如图2-3所示: 图2-3 医疗机械的工况系数 对于医疗机械,取A K =,所以有压轴力Q=12()F K F F + N ,其中F K 值大于。 另外由式1-1有张紧力0F =(1F +2F )。 由此可看出压轴力大于张紧力,故设计时只需计算传动中所受的压轴力,Q=12()F K F F + N 。 而带的紧边张力与松边张力分别由下面公式所得: 11250/d F P V = N 式2-3 2250/d F P V = N 式2-4 式中: V 为带速,/m s ; d P 为设计功率,d A P K P =,KW ;A K 为工况系数,P 为需传递的名义功率(KW )。 所以压轴力为: 1500F A K K P Q V = N 式2-5 对于频繁正反装、严重冲击、紧急停机等非正常传动,需视具体情况修正工况系数。 另外步进电机在工作时其工作过程是“加速-匀速-减速”的过程。在匀速时,电机所受负载为工件与导轨的滑动负载;电机加速时主要考虑惯性负载;如电机直接启动,即转速直接从0跳到所规定的转速时,电机的滑动负载和惯性负载均要考虑。一般情况下电机传递的负载约为滑动负载的2~3倍。所以对于频繁正反转、严重冲击的传动机构,设计计算时:同步带需传递的名义功率应是同步带正常传动需传递的功率的2~3倍。 从结构上讲:如所需的压轴力小于步进电机轴容许的悬挂负载,即可不必加

传送带的受力分析

传送带的受力分析标准化管理部编码-[99968T-6889628-J68568-1689N]

传送带是应用广泛的一种传动装置,以其为素材的问题以真实物理现象为依据,它既能训练学生的科学思维,又能联系科学、生产和生活实际,是很好的能力考查型试题,这类试题大都具有物理情景模糊、条件隐蔽、过程复杂等特点,是历年高考考查的热点,也是广大考生的难点。现通过将传送带问题归类赏析,从而阐述解决这类问题的基本方法,找出解决这类问题的关键,揭示这类问题的实质。 一、依托传送带的受力分析问题 例1如图1所示,一质量为的货物放在倾角为的传送带一起向上或向下做加速运动。设加速度为,试求两种情形下货物所受的摩擦力。 解析:物体向上加速运动时,由于沿斜面向下有重力的分力,所以要使物体随传送带向上加速运动,传送带对货物的摩擦力必定沿传送带向上。物体随传送带向 下加速运动时,摩擦力的方向要视加速度的大小而定,当加速度为某一合适值时,重力沿斜面向下的分力恰好提供了所需的合外力,则摩擦力这零;当加速度大于这一值 时,摩擦力应沿传送带向下;当加速度小于这一值时,摩擦力应沿传送带向上。 当物体随传送带向上加速运动时,由牛顿第二定律得: 所以,方向沿斜面向上。 物体随传送带向下加速运动时,设沿传送带向上,由牛顿第二定律得: 所以。 当时,,与所设方向相同,即沿斜面向上。 当时,,即货物与传送带间无摩擦力作用。

当时,,与所设方向相反,即沿斜面向下。 小结:当传送带上物体所受摩擦力方向不明确时,可先假设摩擦力向某一方向,然后应用牛顿第二定律导出表达式,再结合具体情况进行讨论. 二、依托传送带的相对运动问题 例2一水平的浅色长传送带上放置一煤块(可视为质点),煤块与传送带之间的动摩擦因数为。初始时,传送带与煤块都是静止的。现让传送带以恒定的加速度 开始运动,当其速度达到后,便以此速度做匀速运动。经过一段时间,煤块在传送带上留下了一段黑色痕迹后,煤块相对于传送带不再滑动。求此黑色痕迹的长度。 解析:根据“传送带上有黑色痕迹”可知,煤块与传送带之间发生了相对滑动,煤块的加速度小于传送带的加速度。根据牛顿定律,可得:设经历时间 ,传送带由静止开始加速到速度等于,煤块则由静止加速到,有由于,故,煤块继续受到滑动摩擦力的作用。再经过时间,煤块的 速度由增加到,有,此后,煤块与传送带运动速度相同,相对于传送带不再滑动,不再产生新的痕迹。 设在煤块的速度从0增加到的整个过程中,传送带和煤块移动的距离分别为和,有: 传送带上留下的黑色痕迹的长度 由以上各式得 小结:对于多个物理过程问题,能否按顺序对题目给出的物体运动过程进行分段分析,是解决问题的关键所在. 三、依托传送带的临界、极值问题

