水泥基复合材料

Q:添加纤维比例低的原因所在?

水灰比、砂石比、浆集比

喷射

新型水泥基复合材料在军事工程中的

最近几场高技术局部战争都已表明,对弱小落后的国家来讲,提高军事工程防护等级及抗打击能力非常重要。随着精确制导武器、新型钻地弹等开始在高技术战争中大量使用,对防护工程的威胁和破坏越来越大。另外,从这几场战争可以看出,机场、桥梁及重要交通设施已成为战争初期受打击的对象。因此,迫切需要研制开发具有高防护等级及战时快速抢修能力的新材料。本文主要介绍高强超高强混凝土、MDF水泥材料、DSP水泥混凝土、RPC活性粉末混凝土、土聚水泥材料及磷酸盐水泥混凝土几种新型水泥基复合材料,并分析这些材料在军事防护工程和抢修抢建工程的应用前景。 一、防护工程用新型水泥基材料 (一)xx、超xx混凝土 随着高效减水剂及活性掺合料在混凝土工程中的应用,混凝土的强度等级得到了很大程度的提高。目前,配制IOOMPa以上的混凝土对我们来说已经不是一件难事。如80年代,军队××和地方××大学合作,在某基地成功进行了宽13m,高21m的防护大门施工,其抗压强度达到88.4MPa。又如,部队××学院与地方××大学合作研究的高抗爆水泥基复合材料不但具有高抗压强度,还具有很好的韧性和抗爆性。这些高强、超高强混凝土的开发使用大大提高了我军军事工程的防护等级。实现混凝土高强化的途径可见图l。 (二)无宏观缺陷水泥材料(MDF) 无宏观缺陷水泥材料(Macrodefect-free Cements,简称为MDF材料),是1979年英国化学工业公司和牛津大学最早开始研究的。MDF的抗压强度高达300MPa,抗弯强度150MPa,抗拉强度可达140MPa,弹性模量达50GPa,这是传统的水泥胶凝材料无法比拟的。MDF的原材料中90%-99%是高标号的硅酸盐水泥或铝酸盐水泥,4%-7%的水溶性树脂,水灰比一般在0.20以下。由于低水灰比,要使各种组成材料均匀混合,必须采用强力式高效剪切搅拌机,成型时则采用热压工艺。 (三)DSP材料

陶瓷基复合材料综述

浅论陶瓷复合材料的研究现状及应用前景 董超2009107219金属材料工程 摘要 本文主要对陶瓷复合材料的研究现状及应用前景进行了研究,并对当今陶瓷复合材料发展面临的问题进行了概括,希望对陶瓷复合材料的进一步发展起到一定的作用。 本文首先对Al2O3陶瓷复合材料和玻璃陶瓷复合材料的研究进展及发展前景进行了详细的研究。然后对整个陶瓷复合材料的发展趋势及存在的问题进行了分析,得出了在新的时期陶瓷复合材料主要向功能、多功能、机敏、智能复合材料、纳米复合材料、仿生复合材料方向发展;目前复合材料面临的主要问题是基础理论研究问题和新的设计和制备方法问题。 关键词:Al2O3陶瓷复合材料玻璃陶瓷复合材料研究现状应用前景 1. 前言 以粉体为原料,通过成型和烧结等所制得的无机非金属材料制品统称为陶瓷。陶瓷的种类繁多,根据陶瓷的化学组成、性能特点、用途等不同,可将陶瓷分为普通陶瓷和特殊陶瓷两大类。而在许多重要的应用及研究领域,特殊陶瓷是主要研究对象。 陶瓷复合材料是特殊陶瓷的一种。在高技术领域内,对结构材料要求具有轻质高强、耐高温、抗氧化、耐腐蚀和高韧性的特点。陶瓷具有优良的综合机械性能,耐磨性好、硬度高、以及耐热性和耐腐蚀性好等特点。但是它的最大缺点是脆性大。近年来,通过往陶瓷中加入或生成颗粒、晶须、纤维等增强材料,使陶瓷的韧性大大地改善,而且强度及模量也有一定提高。因此引起各国科学家的重视。本文主要介绍了各种陶瓷复合材料的研究现状及其应用前景,并对陶瓷复合材料近年来的发展进行综述。 2.研究现状 随着现代科学技术快速发展,新型陶瓷材料的开发与生产发展异常迅速,新理论、新工艺、新技术和新装备不断出现,形成了新兴的先进无机材料领域和新兴产业。科学技术的发展对材料的要求日益苛刻,先进复合材料已成为现代科学技术发展的关键,它的发展水平是衡量一个国家科学技术水平的一个重要指标,因此世界各国都高度重视其研究和发展。 复合材料的可设计性大,能满足某些对材料的特殊要求,特别是在航空航天技术领域的应用得到迅速发展。陶瓷复合材料的研究,根本目的在于提高陶瓷材料的韧性,提高其可靠性,发挥陶瓷材料的优势,扩大应用领域。本文就几类典型的陶瓷复合材料介绍其研究现状。 2.1Al2O3陶瓷复合材料的研究进展及发展前景 Al2O3陶瓷作为常见陶瓷材料,既具有普通陶瓷耐高温、耐磨损、耐腐蚀、

