函数及其表示方法B

函数及其表示方法B
函数及其表示方法B

函数及其表示方法

学习目标:

(1)会用集合与对应的语言刻画函数;会求一些简单函数的定义域和值域,初步掌握换元法的简单运用.

(2)能正确认识和使用函数的三种表示法:解析法,列表法和图象法.了解每种方法的优点.在实际情境中,会根据不同的需要选择恰当的方法表示函数;

(3)求简单分段函数的解析式;了解分段函数及其简单应用.

知识点总结:

一.函数与映射的概念

1.函数的定义域、值域

(1)在函数y=f(x),x∈A中,自变量x的取值范围(数集A)叫作函数的________;函数值的________________叫作函数的值域.

(2)如果两个函数的________相同,并且__________完全一致,则这两个函数为相等函数.

2.函数的表示方法

表示函数的常用方法有________、________和________.

3.分段函数

(1)若函数在其定义域的不同子集上,因__________不同而分别用几个不同的式子来表示,这种函数称为分段函数.

(2)分段函数的定义域等于各段函数的定义域的______,其值域等于各段函数的值域的______,分段函数虽由几个部分组成,但它表示的是一个函数.

[拓展]

二.函数定义域的求法及使用范围

三.函数值域的求法及使用范围

四.函数解析式的求法

考点分析: 考点一 函数的概念

例1(1)已知集合{}1,2,3A =,{}4,5B =,则从A 到B 的函数()f x 有 个.

【答案】8

【解析】抓住函数的“取元的任意性,取值的唯一性”,利用列表方法确定函数的个数.

由表可知,这样的函数有8个,故填8.

例1(2)下列函数f (x )与g (x )是否表示同一个函数,为什么?

(1)0

)1x ()x (f -=;1)x (g = (2)x )x (f =;2x )x (g =

(3)2

x )x (f =;2

)1x ()x (g += (4)|x |)x (f =;2x )x (g =

【思路点拨】对于根式、分式、绝对值式,要先化简再判断,在化简时要注意等价变形,否则等号不成立.

【答案】(1)不是(2)不是(3)不是(4)是 【解析】

(1) ()()f x g x 与的定义域不同,前者是{}|1,x x x R ≠∈,后者是{}|0,x x x R ≠∈,因此是不同的

函数;

(2)()||g x x =,因此()()f x g x 与的对应关系不同,是不同的函数; (3) ()()f x g x 与的对应关系不同,因此是不相同的函数; (4) ()()f x g x 与的定义域相同,对应关系相同,是同一函数.

例1(3)判断下列对应哪些是从集合A 到集合B 的映射,哪些是从集合A 到集合B 的函数? (1)A={直角坐标平面上的点},B={(x ,y )|,x R y R ∈∈},对应法则是:A 中的点与B 中的(x ,y )对应.

(2)A={平面内的三角形},B={平面内的圆},对应法则是:作三角形的外接圆; (3)A=N ,B={0,1},对应法则是:除以2的余数;

(4)A={0,1,2},B={4,1,0},对应法则是f :2x y x =→

(5)A={0,1,2},B={0,1,12

},对应法则是f :x 1y x =→ 【思路点拨】根据映射定义分析是否满足“A 中任意”和“B 中唯一”. 【解析】

(1)是映射,不是函数,因为集合A 、B 不是数集,是点集;

(2)是映射,集合A 中的任意一个元素(三角形),在集合B 中都有唯一的元素(该三角形的外接圆)与之对应,这是因为不共线的三点可以确定一个圆;不是函数.

(3)是映射,也是函数,函数解析式为0,(2)

()1,(21)x n f x x n =?=?=+?

(4)是映射,也是函数.

(5)对于集合A 中的元素“0”,由对应法则“取倒数”后,在集合B 中没有元素与它对应,所以不是映射,也不是函数.

变式训练1

(1)下列各问的对应关系是否是给出的实数集R 上的一个函数?为什么? (1):f x →

2

,0,x x R x

≠∈; (2):g x →y ,2,,y x x N y R =∈∈;

(3):h *A B N ==,对任意的,x A ∈|3|x x →-.

【解析】(1)对于任意一个非零实数2,x x 被x 唯一确定,所以当0x ≠时,x →2

x 是函数,可表示为

2

()(0)f x x x

=≠.

(2)当4x =时,24y =,得2y =或2y =-,不是有唯一值和x 对应,所以x →y (2y x =)不是函数. (3)不是,因为当3x =时,在集合B 中不存在数值与之对应. (2)判断下列命题的真假

(1)y=x-1与1

x 1

x y 2+-=是同一函数;

(2)2x y =

与y=|x|是同一函数;

(3)2

33)x (y )x (y ==与是同一函数;

(4)?????<+≥-=)

0x (x x )0x (x x )x (f 22与g(x)=x 2

-|x|是同一函数.

【解析】从函数的定义及三要素入手判断是否是同一函数,有(1)、(3)是假命题,(2)、(4)是真命题. (3)下列对应哪些是从A 到B 的映射?是从A 到B 的一一映射吗?是从A 到B 的函数吗? (1)A=N ,B={1,-1},f :x →y=(-1)x

; (2)A=N ,B=N +,f :x →y=|x-3|; (3)A=R ,B=R ,;x

1x

1y x :f -+=

→ (4)A=Z ,B=N ,f :x →y=|x|; (5)A=N ,B=Z ,f :x →y=|x|; (6)A=N ,B=N ,f :x →y=|x|.

【答案】(1)、(4)、(5)、(6)是从A 到B 的映射也是从A 到B 的函数,但只有(6)是从A 到B 的一一映射;(2)、(3)不是从A 到B 的映射也不是从A 到B 的函数. 考点二 函数定义域的求法

例2(1)求下列函数的定义域(用区间表示).

(1)2-1

()-3x f x x =

(2)()f x =

(3)()f x =.

【思路点拨】由定义域概念可知定义域是使函数有意义的自变量的取值范围. (1)是分式,只要分母不为0即可;(2)是二次根式,需根式有意义;(3)只要使得根式和分式都有意义即可.

【答案】(1

)(,(3,3)(3,)-∞-+∞;(2)8,3??

+∞????

;(3)(]6,2-.

【解析】 (1)

21

()3

x f x x -=

-的定义域

为x 2

-3

0,

(,(3,3)(3,)x ∴≠∴-∞-+∞定义域为:;

(2)88()-80,,33f x x x ??=≥≥

∴+∞????

3得,定义域为;

(3)(]202() 6,2

60-6

x x f x x x -≥≤??=∴-??+>>??得定义域为. 例2(2)已知函数()f x 的定义域为[1,2],求函数(21)y f x =+的定义域;

(2)已知函数(21)y f x =+的定义域[1,2],求函数()f x 的定义域; (3)已知函数(21)y f x =+的定义域[1,2],求函数(21)y f x =-的定义域.

【思路点拨】(1)若()f x 的定义域为a x b ≤≤,则在[]()f g x 中,()a g x b ≤≤,从中解得x 的取值范围即为[]()f g x 的定义域.(2)若[]()f g x 的定义域为m x n ≤≤,则由m x n ≤≤确定的()g x 的范围即为()f x 的定义域.

【答案】(1)[1,12

];(2)[3,5];(3)[2,3].

【解析】(1)设21x t +=,由于函数()y f t =定义域为[1,2],,故12t ≤≤,即1212x ≤+≤,解得102

x ≤≤,所以函数(21)y f x =+的定义域为[1,1

2

].

(2)设21x t +=,因为12x ≤≤,所以3215x ≤+≤,即35t ≤≤,函数()y f t =的定义域为[3,5] .由此得函数()y f x =的定义域为[3,5] .

(3)因为函数(21)y f x =+的定义域为[1,2],即12x ≤≤,所以3215x ≤+≤,所以函数()y f x =的定义域为[3,5],由3215x ≤-≤,得23x ≤≤,所以函数(21)y f x =-的定义域为[2,3] .

【总结升华】求抽象函数的定义域,一要理解定义域的含义是x 的取值范围;二要运用整体思想,也就是在同一对应关系f 下括号内的范围是一样的.

例2(3)函数y R ,则m 的范围是________.

解析:由条件知,x 2-x -m >0对x ∈R 恒成立,即Δ=1+4m ≤0,∴m ≤-1

4.