同步带传动受力情况的分析(压轴力与张紧力的计算)

同步带受力情况的分析 1 张紧力 同步带安装时必须进行适当的张紧,以使带具有一定的初拉力(张紧力)。初拉力过小会使同步带在运转中因齿合不良而发生跳齿现象,在跳齿的瞬间,可能因拉力过大而使带断裂或带齿断裂;初拉力过小还会使同步带传递运动的精度降低,带的振动噪音变大。而初拉力过大则会使带的寿命降低,传动噪音增大,轴和轴承上的载荷增大,加剧轴承的发热和使轴承寿命降低。故控制同步带传动合宜的张紧力是保证同步带传动正常工作的重要条件。 设0F 为同步带传动时带的张紧力,1F 、2F 、F 分别为带传动工作时带的紧边拉力、松边拉力、和有效拉力。为了保证同步带在带轮上齿合可靠、不跳齿,同步带运转时紧边带的弹性伸长量与松边带的弹性收缩量应保持近似相等。因此,紧边拉力的增加量应等于松边拉力的减少量,即 1F -0F =0F -2F 或 1F +2F =20F 、0F =0.5(1F +2F ) 式1-1 2 压轴力 压轴力即为同步带作用在轴上的力,是紧边拉力与松边拉力的矢量和,如图2-1所示: 图2-1同步带的压轴力、紧边拉力、松边拉力 据机械标准JB/T 7512.3-1994压轴力Q 计算如下所示: Q=12()F K F F + N 式2-1 当工况系数A K ≥1.3时: Q=0.7712()F K F F + N 式2-2

式中: F K ――矢量相加修正系数,如图2-2: 图2-2 矢量相加修正系数 上图中1α为小带轮包角,21118057.3d d a α-≈?-??。 A K 为工况系数,对于医疗机械,其值如图2-3所示: 图2-3 医疗机械的工况系数 对于医疗机械,取A K =1.2,所以有压轴力Q=12()F K F F + N ,其中F K 值大于0.5。 另外由式1-1有张紧力0F =0.5(1F +2F )。 由此可看出压轴力大于张紧力,故设计时只需计算传动中所受的压轴力,Q=12()F K F F + N 。 而带的紧边张力与松边张力分别由下面公式所得: 11250/d F P V = N 式2-3 2250/d F P V = N 式2-4

同步带传动受力情况的分析(压轴力与张紧力的计算)

同步带传动受力情况的分析(压轴力与张紧力的计算)

同步带受力情况的分析 1 张紧力 同步带安装时必须进行适当的张紧,以使带具有一定的初拉力(张紧力)。初拉力过小会使同步带在运转中因齿合不良而发生跳齿现象,在跳齿的瞬间,可能因拉力过大而使带断裂或带齿断裂;初拉力过小还会使同步带传递运动的精度降低,带的振动噪音变大。而初拉力过大则会使带的寿命降低,传动噪音增大,轴和轴承上的载荷增大,加剧轴承的发热和使轴承寿命降低。故控制同步带传动合宜的张紧力是保证同步带传动正常工作的重要条件。 设0F 为同步带传动时带的张紧力,1F 、2F 、F 分别为带传动工作时带的紧边拉力、松边拉力、和有效拉力。为了保证同步带在带轮上齿合可靠、不跳齿,同步带运转时紧边带的弹性伸长量与松边带的弹性收缩量应保持近似相等。因此,紧边拉力的增加量应等于松边拉力的减少量,即 1F -0F =0F -2F 或 1F +2F =20F 、0F =0.5(1F +2F ) 式1-1 2 压轴力 压轴力即为同步带作用在轴上的力,是紧边拉力与松边拉力的矢量和,如图2-1所示: 图2-1同步带的压轴力、紧边拉力、松边拉力 据机械标准JB/T 7512.3-1994压轴力Q 计算如下所示: Q=12()F K F F + N 式2-1 当工况系数A K ≥1.3时: Q=0.7712()F K F F + N 式2-2

