数学理科选修4-4《极坐标》完整版-经典习题及详细答案

数学理科选修4-4《极坐标》完整版-经典习题及详细答案
数学理科选修4-4《极坐标》完整版-经典习题及详细答案

数学理科选修4-4第一讲《极坐标》习题

一.选择题

1.已知??? ?

?

-3,5πM ,下列所给出的不能表示点的坐标的是( ) A .??? ??-3,5π B .??

? ??34,5π C .??? ??-

32,5π D .??? ??

--35,5π

2.点()

3,1-P ,则它的极坐标是( ) A .??? ?

?

3,2π B .??

? ??34,2π C .??? ??-3,2π D .??? ??

-34,2π

3.极坐标方程??

?

??-=θπρ4cos 表示的曲线是( ) A .双曲线 B .椭圆 C .抛物线 D .圆

4.圆)sin (cos 2θθρ+=

的圆心坐标是( )

A .??? ??4,1π

B .??? ??4,21π

C .??? ??4,2π

D .??

?

??4,2π

5.在极坐标系中,与圆θρsin 4=相切的一条直线方程为( ) A .2sin =θρ B .2cos =θρ C .4cos =θρ D .4cos -=θρ

6、 已知点()0,0,4

3,2,2,2O B A ??

?

??

??? ?

?-

π则ABO ?为( ) A 、正三角形 B 、直角三角形 C 、锐角等腰三角形 D 、直角等腰三角形 7、)0(4

≤=

ρπ

θ表示的图形是( )

A .一条射线

B .一条直线

C .一条线段

D .圆

8、直线αθ=与1)cos(

=-αθρ的位置关系是( )

A 、平行

B 、垂直

C 、相交不垂直

D 、与有关,不确定

9.两圆θρcos 2=,θρsin 2=的公共部分面积是( ) A.214

-

π

B.2-π

C.12-π

D.2

π

10.已知点1P 的球坐标是)4

,

,32(1π

?P ,2P 的柱坐标是)1,,5(2θP ,求21P P .

A .2

B .3

C .22

D .2

2

二.填空题

11.极坐标方程52

sin 42

ρ化为直角坐标方程是

12.圆心为??

?

??6,

3πC ,半径为3的圆的极坐标方程为 13.已知直线的极坐标方程为2

2

)4sin(=+πθρ,则极点到直线的距离是

14、在极坐标系中,点P ???

?

?611,2π到直线1)6sin(=-πθρ的距离等于____________。

15、与曲线01cos =+θρ关于4

π

θ=对称的曲线的极坐标方程是_______________。

三.解答题

16.说说由曲线x y tan =得到曲线x y 2tan 3=的变化过程,并求出坐标伸缩变换。

17.已知??

? ??π32,5P ,O 为极点,求使'POP ?是正三角形的'

P 点坐标。

18.棱长为1的正方体'

'

'

'

C B A

D OABC -中,对角线'

OB 与'BD 相交于点P ,顶点O 为坐标原点,OA 、OC 分别在轴轴y x ,的正半轴上,已知点P 的球坐标()θ?ρ,,P ,求

θ?ρsin ,tan ,。

19.ABC ?的底边,2

1

,10B A BC ∠=∠=以B 点为极点,BC 为极轴,求顶点A 的轨迹方程。

20.在平面直角坐标系中已知点A (3,0),P 是圆珠笔(

)

12

2=+y x 上一个运点,且AOP ∠的平分线交PA 于Q 点,求Q 点的轨迹的极坐标方程。

21、在极坐标系中,已知圆C 的圆心C ??

?

??6,3π,半径=1,Q 点在圆C 上运动。 (1)求圆C 的极坐标方程;

O

P

A

Q

(2)若P 在直线OQ 上运动,且OQ∶QP=2∶3,求动点P 的轨迹方程。

22、建立极坐标系证明:已知半圆直径∣AB∣=2(>0),半圆外一条直线与AB 所在直线垂直相交于点T ,并且∣AT∣=2)2

2(r

a a <

。若半圆上相异两点M 、N 到的距离∣MP∣,∣NQ∣满足∣MP∣∶∣MA∣=∣NQ∣∶∣NA∣=1,则 ∣MA∣+∣NA∣=∣AB∣。

23.如图,BC AD ⊥,D 是垂足,H 是AD 上任意一点,直线BH 与AC 交于E 点,直线CH 与AB 交于F 点,求证:FDA EDA ∠=∠

选修4-4第一讲《极坐标》答案

11.42552

+=x y ;12.??

? ??

-=6cos 6πθρ;13.22; 14.13+;15. 01sin =+θρ

三.解答题

16.解:x y tan =的图象上的点的纵坐标不变,横坐标缩短为原来的

2

1

,得到x y 2tan =,再将其纵坐标伸长为原来的3倍,横坐标不变,得到曲线x y 2tan 3=。

设'

'tan 3x y =,变换公式为

???>=>=0

,0

,'

'μμλλy y x x 将其代入'

'tan 3x y =得

???

??==213λμ,?????==∴y y x x 321''

17.)3,5('

πP 或),5('πP

18.1sin ,2tan ,2

3

===θ?ρa 19.解:设()θρ,M 是曲线上任意一点,在ABC ?

中由正弦定理得:2

sin

10

)23sin(θ

θπρ=

- 得A 的轨迹是:2

sin 40302θρ-= 20.解:以O 为极点,x 轴正半轴为极轴建立极坐标系,设()θρ,Q ,()θ2,1P OAP OQP OQA S S S ???=+Θ

θθρθρ2sin 132

1

sin 21sin 321???=+?∴

θρcos 2

3=

21.(1)06cos 62

=??

?

?

?-

-πθρρ (2)0506cos 152

=+??

?

?

