汽油基础知识剖析

汽油基础知识剖析
汽油基础知识剖析

汽油基础知识

车用汽油

车用汽油是一种重要的发动机燃料,消耗量巨大,我国2008年汽油总产量达6348万吨。

车用汽油均按辛烷值划分牌号,我国车用汽油按研究法辛烷值(RON)分为90号、93号及97号三个牌号,它们分别适用于压缩比不同的各种型号汽油机。

车用汽油特性:

具有较高的辛烷值和优良的抗爆性;

具有良好的蒸发性和燃烧性,能保证发动机运转平稳、燃烧完全、积炭少;

具有较好的安定性,在贮运和使用过程中不易出现早期氧化变质,对发动机部件及储油容器无腐蚀性。

检测项目:辛烷值、抗爆指数、铅含量、馏程、蒸气压、实际胶质、诱导期、硫含量、博士

试验或硫醇硫含量、铜片腐蚀、水溶性酸或碱、机械杂质及水分、苯含量、芳烃含量、烯烃含量、氧含量、甲醇含量、锰含量、铁含量。

几种标准的差异比较

汽油使用中常见问题

n敲缸:辛烷值过低

n熄火:供油不畅或含有大量水分

n进气管、汽化器和进气阀产生沉积物:实际胶质高

n金属部件腐蚀:活性硫、酸性物质多

n气阻:轻组分多,饱和蒸气压高

n生成油泥、颜色变深:烯烃等不饱和烃及非烃类物质等不稳定组分多。

汽油的标号(研究法辛烷值)

汽油机在运转过程中,有时气缸中可能发出一种尖锐的金属敲击声,这就是爆震。汽油在发动机中燃烧时抵抗爆震的能力称为抗爆性。

研究法辛烷值是表示汽油抗爆性的指标,它是汽油最重要的质量指标。我国车用汽油的标号采用研究法测定的数值,93号汽油表示它的辛烷值不低于93,依此类推。

汽油标号低是汽油机在运转过程中出现敲缸的主要原因。

汽油标号的高低只表示汽油的抗爆性能,不等同汽油的质量。标号的选择并非越高越好,应根据发动机压缩比的不同来选择不同标号的汽油。

每辆车的使用手册上都会标明所使用汽油的标号。压缩比在8.5-9.5之间的中档轿车一般应使用93号汽油;压缩比大于9.5的轿车应使用97号汽油。目前国产轿车的压缩比一般都在9以上,最好使用93号或97号汽油。

高压缩比的发动机如果选用低标号汽油,会使汽缸温度剧升,汽油燃烧不完全,机车强烈震动,从而使输出功率下降,机件受损。

低压缩比的发动机用高标号油,就会出现“滞燃”现象,即压到了头它还不到自燃点,一样会出现燃烧不完全现象,对发动机也没什么好处。

高档车辆不仅压缩比高,对燃油质量的要求也高。

例如30万元以上的中高档车,就只能加97号汽油,而这里说的97号代表的只是汽油中的辛烷值的大小,并不能说明97号汽油就比93号汽油清洁。

高档汽车对汽油的清洁度要求极高,如果汽油的标号不够,对车辆的影响很快就能表现出来,如加完油后马上出现加速无力的现象;如果汽油杂质过多,对汽车的影响就要一段时间后才能反应出来,因为积炭或胶质增多到一定程度才会影响汽车行驶。

好车用好油!品质好的车辆对油品的要求更高一些,故高档车对低清洁的汽油更敏感。

汽油的抗爆性

n车用汽油辛烷值的测定方法主要有两种,即马达法与研究法,所测得辛烷值的英文略语相应为MON/RON

n马达法的试验工况规定为:转速900r/min,冷却水温度100℃,混合气温度150℃。马达法的测定条件与汽车在公路上高速行驶情况相似。

n研究法的试验工况规定为:转速600r/min,冷却水温度100℃,混合气温度不控制。研究法的测定条件与汽车在城市低速行驶情况相似。

n研究法测定时,由于其发动机的转速较低,混合气温度也较低,条件不如马达法苛刻,所

以比较不容易发生爆震,所得到的RON通常就比MON高5~10个单位;