式中: F K ――矢量相加修正系数,如图2-2: 图2-2 矢量相加修正系数 上图中1α为小带轮包角,21118057.3d d a α-≈?-??。 A K 为工况系数,对于医疗机械,其值如图2-3所示: 图2-3 医疗机械的工况系数 对于医疗机械,取A K =1.2,所以有压轴力Q=12()F K F F + N ,其中F K 值大于0.5。 另外由式1-1有张紧力0F =0.5(1F +2F )。 由此可看出压轴力大于张紧力,故设计时只需计算传动中所受的压轴力,Q=12()F K F F + N 。 而带的紧边张力与松边张力分别由下面公式所得: 11250/d F P V = N 式2-3 2250/d F P V = N

试分析影响带传动传动能力的主要因素

试分析影响带传动传动能力的主要因素 1. 带传动的工作原理 图1 带传动工作原理图 通过对传动带与带轮的受力情况的分析与研究, 我们可得: 102e F F F =+ (1) 202 e F F F =+ (2) 从而可知 12e F F F =- (3) 式中:0F ---带的预紧拉力 1F ---紧边拉力 2F ---松边拉力 e F ---带的有效拉力 在带传动中, 当带有打滑趋势时, 其摩擦力即达到极限值, 此时, 带传动的有效拉力也到最大值, 进而我们可求得柔体摩擦的欧拉公式: 12fa F F e = (4) 对于V 带有: sin /2 12fa F F e ?= (5) 式中:f---带与带轮之间的摩擦系数 a---带在带轮上的包角 ?---V 带轮的槽角 由上式可得到带所能传递的最大有效拉力: 01 21 fa ce fa e F F e -=+ (6) 由上式可知:带传动的有效拉力即极限摩擦力总和与 带的初拉力,包角和当量摩擦系数有关。

2. 带的初拉力 从( 3)式中可以看出, 要想提高有效圆周力Fe 最好是在增加F 1 的同时使F2 为零, 但是当F2 为零时, 欧拉公式中F1 也将为零, 所以Fe 也就为零。因此, 按一般的张紧方法都不能使F2 为零, 那么采用压紧轮压紧的方法能使F2 为零。压紧轮使带与带轮之间产生了摩擦力, 且其动、静态变化值较小, 近似为定值, 完全取代了F2 的作用, 从而使F2 为零。自然欧拉公式中F2 被摩擦力所取代, 所以F1 不为零, F e 也就不会为零了, 因此前后并不矛盾。其图如下: 把带松套在两个带轮上, 在主从带轮松边的出口和进口A 、B 处, 各加一个压紧轮1和2, 由于压紧轮的压力Q1和Q2的作用, 当带传动时, 使带与带轮之间产生摩擦力a F 和b F , 这个摩擦力完全可以代替松边拉力的作用, 且a F 和b F 在静态或工作状态时,其变化不大, 可视为定值[ 1。同时, 在紧边处, 沿两带轮切点跨距的中点C 处加一压紧轮3(轮缘有宽度大于带宽的U 形槽), 压紧轮的压力Q3 其方向垂直于两轮外公切线, 使带具备一定的预紧力0F 。 3. 包角 带与带轮接触弧所对应的中心角成为包角。21 1180*57.3d d d d a α? ?-≈- 带传动处于临界状态时F1与F2的关系 以平带为例。已知,带传动几何尺寸,摩擦系数为f 。 取微段如图。 微段受力: dFN ,F , F+dF ,fdFN 图3 微段受力图