答案:(],4-∞- 变式训练2

(1)求下列函数的定义域(用区间表示):

(1)3

f (x)|x 1|2

=

--;

(2)1

f (x)x 1

=

-;(3)()f x =【答案】(1)(-∞,-1)∪(-1,3)∪(3,+∞);(2)[)3,1(1,)-?+∞;(3)[]0,1. 【解析】

(1)当|x-1|-2=0,即x=-1或x=3时,

3

|x 1|2

--无意义,当|x-1|-2≠0,即x ≠-1且x ≠3时,分式

有意义,所以函数的定义域是(-∞,-1)∪(-1,3)∪(3,+∞);

(2)要使函数有意义,须使x 10

x 3x 1x 30-≠?≥-≠?+≥?

,即且,所以函数的定义域是[)3,1(1,)-?+∞;

(3)要使函数有意义,须使1x 0,

x 0.

-≥??

≥?,所以函数的定义域为[]0,1.

(2)已知(1)f x +的定义域为[)2,3-,求1

(2)f x

+的定义域.

【答案】11,,32????

-∞+∞ ??????

【解析】

(1)f x +的定义域为[)2,3-,∴23x -≤<,∴114x -≤+<,∴1

124x

-≤

+<,解得:12x >或

13x ≤-,所以1(2)f x +的定义域为11,,32????

-∞+∞ ??????

.

(3)已知函数

y =的定义域为R ,求实数a 的取值范围.

【思路点拨】确定a 的取值范围,使之对任意x R ∈,都有2430ax ax ++≠,即方程2430ax ax ++=无实根.

【答案】30,4??

????

【解析】

当0a =时,2430ax ax ++≠对任意x R ∈恒成立.

当0a ≠时,要使2430ax ax ++≠恒成立,即方程2430ax ax ++=无实根.只需判别式

2(4)124(43)0a a a a ?=-=-<,于是304

a <<

. 综上,a 的取值范围是30,4??

????

.

考点三 求函数的值及值域

例3(1)已知f(x)=2x 2

-3x-25,g(x)=2x-5,求: (1)f(2),g(2); (2)f(g(2)),g(f(2)); (3)f(g(x)),g(f(x))

【思路点拨】根据函数符号的意义,可以知道f(g(2))表示的是函数f(x)在x=g(2)处的函数值,其它

同理可得.

【答案】(1)-23,-1;(2)-20,-51;(3)8x 2

-46x+40,4x 2

-6x-55. 【解析】

(1)f(2)=2×22

-3×2-25=-23;g(2)=2×2-5=-1;

(2)f(g(2))=f(-1)=2×(-1)2

-3×(-1)-25=-20;g(f(2))=g(-23)=2×(-23)-5=-51; (3)f(g(x))=f(2x-5)=2×(2x-5)2

-3×(2x-5)-25=8x 2

-46x+40; g(f(x))=g(2x 2

-3x-25)=2×(2x 2

-3x-25)-5=4x 2

-6x-55.

例3(2)求值域(用区间表示):(1)y=x 2

-2x+4,①[]4,1x ∈--;②[]2,3x ∈-;

2-2

(2)()-23; (3)()3

x f x x x f x x =+=

+. 【答案】(1)[3,12];(2))

2,?+∞?

;(3)(-∞,1)∪(1,+∞). 【解析】(1)法一:配方法求值域.

2224(1)3y x x x =-+=-+,①当[]4,1x ∈--时,max min 28,7y y ==,∴值域为[7,28];②当

[]2,3x ∈-时,max min 12,3y y ==,∴值域为[3,12].

法二:图象法求值域

二次函数图象(如下图)的开口向上,对称轴为1x =,所以函数在区间(],1-∞上单调递减,在区间

[)1,+∞上单调递增.所以①当[]4,1x ∈--时,值域为[7,28];②当[]2,3x ∈-时,值域为[3,12].

(2))

22-23(-1)22,2,y x x x ?=+=+≥+∞?值域为;

(3)-23-55

5

1-,0,13333

x x y y x x x x +=

==≠∴≠++++,∴函数的值域为(-∞,1)∪(1,+∞). 变式训练3 求下列函数的值域:

(1)1y x =;(2)21

3

x y x +=-;(3)22

11x y x -=+;(4)254y x x =+- 【答案】(1)[)1,+∞;(2){}|2y y ≠;(3)(]1,1-;(4)[]0,3. 【解析】(1)0,11x x ≥≥,即所求函数的值域为[)1,+∞;

(2)213x y x +=

-2672(3)77

2333x x x x x -+-+===+---,7

03

x ≠-,2y ∴≠,即函数的值域为{}|2y y ≠;

(3)2211x y x -=+2

2

11x

=-++

函数的定义域为R

22211,021x x ∴+≥∴<

≤+,2

2

1111x

∴-<-+≤+,(]1,1y ∴∈-,即函数的值域为(]1,1-.

(4)

5y =+=

20(2)99x ≤--+≤ ∴所求函数的值域为[]0,3.

类型四 函数解析式的求法 例4.求函数的解析式

(1)已知()f x 是二次函数,且(0)2,(1)()1f f x f x x =+-=-,求()f x ; (2)若f(2x-1)=x 2

,求f(x);

(3)已知3()2()3f x f x x +-=+,求()f x . 【答案】(1)213

()222

f x x x =

-+;(2)21()(

)2

x f x +=;

(3)3

()5f x x =+. 【解析】求函数的表达式可由两种途径.

(1)设2()(0)f x ax bx c a =++≠,由(0)2,f =得2c =

由(1)()1f x f x x +-=-,得恒等式2ax+a+b=x-1,得1

3

,22

a b ==-

,故所求函数的解析式为213

()222

f x x x =

-+. (2) ∵f(2x-1)=x 2

,∴令t=2x-1,则1

2

t x +=

22

11()(

),()()22

t x f t f x ++∴=∴= (3)因为3()2()3f x f x x +-=+,①

x 用x -代替得3()2()3f x f x x -+=-+,②

由①②消去()f x -,得3

()5

f x x =+.

变式训练4

(1)已知f(x+1)=x 2

+4x+2,求f(x). 【答案】f(x)=x 2

+2x-1.

【解析】(1)(法1)f(x+1)=x 2

+4x+2=(x+1)2

+2(x+1)-1 ∴f(x)=x 2

+2x-1;

(法2)令x+1=t ,∴x=t-1,∴f(t)=(t-1)2

+4(t-1)+2=t 2

+2t-1 ∴f(x)=x 2

+2x-1; (法3)设f(x)=ax 2

+bx+c 则 f(x+1)=a(x+1)2

+b(x+1)+c ∴a(x+1)2

+b(x+1)+c=x 2

+4x+2

1x 2x )x (f 1c 2b 1a 2c b a 4b a 21a 2-+=∴??

?

??-===??????=++=+=∴;

考点五 分段函数 例5(1) 设函数3,100,

()[(5)],100,x x f x f f x x -≥?=?

+

求(89)f .

【思路点拨】这是分段函数与复合函数式的变换问题,需要反复进行数值代换. 【答案】:98 【解析】

(89)((94))(((99)))f f f f f f ==

=((((104))))f f f f =(((101)))f f f =((98))(((103)))f f f f f ==((100))f f =(97)((102))(99)f f f f == =((104))(101)98f f f ==.

例5(2)如图所示,等腰梯形ABCD 的两底分别为02,,45AD a BC a BAD ==∠=,

作直线MN AD ⊥交AD 于M ,交折线ABCD 于N .设,AM x =试将梯形ABCD 位于直线MN 左侧的面积y 表示为x 的函数.

【思路点拨】此题是应用型问题,要求函数的表达式()y f x =,这样就需准确揭示,x y 之间的变化关系.依题意,可知随着直线MN 的移动,点N 分别落在梯形ABCD 的边AB 、BC 及CD 边上,有三种情况,所以需要分类解答.

【答案】2

22

21(0)221

3()28221532(2)242a x x a a y ax x a x ax a a x a ?≤≤??

?=-<≤??

?-+-<≤??