?-

-πθρρ 22.证法一:以A 为极点,射线AB 为极轴建立直角坐标系,则半圆的的极坐标方程为θρcos 2r =,设()),(,,2211θρθρN M ,则11cos 2θρr =,22cos 2θρr =,又

1211cos 22cos 2θθρr a a MP +=+=,2222cos 22cos 2θθρr a a NQ +=+=, 112cos 2cos 22θθr r a MP =+=∴ 222cos 2cos 22θθr r a NQ =+=∴

21cos ,cos θθ∴是方程0cos cos 2=+-a r r θθ的两个根,由韦达定理:

1cos cos 21=+θθ,AB r r r NA MA ==+=+2cos 2cos 221θθ

证法二:以A 为极点,射线AB 为极轴建立直角坐标系,则半圆的的极坐标方程为θρcos 2r =,设()),(,,2211θρθρN M 又由题意知,()),(,,2211θρθρN M 在抛物线θρcos 12-=

a 上,θ

θcos 12cos 2-=∴a

r ,

0cos cos 2=+-a r r θθ,21cos ,cos θθ∴是方程0cos cos 2=+-a r r θθ的两个根,

由韦达定理:1cos cos 21=+θθ,AB r r r NA MA ==+=+2cos 2cos 221θθ

23.证明:以BC 所在的直线为x 轴,AD 所在的直线为y 轴建立直角坐标系,设),0(a A ,

)0,(b B ,)0,(c C ,),0(t H ,则

1:=+t y

b x l BH ,即0=-+bt by tx

1:=+t y

c x l CH ,即0=-+ct cy tx

1:=+a y

c x l AC ,即0=-+ac cy ax

1:=+a

y

b x l AB ,即0=-+ab by ax

()()??? ??----∴ct ab t c b ct ab t a bc E ,,()()??

? ??----∴bt ac b c at ac bt a t bc F ,

()()()()()()t a bc at c b t a bc ct ab ct ab at c b k DE --=--?--=∴ ()()()()()()

t a bc at c b a t bc ac bt bt ac at b c k DF

---=--?--=

∴ ,FDB EDC ∠=∠∴FDA EDA ∠=∠

高二数学理科选修4-4第二讲参数方程测试题

班别 姓名 学号

一.选择题(每题5分共60分)

1.设椭圆的参数方程为()πθθθ

≤≤?

??==0sin cos b y a x ,()11,y x M ,()22,y x N 是椭圆上两点,

M ,N 对应的参数为21,θθ且21x x <,则( )

A .21θθ<

B .21θθ>

C .21θθ≥

D .21θθ≤

2.直线:3x-4y-9=0与圆:??

?==θ

θ

sin 2cos 2y x ,(θ为参数)的位置关系是( )

A.相切

B.相离

C.直线过圆心

D.相交但直线不过圆心

3.经过点M(1,5)且倾斜角为

3

π

的直线,以定点M 到动 点P 的位移t 为参数的参数方程是( )A.???????-=+=t y t x 235211 B. ???????+=-=t y t x 235211 C. ???????-=-=t y t x 235211 D. ???

????+=+=t y t x 235211 4.参数方程?????

-=+

=2

1y t t x (t 为参数)所表示的曲线是 ( )

A.一条射线

B.两条射线

C.一条直线

D.两条直线

5.若动点(x ,y )在曲线

1422

2=+b

y x (b >0)上变化,则x 22y 的最大值为( )

(A) ?????≥

<<+)4(2)40(442b b b b ; (B) ?????≥<<+)2(2)

20(442

b b

b b ;(C) 442+b (D) 2b 。 6.实数x 、y 满足3x 2

+2y

2

=6x ,则x 2

+y 2

的最大值为( ) A 、

27 B 、4 C 、2

9

D 、5 7.曲线的参数方程为???-=+=1

232

2t y t x (t 是参数),则曲线是( ) A 、线段 B 、双曲线的一支 C 、圆 D 、射线

8. 已知动园:),,(0sin 2cos 22

2

是参数是正常数θθθb ,a b a by ax y x ≠=--+,则圆心的轨迹是( )

A 、直线

B 、圆

C 、抛物线的一部分

D 、椭圆

9. 在参数方程??

?+=+=θ

θ

sin cos t b y t a x (t 为参数)所表示的曲线上有B 、C 两点,它们对应的

参数值分别为t 1、t 2,则线段BC 的中点M 对应的参数值是( )

10.设0>r ,那么直线()

是常数θθθr y x =+sin cos 与圆()是参数??

?

???==sin cos r y r x 的位置

关系是 ( )

A 、相交

B 、相切

C 、相离

D 、视的大小而定

11. 下列参数方程(t 为参数)中与普通方程x 2

-y=0表示同一曲线的是( )

12.已知过曲线()?

??≤≤==πθθθθ

0sin 4cos 3,y x 为参数上一点P ,原点为O ,直线PO 的倾斜角

为4

π

,则P 点坐标是( ) A 、(3,4) B 、???

?

??22223, C 、(-3,-4) D 、???

??512512, 二.填空题(每题5分共25分) 13.过抛物线y 2

=4x 的焦点作倾斜角为

的弦,若弦长不超过8,则的取值范围是

____________。

14.直线()为参数t t

y t

x ??

?+=--=2322上与点()32,P -距离等于

2的点的坐标是

15.圆锥曲线()为参数θθ

θ

???==sec 3tan 2y x 的准线方程是

16.直线l 过点()5,10M ,倾斜角是

3

π

,且与直线032=--y x 交于M ,则0MM 的长为

17.曲线??

?==ααtan sec b y a x (α为参数)与曲线?