齿轮受力分析

齿轮传动受力分析: 力有三要素:大小、方向、作用点。 1、大小计算:见教科书公式 2、作用点:分度圆上齿宽中部 3、方向判断:分以下几种情况 a) 直齿轮: 画受力分析图,根据力的平行四边形法则可知,对于主动轮,径向力指向圆心,周向力方向与外加转矩方向相反,外加转矩方向与转动方向一致,主动轮判断完毕后和它配合的从动轮的受力方向自然就知道了,因为二者是作用力与反作用力,简单地说,就是无论主动轮还是从动轮,其所受径向力指向各自的圆心,主动轮所受周向力是来自于从动轮的阻力,故其方向与主动轮的转向相反,从动轮所受的周向力来自于主动轮,是使从动轮转动的动力,与其转动方向相同。直齿轮传动没有轴向力。 b) 斜齿轮: 斜齿轮传动同样受径向力、周向力,其方向的判断与直齿轮相同,所不同的是斜齿轮传动有轴向力的作用。其方向的判断有两种方法:一种是画受力分析图,比较麻烦,另一种是用左右手法则判断,使用左右手法则时,通常用于主动轮上,即左旋齿轮用左手,右旋齿轮用右手,四指方向指向外加转矩方向,则大拇指方向即为轴向力方向 (注意:是用于主动轮上) c) 圆锥齿轮传动: 圆锥齿轮传动同样受径向力、周向力和轴向力的作用。径向力和周向力的方向判断也与直齿轮一样,其轴向力的作用方向小端指向大端。 d) 蜗杆传动: 蜗杆传动也受径向力、周向力和轴向力的作用。径向力和周向力的方向判断仍然与直齿轮一样,其轴向力作用方向的判断和斜齿轮完全一样,一种是画受力分析图,另一种是用左右手法则判断,即在主动轮上,左旋用左手,右旋用右手,四指方向指向外加转矩方向,则大拇指方向即为轴向力方向,蜗杆传动中蜗杆是主动件 在蜗杆传动中,蜗轮的周向力为蜗杆的轴向力,蜗轮的轴向力为蜗杆的周向力,二者为作用力与反作用力,大小相等方向相反。 相同点: 以上几种传动中,主动轮的外加转矩方向均与其转动方向一致,周向力方向与其转动方向(或外加转矩方向)相反,径向力均指向各自的圆心。 这里要特别注意: 一对相互啮合的斜齿轮,其旋向相反,即一个斜齿轮是左旋的,与其配合的另一个斜齿轮一定是右旋的,反之亦然。而一对互相啮合的蜗轮蜗杆传动其旋向一定是相同的,即蜗杆如果是左旋的,那么与其配合的蜗轮也一定是左旋的,反之亦然。 齿轮(包括蜗轮蜗杆)旋向的判断方法: 首先使齿轮的轴线方向与站立方向一致,则表示旋向的斜线向右上方的为右旋,向左上方的为左旋。

传送带的受力分析

传送带的受力分析集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

传送带是应用广泛的一种传动装置,以其为素材的问题以真实物理现象为依据,它既能训练学生的科学思维,又能联系科学、生产和生活实际,是很好的能力考查型试题,这类试题大都具有物理情景模糊、条件隐蔽、过程复杂等特点,是历年高考考查的热点,也是广大考生的难点。现通过将传送带问题归类赏析,从而阐述解决这类问题的基本方法,找出解决这类问题的关键,揭示这类问题的实质。 一、依托传送带的受力分析问题 例1如图1所示,一质量为的货物放在倾角为的传送带一起向上或向下做加速运动。设加速度为,试求两种情形下货物所受的摩擦力。 解析:物体向上加速运动时,由于沿斜面向下有重力的分力,所以要使物体随传送带向上加速运动,传送带对货物的摩擦力必定沿传送带向上。物体随传送带向下加速运动时,摩擦力的方向要视加速度的大小而定,当加速度为某一合适值时,重力沿斜面向下的分力恰好提供了所需的合外力,则摩擦力这零;当加速度大于这一值时,摩擦力应沿传送带向下;当加速度小于这一值时,摩擦力应沿传送带向上。 当物体随传送带向上加速运动时,由牛顿第二定律得: 所以,方向沿斜面向上。 物体随传送带向下加速运动时,设沿传送带向上,由牛顿第二定律得:

所以。 当时,,与所设方向相同,即沿斜面向上。 当时,,即货物与传送带间无摩擦力作用。 当时,,与所设方向相反,即沿斜面向下。 小结:当传送带上物体所受摩擦力方向不明确时,可先假设摩擦力向某一方向,然后应用牛顿第二定律导出表达式,再结合具体情况进行讨论. 二、依托传送带的相对运动问题 例2一水平的浅色长传送带上放置一煤块(可视为质点),煤块与传送带之间的动摩擦因数为。初始时,传送带与煤块都是静止的。现让传送带以恒定的加速度开始运动,当其速度达到后,便以此速度做匀速运动。经过一段时间,煤块在传送带上留下了一段黑色痕迹后,煤块相对于传送带不再滑动。求此黑色痕迹的长度。 解析:根据“传送带上有黑色痕迹”可知,煤块与传送带之间发生了相对滑动,煤块的加速度小于传送带的加速度。根据牛顿定律,可得: 设经历时间,传送带由静止开始加速到速度等于,煤块则由静止加速到,有

试研究分析影响带传动传动能力的主要因素

试分析影响带传动传动能力的主要因素

————————————————————————————————作者:————————————————————————————————日期:

试分析影响带传动传动能力的主要因素 1. 带传动的工作原理 图1 带传动工作原理图 通过对传动带与带轮的受力情况的分析与研究, 我们可得: 102e F F F =+ (1) 202 e F F F =+ (2) 从而可知 12e F F F =- (3) 式中:0F ---带的预紧拉力 1F ---紧边拉力 2F ---松边拉力 e F ---带的有效拉力 在带传动中, 当带有打滑趋势时, 其摩擦力即达到极限值, 此时, 带传动的有效拉力也到最大值, 进而我们可求得柔体摩擦的欧拉公式: 12fa F F e = (4) 对于V 带有: sin /2 12fa F F e ?= (5) 式中:f---带与带轮之间的摩擦系数 a---带在带轮上的包角 ?---V 带轮的槽角 由上式可得到带所能传递的最大有效拉力: 01 21 fa ce fa e F F e -=+ (6) 由上式可知:带传动的有效拉力即极限摩擦力总和与 带的初拉力,包角和当量摩擦系数有关。

2. 带的初拉力 从( 3)式中可以看出, 要想提高有效圆周力Fe 最好是在增加F 1 的同时使F2 为零, 但是当F2 为零时, 欧拉公式中F1 也将为零, 所以Fe 也就为零。因此, 按一般的张紧方法都不能使F2 为零, 那么采用压紧轮压紧的方法能使F2 为零。压紧轮使带与带轮之间产生了摩擦力, 且其动、静态变化值较小, 近似为定值, 完全取代了F2 的作用, 从而使F2 为零。自然欧拉公式中F2 被摩擦力所取代, 所以F1 不为零, F e 也就不会为零了, 因此前后并不矛盾。其图如下: 把带松套在两个带轮上, 在主从带轮松边的出口和进口A 、B 处, 各加一个压紧轮1和2, 由于压紧轮的压力Q1和Q2的作用, 当带传动时, 使带与带轮之间产生摩擦力a F 和b F , 这个摩擦力完全可以代替松边拉力的作用, 且a F 和b F 在静态或工作状态时,其变化不大, 可视为定值[ 1。同时, 在紧边处, 沿两带轮切点跨距的中点C 处加一压紧轮3(轮缘有宽度大于带宽的U 形槽), 压紧轮的压力Q3 其方向垂直于两轮外公切线, 使带具备一定的预紧力0F 。 3. 包角 带与带轮接触弧所对应的中心角成为包角。21 1180*57.3d d d d a α? ?-≈- 带传动处于临界状态时F1与F2的关系 以平带为例。已知,带传动几何尺寸,摩擦系数为f 。 取微段如图。 微段受力: dFN ,F , F+dF ,fdFN 图3 微段受力图