n RON与MON两者的差值称为燃料的敏感度,它反映汽油的抗爆性能随发动机工况改变而变化的程度;

n MON和RON的平均值称为抗爆指数(ONI),它可以近似地表示汽油的道路辛烷值,现也列为衡量车用汽油抗爆性的指标之一。

汽油机压缩比与爆震燃烧的关系

n汽油机是否发生爆震燃烧,除取决于汽油抗爆性外,同时也与汽油机的压缩比有密切关系。汽油机的压缩比越大,压缩过程终了时气缸内混合气的温度和压力就越高,这就大大加速了未燃混合气中过氧化物的生成和聚积,使其更容易自燃,因而爆震的倾向增强。

n对于压缩比越大的汽油机就应该选用抗爆性越好的汽油,才不致产生爆震燃烧。也就是说,在压缩比较大的汽油机中需要用辛烷值较高的汽油。

提高汽油机的压缩比可以提高气缸内可燃气的爆发压力,从而可提高汽油机的热效率和降低油耗。因此,汽油机是朝着提高压缩比的方向发展的。上世纪20年代,汽车刚出现时,其压缩比只有4~5,而现在已达到8~10,相应所需汽油的RON也从低于80提高至90,甚至97。

反映汽油蒸发性能的指标:馏程、蒸汽压。

n初馏点和10%的馏出温度,与发动机的启动性能相关;

n50%馏出温度与发动机的加速性能相关;

n90%馏出温度和干点表明汽油汽化完成的程度。

馏程

油品沸点随气化率增加而不断增加,因此表示油品的沸点应是一个温度范围。按标准规定的设备和方法将汽油试样进行蒸馏,可得到试样的馏出温度和馏出体积分数之间的关系,即称为馏程,在某一温度范围内蒸馏出的馏出物称为馏分。馏分仍是一个混合物,只不过包含的组分数目少一些。温度范围窄的称为窄馏分,温度范围宽的称为宽馏分。

10%馏出温度

n表示汽油中所含低沸点馏分的多少,对汽油机起动的难易有决定性影响,同时,也与产生气阻的倾向有密切关系。

n10%馏出温度越低,表明汽油中所含低沸点馏分越多、蒸发性越强,能使汽油机在低温下易于起动;但是,该馏出温度若过低,则易产生气阻。

50%馏出温度

n它表示汽油的平均蒸发性能,与汽油机起动后升温时间的长短以及加速是否及时均有密切关系。

n汽油的50%馏出温度低,在正常温度下便能较多地蒸发,从而能缩短汽油机的升温时间,同时,还可使发动机加速灵敏、运转平稳。

n50%馏出温度过高,当发动机需要由低速转换为高速,供油量急剧增加时,汽油来不及完全气化,导致燃烧不完全,严重时甚至会突然熄火。

我国车用汽油质量标准中要求50%馏出温度不高于120℃

90%馏出温度和终馏点(或干点)

n这两个温度表示汽油中重馏分含量的多少。

n温度过高,说明汽油中含有重质馏分过多,不易保证汽油在使用条件下完全蒸发和完全燃烧。这将导致气缸积炭增多,耗油率上升;同时蒸发不完全的汽油重质部分还会沿气缸壁流入曲轴箱,使润滑油稀释而加大磨损。