??==ββ

sec tan b y a x (β为参数)的离心率分别为e 1

和e 2,则e 1+e 2的最小值为_______________. 三.解答题(共65分)

18.上截得的弦长。为参数)被双曲线(求直线13222=-???=+=y x t t

y t

x

19.已知方程

(1)试证:不论如何变化,方程都表示顶点在同一椭圆上的抛物线;

(2)θ为何值时,该抛物线在直线x=14上截得的弦最长?并求出此弦长。

20.已知椭圆?

??==θθ

sin 5cos 4y x 上两个相邻顶点为A 、C ,又B 、D 为椭圆上的两个动点,且B 、

D 分别在直线AC 的两旁,求四边形ABCD 面积的最大值。

21.已知过点P(1,-2),倾斜角为

6

π的直线l 和抛物线x 2

=y+m (1)m 取何值时,直线l 和抛物线交于两点?

(2)m 取何值时,直线l 被抛物线截下的线段长为3

2

34-.

第二讲参数方程测试题答案

题号 1 2 3 4 5 6 7 8 9 10 11 12 答案

B

D

A

B

A

B

D

D

B

B

D

D

13.??

??∈434ππα,

;14.()()2,1,4,3-- ; 15.13139±=y ;16.3610+;17.22 18.解:把直线参数方程化为标准参数方程为参数)

( 23 212t t y t x ???

?

???

=+= 1 23 21212

2

2

2=???

? ??-??? ??+=-t t y x ,得:代入 06 4 2

=--t t 整理,得: ,则,设其二根为 21t t 6 4 2121-=?=+t t t t ,

()()10240644 4 22122121==--=

-+=-=t t t t t t AB 从而弦长为

19(1)把原方程化为())cos 4(2sin 32

θθ-=-x y ,知抛物线的顶点为()

θθsin 3,cos 4它是在椭圆19

162

2=+y x 上;(2)当时,弦长最大为12。

20、220

21.(1)m >12

3

423+,(2)m=3

高二数学理科选修4-4参数方程单元练习

(一)选择题:

[ ] A.(2,-7) B.(1,0)

A.20°B.70° C.110° D.160°

[ ] A.相切 B.相离 C.直线过圆心D.相交但直线不过圆心

A.椭圆 B.双曲线 C.抛物线 D.圆

[ ]

C.5 D.6

(二)填空题:

8.设y=tx(t为参数),则圆x2+y2-4y=0的参数方程是______.

10.当m取一切实数时,双曲线x2-y2-6mx-4my+5m2-1=0的中心的轨迹方程为______.(三)解答题:

时矩形对角线的倾斜角α.

13.直线l经过两点 P(-1,2)和Q(2,-2),与双曲线(y-2)2-x2=1相交于两点A、B,

(1)根据下问所需写出l的参数方程;

(2)求AB中点M与点P的距离.

14.设椭圆4x2+y2=1的平行弦的斜率为2,求这组平行弦中点的轨迹.

15.若不计空气阻力,炮弹运行轨道是抛物线.现测得我炮位A与炮击目标B在同一水平

线上,水平距离为6000米,炮弹运行的最大高度为1200米.试求炮弹的发射角α和发射初速度v0(重力加速度g=9.8米/秒2).

参数方程单元练习答案提示

(一)1.C 2.C 3.D 4.B 5.A

(二)6.(1,0),(-5,0)

7.4x2-y2=16(x≥2)

9.(-1,5),(-1,-1)

10.2x+3y=0

(三)11.圆x2+y2-x-y=0.

14.取平行弦中的一条弦AB在y轴上的截距m为参数,并设A(x1,

设弦AB的中点为M(x,y),则

15.在以A为原点,直线AB的x轴的直角坐标系中,弹道方程是

它经过最高点(3000,1200)和点B(6000,0)的时间分别设为t0和2t0,代入参数方程,得

2016届高考数学经典例题集锦:数列(含答案)

数列题目精选精编 【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312n n a -= . 解:(1)2 1231,314,3413a a a =∴=+==+= . (2)证明:由已知1 13 --=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=--- 1 2 1313 3 312n n n a ---+=++++= , 所以证得31 2n n a -= . 例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{}n a 的通项公式; (Ⅱ)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3 n n a -= (Ⅱ)设{}n b 的公差为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{}n b 的各项为正,∴0d > ∴2d = ∴2(1) 3222n n n T n n n -=+ ?=+ 例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且2 12322...a a a +++ 128n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{}n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式,可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=. (2)把k k a b -看作一个函数,利用函数的思想方法来研究k k a b -的取值情况. 解:(1)已知212322a a a +++ (1) 2n n a -+8n =(n ∈*N )① 2n ≥时,212322a a a +++ (2) 128(1)n n a n --+=-(n ∈*N )②

(完整版)高二数学归纳法经典例题

例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ. 请读者分析下面的证法: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 那么当n =k +1时,有: ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ????????? ??+-++??? ??+--++??? ??-+??? ??-+??? ? ?-=3211211211217151513131121k k k k Λ 322221321121++?=??? ??+-= k k k ()1 121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立. 由①、②可知,对一切自然数n 等式成立. 评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求. 正确方法是:当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k

()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式: a 1+2a 2+3a 3+…+na n =n (n +1)(n +2) 都成立,并证明你的结论. 分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组. ?????=++=+=603224 26321 211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3. 故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立. 下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k 时,等式成立,即 a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2) 那么当n =k +1时, a 1+2a 2+3a 3+…+ka k +(k +1)a k +1 = k (k +1)(k +2)+ (k +1)[3(k +1)+3] =(k +1)(k 2+2k +3k +6) =(k +1)(k +2)(k +3) =(k +1)[(k +1)+1][(k +1)+2] 这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 例3.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2.