复合材料综述

金属基陶瓷复合材料制备技术研究进展与应用* 付鹏,郝旭暖,高亚红,谷玉丹,陈焕铭 (宁夏大学物理电气信息工程学院,银川750021) 摘要综述了国内外在金属基陶瓷复合材料制备技术方面的最新研究进展与应用现状,展望了 国内金属基陶瓷复合材料的未来发展。 关键词金属基陶瓷复合材料制备技术应用 Development and Future Applications of Metal Matrix Composites Fabrication Technique FU Peng, HAO Xunuan, GAO Yahong, GU Yudan, CHEN Huanming (School of Physics & Electrical Information Engineering, Ningxia University, Yinchuan 750021) Abstract Recent development and future applications of metal matrix compositesfabrication technique are reviewed and some prospects of the development in metal matrix composites at home are put forward. Key words metal-based ceramic composites, fabrication technique, applications 前言:现代高技术的发展对材料的性能日益提高,单料已很难满足对性能的综合要求,材料的复合化是材料发展的必然趋势之一。陶瓷的高强度、高硬度、高弹性模量以及热化学性稳定等优异性能是其主要特点,但陶瓷所固有的脆性限制着其应用范围及使用可靠性[1—3]。因此,改善陶瓷的室温韧性与断裂韧性,提高其在实际应用中的可靠性一直是现代陶瓷研究的热点。与陶瓷基复合材料相比,通常金属基复合材料兼有陶瓷的高强度、耐高温、抗氧化特性,又具有金属的塑性和抗冲击性能,应用范围更广,诸如摩擦磨损类材料、航空航天结构件、耐高温结构件、汽车构件、抗弹防护材料等。 1 金属基陶瓷复合材料的制备 金属基陶瓷复合材料是20世纪60年代末发展起来的,目前金属基陶瓷复合材料按增强体的形式可分为非连续体增强(如颗粒增强、短纤维与晶须增强)、连续纤维增强(如石墨纤维、碳化硅纤维、氧化铝纤维等)[4—6]。实际制备过程中除了要考虑基体金属与增强体陶瓷之间的物性参数匹配之外,液态金属与陶瓷间的浸润性能则往往限制了金属基陶瓷复合材料的品种。目前,金属基陶瓷复合材料的制备方法主要有以下几种。 1.1 粉末冶金法 粉末冶金法制备金属基陶瓷复合材料即把陶瓷增强体粉末与金属粉末充分混合均匀后进行冷压烧结、热压烧结或者热等静压,对于一些易于氧化的金属,烧结时通入惰性保护气体进行气氛烧结。颗粒增强、短纤维及晶须增强的金属基陶瓷复合材料通常采用此种方法,其主要优点是可以通过控制粉末颗粒的尺寸来实现相应的力学性能,而且,粉末冶金法制造机械零件是一种终成型工艺,可以大量减少机加工量,节约原材料,但粉末冶金法的生产成本并不比熔炼法低[7]。 1.2 熔体搅拌法 熔体搅拌法是将制备好的陶瓷增强体颗粒或晶须逐步混合入机械或电磁搅拌的液态或半

陶瓷基复合材料的研究现状与发展前景

——碳化物陶瓷基复合材料课程名称:复合材料 学生姓名:舒顺启 学号:200910204123 班级:材料091班 日期:2012年12月22日

——碳化物陶瓷基复合材料 摘要:本文综述了陶瓷基复合材料的发展历史,介绍了陶瓷基复合材料的制备工艺,详细阐述了陶瓷基复合材料的性能与应用,分析了陶瓷基复合材料存在的问题,并展望了陶瓷基复合材料未来发展趋势。 关键词:陶瓷基复合材料、制备工艺、性能、应用 Ceramic matrix composites research present situation and the development prospect --Carbide ceramic matrix composites Abstract:This paper reviews the ceramic base composite material, the development history of ceramic matrix composites is introduced the preparation process, elaborated the ceramic matrix composites, the properties and the application of the analysis of the ceramic base composite material existing problems, and prospects the ceramic matrix composites future development trend. Key words:Ceramic matrix composites, preparation process, performance and application 1 引言 陶瓷基复合材料是近二十年来发展起来的新型材料,由于该类材料具有良好的高温性能。因此它作为耐高温结构材料在航空航天工业和能源工业等领域的应用具有巨大的潜力。如航空发动机的推重比为lO时,涡轮前进口温度达1650℃,在这样高的温度下,传统的高温合金材料已经无法满足要求【1】,因此国内外的材料研究者纷纷把研究的重点转向陶瓷基复合材料。研究者通过大量的实验发现,陶瓷基复合材料不仅具有良好的高温稳定性和高温抗氧化能力,而且材料在断裂

陶瓷基复合材料的研究进展及其在航空发动机上的应用

陶瓷基复合材料的研究进展及其在航空发动机上 的应用 摘要:综述了陶瓷基复合材料(CMCs) 的研究进展。就CMCs的增韧机理、制备工艺和其在航空发动机上的应用进展作了详细介绍。阐述了CMCs研究和应用中存在的问题。最后,指出了CMCs的发展目标和方向。 关键词:陶瓷基复合材料;航空发动机;增韧机理;制备工艺 The Research Development of Ceramic Matrix Compositesand Its Application on Aeroengine Abstract:The development and research status of ceramic matrix compositeswerereviewed in this paper. The main topics include the toughening mechanisms, the preparation progressand the application on aeroengine were introduced comprehensively. Also, the problems in the research and application of CMCswere presented. Finally, the future research aims and directions were proposed. Keywords: Ceramic matrix composites, Aeroengine, Fiber toughening,Preparation progress 1引言 推重比作为发动机的核心参数,其直接影响发动机的性能,进而直接影响飞机的各项性能指标。高推重比航空发动机是发展新一代战斗机的基础,提高发动机的工作温度和降低结构重量是提高推重比的有效途径[1]。现有推重比10一级的发动机涡轮进口温度达到了1500~1700℃,如M88-2型发动机涡轮进口温度达到1577℃,F119型发动机涡轮进口温度达到1700℃左右,而推重比15~20一级发动机涡轮进口温度将达到1800~2100℃,这远远超过了发动机中高温合金材料的熔点温度。目前,耐热性能最好的镍基高温合金材料工作温度达到1100℃左右,而且必须采用隔热涂层,同时设计先进的冷却结构。在此需求之下,迫切需要发展新一代耐高温、低密度、低膨胀、高性能的结构材料[2]。在各类型新型耐高温材料中,