我国车用汽油质量标准中要求90%馏出温度不高于190℃,终馏点不高于205℃。

蒸气压

n汽油的蒸气压是用规定的仪器,在燃料蒸气与液体的体积比为4:1以及在37.8℃的条件下测定的。测量方法:GB/T 8017。

n国外将此指标称为雷德蒸气压(RVP),它是衡量汽油在汽油机燃料供给系统中是否易于产生气阻的指标,同时还可相对地衡量汽油在储存运输中的损耗倾向。

n我国现行车用汽油(Ⅲ)质量标准中规定从11月1日至4月30日使用的汽油饱和蒸气压不

高于88kPa;从5月1日至10月31日使用的汽油,饱和蒸气压不高于72kPa。

n由于我省平均气温较高,蒸气压要求更为严格。

n蒸气压的高低表明了液体气化或蒸发的能力,蒸气压愈高,就说明液体愈容易汽化。

n汽油的蒸气压是衡量汽油挥发性的一个关键指标,它与汽油的蒸发排放和发动机的启动性能有着密切的关系。

n蒸气压太高,会增加汽油的蒸发量,导致空气中的VOCs的增加。夏季温度高,汽油易挥发,要求蒸气压低一些。

n蒸气压太低,汽车可能出现冷启动问题。故应有下线,以不低于40 kPa为宜。

汽油的安定性

汽油在常温和液相条件下抵抗氧化的能力称为汽油的氧化安定性,简称安定性。汽油在贮存和使用过程中会出现颜色变深,生成粘稠状沉淀物的现象,这是汽油安定性不好的表现。安定性不好的汽油,在储存和输送过程中容易发生氧化反应,生成胶质,使汽油的颜色变深,甚至会产生沉淀。例如,在油箱、滤网、汽化器中形成粘稠的胶状物,严重时会影响供油;沉积在火花塞上的胶质在高温下会形成积炭而引起短路;沉积在进、排气阀门上会结焦,导致阀门关闭不严;沉积在气缸盖和活塞上将形成积炭,造成气缸散热不良、温度升高,以致增大爆震燃烧的倾向。

汽油中的不安定组分是汽油变质的根本原因。

汽油中的不安定组分主要有:

烯烃,特别是共轭二烯烃和带芳环的烯烃以及元素硫、硫化氢、硫醇系化合物和苯硫酚、吡咯及其同系化合物等非烃类化合物。

不同加工工艺生产的汽油组分差异较大,其安定性也不同。直馏汽油、加氢精制汽油、重整汽油几乎不含烯烃,非烃类化合物也很少,故安定性较好。而催化裂化汽油、热裂化汽油和焦化汽油中含有较多烯烃和少量二烯烃,也含有较多非烃类化合物,故安定性较差。

烯烃和芳烃

烯烃和芳烃是汽油中辛烷值的主要贡献者,但是由于烯烃的化学活性高,会通过蒸发排放造成光化学污染;同时,烯烃易在发动机进气系统和燃烧室形成沉积物。芳烃也可增加发

动机进气系统和燃烧室沉积物的形成,并促使CO、HC排放增加,尤其是增加苯的排放。因此,在汽油标准中对芳烃和烯烃都有严格限值。

除不饱和烃外,汽油中的含硫化合物,特别是硫酚和硫醇,也能促进胶质的生成,含氮化合物的存在也会导致胶质的生成,使汽油在与空气接触中颜色变红变深,甚至产生胶状沉淀物。

直馏汽油馏分不含不饱和烃,所以它的安定性很好;而二次加工生成的汽油馏分(如裂化汽油等)由于含有大量不饱和烃以及其他

汽油的安定性

汽油在常温和液相条件下抵抗氧化的能力称为汽油的氧化安定性,简称安定性。汽油在贮存和使用过程中会出现颜色变深,生成粘稠状沉淀物的现象,这是汽油安定性不好的表现。安定性不好的汽油,在储存和输送过程中容易发生氧化反应,生成胶质,使汽油的颜色变深,甚至会产生沉淀。例如,在油箱、滤网、汽化器中形成粘稠的胶状物,严重时会影响供油;沉积在火花塞上的胶质在高温下会形成积炭而引起短路;沉积在进、排气阀门上会结焦,导致阀门关闭不严;沉积在气缸盖和活塞上将形成积炭,造成气缸散热不良、温度升高,以致增大爆震燃烧的倾向。

汽油中的不安定组分是汽油变质的根本原因。

汽油中的不安定组分主要有:

烯烃,特别是共轭二烯烃和带芳环的烯烃以及元素硫、硫化氢、硫醇系化合物和苯硫酚、吡咯及其同系化合物等非烃类化合物。

不同加工工艺生产的汽油组分差异较大,其安定性也不同。直馏汽油、加氢精制汽油、重整汽油几乎不含烯烃,非烃类化合物也很少,故安定性较好。而催化裂化汽油、热裂化汽油和焦化汽油中含有较多烯烃和少量二烯烃,也含有较多非烃类化合物,故安定性较差。

烯烃和芳烃

烯烃和芳烃是汽油中辛烷值的主要贡献者,但是由于烯烃的化学活性高,会通过蒸发排放造成光非烃化合物,其安定性就较差。

外界条件对汽油安定性的影响

汽油的变质除与其本身的化学组成密切相关外,还和许多外界条件有关,例如温度、金属表面的作用、与空气接触面积的大小等。

(1)温度

温度对汽油的氧化变质有显著的影响。在较高的温度下,汽油的氧化速度加快,诱导期缩短,生成胶质的倾向增大。实验表明,储存温度每增高10℃,汽油中胶质生成的速度约加快2.4~2.6倍。

(2) 金属表面的作用

汽油在储存、运输和使用过程中不可避免地要和不同的金属表面接触。实验证明,汽油在金属表面的作用下,不仅颜色易变深,而且胶质的增长也加快。在各种金属中,铜的影响

最大,它可该汽油试样的诱导期降低75%,其他的金属如铁、锌、铝和锡等也都能使汽油

的安定性降低。

评定汽油安定性的指标

评定汽油安定性的指标有:实际胶质和诱导期。

实际胶质,按照GB/T 8019测定。

指在150℃温度下,用热空气吹过汽油表面使它蒸发至干,所留下的棕色或黄色的残余物。实际胶质是以100mL试油中所得残余物的质量(mg)来表示的。它一般是用来表明汽油在进气管道及进气阀上可能生成沉积物的倾向。

我国车用汽油的实际胶质要求不大于5 mg/100mL。

诱导期,按照GB/T8018测定

把一定量油样放入标准的钢筒中,充入氧气至0.7MPa压力,然后放入100℃水中。氧化初

期,由于反应速度很慢,耗氧较少,氧压基本不变。经过一定时间后,氧化反应加速,耗

氧量显著增大,氧压也就明显下降。从油样放入100℃的水中开始到氧压明显下降所经历的

时间称为诱导期,以分钟表示。

实际胶质

实际胶质是用于评定汽油安定性,判断汽油在发动机中生成胶质的倾向,判断汽油能否使用和能否继续储存的重要指标。当加入的汽油实际胶质过高时,会在燃烧过程中产生胶质、积炭。在油箱、滤网、化油器中形成粘稠的胶状物,严重时会堵塞喷油嘴,中断供油。沉积在火花塞上的胶质沉渣,在高温下形成积炭引起短路。在进气、排气门上结焦,会导致气门关闭不严,甚至卡住气门使之完全失灵。沉积在汽缸盖、汽缸壁和活塞上的积炭,会导致发动机散热不良,产生表面燃烧或爆震现象,降低发动机功率,增加耗油量。严重时

冷热车均出现发动机异响,怠速抖动,动力严重不足,甚至发动机无法启动。今年5月发生

在海南的问题汽油损坏丰田、别克等品牌汽车的事件就是一个典型例证,经检验发现导致车辆损坏的主要原因正是汽油的实际胶质严重超标。高温、阳光暴晒、金属催化、空气氧化都会加速汽油的氧化,促进胶质的生成。因此,汽油在贮存和使用过程中应采取避光、降温、降低贮罐中氧浓度和采用非金属涂层等措施。

诱导期

诱导期是在加速氧化条件下评定汽油安定性的指标之一。它表示车用汽油在贮存时氧化并生成胶质的倾向。

通常认为,汽油的诱导期越长,其生成胶质的倾向越小,抗氧化安定性越好。

但并非所有汽油都这样,不同化学组成的汽油发生氧化形成胶质的过程差别很大。有的汽油形成胶质的过程以吸氧的氧化反应为主,其诱导期可反映油品的贮存安定性。但有的汽油形成胶质的过程以缩合和聚合反应为主,其诱导期就不能真实地反映油品的贮存安定性。