高一数学平面向量知识点及典型例题解析

高一数学 第八章 平面向量 第一讲 向量的概念与线性运算 一.【要点精讲】 1.向量的概念 ①向量:既有大小又有方向的量。几何表示法AB u u u r ,a ;坐标表示法),(y x j y i x a 。 向量的模(长度),记作|AB u u u r |.即向量的大小,记作|a |。向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,规定0r 平行于任何向量。(与0的区别) ③单位向量| a |=1。④平行向量(共线向量)方向相同或相反的非零向量,记作a ∥b ⑤相等向量记为b a 。大小相等,方向相同 ),(),(2211y x y x 2121y y x x 2.向量的运算(1)向量加法:求两个向量和的运算叫做向量的加法.如图,已知向量a ,b ,在平面内任 取一点A ,作AB u u u r a ,BC u u u r b ,则向量AC 叫做a 与b 的和,记作a+b ,即 a+b AB BC AC u u u r u u u r u u u r 特殊情况: a b a b a+b b a a+b (1) 平行四边形法则三角形法则C B D C B A A 向量加法的三角形法则可推广至多个向量相加: AB BC CD PQ QR AR u u u r u u u r u u u r u u u r u u u r u u u r L ,但这时必须“首尾相连”。②向量减法: 同一个图中画出 a b a b r r r r 、 要点:向量加法的“三角形法则”与“平行四边形法则”(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。(2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点.(3)实数与向量的积 3.两个向量共线定理:向量b 与非零向量a 共线 有且只有一个实数 ,使得b =a 。 二.【典例解 析】 题型一: 向量及与向量相关的基本概念概念 例1判断下列各命题是否正确 (1)零向量没有方向 (2)b a 则, (3)单位向量都相等 (4) 向量就是有向线段

高中数学必修二-知识点、考点及典型例题解析

高中数学必修二各章知识点总结完整版 第一章 空间几何体 知识点: 1、空间几何体的结构 ⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。 ⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。 ⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。 2、长方体的对角线长2222 c b a l ++=;正方体的对角线长 a l 3= 3、球的体积公式:3 3 4  R V π=,球的表面积公式: 24 R S π= 4、柱体h s V ?=,锥体h s V ?=31,锥体截面积比:2 2 2 1 21h h S S = 5、空间几何体的表面积与体积 ⑴圆柱侧面积;l r S ??=π2侧面 ⑵圆锥侧面积:l r S ??=π侧面 典型例题:

★例1:下列命题正确的是( ) A.棱柱的底面一定是平行四边形 B.棱锥的底面一定是三角形 C.棱柱被平面分成的两部分可以都是棱柱 D.棱锥被平面分成的两部分不可能都是棱锥 ★★例2:若一个三角形,采用斜二测画法作出其直观图,其直观图面积是原三角形面积的( ) A 21 倍 B 4 2倍 C 2倍 D 2倍 ★例3:已知一个几何体是由上、下两部分构成的一个组合体,其三视图如下图所示,则这个组合体的上、下两部分分别是( ) A.上部是一个圆锥,下部是一个圆柱 B.上部是一个圆锥,下部是一个四棱柱 C.上部是一个三棱锥,下部是一个四棱柱 D.上部是一个三棱锥,下部是一个圆柱 ★★例4:一个体积为38cm 的正方体的顶点都在球面上,则球的表面积是

高中数学圆的方程典型例题及详细解答

新课标高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2= ++==AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?

高中数学导数典型例题

高中数学导数典型例题 题型一:利用导数研究函数的单调性、极值、最值 1. 已知函数32()f x x ax bx c =+++ 过曲线()y f x =上的点(1,(1))P f 的切线方程为y=3x +1 。 (1)若函数2)(-=x x f 在处有极值,求)(x f 的表达式; (2)在(1)的条件下,求函数)(x f y =在[-3,1]上的最大值; (3)若函数)(x f y =在区间[-2,1]上单调递增,求实数b 的取值范围 2. 已知).(323 2)(23R a x ax x x f ∈--= (1)当41||≤ a 时, 求证:)x (f 在)1,1( -内是减函数; (2)若)x (f y =在)1,1( -内有且只有一个极值点, 求a 的取值范围. 题型二:利用导数解决恒成立的问题 例1:已知322()69f x x ax a x =-+(a ∈R ) . (Ⅰ)求函数()f x 的单调递减区间; (Ⅱ)当0a >时,若对[]0,3x ?∈ 有()4f x ≤恒成立,求实数a 的取值范围.

例2:已知函数222()2()21x x f x e t e x x t =-++++,1()()2g x f x '= . (1)证明:当t <时,()g x 在R 上是增函数; (2)对于给定的闭区间[]a b ,,试说明存在实数 k ,当t k >时,()g x 在闭区间[]a b , 上是减函数; (3)证明: 3()2 f x ≥. 例3:已知3)(,ln )(2-+-==ax x x g x x x f (1)求函数)(x f 在)0](2,[>+t t t 上的最小值 (2)对(0,),2()()x f x g x ?∈+∞≥恒成立,求实数a 的取值范围 题型三:利用导数研究方程的根 例4:已知函数a x ax x f 313)(23-+-=. (I)讨论函数)(x f 的单调性; (Ⅱ)若曲线()f x 上两点A 、B 处的切线都与y 轴垂直,且线段AB 与x 轴有公共点,求实 数a 的取值范围.

高中数学函数与方程知识点总结、经典例题及解析、高考真题及答案

高中数学函数与方程知识点总结、经典例题及解析、高考真题及答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

函数与方程 【知识梳理】 1、函数零点的定义 (1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫做函数)(x f y =的零点。 (2)方程0)(=x f 有实根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点。因此判断一个函数是否有零点,有几个零点,就是判断方程0)(=x f 是否有实数根,有几个实数根。函数零点的求法:解方程0)(=x f ,所得实数根就是()f x 的零点 (3)变号零点与不变号零点 ①若函数()f x 在零点0x 左右两侧的函数值异号,则称该零点为函数()f x 的变号零点。 ②若函数()f x 在零点0x 左右两侧的函数值同号,则称该零点为函数()f x 的不变号零点。 ③若函数()f x 在区间[],a b 上的图像是一条连续的曲线,则0)()(?)(x f y =有2个零点?0)(=x f 有两个不等实根; 0?=?)(x f y =有1个零点?0)(=x f 有两个相等实根; 0?