水泥基复合材料

水泥基复合材料 艾ai青摘要: 本文论述了水泥基材料改性用聚合物种类、聚合物改性机理、聚合物改性水泥基材料研究进展和发展趋势。加入了聚合物材料后,水泥基材料的性能,如强度、变形能力、粘结性能、防水性能、耐久性能等都会有所改善,改善的程度与聚灰比、聚合物的品种和性能有很大关系。但也存在不足之处,如抗压强度提高不大,有时还降低,最高使用温度不如普通混凝土等。笔者认为,研究如何大幅度提高聚合物改性水泥基材料的抗压强度和最高使用温度很有意义。 关键词: 关键词聚合物改性水泥基材料进展机理性能 1.引言 普通混凝土因抗压比低,干缩变形大,抗渗性、抗裂性、耐腐蚀性差,密度大,其使用范围受到很大限制。随着工业的发展,出现了钢筋混凝土、自应力混凝土和纤维混凝土。但在这些改进中,胶结材料水泥的性能没有发生改变,因此也限制了混凝土性能的提高。水泥混凝土(砂浆)的一个新动向就是水泥混凝土(砂浆)与有机高分子材料复合,这样可以有效地改善混凝土(砂浆)的性能。因为有机高分子聚合物的长分子链结构以及大分子中的键节或链段的自旋转性,决定其具有与无机非金属材料不同的性质—弹性和塑性[1]。所以在水泥混凝土(砂浆)中加入少量有机高分子聚合物,既可以使混凝土获得高密实度,又不至于使混凝土(砂浆)的脆性加大,这样便可制得高强度、高抗渗和高耐腐蚀性的混凝土。如今,聚合物改性砂浆和混凝土不仅在混凝土结构的修补和维护方面成为一种非常重要的材料,就是在新的建筑中也获得越来越广泛的应用,尤其是在桥面、停车场、码头、瓷砖和石材粘结、建筑防水、防腐等工程领域。 2. 聚合物改性水泥基复合材料 1.1. 改性用聚合物种类 聚合物改性水泥基复合材料是指在水泥混合时加入了分散在水中或者可以在水中分散的聚合物材料,包括掺和不掺骨料的复合材料、水泥浆、砂浆和混凝土。用于水泥混凝土(砂浆)改性的聚合物有四类,即水溶性聚合物、聚合物乳液(或分散体)、可再分散的粉料和液体聚合物。聚合物乳液通常是将可聚合单体在水中进行乳液聚合而获得的,但也有一些聚合物乳液不是通过单体乳液聚合而获得的,如天然橡胶胶乳是直接从橡胶树上获得,再经适当浓缩制成的;环氧乳液则一般是用乳化剂将环氧树脂乳化而成的。可再分散的聚合物粉料一般是由聚合物乳液经喷雾干燥而成的,聚合物粉末与聚合物乳液就像是奶粉与牛奶一样。它对水泥砂浆和混凝土的改性机理与聚合物乳液是相同的,只不过它往往是先与水泥和骨料进行干混,再加水湿拌才重新乳化成乳液。水溶性聚合物品种很多,可以分为三大类:天然水溶性、半合成水溶性和合成水溶性。一般说,水溶性聚合物的用量非常小,通常在水泥质量的0。5%以下,对硬化砂浆和混凝土的强度没有大的影响[2]。因此,水溶性聚合物主要用来改善水泥砂浆和混凝土的工作特性,有时候也可以把其归类为增黏剂。用于水泥改性用的液体聚合物有环氧树脂和不饱和聚脂,在与水泥混合时还要加入固化剂。与聚合物乳液改性相比,使用液体聚合物时聚合物用量要更多,因为聚合物不亲水,分散不是很容易,所以用液体聚合物改性混凝土的情形要比其他类型聚合物少得多。聚合物水泥砂浆的配比一般为,水泥∶砂=1∶2~3(质量比);聚灰比=5%~20%;

水泥基复合材料

水泥基复合材料 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

水泥基复合材料 1. 混凝土概述 水泥基复合材料指以水泥与水发生水化、硬化后形成的硬化水泥浆体作为基体与其他各种无机、金属、有机材料组合而得到的具有新性能的材料。 混凝土材料发生了几次重大变革,其中三次最为突出。 1. 19世纪中叶法国首先出现了钢筋混凝土 2. 1928年法国发明了预应力钢筋混凝土 3.近30年来聚合物复合混凝土及混凝土外加剂的出现 混凝土材料按胶结材料分类:无机胶结材料混凝土,有机胶结材料混凝土,无机与有机复合胶结材料混凝土。按容重分类:特重混凝土,重混凝土,轻混凝土,特轻混凝土。按混凝土结构分类:普通结构混凝土,细粒混凝土,大孔混凝土,多孔混凝土。按用途分类结构用混凝土,隔热混凝土,装饰混凝土,耐酸混凝土等。 混凝土的性质:混凝土混合料必须具有良好的和易性以保证获得良好的浇灌质量。①流动性:指混合料在本身自重或在机械振捣的外力作用下产生流动或坍落能均匀密实地填满模板的性质。②黏聚性:指混合料具有一定的黏聚力在运输或浇筑过程中不致出现分层离析使混凝土保持整体均匀的性能。③保水性:指混合料在施工过程中具有保水能力保水性好的混料不易产生严重泌水现象。 2. 高性能混凝土