齿轮传动的方向及受力分析

高淳县“人才强教”工程公开课齿轮传动的方向及受力分析 教师:孙长云 二○○八年十二月十一日

高淳县“人才强教”工程公开课教案

教学环节与主要说明教学活动复习一、齿轮传动的受力说明: 一对相互啮合的齿轮在传动过程中,主动轮给从动轮一个作用力,作 用力的方向垂直于从动轮的齿面,即法向力。 复习二、各种齿轮传动的受力分解: 1、直齿圆柱齿轮传动:可以分解成径向力和周向力; 2、斜齿圆柱齿轮传动:可以分解成径向力、周向力和轴向力; 3、对于锥齿轮传动:可以分解成径向力、周向力和轴向力; 4、对于蜗杆传动:可以分解成径向力、周向力和轴向力; 教师:作图 说明 学生:分析 讨论 教师:适当 提问 学生:回答图11

复习三、各种齿轮传动受力分析比较 齿轮传动类型分力关系 分力判定方法 径向力(F r)周向力(F t)轴向力(F a) 直齿圆柱齿轮传动F t1=- F t2 F r1=- F r2 由接触点 指向轮心 对主动轮来 说是阻力,其 方向与主动 轮的运动方 向相反; 对从动轮来 说是动力,其 方向与从动 轮运动方向 相同 无 斜齿圆柱齿轮传动F t1=- F t2 F r1=- F r2 F a1=- F a2 主动轮的左 (右)手定则 直齿圆锥齿轮传动F t1=- F t2 F r1=- F a2 F a1=- F r2 由接触点指 向大端或 F r1=- F a2 F a1=- F r2 蜗杆蜗轮传动F t1=- F a2 F r1=- F r2 F a1=- F t2 F t1=- F a2 F a1=- F t2 复习四、综合举例讲解 2008单招机电第57题:题57图所示为一机械传动方案,Ⅰ轴为输入轴,按图中箭头所示方向转动。已知:Z1=Z2=Z3=30,Z4= Z12=20,Z5= Z8=40,Z6=Z7= Z9= Z11=60,Z10=80,Z1、Z2和Z3为直齿圆锥齿轮,Z4、Z6为斜齿轮,Z12为标准直齿圆柱齿轮。分析该传动方案,回答下列问题:(第1~6小题每空1分,第7、8小题每空2分)。 (1)图中Z1、Z2和Z3构成机构。Z2所受的周向力(垂直纸面向里、垂直纸面向外)。 (2)齿轮Z1和Z2的啮合条件为和。(3)如图所示状态下,螺母的移动方向为,齿条的运动方向为。 (4)该传动系统中,齿条向左运动的速度有种。齿条快速运动时,教师:总结 提示 学生:归纳 填表 教师:分析 说明学生:解答

传送带的受力分析

传送带是应用广泛的一种传动装置,以其为素材的问题以真实物理现象为依据,它既能训练学生的科学思维,又能联系科学、生产和生活实际,是很好的能力考查型试题,这类试题大都具有物理情景模糊、条件隐蔽、过程复杂等特点,是历年高考考查的热点,也是广大考生的难点。现通过将传送带问题归类赏析,从而阐述解决这类问题的基本方法,找出解决这类问题的关键,揭示这类问题的实质。 一、依托传送带的受力分析问题 例1如图1所示,一质量为的货物放在倾角为的传送带一起向上或向下做加速运动。设加速度为,试求两种情形下货物所受的摩擦力。 解析:物体向上加速运动时,由于沿斜面向下有重力的分力,所以要使物体随传送带向上加速运动,传送带对货物的摩擦力必定沿传送带向上。物体随 传送带向下加速运动时,摩擦力的方向要视加速度的大小而定,当加速度为某一合适值时,重力沿斜面向下的分力恰好提供了所需的合外力,则摩擦力这零;当 加速度大于这一值时,摩擦力应沿传送带向下;当加速度小于这一值时,摩擦力应沿传送带向上。 当物体随传送带向上加速运动时,由牛顿第二定律得: 所以,方向沿斜面向上。