高中数学排列组合经典题型全面总结版

高中数学排列与组合 (一)典型分类讲解 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有 34A 由分步计数原理得1 1 3 434 288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元 素内部进行自排。由分步计数原理可得共有 522522480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种, 第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种 46 A 不同的方法,由分步计数原理,节目的不同顺序共有54 56A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素 之间的全排列数,则共有不同排法种数是: 73 73/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 47 A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有4 7A 种方法。 思考:可以先让甲乙丙就坐吗? (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 5 10C 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原 理共有6 7种不同的排法 练习题: 1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插 法的种数为 42 4 4 3 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种

(完整版)高中数学必修一必修二经典测试题100题

A C P B 高中数学必修一必修二经典测试题100题(二) 一、填空题:本题共25题 1、设集合{}(,)1A x y y ax ==+,{}(,)B x y y x b ==+,且{}(2,5)A B =I ,则:a= b= 2、对于一个底边在x 轴上的三角形,采用斜二测画法作出其直观图,其直观图的面积是原三角形面积的 倍 3. 已知函数2log (0)()3 (0)x x x f x x >?=?≤?,则1 [()]4f f 的值是 4. 设1,01,x y a >><<则下列关系正确的是 ○ 1a a y x -->○2 ay ax <○3y x a a <○4 y x a a log log > 5. 函数()23x f x =-的零点所在区间为: 6. 函数()f x 的定义域为(,)a b ,且对其内任意实数12,x x 均有:1212()[()()]0x x f x f x --<,则 ()f x 在(,)a b 上是 函数(增或减) 7. 在x 轴上的截距为2且倾斜角为135°的直线方程为 8. 设点M 是Z 轴上一点,且点M 到A (1,0,2)与点B (1,-3,1)的距离相等,则点M 的坐标是 9、如图所示,阴影部分的面积S 是h (0)h H ≤≤的函数,则该函数的图象 是 . 10. 将直线:210l x y +-=向左平移3个单位,再向上平移2个单位得到直线l ',则直线l l '与之间的距离为 11. 函数2 ()lg(21)5 x f x x -= +++的定义域为 12. 已知0>>b a ,则3,3,4a b a 的大小关系是 13.函数3 ()3f x x x =+-的实数解落在的区间是 14.已知(1,2),(3,1),A B 则线段AB 的垂直平分线的方程是 15. 下列条件中,能判断两个平面平行的是 a 一个平面内的一条直线平行于另一个平面; b 一个平面内的两条直线平行于另一个平面; c 一个平面内有无数条直线平行于另一个平面; d 一个平面内任何一 条直线都平行于另一个平面 16. 如图,在Rt △ABC 中,∠ABC=900 ,P 为△ABC 所在平面外一点 PA ⊥平面ABC ,则四面体P-ABC 中共有 个直角三角形。 17.如果轴截面为正方形的圆柱的侧面积是4π,那么圆柱的体积等于 18 .在圆2 2 4x y +=上,与直线43120x y +-=的距离最小的点的坐标为 19.用符号“∈”或“?”填空

高一数学集合基础经典练习题 (1)

高一数学必修1集合单元综合练习(Ⅰ) 一、填空题(本大题包括14小题;每小题5分,满分70分) 1、U ={1,2,3,4,5},若A ∩B ={2},(C U A )∩B ={4},(C U A )∩(C U B )={1,5},则下列结论正确的是 .错误!未指定书签。 ①、3A 且3B ;②、3A 且3B ; ③、3A 且3B ;④、3A 且3B 。 2、设集合M ={x |-1≤x <2},N ={x |x -k ≤0},若M ∩N ≠,则k 的取值范围是 3、已知全集I ={x |x R },集合A ={x |x ≤1或x ≥3},集合B={x |k <x <k +1,k R },且(C I A )∩B =,则实数k 的取值范围是 4、已知全集U Z =,2{1,0,1,2},{|}A B x x x =-==,则U A C B 为 5、设a b ∈R ,,集合{}10b a b a b a ??+=???? ,,,,,则b a -= 6、设集合M =},214|{},,412|{Z k k x x N Z k k x x ∈+==∈+=,则M N 。(选填 、、、?、=、 N M ?、N M ?) 7、设集合{}R x x x A ∈≥-=,914, ? ?????∈≥+=R x x x x B ,03, 则A ∩B = 8、已知集合{}|1A x x a =-≤,{}2540B x x x =-+≥.若A B =?,则实数a 的取值范围是 9、设集合S ={A 0,A 1,A 2,A 3},在S 上定义运算⊕为:A 1⊕A =A b ,其中k 为I +j 被4除的余数,I ,j =0,1,2, 3.满足关系式=(x ⊕x )⊕A 2=A 0的x (x ∈S )的个数为 10、定义集合运算:{},,A B z z xy x A y B *==∈∈.设{}1,2A =,{}0,2B =,则集合A B * 的所有元素之和为 11、设集合∈<≤=x x x A 且30{N }的真子集... 的个数是 二、解答题(本大题包括5小题;满分90分)解答时要有答题过程! 12、(14分)若集合S ={}23,a ,{}|03,T x x a x Z =<+<∈且S ∩T ={}1,P =S ∪T ,求集合P 的所有子集 13、(16分)已知集合A ={}37x x ≤≤,B ={x |2