混凝土:由胶结材料水泥和粗细集料石子和沙按适当比例拌和均匀经搅拌振捣成型在一定条件下养护而成的复合材料。 高强混凝土(high-strength concrete,HSC)与高性能混凝土(high-performance concrete)的首要区别是后者强调耐久性。高性能混凝土不仅要具备高的强度而且应具备高密实性和高体积稳定性。 高性能混凝土在微观结构方面的特点:由于存在大量未水化的水泥颗粒浆体所占比例降低浆料的总孔隙率小,孔径尺寸较小,仅最小的孔为水饱和浆体-集料界面与浆体本体无明显区别消除了薄弱区游离氧化钙含量低。 高性能混凝土的特性:有自密实性;体积稳定性好;强度高,其抗压强度已有超过200MPa;水灰比较低,水化反应终止得较早,水化热总量相应降低;在较长的持续期后,高性能混凝土的总收缩应变量与其强度成反比,早期收缩率随着强度的提高而增大;徐变变形显着低于普通混凝土;Cl-渗透率低于普通水泥更符合环保要求;具有较高的密实性和抗渗性抗化学腐蚀性显着优于普通强度混凝土;高温作用下会产生爆裂、剥落。 3. 纤维增强水泥基复合材料 纤维增强水泥基复合材料是由不连续的纤维均匀地分散于水泥混凝土基材中形成的复合材料. 纤维与水泥浆基材的黏结比较牢固形成了遍布结构全体的纤维网。当基本材料受拉力过高开裂时拉力可逐步转移到横跨裂纹的纤维上增大了混凝土结构的变形能力。纤维的拉伸强度较高

浅谈水泥基混凝土材料

浅谈水泥基混凝土复合材料 姓名:陈聪学号:S11085213015 专业:建筑与土木工程44班 摘要: 随着社会快速发展,单一的水泥材料已经不能满足人们日常工程需求,高性能水泥基复合材料既是在近代科技成就的基础上发展起来的,又将在高新技术工程领域中开发应用。本文结合相关论文资料[1]对近年来出现的几种高性能水泥基复合材料进行了初步阐述。 关键词: 高性能水泥基功能复合材料发展状况困惑展望 Abstract:With the development of society, single cement material already can't satisfy people's daily engineering requirements, high performance cement-based composite materials is developed on the basis of modern scientific and technological achievements, and in the development of new and high technology in the field of engineering application. Based on the related papers [1] to the trend in recent years several high performance cement-based composite material has carried on the preliminary in this paper. Keywords:High performance cement-based functional composites; status of development ; Perplexity; Prospect; 第一章前言 论文[1]介绍了国内外水泥基功能复合材料的研究进展及应用,重点对几种重要的水泥基功能复合材料,如导电、压电、介电、磁性、屏蔽等材料的组成、特性、工艺及发展状况进行了综述。 通过查询相关资料[4],对水泥基功能复合材料有了初步的了解,功能材料是指通过光、电、磁、力、热、化学、生物化学等作用后,具有特定功能(导电性、压电性、热电性、磁性和防辐射性)的新材料[1]。随着科学技术的迅速发展,功能单一的传统水泥材料,已不能适应日新月异的多功能工程需要,现代建筑对水泥基复合材料提出了新的挑战,不仅要求水泥基复合材料要有高强度,而且还应具有声、光、电、磁、热等功能,以适应多功能和智能

纤维增强水泥基复合材料

纤维增强型水泥基复合材料 一、纤维增强型水泥基复合材料的概述 纤维增强型水泥基复合材料是以水泥与水发生水化、硬化后形成的硬化水泥浆体作为基体,以不连续的短纤维或连续的长纤维作增强材料组合而成的一种复合材料。 普通混凝土是脆性材料,在受荷载之前内部已有大量微观裂缝,在不断增加的外力作用下,这些微裂缝会逐渐扩展,并最终形成宏观裂缝,导致材料破坏。 加入适量的纤维之后,纤维对微裂缝的扩展起阻止和抑制作用,因而使复合材料的抗拉与抗折强度以及断裂能较未增强的水泥基体有明显的提高。 二、纤维增强型水泥基复合材料的力学性能 在纤维增强水泥基复合材料中,纤维的主要作用在于阻止微裂缝的扩展,具体表现在提高复合材料的抗拉、抗裂、抗渗及抗冲击、抗冻性等。 ? 2.1 抗拉强度 ?在水泥基复合材料受力过程中纤维与基体共同受力变形,纤维的牵连作用使基体裂而不断并能进一步承受载荷,可使水泥基材料的抗拉强度得到充分保证;当所用纤维的力学性能、几何尺寸与掺量等合适时,可使复合材料的抗拉强度有明显的提高。 ? ? 2.2 抗裂性