只有诱导期不小于480min,同时实际胶质不大于5 mg/100mL的汽油才有良好的储存安定性。

腐蚀性—主要是指汽油对金属材料的腐蚀。

汽油中的腐蚀性组分主要有:

硫和活性硫化物(如H2S、S、RSH等)、水溶性酸碱等。

活性硫化物在汽油中含量不高,但危害很大。因为活性硫化物具有很强的腐蚀性,常温下可直接腐蚀金属。

评定汽油腐蚀性的指标有:硫含量、硫醇硫含量、博士试验、水溶性酸或碱、铜片腐蚀、机杂及水分。

硫及含硫化合物

n硫及各类含硫化合物在燃烧后均生成SO2及SO3,他们对金属有腐蚀作用,特别是当温度较低遇冷凝水形成亚硫酸及硫酸后,更具有强烈腐蚀性。这些氧化硫不仅会严重腐蚀高温区的零部件,而且还会与汽缸壁上的润滑油起反应,加速漆膜和积炭的形成。

n元素硫在常温下即对铜等有色金属有强烈的腐蚀作用,当温度较高时它对铁也能腐蚀。汽油中所含的含硫化合物中相当一部分是硫醇,硫醇不仅具有恶臭还有较强的腐蚀性。当汽油中不含硫醇时,元素硫的含量达到0.005%会引起铜片的腐蚀;而当汽油中含有0.001%

的硫醇时,只要有0.001%的元素硫就会在铜片上出现腐蚀。

n目前,国内车用汽油质量标准GB 17930-2006 、DB 44/345-2006中规定其硫含量不大于0.015%。

n为此,在汽油的质量标准中不仅规定了硫含量指标,同时还规定硫醇硫含量不大于0.001%,以及铜片腐蚀试验(50℃,3h)为不大于1级。

硫含量

n硫含量是汽油质量的重要参数之一,对发动机的腐蚀和排放会产生重要影响。

n汽油中硫含量过高,会导致汽车尾气催化转化器的催化剂转化效率降低和氧传感器灵敏度的下降,不利于对车辆尾气排放的有效控制。

n常用的检测方法有GB/T 17040石油产品硫含量测定法(能量色散X射线荧光光谱法)、GB/T 11140石油产品硫含量测定法(X射线光谱法)、SH/T 0689轻质烃及发动机燃料和其它油品的总硫含量测定法(紫外荧光法)、SH/T0253轻质石油产品中总硫含量测

定法(电量法)。

博士试验和硫醇硫

n博士试验和硫醇硫是表征汽油腐蚀性的指标,主要目的是为了控制汽油中的硫醇含量。n硫醇硫会引起储罐和发动机的腐蚀,尤其是4个碳以下的硫醇酸性较强,易造成金属的腐

蚀。

n博士试验为硫醇硫的定性试验方法,方法号为SH/T 0174。该方法规定了用博士试剂定性检测轻质石油产品如汽油中的硫醇硫,也可定性检测硫化氢。

n硫醇硫含量可用GB/T 1792电位滴定法定量检测。

n有些油品的硫醇硫含量很低(小于0.0004%),博士试验也有可能不通过。这是因为博士试验对不同碳数的硫醇硫的灵敏度不同造成的。正在修订的GB/T 17930-2010标准规定以GB/T 1792法为仲裁法。

水溶性酸或碱

是一项定性试验,按GB/T 259方法测试。主要用于鉴别油品在生产和储运过程中是否受

到无机酸或碱的污染。正常生产出的汽油本不应该含有水溶性酸或碱,但是,如果生产中控制不严,或在储存运输过程中容器不清洁,均有可能混入少量水溶性酸或碱。

水溶性酸对钢铁有强烈腐蚀作用,水溶性碱则对铝及铝合金有强烈的腐蚀。因此,汽油的质量指标中规定不允许含有水溶性酸或碱。

铜片腐蚀.........................................