【解析】

作BH AD ⊥,H 为垂足,CG AD ⊥,G 为垂足,依题意,则有03,,452

2

a

AH AG a A D ==∠=∠= (1)当M 位于点H 的左侧时,N AB ∈, 由于0,45,AM x A MN x =∠=∴=

21(0)22

AMN a y S x x ?∴==

≤≤ (2)当M

位于点H 、G 之间时,由于

,,,22

a a AM x AH BN x ==

=- 2113

()()2222822

AMNB

a a a a y S x x ax x a ??∴==?+-=-<≤????直角梯形 (3)当M 位于点G 的右侧时,

由于,2,AM x DM MN a x ===-

211

(2)(2)222

ABCD a y S S a a a x ?∴=-=

?+--MDN 梯形 =22231

(44)42

a a ax x --+

=221532(2)242

x ax a a x a -+-<≤

综上有2

22

21(0)221

3()28221532(2)242a x x a a y ax x a x ax a a x a ?≤≤??

?=-<≤??

?-+-<≤??

变式训练5

如图,在边长为4的正方形ABCD 的边上有一点P ,沿着边线BCDA

由B (起点)向A (终点)运动.设点P 运动的路程为x ,APB ?的面积为y . (1)求y 与x 之间的函数关系式; (2)画出()y f x =的图象.

【解析】(1)2,04,8,48,224,812.x x y x x x ≤≤??

=<≤??-+<≤?

(2)当P 点在BC 边上运动时,即当04x ≤≤时,1

42;2

y x x =?= 当P 点在CD 边上运动时,即当48x <≤时,1

448;2y =

??= 当P 点在DA 边上运动时,即当812x <≤时,1

4(12)2(12)2242

y x x x =??-=-=-+,故为分段

函数. 家庭作业

1.(2018·杭州模拟)若函数f (x )=mx 2+mx +1的定义域为一切实数,则实数m 的取值范围是________.

解析:由题意可得mx 2+mx +1≥0恒成立. 当m =0时,1≥0恒成立;

当m ≠0时,则?

????

m >0,

Δ=m 2

-4m ≤0,

解得0

P

D C

A

B

答案:[0,4]

2.函数224y x x =--+的值域是( )

A .[2,2]-

B .[1,2]

C .[0,2]

D .[2,2]- 【答案】C.

【解析】 22224(2)44,042,240x x x x x x x -+=--+≤≤-+≤-≤--+≤ 20242,02x x y ≤--+≤≤≤; 3.对于集合A 到集合B 的映射,有下述四个结论 (

)

①B 中的任何一个元素在A 中必有原象; ②A 中的不同元素在B 中的象也不同; ③A 中任何一个元素在B 中的象是唯一的; ④A 中任何一个元素在B 中可以有不同的象. 其中正确结论的个数是( )

A .1个

B .2个

C .3个

D .4个 【答案】A .

【解析】由映射的概念知,只有③正确.

4.设{}{}|02,|12M x x N y y =≤≤=≤≤,给出下列四个图形,如下图所示,其中能表示从集合M 到N 的函数关系的有 ( )个.

A .1个

B .2个

C .3个

D .4个 【答案】A .

【解析】由函数的定义知选A .

5.已知函数2,0(),()(1)0,1,0x x f x f a f x x >?=+=?+≤?

若则实数a 的值等于( )

A .-3

B .-1

C .1

D .3 【答案】A .

【解析】该分段函数的二段各自的值域为(](),1,0-∞+∞,,()(1)2f a f =-=-

∴()12,3f a a a =+=-=-∴ 3a =-.

6.已知函数)2(+=x f y 定义域是]21

[,-,则y f x =-()21的定义域是( )

A .

]2

5

1[, B . [14]-, C . []-55, D . []-37, 【答案】A .

【解析】 512,124,1214,12

x x x x -≤≤≤+≤≤-≤≤≤

; 7.向高为H 的水瓶里注水,注满为止,如果注水量V 与水深h 的函数关系的图象如图所示,那么水

瓶的形状是图中的( )

7.【答案】B.

【解析】观察函数的图象发现,图象开始“增得快”,后来“增得慢”,A 、C 、D 都不具备此特性.也就是由函数的图象可知,随高度h 的增加,体积V 也增加,并且随单位高度h 的增加,选项A 的体积V 的增加量变大;选项B 的体积V 的增加量变小;选项C 的体积V 的增加量先变小后变大;选项D 的体积V 的增加量不变,故选B.

8

2

2

()1x f x x =

+,则

1111

(1)(2)()(3)()(4)()(2010)()2342010

f f f f f f f f f +++++++???++的值是( )

A .2008

B .2009

C . 1

20092

D . 2010

【答案】C . 【解析】

11(2)()1,(3)()1,23f f f f +=+=???,11

(1)20092009200922

f ∴=+=+=原式.

9.若函数()y f x =的定义域是[]0,1,则函数()()()(2)01F x f x a f x a a =+++<<的定义域是 .

【答案】1,22a a -??

-

????

解不等式组01,02 1.x a x a ≤+≤??≤+≤?得1,122

a x a a a x -≤≤-??

?--≤≤??,又11,

1,2222a a a a a a x ---<-<-∴-≤≤. 10.已知???<-≥=0

,10

,1)(x x x f ,则不等式(2)(2)5x x f x ++?+≤的解集是 .

【答案】

【解析】3(,]2

-∞.

当320,2,(2)1,25,2,2

x x f x x x x +≥≥-+=++≤-≤≤

即则 当20,2,(2)1,25,2x x f x x x x +<<-+=---≤<-即则恒成立,即, ∴32

x ≤

. 11.设函数2()4,(),

()2(),()(),().

g x x x g x g x x x R f x g x x x g x ++

【答案】 【解析】()9,02,4??

-

+∞????

令()x g x <,即2

20x x -->,解得1x <-或2x >.令()x g x ≥,而2

20x x --≤,解得12x -≤≤,

故函数2

22(12),

()2(12).

x x x x f x x x x ?++<->?=?---≤≤??或当1x <-或2x >时,函数()(1)2f x f >-=;当12

x -≤≤时,函数1()()(1)2

f f x f ≤≤-,即9()04f x -

≤≤.故函数()f x 的值域是()9,02,4??-+∞????

12.已知

*

,a b N ∈,

()()(),(1)2,

f a b f a f b f +==则

(2)(3)(4)(2011)

(1)(2)(3)(2010)

f f f f f f f f +++???+= . 【答案】4020

【解析】 令,1a x b ==,则由()()(),(1)2,f a b f a f b f +== 可得(1)(1)()2(),f x f f x f x +==即

(1)

2,()

f x f x +=分别令1,2,3,,2010x =???, 则

(2)(3)(4)(2011)

(1)(2)(3)(2010)

f f f f f f f f +++???+ =2+2+2+…+2=2010×2=4020

13.当m 为何值时,方程2

4||5,x x m -+=(1)无解;(2)有两个实数解;(3)有三个实数解;(4)有四个实数解.

【解析】设2

124||5,y x x y m =-+=,则该方程解的个数问题即可转化为两个函数图象的交点个数问

题来处理.

设2

14||5,y x x =-+

则21245,0,45,0.x x x y x x x ?-+≥?=?++

画出函数的图象,如右图.

再画出函数2y m =的图象.由图象可以看出:

(1)当1m <时,两个函数图象没有交点,故原方程无解.

(2)当1m =或5m >时,两个函数图象由两个交点,故原方程有两个解. (3)当5m =时,两个函数图象有三个交点,故原方程有三个解. (4)当15m <<时,两个函数图象有四个交点,故原方程有四个解.

14.已知函数2

()f x ax bx c =++,且满足(0)0,(1)()1,f f x f x x =+-=+求()f x 的值域. 【答案】1,8??-+∞????

【解析】由(0)0f =得0c =,从而2

()f x ax bx =+

由(1)()1,f x f x x +-=+得2

2

(1)(1)1,a x b x ax bx x +++--=+ 整理得21ax a b x ++=+,

x R ∈,21,1

a a

b =?∴?

+=?,解得1

2a b ==. 2211111()()22228f x x x x ∴=

+=+-,()f x 的值域为1,8??

-+∞????

. 15.设,A B 两地相距260km ,汽车以52/km h 的速度从A 地到B 地,在B 地停留1.5h 后,再以65/km h 的速度返回到A 地.试将汽车离开A 地后行走的路程s 表示为时间t 的函数.