在水泥基复合材料新拌的初期,增强纤维就能构成一种网状承托体系,产生有效的二级加强效果,从而有效的减少材料的内分层和毛细腔的产生; 在硬化过程中,当基体内出现第一条隐微裂缝并进一步发展时,如果纤维的拉出抵抗力大于出现第一条裂缝时的荷载,则纤维能承受更大的荷载,纤维的存在就阻止了隐微裂缝发展成宏观裂缝的可能。 ? 2.3 抗渗性 纤维作为增强材料,可以有效控制水泥基复合材料的早期干缩微裂以及离析裂纹的产生及发展,减少材料的收缩裂缝尤其是连通裂缝的产生。另外,纤维起了承托骨料的作用,降低了材料表面的析水现象与集料的离析,有效地降低了材料中的孔隙率,避免了连通毛细孔的形成,提高了水泥基复合材料的抗渗性。 2.4 抗冲击及抗变形性能 在纤维增强水泥基复合材料受拉(弯)时,即使基体中已出现大量的分散裂缝,由于增强纤维的存在,基体仍可承受一定的外荷并具有假延性,从而使材料的韧性与抗冲击性得以明显提高。 2.5 抗冻性 纤维可以缓解温度变化而引起的水泥基复合材料内部应力的作用,从而防止水泥固化过程中微裂纹的形成和扩散,提高材料的抗冻性;同时,水泥基复合材料抗渗能力的提高也有利于其抗冻能力的提高。 ?纤维的纤维掺量对混凝土强度的影响很大 ?合成纤维可有效地控制由混凝土内应力产生的裂缝,使混凝土早期收缩裂缝减少50~90%,显著提高混凝土的抗渗性和耐久性,使混凝 土内钢筋锈蚀时间推迟2.5倍。除抗裂外,合成纤维还能提高混凝土的粘 聚性和抗碎裂性。 ?以聚丙烯合成纤维为例 ?掺入聚丙烯合成纤维后,混凝土的性能将发生变化,当纤维含量适当时,混凝土抗压强度、抗弯强度等均有不同程度的提高。纤维掺量对混凝土强 度的影响见下表。 三、几种主要增强型水泥基复合材料的应用现状

陶瓷基复合材料综述报告

陶瓷基复合材料综述报告 陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料,具有优异的耐高温性能,主要用作高温及耐磨制品。陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。 迄今,陶瓷基复合材料已实用化或即将实用化的领域有刀具、滑动构件、发动机制件、能源构件等。有些发达国家已将长纤维增强碳化硅复合材料应用于制造高速列车的制动件,显示出优异的摩擦磨损特性,取得了不错的使用效果[1]。 一、陶瓷基复合材料增强体 用于复合材料的增强体品种很多,根据复合材料的性能要求,主要分为以下几种[2-4] : 1.1纤维类增强体 纤维类增强体有连续长纤维和短纤维。连续长纤维的连续长度均超过数百。纤维性能有方向性,一般沿轴向均有很高的强度和弹性模量。 1.2颗粒类增强体 颗粒类增强体主要是一些具有高强度、高模量。耐热、耐磨。耐高温的陶瓷等无机非金属颗粒,主要有碳化硅、氧化铝、碳化钛、石墨。细金刚石、高岭土、滑石、碳酸钙等。主要还有一些金属和聚合物颗粒类增强体,后者主要有热塑性树脂粉末 1.3晶须类增强体 晶须是在人工条件下制造出的细小单晶,一般呈棒状,其直径为0.2~1微米,长度为几十微米,由于其具有细小组织结构,缺陷少,具有很高的强度和模量。 1.4金属丝 用于复合材料的高强福、高模量金属丝增强物主要有铍丝、钢丝、不锈钢丝和钨丝等,金属丝一般用于金属基复合材料和水泥基复合材料的增强,但前者比较多见。 1.5片状物增强体 用于复合材料的片状增强物主要是陶瓷薄片。将陶瓷薄片叠压起来形成的陶瓷复合材料具有很高的韧性。 二、陶瓷基的界面及强韧化理论 陶瓷基复合材料(CMC)具有高强度、高硬度、高弹性模量、热化学稳定性等优异性能,被认为是推重比10以上航空发动机的理想耐高温结构材料。界面作为陶瓷基复合材料重要的组成相,其细观结构、力学性能和失效规律直接影响到复合材料的整体力学性能,因此研究界面特性对陶瓷基复合材料力学性能的影响具有重要的意义。 2.1界面的粘结形式 (1)机械结合(2)化学结合 陶瓷基复合材料往往在高温下制备,由于增强体与基体的原子扩散,在界面上更易形成固溶体和化合物。此时其界面是具有一定厚度的反应区,它与基体和