信息论基础论文

信息论基础发展史 信息论(information theory)是运用概率论与数理统计的方法研究信息、信息熵、通信系统、数据传输、密码学、数据压缩等问题的应用数学学科。是专门研究信息的有效处理和可靠传输的一般规律的科学,是研究通讯和控制系统中普遍存在着信息传递的共同规律以及研究最佳解决信息的获限、度量、变换、储存和传递等问题的基础理论。信息论将信息的传递作为一种统计现象来考虑,给出了估算通信信道容量的方法。信息传输和信息压缩是信息论研究中的两大领域。这两个方面又由信息传输定理、信源-信道隔离定理相互联系。 信息论从诞生到今天,已有五十多年历史,是在20世纪40年代后期从长期通讯实践中总结出来的,现已成为一门独立的理论科学,回顾它的发展历史,我们可以知道理论是如何从实践中经过抽象、概括、提高而逐步形成的。它是在长期的通信工程实践和理论研究的基础上发展起来的。 通信系统是人类社会的神经系统,即使在原始社会也存在着最简单的通信工具和通信系统,这方面的社会实践是悠久漫长的。电的通信系统(电信系统)已有100多年的历史了。在一百余年的发展过程中,一个很有意义的历史事实是:当物理学中的电磁理论以及后来的电子学理论一旦有某些进展,很快就会促进电信系统的创造发明或改进。 当法拉第(M.Faraday)于1820年--1830年期间发现电磁感应的基本规律后,不久莫尔斯(F.B.Morse)就建立起电报系统(1832—1835)。1876年,贝尔(A.G.BELL)又发明了电话系统。1864年麦克斯韦(Maxell)预言了电磁波的存在,1888年赫兹(H.Hertz)用实验证明了这一预言。接着1895年英国的马可尼(G.Marconi)和俄国的波波夫(A.C.ΠoΠoB)就发明了无线电通信。本世纪初(1907年),根据电子运动的规律,福雷斯特(1,Forest)发明了能把电磁波

汽油发电机基础知识及故障排除

发电机培训资料 一. 概述. 二. 原理 三. 使用范围.环境以及安全 四. 主要结构 五. 使用操作方法 六. 保养,维修以及保存 七. 常见故障的分析及排除 概述 一.概述 1.1公司简介 1.2产品用途,,性能,使用条件等简单介绍。 见广宣资料 原理.. 二.原理 2.1汽油机原理 2.2发电机原理 1、汽油机工作原理 四冲程汽油机的工作过程是一个复杂的过程,它由进气、压缩、燃烧膨胀、排气四个行程组成。 进气行程 此时,活塞被曲轴带动由上止点向下上止点移动,同时,进气门开启,排气门关闭。当活塞由上止点向下止点移动时,活塞上这方的容积增大,气缸内的气体压力下降,形成一定的真空度。由于进气门开启,气缸与进气管相通,混合气被吸入气缸。当活塞移动到下止点时,气缸内充满了新鲜混合气以及上一个工作循环未排出的废气。 压缩行程 活塞由下止点移动到上止点,进排气门关闭。曲轴在飞轮等惯性力的作用下带动旋转,通过连杆推动活塞向上移动,气缸内气体容积逐渐减小,气体被压缩,气缸内的混合气压力与温度随着升高。 燃烧膨胀行程(做功行程) 此时,进排气门同时关闭,火花塞点火,混合气剧烈燃烧,气缸内的温度、压力急剧上升,高温、高压气体推动活塞向下移动,通过连杆带动曲轴旋转。在发动机工作的四个行程中,只有这个在行程才实现热能转化为机械能,所以,这个行程又称为作功行程。 排气行程 此时,排气门打开,活塞从下止点移动到上止点,废气随着活塞的上行,被排出气缸。由于排气系统有阻力,且燃烧室也占有一定的容积,所以在排气终了地,不可能将废气排净,这部分留下来的废气称为残余废气。残余废气不仅影响充气,对燃烧也有不良影响。 排气行程结束时,活塞又回到了上止点。也就完成了一个工作循环。随后,曲轴依靠飞轮转动的惯性作用仍继续旋转,开始下一个循环。如此周而复始,发动机就不断地运转起来。汽油机工作时,完成进气、压缩、膨胀和排气一个工作循环,四冲程汽油机需要曲轴转两圈(720°),活塞上、下运动四次共四个行程;二冲程汽油机需要曲轴转一圈(360°),活塞上、下运动两次共两个行程。 2.汽油机组成 (1)曲轴连杆系统包括活塞、连杆、曲轴、滚针轴承、油封等。