高二数学典型例题一

典型例题一 例1 若b a //,A c b = ,则a ,c 的位置关系是( ). A .异面直线 B .相交直线 C .平行直线 D .相交直线或异面直线 分析:判断两条直线的位置关系,可以通过观察满足已知条件的模型或图形而得出正确结论. 解:如图所示,在正方体1111D C B A ABCD -中,设a B A =11,b AB =,则b a //. 若设c B B =1,则a 与c 相交.若设c BC =,则a 与c 异面. 故选D . 说明:利用具体模型或图形解决问题的方法既直观又易于理解.一般以正方体、四面体等为具体模型.例如,a ,b 相交,b ,c 相交,则a ,c 的位置关系是相交、平行或异面.类 似地;a ,b 异面,b ,c 异面,则a ,c 的位置关系是平行、相 交或异面.这些都可以用正方体模型来判断. 典型例题二 例2 已知直线a 和点A ,α?A ,求证:过点A 有且只有一条直线和a 平行. 分析:“有且只有”的含义表明既有又惟一,因而这里要证明的有两个方面,即存在性和惟一性. 存在性,即证明满足条件的对象是存在的,它常用构造法(即找到满足条件的对象来证明);惟一性,即证明满足条件的对象只有..一个,换句话说,说是不存在第二个满足条件的对象. 因此,这是否定性... 命题,常用反证法. 证明:(1)存在性. ∵ a A ?,∴ a 和A 可确定一个平面α, 由平面几何知识知,在α内存在着过点A 和a 平行的直线. (2)惟一性 假设在空间过点A 有两条直线b 和c 满足a b //和a c //.根据公理4,必有c b //与A c b = 矛盾, ∴ 过点A 有一条且只有一条直线和a 平行. 说明:对于证明“有且只有”这类问题,一定要注意证明它的存在性和惟一性. 典型例题三

高二数学不等式练习题及答案(经典)

不等式练习题 一、选择题 1、若a,b 是任意实数,且a >b,则 ( ) (A )a 2>b 2 (B ) a b <1 (C )lg(a-b)>0 (D )(21)a <(2 1)b 2、下列不等式中成立的是 ( ) (A )lgx+log x 10≥2(x >1) (B ) a 1 +a ≥2 (a ≠0) (C )a 1<b 1 (a >b) (D )a 21+t ≥a t (t >0,a >0,a ≠1) 3、已知a >0,b >0且a +b =1, 则()11 )(1122--b a 的最小值为 ( ) (A )6 (B ) 7 (C ) 8 (D ) 9 4、已给下列不等式(1)x 3+ 3 >2x (x ∈R ); (2) a 5+b 5> a 3b 2+a 2b 3(a ,b ∈R ); (3) a 2+b 2≥2(a -b -1), 其中正确的个数为 ( ) (A ) 0个 (B ) 1个 (C ) 2个 (D ) 3个 5、f (n ) = 12+n -n , ?(n )= n 21, g (n ) = n 12 --n , n ∈N ,则 ( ) (A ) f (n )

高一高二高三数学经典错题大合集

高一高二高三数学经典错题大合集:解三角形常见的八种失分需谨慎高中数学提分容易么,说老实话,有时候很容易,有时候很难!其实有点智商方面的关系!但最重要的还是方法!当然首当其冲的是兴趣!每个同学都有自己对应的病灶,找准,抓住,杀掉,成绩自然上来。而错题集是学生进行提高自我成绩的一个非常好的途径!然而很多学生弄了,也没提高多少,主要是没找对方法!错题本重点是总结!然后分析!下一次再做!再错,再总结!如此循环,这一类题就基本能吃透提高了!当然,错题本还得系统,到位!清北学霸高考必备资料库中,我们的师哥师姐就整理了,将近800 来道的高中数学错题集!我们的错题集不是单纯只是把学生容易错的题拉上来,而是收集了近三年来学生针对这个考点容易失分点,容易错的进行错题集分析!非常的全面而实用!有学生在解三角形的道路上经常错。下面就给大家分析下解三角形的常见的8 种是失分,丢分的! 现在有个福利告诉同学家长,同学家长可以添加学长微信 2475026381 即可参与清华、北大的小伙伴们发起的助学活动,免费领取我们精心打造《应试攻略》系列课程及《直击高考漏洞》电子书,以我们的经历、成功,告诫大家:考试百分百技术活,想要成为尖子生,先要跳出中等生苦学的思维?? 还有高中九科目提分笔记免费领取 【标题01】不能灵活运用正弦定理进行推理解答

标题02 】在三角形中解三角正弦方程出现错误

标题03】锐角三角形的定义理解错误

标题04】解三角形时出现多解没有注意检验

标题05】忽略了等式的性质在等式两边随便乘除导致漏解

标题06】化简三角方程时忽略了角的范围和正弦函数的图像和性质标题07】求三角函数的范围时忽略了角的取值范围

高中数学经典50题附答案

高中数学题库 1. 求下列函数的值域: 解法2 令t =sin x ,则f (t )=-t 2+t +1,∵ |sin x |≤1, ∴ |t |≤1.问题转化为求关于t 的二次函数f (t )在闭区间[-1,1]上的最值. 本例题(2)解法2通过换元,将求三角函数的最值问题转化为求二次函数在闭区间上的最值问题,从而达到解决问题的目的,这就是转换的思想.善于从不同角度去观察问题,沟通数学各学科之间的在联系,是实现转换的关键,转换的目的是将数学问题由陌生化熟悉,由复杂化简单,一句话:由难化易.可见化归是转换的目的,而转换是实现化归段手段。 2. 设有一颗慧星沿一椭圆轨道绕地球运行,地球恰好位于椭圆轨道的焦点处,当此慧星离 地球相距m 万千米和 m 3 4 万千米时,经过地球和慧星的直线与椭圆的长轴夹角分别为3 2 π π 和 ,求该慧星与地球的最近距离。 解:建立如下图所示直角坐标系,设地球位于焦点)0,(c F -处,椭圆的方程为1 22 22=+b y a x (图见教材P132页例1)。