水泥基复合材料的制备

水泥基复合材料的制备 一、实验目的 (1)了解水泥各种技术性质定义,进一步理解水泥胶凝和硬化的原理,水灰比、掺合料对水泥强度的影响; (2)掌握玻璃纤维增强水泥基复合材料的制备工艺和操作方法; (3)学习水泥相关仪器,例如胶砂搅拌机、振实机等的使用。 二、实验内容 以水泥为基体材料、玻璃纤维为增强材料,制备水泥基复合材料。 三、实验原理 水泥,粉状水硬性无机胶凝材料,加水搅拌后成浆体,能在空气中硬化或者在水中更好的硬化,并能把砂、石等材料牢固地胶结在一起。用它胶结碎石制成的混凝土,硬化后不但强度较高,而且还能抵抗淡水或含盐水的侵蚀。长期以来,它作为一种重要的胶凝材料,广泛应用于土木建筑、水利、国防等工程。 硅酸盐水泥的化学成分:硅酸三钙(3CaO·SiO2,简式C3S),硅酸二钙(2CaO·SiO2,简式C2S),铝酸三钙(3CaO·Al2O3,简式C3A),铁铝酸四钙(4CaO·Al2O3·Fe2O3,简式C4AF)。 水泥的胶凝和硬化: 1)、3CaO·SiO2+H2O→CaO·SiO2·YH2O(凝胶)+Ca(OH)2; 2)、2CaO·SiO2+H2O→CaO·SiO2·YH2O(凝胶)+Ca(OH)2; 3)、3CaO·Al2O3+6H2O→3CaO·Al2O3·6H2O(水化铝酸钙,不稳定); 3CaO·Al2O3+3CaSO4·2 H2O+26H2O→3CaO·Al2O3·3CaSO4·32H2O(钙矾石,三硫型水化铝酸钙); 3CaO·Al2O3·3CaSO4·32H2O+2(3CaO·Al2O3)+4 H2O→3(3CaO·Al2O3·CaSO4·12H2O)(单硫型水化铝酸钙); 4)、4CaO·Al2O3·Fe2O3+7H2O→3CaO·Al2O3·6H2O+CaO·Fe2O3·H2O。 当水泥拌水后,半水石膏迅速水化为二水石膏,形成针状结晶网状结构,从而引起浆体固化。 本实验采用短玻璃纤维为增强材料,将其混合在水泥胶砂里,入模成型,经过养护固化之后,形成复合材料,得到产品。 四、实验仪器和药品 1、原材料:水泥(PC32.5)、河沙、玻璃纤维等; 2、仪器:水泥胶砂搅拌机、水泥胶砂振实机、水泥板块标准模具、天平等。 五、实验步骤 1、模具准备 将水泥板块标准模具表面擦洗干净、拼装、涂抹脱模剂,备用。 2、水泥胶砂原料称量 分别称量水292.5g,水泥450g,河沙1350g,备用。 3、玻璃纤维称量 各组按照配比要求,分别称取20g、30g、40g玻璃纤维,备用。 4、胶砂的搅拌与振实

高性能纤维增强水泥基复合材料的研究

第24卷 第6期2002年6月 武 汉 理 工 大 学 学 报 JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY V ol.24 No.6 Jun.2002 文章编号:1671-4431(2002)06-0015-04 高性能纤维增强水泥基复合材料的研究 王悦辉 谢永贤 林宗寿 涂成厚 (武汉理工大学)   摘 要: 介绍了在高性能蒸养水泥中掺入钢纤维制备出高性能水泥基复合材料的研究结果。研究了水灰比(W/C)、砂灰比(S/C)、钢纤维掺量对水泥基复合材料性能的影响;并用XRD 、SEM 分析其微观结构和形貌。试验结果表明:将钢纤维掺入到高性能蒸养水泥中并采用适当的工艺,可制备出抗压强度达133M Pa ,抗折强度达24.5M Pa 的高性能水泥基复合材料。 关键词: 高性能蒸养水泥; 钢纤维; 复合材料中图分类号: T U 5 文献标识码: A 收稿日期:2001-11-20.作者简介:王悦辉(1974-),女,硕士;武汉,武汉理工大学材料学院(430070). 高性能混凝土是当今混凝土材料的发展趋势,降低混凝土结构物能源、资源的消耗,减少污染以获得可持续发展的环境,也正成为混凝土界关注的热点。虽然高性能混凝土的抗压强度比普通混凝土成倍提高,但抗折强度却提高很少,表现为脆性显著增大。为了改善混凝土的脆性,通常在混凝土中掺入钢纤维,制成钢纤维混凝土,改善混凝土的脆性。钢纤维混凝土具有抗拉、抗折强度高,弯曲韧性、抗冲击耐疲劳、阻裂限缩能力优异等特点,在工程中得到广泛的应用,取得了良好的技术经济效果。 钢纤维混凝土是以混凝土为基体,非连续的短纤维作为增强材料所构成的水泥基复合材料,钢纤维在混凝土中各向随机分布,跨越混凝土中存在的微细裂隙,并对裂隙产生约束作用,阻止裂隙扩展,从而达到增强的作用。其增强效果主要取决于钢纤维的尺寸,基体的粘结强度及掺量。前两者可由选用的钢纤维原材料来确定,钢纤维的掺量太小增强效果不明显,太大则不易搅拌分散。钢纤维虽然能大大提高混凝土的抗拉强度和韧性,但对混凝土的抗压强度影响较小。而由本试验制得的高性能水泥基材料,在水泥中掺入超细矿渣,具有良好的火山灰效应和微粒充填效应,能改善混凝土的密实性,提高抗压强度和抗渗性。在实验中应用以下基本原理配制超高性能混凝土: (1)去除混凝土中原有的粗骨料,从而消除粗骨料和水泥浆体之间的薄弱界面,增加了整个基体的均质性;(2)以多元粉体细颗粒优化级配,提高整个基体的堆积密度;(3)通过掺加微细的钢纤维,增强韧性;(4)优化搅拌、成型和养护制度;(5)采用外掺硬石膏的蒸养水泥,进一步提高制品强度。 1 试验研究 1.1 试验原材料 (1)水泥 试验用水泥采用作者已研究开发的高性能蒸养水泥[1]。其最佳配比如表1所示。(2)细集料 标准砂,粒径0.25~0.65mm 。(3)减水剂 采用UNF5高效减水剂,掺量为1.0%。(4)钢纤维 选用东洲钢纤维发展公司生产的冷板型钢纤维,见表2。试验用配比见表3、表4、表5、表6。1.2 试件制备 钢纤维在水泥砂浆中的分散、搅拌工艺:采用先干后湿的搅拌工艺,水和高效减水剂混合均匀,按配比将水泥、砂、钢纤维加入到水泥胶砂搅拌机内干搅2min;加入水和高效减水剂湿拌10min,达到钢纤维在水泥砂浆中均匀分散的目的。这种方法可避免钢纤维尚未分散即被水泥砂浆包裹成钢纤球现象。