【答案】52,260,5 6.526065( 6.5),6.510.5t s t t t ≤??

=≤≤??+-<≤?

0t<5

16.已知函数对任意的实数,a b ,都有()()()f ab f a f b =+成立. (1)求(0),(1)f f 的值;

(2)求证:1()()0(0)f f x x x

+=≠;

(3)若(2),(3)(,)f m f n m n ==均为常数,求(36)f 的值. 【解析】(1)不妨设0,a b == 则应用(00)(0)(0),f f f ?=+ 从而得(0)0f =,设1a b ==, 则应有(11)(1)(1),f f f ?=+

(1)0f ∴=.

(2)证明:当0x ≠时,注意到11x x ?=,于是11

(1)()()()f f x f x f x x

=?=+,而(1)0,f = 所以1

()()0(0)f x f x x

+=≠.

(3)题设中有(2),(3)f m f n ==,因此需将36转化,注意到36=2

2

23?,因此,

2222(36)(23)(2)(3)(22)(33)f f f f f f =?=+=?+?=2(2)2(3)2()f f m n +=+.

高一数学函数的概念及表示方法

全方位教学辅导教案姓名性别年级高一 教学 内容 函数与映射的概念及其函数的表示法 重点难点教学重点:理解函数的概念;区间”、“无穷大”的概念,定义域的求法,映射的概念教学难点:函数的概念,无穷大”的概念,定义域的求法,映射的概念 教学目标1.理解函数的定义;明确决定函数的定义域、值域和对应法则三个要素; 2.能够正确理解和使用“区间”、“无穷大”等记号;掌握分式函数、根式函数定义域的求法,掌握求函数解析式的思想方法 3.了解映射的概念及表示方法 4.了解象与原象的概念,会判断一些简单的对应是否是映射,会求象或原象. 5.会结合简单的图示,了解一一映射的概念 教学过程课前检 查与交 流 作业完成情况: 交流与沟通 针 对 性 授 课 一、函数的概念 一、复习引入: 初中(传统)的函数的定义是什么?初中学过哪些函数? 设在一个变化过程中有两个变量x和y,如果对于x的每一个值,y都有唯一的 值与它对应,那么就说x是自变量,y是x的函数.并将自变量x取值的集合叫做 函数的定义域,和自变量x的值对应的y值叫做函数值,函数值的集合叫做函数 的值域.这种用变量叙述的函数定义我们称之为函数的传统定义. 初中已经学过:正比例函数、反比例函数、一次函数、二次函数等 问题1:()是函数吗? 问题2:与是同一函数吗? 观察对应: 30 45 60 90 2 1 2 2 2 3 9 4 1 1 -1 2 -2 3 -3 3 -3 2 -2 1 -1 1 4 9 1 2 3 1 2 3 4 5 6 (1)(2) (3)(4) 开平方求正弦 求平方乘以2 A A A A B B B B 1 二、讲解新课:

函数的概念与表示法

函数的概念和函数的表示法 考点一:由函数的概念判断是否构成函数 函数概念:设A 、B 是非空的数集,如果按照某种确定的关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有 唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数。 例1. 下列从集合A 到集合B 的对应关系中,能确定y 是x 的函数的是( ) ① A={x x ∈Z},B={y y ∈Z},对应法则f :x →y= 3 x ; ② A={x x>0,x ∈R}, B={y y ∈R},对应法则f :x →2y =3x; ③ A=R,B=R, 对应法则f :x →y=2 x ; 变式1. 下列图像中,是函数图像的是( ) ① ② ③ ④ 变式2. 下列式子能确定y 是x 的函数的有( ) ①22x y +=2 1= ③ A 、0个 B 、1个 C 、2个 D 、3个 变式3. 已知函数y=f (x ),则对于直线x=a (a 为常数),以下说法正确的是( ) A. y=f (x )图像与直线x=a 必有一个交点 B.y=f (x )图像与直线x=a 没有交点 C.y=f (x )图像与直线x=a 最少有一个交点 D.y=f (x )图像与直线x=a 最多有一个交点 变式4.对于函数y =f(x),以下说法正确的有…( ) ①y 是x 的函数 ②对于不同的x ,y 的值也不同 ③f(a)表示当x =a 时函数f(x)的值,是一个常量 ④f(x)一定可以用一个具体的式子表示出来 A .1个 B .2个 C .3个 D .4个 变式5.设集合M ={x|0≤x ≤2},N ={y|0≤y ≤2},那么下面的4个图形中,能表示集合M 到集合N 的函数关系的有( ) A .①②③④ B .①②③ C .②③ D .② 考点二:同一函数的判定 函数的三要素:定义域、对应关系、值域。 如果两个函数的定义域相同,并且对应关系完全一致,我们就称这两个函数相等。 例2. 下列哪个函数与y=x 相同( ) ①. y=x ②.y = ③. 2 y = ④.y=t ⑤.3 3x y = ;⑥.2x y =

高一函数的表示方法

函数的表示方法 1、 能根据不同需要选择恰当的方法(如图像法、列表法、解析法)表示函数; 2、 了解简单的分段函数,并能简单应用; 一、函数的常用表示方法简介: 1、解析法 如果函数()()y f x x A =∈中,()f x 是用代数式(或解析式)来表达的,则这种表达函数的方法叫做解析法(公式法)。 例如,s =602t ,A =π2 r ,2S rl π=,2)y x = ≥等等都是用解析式表示函 数关系的。 特别提醒: 解析法的优点:(1)简明、全面地概括了变量间的关系;(2)可以通过解析式求出任意一个自变量的值所对应的函数值;(3)便于利用解析式研究函数的性质。中学阶段研究的函数主要是用解析法表示的函数。 解析法的缺点:(1)并不是所有的函数都能用解析法表示;(2)不能直观地观察到函数的变化规律。 2、列表法: 通过列出自变量与对应函数值的表格来表示函数关系的方法叫做列表法。 例如:初中学习过的平方表、平方根表、三角函数表。我们生活中也经常遇到列表法,如银行里的利息表,列车时刻表,公共汽车上的票价表等等都是用列表法来表示函数关系的. 特别提醒: 列表法的优点:不需要计算就可以直接看出与自变量的值相对应的函数值。这种表格

常常应用到实际生产和生活中。 列表法的缺点:对于自变量的有些取值,从表格中得不到相应的函数值。 3、图象法: 用函数图象表示两个变量之间的函数关系的方法,叫做图像法。 例如:气象台应用自动记录器描绘温度随时间变化的曲线,工厂的生产图象,股市走向图等都是用图象法表示函数关系的。 特别提醒: 图像法的优点:能直观形象地表示出自变量的变化,相应的函数值变化的趋势,这样使得我们可以通过图象来研究函数的某些性质。 图像法的缺点:不能够精确地求出某一自变量的相应函数值。 二、函数图像: 1、判断一个图像是不是函数图像的方法: 要检验一个图形是否是函数的图像,其方法为:任作一条与x轴垂直的直线,当该直线保持与x轴垂直并左右任意移动时,若与要检验的图像相交,并且交点始终唯一的,那么这个图像就是函数图像。 2、函数图像的作图方法大致分为两种: (1)描点作图法。步骤分三步:列表,描点,连线成图。 (2)图像变换法。利用我们熟知基本初等函数图像,将其进行平移、对成等变换,从而得到我们所求的函数图像的方法。 三、根据函数图像确定函数的定义域和值域: 1、由函数图像来确定函数的值域的方法是看函数图像在y轴上的正投影所覆盖的区域; 2、由函数图像来确定函数的定义域的方法是看函数图像在x轴上的正投影所覆盖的区域; 四、分段函数图像: 有些函数在它的定义域中,对于自变量x的不同取值范围,对应法则不同,这样的函数通常称为分段函数。由此可知,作分段函数的图像时,应根据不同定义域上的不同解析式分别作出。