当过地球和彗星的直线与椭圆的长轴夹角为 3 π 时,由椭圆的几何意义可知,彗星A 只能满足)3(3/ ππ=∠=∠xFA xFA 或。作m FA FB Ox AB 3 221B ==⊥,则于 故由椭圆第二定义可知得???????+-=-=)32(3 4)(2 2 m c c a a c m c c a a c m 两式相减得,2 3)4(21.2,323 1c c c m c a m a c m =-==∴?= 代入第一式得 .3 2.32m c c a m c ==-∴=∴ 答:彗星与地球的最近距离为m 3 2 万千米。 说明:(1)在天体运行中,彗星绕恒星运行的轨道一般都是椭圆,而恒星正是它的一个焦点,该椭圆的两个焦点,一个是近地点,另一个则是远地点,这两点到恒星的距离一个是c a -,另一个是.c a + (2)以上给出的解答是建立在椭圆的概念和几何意义之上的,以数学概念为根基充分体现了数形结合的思想。另外,数学应用问题的解决在数学化的过程中也要时刻不忘审题,善于挖掘隐含条件,有意识地训练数学思维的品质。 3. A ,B ,C 是我方三个炮兵阵地,A 在B 正东6Km ,C 在B 正北偏西ο 30,相距4Km , P 为敌炮阵地,某时刻A 处发现敌炮阵地的某种信号,由于B ,C 两地比A 距P 地远,因此4s 后,B ,C 才同时发现这一信号,此信号的传播速度为1s Km /,A 若炮击P 地,求炮击的方位角。(图见优化设计教师用书P249例2) 解:如图,以直线BA 为x 轴,线段BA 的中垂线为y 轴建立坐标系,则 )32,5(),0,3(),0,3(--C A B ,因为PC PB =,所以点P 在线段BC 的垂直平分线上。 因为3-=BC k ,BC 中点)3,4(-D ,所以直线PD 的方程为)4(3 13+= -x y (1) 又,4=-PA PB 故P 在以A ,B 为焦点的双曲线右支上。设),(y x P ,则双曲线方程为 )0(15 42 2≥=-x y x (2)。联立(1)(2),得35,8==y x , 所以).35,8(P 因此33 83 5=-= PA k ,故炮击的方位角北偏东?30。 说明:本题的关键是确定P 点的位置,另外还要求学生掌握方位角的基本概念。 4. 河上有抛物线型拱桥,当水面距拱顶5米时,水面宽度为8米,一小船宽4米,高2

(人教版)高中数学必修二-知识点、考点及典型例题解析(全)

必修二 第一章空间几何体 知识点: 1、空间几何体的结构 ⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、 球。 ⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的 公共边都互相平行,由这些面所围成的多面体叫做棱柱。 ⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这 样的多面体叫做棱台。 2、长方体的对角线长2 2 2 2c b a l+ + =;正方体的对角线长a l3 = 3、球的体积公式:3 3 4  R Vπ =,球的表面积公式:2 4 R Sπ = 4、柱体h s V? =,锥体h s V? = 3 1 ,锥体截面积比: 2 2 2 1 2 1 h h S S = 5、空间几何体的表面积与体积 ⑴圆柱侧面积; l r S? ? =π2 侧面 ⑵圆锥侧面积: l r S? ? =π 侧面 典型例题: ★例1:下列命题正确的是( ) A.棱柱的底面一定是平行四边形 B.棱锥的底面一定是三角形 C.棱柱被平面分成的两部分可以都是棱柱 D.棱锥被平面分成的两部分不可能都是棱锥 ★★例2:若一个三角形,采用斜二测画法作出其直观图,其直观图面积是原三角形面积的() A 2 1 倍 B 4 2 倍 C 2倍 D 2倍 ★例3:已知一个几何体是由上、下两部分构成的一个组合体,其三视图如下图所示,则这个组合体的上、下两部分分别是() A.上部是一个圆锥,下部是一个圆柱 B.上部是一个圆锥,下部是一个四棱柱 C.上部是一个三棱锥,下部是一个四棱柱 D.上部是一个三棱锥,下部是一个圆柱

★★例4:一个体积为38cm 的正方体的顶点都在球面上,则球的表面积是 A .28cm π B 2 12cm π. C 216cm π. D .220cm π 二、填空题 ★例1:若圆锥的表面积为a 平方米,且它的侧面展开图是一个半圆,则这个圆锥的底面的直径为_______________. ★例2:球的半径扩大为原来的2倍,它的体积扩大为原来的 _________ 倍. 第二章 点、直线、平面之间的位置关系 知识点: 1、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内。 2、公理2:过不在一条直线上的三点,有且只有一个平面。 3、公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该 点的公共直线。 4、公理4:平行于同一条直线的两条直线平行. 5、定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。 6、线线位置关系:平行、相交、异面。 7、线面位置关系:直线在平面内、直线和平面平行、直线和平面相交。 8、面面位置关系:平行、相交。 9、线面平行: ⑴判定:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行 (简称线线平行,则线面平行)。 ⑵性质:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线 与该直线平行(简称线面平行,则线线平行)。 10、面面平行: ⑴判定:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行 (简称线面平行,则面面平行)。 ⑵性质:如果两个平行平面同时和第三个平面相交,那么它们的交线平行(简 称面面平行,则线线平行)。 11、线面垂直: ⑴定义:如果一条直线垂直于一个平面内的任意一条直线,那么就说这条直线 和这个平面垂直。 ⑵判定:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂 直(简称线线垂直,则线面垂直)。 ⑶性质:垂直于同一个平面的两条直线平行。 12、面面垂直: ⑴定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。 ⑵判定:一个平面经过另一个平面的一条垂线,则这两个平面垂直(简称线面 垂直,则面面垂直)。 ⑶性质:两个平面互相垂直,则一个平面内垂直于交线的直线垂直于另一个平