陶瓷基复合材料

陶瓷基复合材料 江雪玲 (重庆师范大学化学学院,2011级材料化学,20110513423) 摘要:概述了陶瓷基复合材料的基本概念,介绍了陶瓷基复合材料的分类及其应用,以及各类陶瓷基复合材料的优点、缺点。最后,综合了陶瓷基复合材料的优点、缺点,并对未来陶瓷基复合材料的发展提出了期许以及发展方向。 关键词:陶瓷基复合材料、氧化物基透波材料、磷酸盐基透波材料、氮化物基透波材料、连续纤维增强陶瓷基复合材料。 陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。 1、陶瓷基复合材料 由于陶瓷本身存在韧性和可靠性不足的缺点,因此人们对各种陶瓷材料进行优化设计,制备出整体性能更为优异的陶瓷基透波复合材料。陶瓷基透波复合材料按基体的成分不同可主要分为氧化物基、磷酸盐基及氮化物基等系列。下表为部分陶瓷基透波复合材料的基本性能。 表:部分陶瓷基透波复合材料的基本性能 性能2D 3D 2.5D 2.5D

SiO2f/SiO2 SiO2/SiO2 Q/NCMCs Q/磷酸盐 折弯强度/Mpa 97.0 Z:14.0 X:13.2 117.5 40~110 介电常数 2.61 2.8 3.24 3.2~3.4 损耗角正切0.0016 0.008 0.004 0.007~0.008热导率 w/(m.k) 0.35 0.838(270℃) 1.1 / 2、氧化物基透波材料 虽然石英陶瓷具有优异的介电性能,但其也存在抗雨蚀性能、力学性能较差的缺点,为此人们通过各种增强方式来提高石英陶瓷材料的断裂韧性和可靠性。连续纤维增强陶瓷基复合材料具有强度高、韧性好、密度低等特点,因而收到了广泛关注。M.Favaloro等制备了三维石英纤维织物增强二氧化硅复合材料 AS-3DX,材料的介电常数为2.88,介电损耗为0.006(5.841GHz,25℃),国防科学技术大学宋阳曦采用溶胶-凝胶工艺,通过浓缩硅溶胶并引入手糊成型工艺和模压 工艺制备了二维石英纤维织物增强石英基(2DSiO2f/SiO2)复合材料,其介电常数为2.61~2.64,损耗角正切为0.0016~0.0019,热导率为0.35~0.37W/(m.k),由此可见,这类材料的透波性能优异,但热导率仍然偏高,高温性能有待改善。 2、磷酸盐基透波材料 磷酸盐基复合材料一般由布块或织物经磷酸盐溶液浸渍后加压固化而得。目前在航天透波材料领域获得应用的主要有硅质纤维增强磷酸铝、磷酸铬及磷酸铬铝复合材料。磷酸盐基复合材料具有耐高温、高强度、介电性能优异、抗氧化、

复合材料学-陶瓷基复合材料的发展现状和最新进展

陶瓷基复合材料的发展现状和最新进展The Development Status and Recent Research Progress of Ceramic-Matrix Composite Materials 学生姓名: 学生学号: 指导教师: 所在院系: 所学专业: 南京理工大学 中国·南京 2015年11月

摘要综述了陶瓷基复合材料(CMC)在近年来的研究进展,就陶瓷的增强增韧机 理、复合材料的制备工艺作了较全面的介绍,综述了先驱体浸渍裂解(PIP)反应熔体浸渗(RMI)化学气相渗透(CVI)泥浆法(SI)等工艺的最新研究进展,并对CMC的应用和未来发展进行了展望。 关键词复合材料;陶瓷基;增强增韧;制备工艺;应用;未来发展 Abstract The studying situation of ceramic matrix composites(CMC) in the lately years is reviewed in this paper.The strengthening and toughening mechanism,selection of matrix and reinforced materials and preparation techniques are introduced comprehensively,and then progresses of several preparation processes such as PIP,RMI,CVI,and SI are discussed.Also,the application prospects of future development of CMC are looked forward. Keywords composites; ceramic matrix; strengthening and toughening; preparation technique;application; future development 1971年,Avesto首次提出陶瓷基复合材料的概念[1]。众所周知,陶瓷基复合材料不是传统意义上的陶瓷,陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。它的主要基体有玻璃陶瓷、氧化铝、氮化硅等,这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、高耐腐蚀性、低线胀系数、隔热性好及低密度等优异性能,而且资源也比较丰富,有广泛的应用前景[2]。但由于陶瓷材料本身脆性的弱点,作结构材料使用时缺乏足够的可靠性。因而,改善陶瓷材料的脆性已成为陶瓷材料领域亟待解决的问题之一。CMC就是通过颗粒弥散增韧和纤维及晶须增韧等来改善陶瓷材料的力学性能,特别是脆性。因而开发CMC已成为改善陶瓷脆性的主要手段,受到各国的高度重视和广泛研究。 1 CMC的增韧机理 目前看来,陶瓷的增韧机理虽然很多,且众说纷纭,但总体而言大致可有如下四种类型:①相变增韧(transformation toughening);②延性相增韧(toughening by ductile phases);③脆性纤维和晶须增韧(toughening by brittle fibers and whiskers);④微裂纹增韧(microcrack toug hening)。 相变增韧的机理是在应力场的作用下,由分散相的相变产生应力场,抵消外加应力,阻止裂纹扩展达到增韧目的。延性相增韧主要是指粒子强化和弥散强化,通过第2相粒子的加入,一方面对某些延性相粒子,它可以在外力作用下产生一定塑性变形或者沿着晶面滑移产生蠕变来缓解应力集中;另一方面由于第二相粒子与基体粒子之间弹性模量和线胀系数的差异,在烧结过程冷却阶段存在一定温差,因而在坯体内部产生径向张应力和切向压应力,这种应力与外应力发生相互作用,使裂纹前进方向发生偏转、绕道,从而提高材料的抗断能力,达到增韧目的[3]。 纤维和晶须增韧的机理如图1[4]所示,其作用原理有以下几步:(1)负荷传递:要求(E f / E m)>2(E为弹性模量,同时要求纤维与基体间有较强界面来帮助负荷从基体转移到纤维);(2)基体预应力:如果αf>αm,则压缩应力能够产生,界面压缩力增加了纤维/基