函数的基本概念及表示法

题一:定义集合{1,2,…,n }到{1,2,…,n }上的函数f :k →i k ,k =1,2,…,n .记作:121,2,,,,,n n i i i ?? ??? . 设121,2,,,,,n n f i i i ??= ??? ,12 1,2,,,,,n n g j j j ??= ??? (这里的j 1,j 2,…,j n n j j j ,,,21 也是1,2,…,n 这n 个整数的一个排列).定义g f 12 1,2,,,,,n n i i i ??= ??? 121,2,,,,,n n j j j ?? ??? ,其中)]([)(k g f k g f = ,k =1,2,…,n ..则? ?? ? ?????? ??4,5,1,2,35,4,3,2,13,1,2,4,55,4,3,2,1= 题二:在加工爆米花的过程中,爆开且不糊的粒数占加工总数的比率称为可食用率p .它的大小主要取决于加工时间t (单位:分钟). 做了三次实验,数据记录如图所示.已知图中三个点都在函数p =-0.2t 2+bt +c 上,则由此得到的理论最佳加工时间为 分钟. 题三:3,10 ()((5)),10x x f x f f x x -≥?=?+

函数及其表示 函数的表示法

题型一 求函数值 【例1】若函数()f x 满足(21)1f x x -=+,则(1)f = . 【例2】(2006年安徽高考) 函数()f x 对于任意实数x 满足条件1 (2)() f x f x += ,若(1)5f =-,则((5))f f = . 【例3】若函数2(21)2f x x x +=-,则(3)f = . 【例4】已知函数2 2(),1x f x x R x = ∈+. (1)求1()()f x f x +的值;(2)计算:111 (1)(2)(3)(4)()()()234 f f f f f f f ++++++. 【例5】已知,a b 为常数,若22()43,()1024,f x x x f ax b x x =+++=++求5a b -的值. 典例分析 板块二.函数的表示法

【例6】若函数2()f x x =,则对任意实数12,x x ,下列不等式总成立的是( ) A .12()2x x f +≤12()()2f x f x + B .12()2x x f +<12()() 2f x f x + C .12( )2x x f +≥12()()2f x f x + D .12()2x x f +>12()() 2 f x f x + 【例7】(2006.台湾) 将正整数18分解成两个正整数的乘积有:118?,29?,36?三种,又36?是这三种分解中两数的差最小的,我们称36?为18的最佳分解.当p q ?()p q ≤ 是正整数n 的最佳分解时,我们规定函数()p F n q = ,例如31 (18)62 F ==,下列有关函数()F n 的叙述,正确的序号为 (把你认为正确的序号都写上) ⑴(4)1F =;⑵3(24)8F =;⑶1 (27)3 F =; ⑷若n 是一个质数,则()F n 1 n = ;⑸若n 是一个完全平方数,则()1F n = 【例8】设函数3 (100)(),(89).[(5)](100)x x f x f f f x x -≥?=? +

函数的定义和表示

函数定义域与值域 1.函数的概念 本节我们将学习一种特殊的对应—映射。 看下面的例子:设A ,B 分别是两个集合,为简明起见,设A ,B 分别是两个有限集 求平方 B B 说明:(2)(3)(4)这三个对应的共同特点是: 映射:设A ,B 是两个集合,如果按照某种对应法则f ,对于集合A 中的任何一个元素,在集合B 中都有唯一的元素和它对应,这样的对应(包括集合A 、B 以及A 到B 的对应法则f )叫做集合A 到集合B 的映射 记作:B A f : 映射与函数的区别: 3.函数的三种表示法 (1)解析法:就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式 (2)列表法:就是列出表格来表示两个变量的函数关系 (3)图象法:就是用函数图象表示两个变量之间的关系

4.求函数解析式的题型有: (1)已知函数类型,求函数的解析式:待定系数法; (2)已知()f x 求[()]f g x 或已知[()]f g x 求()f x :换元法、配凑法; (3)已知函数图像,求函数解析式; (4)()f x 满足某个等式,这个等式除()f x 外还有其他未知量,需构造另个等式解方程组法; (5)应用题求函数解析式常用方法有待定系数法等 5 区间的表示: ],[}|{b a b x a x =≤≤ ),[}|{b a b x a x =<≤ ],(}|{b a b x a x =≤< ),(}|{b a b x a x =<< ],(}|{b b x x -∞=≤ ),[}|{+∞=≤a x a x 6 如果A ,B 都是非空的数集,那么A 到B 的映射f :A →B 就叫做A 到B 的函数,记作y=f(x),其中x ∈A ,y ∈B.原象的集合A 叫做函数y=f(x)的定义域,象的集合C (C ?B )叫做函数y=f(x)的值域.函数符号y=f(x)表示“y 是x 的函数”,有时简记作函数f(x). 明确函数的三要素:定义域、值域、解析式 二 典型例题 例1.若函数y =f(x)的定义域为M ={x|-2≤x≤2},值域为N ={y|0≤y≤2},则函数y =f(x)的图象可能是 ( ) 变式:设集合M={x |0≤x ≤2},N={y |0≤y ≤2},从M 到N 有4种对应如下图所示:

函数的概念及表示方法

函数的概念及表示方法 一、选择题(每小题5分,共60分) 1、 数)(x y ?=的图象与直线a x =的交点个数为( ) A 、必有1个 B 、1个或2个 C 、至多1个 D 、可能2个以上 2、 下列四组中的函数 )(x f 与)(x g ,表示相同函数的一组是( ) A 、2)()(,)(x x g x x f == B 、1)(,11)(2-=-+=x x g x x x f C 、 x x x g x x f ==)(,)(0 D 、2)(,)(x x g x x f == 3、 下列选项正确的是( ) (1)x x y -+-= 12可以表示函数 (2)521=-+-y x 可以表示函数(3)122=+y x 可以表示函数 (4)12=+y x 可以表示函数 A 、 (2)(4) B 、(1)(3) C 、(1)(2) D 、(3)(4) 4、下列关于分段函数的叙述正确的是( ) (1) 分段函数的定义域是各段定义域的并集,值域是各段值域的并集 (2)分段函数尽管在定义域不同的部分有不同的对应法则,但它们是同一个函数 (3)若21,D D 分别是分段函数的两个不同对应法则的值域,则Φ=21D D I A 、 (1) B 、(2)、(3) C 、(1)、(2) D 、(1)、(3) 5、设2:x x f →是集合A 到B 的映射,如果{}2,1=B ,那么B A I =( ) A 、 Φ B 、 {}1 C 、Φ 或{}2 D 、Φ或{}1 6、若函数)(x f 满足),)(()()(R y x y f x f y x f ∈+=+,则下列各项不恒成立 的是( ) A 、0)0(=f B 、)1(3)3(f f = C 、)1(2 1)21(f f = D 、0)()(<-x f x f 7、将x y 1=的图像变换至函数23++=x x y 的图像,需先向 平移 个单位,再向 平移 个单位( ) A 、左,2,上,1 B 、左,2,下,1 C 、右,2,上,1 D 、右,2,上,1 8、已知函数)(x f 的定义域是),(b a ,其中b>a+2,则)13()13()(+--=x f x f x f 的定义域是( )

函数的几种表示方法

D C B A 1.2.2 函数的表示方法 第一课时 函数的几种表示方法 【教学目标】 1.掌握函数的三种主要表示方法 2.能选择恰当的方法表示具体问题中的函数关系 3.会画简单函数的图像 【教学重难点】 教学重难点:图像法、列表法、解析法表示函数 【教学过程】 一、复习引入: 1.函数的定义是什么?函数的图象的定义是什么? 2.在中学数学中,画函数图象的基本方法是什么? 3.用描点法画函数图象,怎样避免描点前盲目列表计算?怎样做到描最少的点却能显示出图象的主要特征? 二、讲解新课:函数的表示方法 表示函数的方法,常用的有解析法、列表法和图象法三种. ⑴解析法:就是把两个变量的函数关系,用一个等式表示,这个等式叫做函数的解析表达式,简称解析式. 例如,s=602 t ,A=π2 r ,S=2rl π,y=a 2 x +bx+c(a ≠0),y= 2-x (x ≥2)等等都是用解析 式表示函数关系的. 优点:一是简明、全面地概括了变量间的关系;二是可以通过解析式求出任意一个自变量的值所对应的函数值.中学阶段研究的函数主要是用解析法表示的函数. ⑵列表法:就是列出表格来表示两个变量的函数关系. 学号 1 2 3 4 5 6 7 8 9 身高 125 135 140 156 138 172 167 158 169 用列表法来表示函数关系的.公共汽车上的票价表 优点:不需要计算就可以直接看出与自变量的值相对应的函数值. ⑶图象法:就是用函数图象表示两个变量之间的关系. 例如,气象台应用自动记录器描绘温度随时间变化的曲线,课本 中我国人口出生率变化的曲线,工厂的生产图象,股市走向图等都是用图象法表示函数关系的. 优点:能直观形象地表示出自变量的变化,相应的函数值变化的趋势,这样使得我们可以通过图象来研究函数的某些性质. 三、例题讲解 例1某种笔记本每个5元,买 x ∈{1,2,3,4}个笔记本的钱数记为y (元),试写出以x 为自变量的函数y 的解析式,并画出这个函数的图像 解:这个函数的定义域集合是{1,2,3,4},函数的解析式为 y=5x ,x ∈{1,2,3,4}.