上海高二数学直线方程经典例题

直线的倾斜角和斜率 (1)倾斜角定义 (2)斜率k=tan α=1 212x x y y -- (0°≤α<180°),当α=90时,k 不存在。 例1:过点M (-2,m ),N (m,4)的直线的斜率等于1,则m 的值为 。 例2:过两点A (m 2+2,m 2-3),B (3-m-m 2,2m )的直线l 的倾斜角为45°求m 的值。 例3:已知直线l 经过点P (1,1),且与线段MN 相交,又M (2,-3),N (-3,-2),求直线l 的斜率k 的取值范围。 例4:已知a >0,若平面内三点A (1,—a ),B (2,a 2),C(3,a 3)共线,则a 值为 。 两直线的平行与垂直 1、 两直线平行:l 1//l 2 ?k 1=k 2 例(1)l 1 经过点M (-1,0), N (-5,-2),l 2经过点R (-4,3),S (0,5),l 1与l 2是否平行? (2)l 1 经过点A (m ,1), B (-3,4), )l 2 经过点C (1,m ), D (-1, m+1),确定m 的值,使l 1//l 2。 2、 垂直:l 1 ⊥ l 2 ?k 1k 2 =—1 例(1) l 1的倾斜角为45,l 2经过点P (-2,-1),Q (3,-6). 例(2)已知点M (2,2)和N (5,-2),点P 在x 轴上,且∠MPN 为直角,求点P 的坐标。 直线的方程 二、直线方程的分类: 1、点斜式: y-y 0=k (x -x 0) 1、 斜截式: y=kx +b (b 是与y 轴的交点) 2、 两点式: 121y y y y --=1 21x x x x -- 3、 一般式:A x +B y +C=0 4、 截距式:a x +b y =1 三、典型例题 1.过点(1,0)且与直线x-2y-2=0平行的直线方程。 2、直线过点(3,2),且在两坐标轴上的截距相等的直线方程。 3、经过点A (-1,8),B (4,-2)的直线方程。 4、已知A(1,2), B (3,1),求线段AB 的垂直平分线方程。 5、一条光线从点P (6,4)射出,与x 轴相交于点Q (2,0)经x 轴反射,求入射光线和反射光线所在的直线方程。 直线的交点坐标与距离公式 1、求两条直线的交点(联立方程组)

高中数学经典50题(附答案)

高中数学题库 1. 求下列函数的值域: 解法2 令t =sin x ,则f (t )=-t 2 +t +1,∵ |sin x |≤1, ∴ |t |≤1.问题转化为求关于t 的二次函数f (t )在闭区间[-1,1]上的最值. 本例题(2)解法2通过换元,将求三角函数的最值问题转化为求二次函数在闭区间上的最值问题,从而达到解决问题的目的,这就是转换的思想.善于从不同角度去观察问题,沟通数学各学科之间的内在联系,是实现转换的关键,转换的目的是将数学问题由陌生化熟悉,由复杂化简单,一句话:由难化易.可见化归是转换的目的,而转换是实现化归段手段。 2. 设有一颗慧星沿一椭圆轨道绕地球运行,地球恰好位于椭圆轨道的焦点处,当此慧星离 地球相距m 万千米和 m 3 4 万千米时,经过地球和慧星的直线与椭圆的长轴夹角分别为3 2 π π 和 ,求该慧星与地球的最近距离。

解:建立如下图所示直角坐标系,设地球位于焦点)0,(c F -处,椭圆的方程为1 22 22=+b y a x (图见教材P132页例1)。 当过地球和彗星的直线与椭圆的长轴夹角为 3 π 时,由椭圆的几何意义可知,彗星A 只能满足)3(3/ ππ=∠=∠xFA xFA 或。作m FA FB Ox AB 3 221B ==⊥,则于 故由椭圆第二定义可知得???????+-=-=)32(3 4)(2 2 m c c a a c m c c a a c m 两式相减得,2 3)4(21.2,323 1 c c c m c a m a c m =-==∴?= 代入第一式得 .3 2.32m c c a m c ==-∴=∴ 答:彗星与地球的最近距离为m 3 2 万千米。 说明:(1)在天体运行中,彗星绕恒星运行的轨道一般都是椭圆,而恒星正是它的一个焦点,该椭圆的两个焦点,一个是近地点,另一个则是远地点,这两点到恒星的距离一个是c a -,另一个是.c a + (2)以上给出的解答是建立在椭圆的概念和几何意义之上的,以数学概念为根基充分体现了数形结合的思想。另外,数学应用问题的解决在数学化的过程中也要时刻不忘审题,善于挖掘隐含条件,有意识地训练数学思维的品质。 3. A ,B ,C 是我方三个炮兵阵地,A 在B 正东6Km ,C 在B 正北偏西ο 30,相距4Km , P 为敌炮阵地,某时刻A 处发现敌炮阵地的某种信号,由于B ,C 两地比A 距P 地远,因此4s 后,B ,C 才同时发现这一信号,此信号的传播速度为1s Km /,A 若炮击P 地,求炮击的方位角。(图见优化设计教师用书P249例2) 解:如图,以直线BA 为x 轴,线段BA 的中垂线为y 轴建立坐标系,则 )32,5(),0,3(),0,3(--C A B ,因为PC PB =,所以点P 在线段BC 的垂直平分线上。 因为3-=BC k ,BC 中点)3,4(-D ,所以直线PD 的方程为)4(3 13+= -x y (1)

相关文档
最新文档