玻璃纤维增强水泥基复合材料

低水平热储量聚合物相变材料的热传导的调查和研究 姓名:张金标学号:Z09016025 摘要:一种新型的低水平热储量材料已经被阐述。这是一个水与水溶性聚合和交联单体的稳定聚合如聚丙烯酰胺.介绍了定量结果的热物理性质的材料。这些参数是用来描述在板的有限厚度相变前理论方法的进展,计算结果发现,在良好的协议与实验数据的考虑时间冻结和解冻样品。 关键词:能量储存潜热模拟冷储存 命名 A, B, C, D =无量纲数 C, =热容量(kJ kg-’K-l) E, e =浓度(m) k =导热系数(Wm-’K-r) L =潜热(kJ kg-‘) n =整数 Q, q=热量(kJ) r, s =指数 7’=温度(K) t, u =时间(s) x =空间坐标 希腊符号 a = 无量纲系数 x = 扩散系数(m2 s-l) p = 密度(kg m-‘) D = 表面(m2) t = 持续时间(s) 下标 a =理论 b = 最后 c = 相位变换 f = 冰点 i = 冰 WI = 中间 f = 解冻 w =水 o = 最大限度 相变材料的热传导 介绍 各种方式的储热,在一个相对较小的空间,在一个恒定的温度,潜热存储似乎是最有效的一个积累了相当数量的能量,这是很好的适应了各种方案的加热或冷却

建筑物,特别是应用在生产涉及低温间隔,如冷却过程和空调.目前,由于其较高的 成本,选择这样一个系统是唯一的理由时,它提供了重要的优势,存储系统采用显热储存。潜热蓄热系统的设计可以作为一个热交换器之间的相变材料(相变材料)和回收液。传热表面通常是最昂贵的一部分存储系统, 和这对一个显着的成本刑罚潜热的设备。许多调查已进行了解决这一问题,采用直接接触之间的存储介质和回收液。同时,直接接触传热,需要一个稳定的形式 编码,不粘在一起的熔点以上温度。前实验表明,[4-61 很难保持分离而出现不 稳定,导致凝血和聚。到现在为止,没有令人满意的解决这个问题已被发现。一个充满希望的解决方案被提出,使用新材料,保持一致的固体的相变温度以 下。这个想法是包括在一个三维网络聚合物的聚合过程。相变元件,因此,保留在网络,因为界面应力和化学键,无渗出的水发生在一个阶段的变化周期。这种方法含有相变材料应用在水中聚丙烯酰胺。最后的材料仍然是一个好的形状确定样本,无需涂层,并可以直接使用在一个存储单元的 第一部分是本文致力于该结果有关的热物性参数的材料。一个比较之间的物质和商业化是提出并显示实际潜力的这种物质积累大量的能量。 其次是研究材料的热行为的有限扩张的动态条件下的冻结和解冻。许多研究已被用于传热问题的相变,并详细列出了出版的文献关于这一主题可以从隆拿甸尼[ 7]。仿真模型先前制定的[ 8]为样品材料受温度的一步在边界。该方法,在这 一部分,是在这里给出一个完整的描述的进展冻结或融合前板。数值结果显示出很好的符合我们的实验数据和结果的文学经典。最后,用数值计算结果获得全球表达有关时间冻结或解冻的不同参数的问题。 热管材料的研究 准备材料[ 9]可概括如下。首先,混合制成的溶液从两个最初的途径获得:丙烯酰胺和,和起始途径(过硫酸钾)。该混合物,然后保持在313钾,和聚合完成后约12小时。结构材料是图式中图1。样品平行六面体几何实现研究。该材料具有一致性的凝胶,是透明的和非毒性。这是必要的,保持它在有机纲要避免水分蒸发。该材料具有满足2矛盾的制约:最大水的热容量高和最大的聚合物,刚性好;材料含有90%的水似乎是一个很好的妥协。这里报告的结果获得了这一公式。 知识的确切价值的热参数是一个必要的调整一个模型描述的热行为和,因此,为了更好地利用材料。研究开发了热扩散性的测定。实验细胞只允许正常的热通

相关文档
最新文档