初中数学湘教版八年级下册4.1函数和它的表示法

变量与函数 教学目标 知识与技能:借助简单实例,学生初步感知用常量与变量来刻画一些简单的数学问题,能指出具体问题中的常量、变量.初步理解存在一类变量可以用函数方式来刻画,能举出涉及两个变量的实例,并指出由哪一个变量确定另一个变量,这两个变量是否具有函数关系。初步理解对应的思想,体会函数概念的核心是两个变量之间的特殊对应关系,能判断两个变量间是否具有函数关系。 过程与方法:借助简单实例,引领学生参与变量的发现和函数概念的形成过程,体会从生活实例抽象出数学知识的方法,感知现实世界中变量之间联系的复杂性,数学研究从最简单的情形入手,化繁为简。 情感态度与价值观:从学生熟悉、感兴趣的实例引入课题,引领学生参与变量的发现和函数概念的形成过程,体验“发现、创造”数学知识的乐趣。学生初步感知实际生活蕴藏着丰富的数学知识,感知数学是有用、有趣的学科。 教学重难点 重点:借助简单实例,从两个变量间的特殊对应关系抽象出函数的概念 难点:怎样理解“唯一对应” 教学过程 一、创设情境、导入新课 我们生活在一个运动的世界中,周围的事物都是运动的,例如:地球在宇宙中的运动这一问题,此时地球在宇宙中的位置随着时间的变化而变化,这是生活中的常识,学生都很容易理解。再例如,气温随着高度的升高而降低,年龄随着时间的增长而增长。这几个问题中都涉及两个量的关系,地球的位置与时间,温度与高度,年龄与时间。 二、合作交流、解读探究 1、气温问题:上图是北京春季某一天的气温T随 时间t变化的图象,看图回答: (1)这天的8时的气温是℃,14时的气温 是℃,最高气温是℃,最低气温是℃; (2)这一天中,在4时~12时,气温(),在16 时~24时,气温()。 A.持续升高 B.持续降低 C.持续不 变 思考: (1)天气温度随的变化而变化,即 T随的变化而变化; (2)当时间t取定一个确定的值时,对应的温度T的取值是否唯一确定? 2、当正方形的边长x分别取1、2、 3、 4、 5、 6、7……时,正方形的面积S分别是多少? 3、某城市居民用的天然气,1m3收费2.88元,使用x(m3)天然气应缴纳费用y=2.88x ,当x=10时,缴纳的费用为多少? 思考:上述三个问题中,分别涉及哪些量的关系?那些量是变化的?那些量是不变的?哪个量的变化导致另一个量的变化而变化?在一个问题中,当一个量取了确定的值之后,另一个

(文章)函数及其表示法要点归纳

函数及其表示法要点归纳 一、 学习目标 1.理解函数概念,明确函数的三个要素,会求简单的函数的定义域和值域; 2.了解映射的概念,理解和熟悉映射的表示方法; 3.掌握函数的三种表示方法,能利用这些方法表示函数。 二、重难点归纳 1.学习函数概念一定要注意理解其实质. ⑴由于函数实质上是非空数集之间的对应关系。按照函数定义,可以是“一对一”的,即不同的自变量的值,有不同的函数值与之对应,例如“y = 2x +1 ”,“y = x 3-3”等;也可以是“多对一”的,即多个自变量的值,有同一个函数值与它们对应,例如“y = x 2,x ∈R ”,“y = 5,x ∈R ”等等.但决不允许有“一对多”的情况出现,即不允许一个自变量的值与多个函数值相对应,例如“y =±x ,x >0”就不是函数关系式,因为它不满足对于定义域内任意一个..实数x ,在函数值的集合中都有唯一.. 确定的数()f x 与之对应,比如,当x = 4时,(4)f =2或(4)f =-2. ⑵函数的实质取决于定义域和对应法则,函数的核心是对应关系.在函数符号y =()f x 中,f 是表示函数的对应关系,等式y =()f x 表明,对于定义域中的任意x ,在“对应法则f ”的作用下,即可得到y .因此,f 是使“对应”得以实现的方法和途径,也是区分两个函数是否相同的一个重要因素。()f x 可以是解析式,也可以是图象或数表.符号()f x 与()f a 既有区别又有联系.()f a 表示当自变量x = a 时函数f (x)的值,是一个常量;而()f x 是自变量x 的函数,在一般情况下,它是一个变量.()f a 是()f x 的一个特殊值. ⑶等式y =()f x 还表明,对于定义域中的任意x ,在对应关系f 的作用下,可得到y .因此,f 是使“对应”得以实现的方法和途径.所以,给定一个函数,

函数的概念与表示复习讲义与习题.doc

第四讲函数的概念与表示 一.知识归纳: 1.映射 ( 1)映射:设 A 、 B 是两个集合,如果按照某种映射法则f,对于集合 A 中的任一个 元素,在集合 B 中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及 A到 B 的对应法则 f )叫做集合 A 到集合 B 的映射,记作 f : A→B。 ( 2)象与原象:如果给定一个从集合 A 到集合 B 的映射,那么集合 A 中的元素 a 对应的 B 中的元素 b 叫做 a 的象, a 叫做 b 的原象。 注意:( 1)对映射定义的理解。( 2)判断一个对应是映射的方法。 2.函数 ( 1)函数的定义 ①原始定义:设在某变化过程中有两个变量x、y,如果对于 x 在某一范围内的每一个确定的值, y 都有唯一确定的值与它对应,那么就称y 是 x 的函数, x 叫作自变量。 ②近代定义:设 A 、 B 都是非空的数的集合,f: x→y是从 A 到 B 的一个对应法则,那么从 A 到 B 的映射 f : A→B就叫做函数,记作y=f(x) ,其中 x∈ A,y ∈ B,原象集合 A 叫做函数的定义域,象集合 C 叫做函数的值域。 注意:①C B; ② A,B,C 均非空 ( 2)构成函数概念的三要素:①定义域②对应法则③值域 3.函数的表示方法:①解析法②列表法③图象法 注意:强调分段函数与复合函数的表示形式。 二.例题讲解: 【例 1】下列各组函数中,表示相同函数的是() (A) f(x)=lnx 2,g(x)=2lnx (B)f(x)= a log a x (a>0 且 a≠1),g(x)=x (C) f(x)= 1 x 2 , g(x)=1 - |x| (x ∈[ - 1,1]) (D) f(x)= log a a x (a>0 且 a≠1),g(x)= 3 x3 解答:选D 点评:判断两个函数是否相同主要是从定义域、对应法则两个方面加以分析。 变式:下列各对函数中,相同的是( D ) (A) f(x)= x 2, g(x)=x (B)f(x)=lgx 2 ,g(x)=2lgx (C)f(x)= lg x 1 , g(x)=lg(x - 1)- lg(x+1) (D) f(x)= 1 u 1 v 1 , g(x)= v x 1 u 1 【例 2】( 1)集合 A={3,4},B={5,6,7} ,那么可以建立从 A 到 B 的映射的个数是;从B 到 A 的映射的个数是。 ( 2)设集合 A 和 B 都是自然数集合N,映射 f:A→B把集合 A 中的元素 n 映射到集 合 B 中的元素2n+n,则在映射 f 下,像20 的原象是。 解答:( 1)从 A 到 B 可分两步进行,第一步 A 中的元素 3 可有 3 种对应方法( 5 或 6 精选