物体随传送带向下加速运动时,设沿传送带向上,由牛顿第二定律得: 所以。 当时,,与所设方向相同,即沿斜面向上。 当时,,即货物与传送带间无摩擦力作用。 当时,,与所设方向相反,即沿斜面向下。 小结:当传送带上物体所受摩擦力方向不明确时,可先假设摩擦力向某一方向,然后应用牛顿第二定律导出表达式,再结合具体情况进行讨论. 二、依托传送带的相对运动问题 例2一水平的浅色长传送带上放置一煤块(可视为质点),煤块与传送带之间的动摩擦因数为。初始时,传送带与煤块都是静止的。现让传送带以恒定的加速度开始运动,当其速度达到后,便以此速度做匀速运动。经过一段 时间,煤块在传送带上留下了一段黑色痕迹后,煤块相对于传送带不再滑动。求此黑色痕迹的长度。

齿轮传动受力分析习题

1. 已知在某二级齿轮传动中,蜗杆1为主动轮,输出轴上的锥齿轮4的转向如下图所示,欲使中间轴上的轴承所承受的轴向力能部分抵消,试确定:(1)蜗杆1的旋向;(2)蜗杆1的转向;(3)蜗杆1、蜗轮2、锥齿轮3和锥齿轮4的轴向力F a1、F a2、F a3、F a4的方向,并将其标在图中。 (1)蜗杆的旋向:左旋 (2)蜗杆的转向:顺时针 (3)F a1、F a2、F a3、F a4的方向如图

1. 已知在某二级直齿锥齿轮一斜齿圆柱齿轮传动中,1轮为驱动轮,3轮的螺旋线方向如图所示。为了使II 轴轴承上所受的轴向力抵消一部分,试确定1轮的转动方向。并将各轮轴向力F a1、F a2、F a3、F a4的方向、4轮的螺旋线方向和1轮的转动方向标在图中。 (1)轮1的转向:向上 (2)轮4的旋向:右旋 (3)F a1、F a2、F a3、F a4的方向如图 1) 单根V 带传递的最大功率max 4.82P KW =,小带轮直径1400d d mm =,11450min n r =,小带轮包角1152α=?,带和带轮间的当量摩擦系数0.25v f =,试确定带传动的最大有效拉力ec F 、紧边拉力1F 和张紧力0F 。 解 求带运动的速度 11 4001450 30.35601000601000d d n v m s ππ??===?? 因为1000ec P F v =,故

max 10001000 4.82158.8130.35 ec P F N v ?= == 由公式(8.4)得 (0.253.14152180)10(0.253.14152180)11158.81 2.7181248.31212 2.7181 v v f ec f F e F N e αα????++=?=?=-- 由公式(8.2)得 10158.81248.31327.7222 ec F F F N =+=+= 20158.81248.31168.9122 ec F F F N =-=-= 2) 一普通V 带传动,已知:主动轮直径1180d d mm =,从动轮直径2630d d mm =,中心距1600a mm =,主动轮转速11450min n r =,使用B 型胶带4根,V 带与带轮表面摩擦系数0.4f =,所能传递的最大功率41.5P KW =。试计算:(1)V 带中各应力;(2)V 带最大应力中各应力成份所占的百分比。(带轮槽角38?=?,V 带的弹性模量200E MPa =) 解 (1)计算包角1α 121()180(630180)180180180163.88 2.861600 d d d d rad a αππ-??-??=?-=?-=?≈?? (2)计算各应力 38sin 0.4sin 1.2322 v f f ??=== 带速 1180145013.66601000601000 d d n v m s ππ??= ==?? 因传动用了4根带,故有:41000ec P F v =,又因P 为最大功率,因此最大有效拉力 10004100041.5/413.66759.52ec F P v N ==??= 由(8.4)得 (1.232.86)10(1.232.86)11729.52 2.7181405.99212 2.7181 v v f ec f F e F N e αα??++=?=?=-- 由(8.2)得 10759.52402.99782.7522 ec F F F N =+=+=

相关文档
最新文档