青岛版数学九年级下册5.1《函数和它的表示方法》教案2

5.1 函数与它的表示法 一、教与学目标: (1).进一步加深理解函数的概念.会根据简单的函数解析式和问题情境确定自变量的取值范围. (2).能利用函数知识解决有关的实际问题。 二、教与学重点难点: 重点就是确定函数关系式中自变量的取值范围; 难点是确定实际问题情境中自变量的取值范围。 三、教与学过程: (一)、情境导入: 列车以90千米/小时的速度从A地开往B地 行驶时间x小时 1 2 3 4 5 行驶路程y千米 (2)写出y与x之间的函数关系式; (3)x可以取全体实数吗? (二)、探究新知: 1、问题导读: (1)、在上一节课的三个问题中,自变量可以取值的范围是什么? (2)、对于自变量在它可以取值的范围内每取一个确定的值,另一个变量是否都有唯一确定的值与它对应? (3)、由此你对函数有了哪些进一步的认识?与同伴交流。 (4)、完成下列问题: 在同一个__________中,有两个______x,y.如果对于变量x在可以取值的范围内每取一个_________的值,变量y都有一个_______的值与它对应,那么就说______是______的函数. 2、合作交流: (1).求下列函数中自变量x可以取值的范围: (2).一根蜡烛长20cm,每小时燃掉5cm. ①、写出蜡烛剩余的长度y(cm)与点燃时间x(h)之间的函数解析式; ②、求自变量x可以取值的范围; ③、蜡烛点燃2h后还剩多长? 3、精讲点拨: (1)、确定解析式中自变量的取值范围,主要考虑以下几种情况: 解析式为整式,自变量的取值范围是全体实数; 解析式为分式,要考虑分母不能为零; 解析式为二次根式,要考虑被开方数应为非负数。 (2)、确定函数自变量可以取值的范围时,必须使函数解析式有意义,在解决实际问题时,还要使实际问题有意义。 (三)、学以致用: 1、巩固新知: 8页练习1、2、3题。 2、能力提升:

知识讲解-函数及其表示方法-基础

函数及其表示方法 编稿:丁会敏审稿:王静伟 【学习目标】 (1)会用集合与对应的语言刻画函数,会求一些简单函数的定义域和值域,初步掌握换元法的简单运用. (2)能正确认识和使用函数的三种表示法:解析法,列表法和图象法.了解每种方法的优点.在实际情境中,会根据不同的需要选择恰当的方法表示函数. (3)求简单分段函数的解析式;了解分段函数及其简单应用. 【要点梳理】 要点一、函数的概念 1.函数的定义 设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数. 记作:y=f(x),x∈A. 其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域. 要点诠释: (1)A、B集合的非空性;(2)对应关系的存在性、唯一性、确定性;(3)A中元素的无剩余性;(4)B中元素的可剩余性。 2.构成函数的三要素:定义域、对应关系和值域 ①构成函数的三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全—致,即称这两个函数相等(或为同一函数); ②两个函数相等当且仅当它们的定义域和对应关系完全—致,而与表示自变量和函数值的字母无关. 3.区间的概念 (1)区间的分类:开区间、闭区间、半开半闭区间; (2)无穷区间; (3)区间的数轴表示. 区间表示: <<= {x|a≤x≤b}=[a,b]; x a x b a b {|}(,); (] x a x b a b ≤<=; {|}, x a x b a b {|}, <≤=;[) (][) x x b b x a x a ≤=∞≤=+∞. {|}-,; {|}, 要点二、函数的表示法 1.函数的三种表示方法: 解析法:用数学表达式表示两个变量之间的对应关系.优点:简明,给自变量求函数值. 图象法:用图象表示两个变量之间的对应关系.优点:直观形象,反应变化趋势. 列表法:列出表格来表示两个变量之间的对应关系.优点:不需计算就可看出函数值. 2.分段函数: 分段函数的解析式不能写成几个不同的方程,而应写函数几种不同的表达式并用个左大括号括起来,并分别注明各部分的自变量的取值情况. 要点三、映射与函数 1.映射定义: 设A、B是两个非空集合,如果按照某个对应法则f,对于集合A中的任何一个元素,在集合B中都有唯一的元素和它对应,这样的对应叫做从A到B的映射;记为f:A→B. 象与原象:如果给定一个从集合A到集合B的映射,那么A中的元素a对应的B中的元素b叫做a的象,a

函数的定义及其表示

函数的定义及其表示 一、选择题(共16小题;共80分) 1. 设集合 M ={x ∣0≤x ≤2},N ={y ∣0≤y ≤2},给出如下四个图形,其中能表示从集合 M 到集合 N 的函数关系的是 ( ) A. B. C. D. 2. 设函数 f (x )={x 2+1,x ≤1 2x ,x >1,则 f(f (3))= ( ) A. 1 5 B. 3 C. 2 3 D. 13 9 3. 设集合 M ={x ∣(x +3)(x ?2)<0},N ={x ∣1≤x ≤3},则 M ∩N = ( ) A. [1,2) B. [1,2] C. (2,3] D. [2,3] 4. 定义在 R 上的函数 f (x ) 满足 f (x +y )=f (x )+f (y )+2xy (x,y ∈R ),f (1)=2,则 f (?3) 等 于 ( ) A. 2 B. 3 C. 6 D. 9 5. 已知函数 f (x )={2x +1,x <1 x 2+ax,x ≥1 ,若 f(f (0))=4a ,则实数 a 等于 ( ) A. 1 2 B. 4 5 C. 2 D. 9 6. 下列各组函数中,表示同一函数的是 ( ) A. y =x +1 与 y = x 2+x x B. f (x )= 2(√x) 2 与 g (x )=x C. f (x )=∣x ∣ 与 g (x )=√x n n D. f (x )=x 与 g (t )=log a a t 7. 下列各组函数中,表示同一个函数的是 ( ) A. y = x 2?1x?1 与 y =x +1 B. y =x 与 y =∣x∣ C. y =∣x∣ 与 y =2 D. y =2?1 与 y =x ?1 8. 已知函数 f (x )={2x +1,x <1 x 2+ax,x ≥1 ,若 f(f (0))=4a ,则实数 a 等于 ( ) A. 1 2 B. 4 5 C. 2 D. 9 9. 若 f (x )=ax(a >0且a ≠1) 对于任意实数 x ,y 都有 ( )

4.1 函数和它的表示法

第4章一次函数 4.1函数和它的表示法 4.1.1变量与函数 1.了解常量、变量的概念. 2.了解函数的概念. 3.确定简单问题的函数关系.

重点 借助简单实例,从两个变量间的特殊对应关系抽象出函数的概念. 难点 怎样理解“唯一对应”. 一、创设情境,导入新课 如图,水滴激起的波纹可以看成是一个不断向外扩展的圆,它的面积随着半径的变化而变化,随着半径的确定而确定. 在上述例子中,每个变化过程中的两个变量:当其中一个变量变化时,另一个变量也随着发生变化;当一个变量确定时,另一个变量也随着确定. 你能举出一些类似的实例吗? 二、合作交流,探究新知

1.气温问题:上图是北京春季某一天的气温T 随时间t 变化的图象,看图回答: (1)这天的8时的气温是____℃,14时的气温是____℃,最高气温是____℃,最低气温是____℃; (2)这一天中,在4时~12时,气温( ),在16时~24时,气温( ). A .持续升高 B .持续降低 C .持续不变 思考: (1)天气温度随____的变化而变化,即T 随____的变化而变化; (2)当时间t 取定一个确定的值时,对应的温度T 的取值是否唯一确定? 2.当正方形的边长x 分别取1,2,3,4,5,6,7,…时,正方形的面积S 分别是多少? 3.某城市居民用的天然气,1 m 3收费2.88元,使用x (m 3)天然气应缴纳费用y =2.88x , 当x =10时,缴纳的费用为多少? 思考:上述三个问题中,分别涉及哪些量的关系?哪些量是变化的?哪些量是不变的?哪个量的变化导致另一个量的变化而变化?在一个问题中,当一个量取了确定的值之后,另一个量对应的能取几个值? 在上面的三个问题中,其中一个量的变化引起另一个量的变化(按照某种规律变化),变化的量叫做变量;有些量的值始终不变(例如正方形的面积……).并且当其中一个变量取定一个值时,另一个变量就随之确定,且它的对应值只有一个. 教师根据学生的回答,在黑板上板书: 时间——气温 正方形边长——正方形面积 天然气费用——天然气体积 学生们会得出?????都有两个变量x ,y 都是变量y 随着x 的变化而变化当x 取一个确定值的时候,y 只有一个 值与之对应 师生对上述三个问题进行分析,找出它们的共性,归纳出函数的概念. 在某一变化过程中有两个变量x 和y ,如果对于x 的每一个值,y 总有唯一的值与它对应,我们就说x 是自变量,y 是x 的函数.

函数的概念及其表示

一、函数的概念及其表示 函数是刻画变量之间对应关系的数学模型和工具。 函数的共同特征: (1)都包含两个非空数集,用A 、B 来表示; (2)都有一个对应关系; (3)尽管对应关系的表示方法不同,但它们都有如下特性:对于数级A 中的任意一个数x ,按照对应关系,在数集B 中都有唯一确定的数y 和它对应。 事实上,除了解析式、图象、表格外,还有其他表示对应关系的方法。为了表示方便,我们引进符号f 统一表示对应关系。 一般地,设A 、B 是非空的实数集,如果对于集合A 中的任意一个数x,按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合b 的一个函数,记作 ().,A x x f y ∈= 其中x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合(){}A x x f ∈|叫做函数的值域。 我们所熟悉的一次函数y=kx+b ,k ≠0的定义域是R ,值域也是R 。对应关系f 把r 中的任意一个数x ,对应到R 中唯一确定的数kx+b 。二次函数)0(2≠++=a c bx ax y 的定义域是R ,值域是B 。当A>0时,B=??????-≥a b ac y y 44|2;当A<0时,B=? ?????-≤a b ac y y 44|2。对应关系f 把R 中任意一个数x,对应到B 中唯一确定的数)0(2≠++a c bx ax 。 由函数的定义可知,一个函数的构成要素为:定义域、对应关系

和值域。因为值域是由定义域和对应关系决定的,所以如果两个函数的定义域相同,并且对应关系完全一致,即相同的自变量对应的函数值也相同,那么这两个函数是同一个函数。两个函数如果仅有对应关系相同,但定义域不相同,那么它们不是同一个函数。 函数的三种表示方法:解析法、列表法和图象法。 解析法,就是用数学表达式表示两个变量之间的对应关系; 列表法,就是列出表格来表示两个变量之间的对应关系; 图象法,的就是用图象表示两个变量之间的对应关系。 这三种方法是常用的函数表示法。

函数与它的表示方法

北京四中网校诸城分校 1.(2012?泸州)为了节能减排,鼓励居民节约用电,某市将出台新的居民用电收费标准: (1)若每户居民每月用电量不超过100度,则按0.50元/度计算; (2)若每户居民每月用电量超过100度,则超过部份按0.80元/度计算(未超过部份仍按每度电0.50元计算). 现假设某户居民某月用电量是x (单位:度),电费为y (单位:元),则y 与x 的函数关系用图象表示正确的是( ) A . B . C . D . 2.(2009?益阳)某天小明骑自行 车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.如图描述了他上学的情景,下列说法中错误的是( ) A .修车时间为15分钟 B .学校离家的距离为2000米

C.到达学校时共用时间20分钟 D.自行车发生故障时离家距离为1000米 3.(2007?永州)永州市内货摩(运货的摩托)的运输价格为:2千米内运费5元;路程超过2千米的,每超过1千米增加运费1元,那么运费y元与运输路程x千米的函数图象是() A.B. C.D. 4.(2007?眉山)在某次实验中,测得两个变量m和v之间的4组对应数据如下表:则m与v之间的关系最接近于下列各关系式中的() A.v=2m-2 B.v=m2-1 C.v=3m-3 D.v=m+1

5.(2007?临汾)为了增强居民的节水意识,从2007年1月1日起,临汾城区水价执行“阶梯式”计费,每月应交水费y(元)与用水量x(吨)之间的函数关系如图所示.若某用户5月份交水费18.05元,则该用户该月用水() A.8.5吨B.9吨C.9.5吨D.10吨 6.(2007?常德)某电信部门为了鼓励固定电话消费,推出新的优惠套餐:月租费10元;每月拔打市内电话在120分钟内时,每分钟收费0.2元,超过120分钟的每分钟收费0.1元;不足1分钟时按1分钟计费.则某用户一个月的市内电话费用y(元)与拔打时间t(分钟)的函数关系用图象表示正确的是() A.B.C.D.

函数及其表示方法教案

函数及其表示方法 一、目标认知 学习目标: (1)会用集合与对应的语言刻画函数;会求一些简单函数的定义域和值域,初步掌握换元法的简单运用. (2)能正确认识和使用函数的三种表示法:解析法,列表法和图象法.了解每种方法的优点.在实际情境中,会根据不同的需要选择恰当的方法表示函数; (3)求简单分段函数的解析式;了解分段函数及其简单应用. 重点: 函数概念的理解,函数关系的三种表示方法.分段函数解析式的求法. 难点: 对函数符号)(x f y =的理解;对于具体问题能灵活运用这三种表示方法中的某种进行分析,什么才算“恰当”?分段函数解析式的求法. 二、知识要点梳理 知识点一、函数的概念 1.函数的定义 设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f:A →B 为从集合A 到集合B 的一个函数.记作:)(x f y =,x A . 其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)|x A}叫做函数的值域. 2.构成函数的三要素:定义域、对应关系和值域 ①构成函数的三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全—致,即称这两个函数相等(或为同一函数); ②两个函数相等当且仅当它们的定义域和对应关系完全—致,而与表示自变量和函数值的字母无关. 3.区间的概念 (1)区间的分类:开区间、闭区间、半开半闭区间; (2)无穷区间; (3)区间的数轴表示. 区间表示: {x|a ≤x ≤b}=[a ,b]; ; ; .

函数的定义及表示方法

函数的定义及表示方法 1若函数()f x 满足(21)1f x x -=+,则(1)f = . 2函数()f x 对于任意实数x 满足条件1(2)() f x f x += ,若(1)5f =-,则((5))f f = . 3若函数2(21)2f x x x +=-,则(3)f = . 4已知函数2 2 (),1x f x x R x =∈+. (1)求1()()f x f x +的值; (2)计算:111 (1)(2)(3)(4)()()()234 f f f f f f f ++++++. 5已知,a b 为常数,若22()43,()1024,f x x x f ax b x x =+++=++求5a b -的值 6设函数3 (100)(),(89).[(5)](100)x x f x f f f x x -≥?=? +

函数及其表示

函数及其表示 [考纲传真]1.了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用. 【知识通关】 1.函数与映射的概念 (1)函数的定义域、值域: 在函数y=f(x),x∈A中,自变量x的取值范围(数集A)叫做函数的定义域;函数值的集合{f(x)|x∈A}叫做函数的值域. (2)函数的三要素:定义域、对应关系和值域. (3)相等函数:如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数. (4)函数的表示法: 表示函数的常用方法有解析法、图象法和列表法. 3.分段函数 (1)若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数. (2)分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.

[常用结论] 简单函数定义域的类型 (1)f (x )为分式型函数时,分式分母不为零; (2)f (x )为偶次根式型函数时,被开方式非负; (3)f (x )为对数型函数时,真数为正数、底数为正且不为1; (4)若f (x )=x 0,则定义域为{x |x ≠0}; (5)指数函数的底数大于0且不等于1; (6)正切函数y =tan x 的定义域为xx ≠k π+π 2 ,k ∈Z . 【基础自测】 1.判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)函数是特殊的映射.( ) (2)函数y =1与y =x 0是同一个函数.( ) (3)对于函数f :A →B ,其值域就是集合B .( ) (4)f (x )=x -3+2-x 是一个函数.( ) [答案] (1)√ (2)× (3)× (4)× 2.函数y =2x -3+1 x -3 的定义域为( ) A .?????? 32,+∞ B .(-∞,3)∪(3,+∞) C .?????? 32,3∪(3,+∞) D .(3,+∞) C 3.若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( ) B 4.下列各组函数中,表示同一函数的是( ) A .f (x )=3 x 3与g (x )=x 2 B .f (x )=|x |与g (x )=(x )2 C .f (x )=x 2-1 x -1 与g (x )=x +1

相关文档
最新文档