润滑油调和技术和配方

基础油是国标矿物基础油或合成基础油,基本要求是: 1)粘度指数规格要高,粘度指标要适宜 2)清净分散性要好(包括酸中和性) 3)低温性能好 4)不应含有挥发性成分,350℃以下馏分不得超过5%,内燃机油的基础油馏分,必须控制在常压沸点400℃以上,以防机油蒸发损失而损耗过大 5)良好的抗氧化性能(包括轴承抗腐蚀性) 6)良好的抗磨损性能 7)良好的防锈性 8)良好的抗泡性 因此,多选用深度精制石蜡基基础油或合成油。 根据API标准,基础油分为I,II,III,IV,V五类,我们常规采用的是I,II,III类,在抗氧化性能、低温性能、粘温性能方面I<II<III'> ;对添加剂的溶解性能III<II<I'> 。III类基础油可以调配所有级别的内燃油,II类基础油汽油机油SF~SL;柴油机油CD~CH-4,一般情况下,I类基础油从柴机油的CD~CH-4,汽机油SF~SL都可以使用,但再高级别的内燃机油,就很难通过台架试验了。由于I类基础油低温性能较差,一般调合40、50、15W40、20W50,齿轮油90和85W90,而10W机油和75W齿轮油是难以做到合格的。5W、10W机油和75W齿轮油多采用II和III类基础油或PAO合成基础油。另外,虽然倾点很低的环烷基基础油的倾点很容易达到指标,但低温动力粘度和低温泵送性很难达标。 常规采用的矿物基础油有150SN、500SN、150BS;不常用的矿物基础油有200SN、350SN、400SN、650SN等。具体组合规则在配方中详细说明。 润滑油的配方元素确定: 首先要确定选用几种基础油来进行调合,这可根据经验配方和产品品种需要来确定,一般根据油品的粘度等级来选择基础油的组合,常规原则如下: 单级30、40、50机油采用500SN和150BS基础油; 15W40和20W50机油采用150SN和500SN基础油; 10W30采用深度精制的150SN或100SN,或合成油、半合成油基础油; 5W40、5W50采用全合成基础油; 85W90齿轮油采有150BS和500SN基础油; 自动排档液采用深度精制的100SN或150SN基础油或合成油。 通常根据所需产品的类型和性能级别来选择什么类型的添加剂

焙烤工艺学知识点总结2015版

焙烤工艺学知识点总结2015版 名词解释: 1、面筋: 面粉加入适量的水揉成面团,泡在水中30~60min,将淀粉及可溶性成分洗去, 剩下的有弹性像橡皮似的物质,即为湿面筋,烘干后即得干面筋,其主要成分是麦胶蛋白和麦谷蛋白。 2、损伤淀粉:在小麦制粉时,由于磨的挤压、研磨作用,有少量淀粉的外被膜被破坏,即 为损伤淀粉。 3、吸水率是指面粉加水到粉质曲线到达500 Bu时所需的加水量,以面粉含水14%为基 础计算加水量。 4、面团形成时间:是指从零点(开始加水)直至粉质曲线达到峰值时所需搅拌的时间(PT) 5、稳定时间是指面团粉质曲线中心线首次到达500Bu和离开500Bu的时间之差(Stab), 主要反映面团的稳定性,既耐搅拌性能 6、弱化度指面团承受500Bu的阻力,与出现峰值12min后面团所承受阻力之差,用Bu 表示(wk)。弱化度表明面团在搅拌过程中的破坏速率,也就是对机械搅拌的承受能力,也代表面筋的强度。 7、降落数值:是反映小麦中α-淀粉酶活性的指标,以一定质量的搅拌器在面粉糊化液中下 降一段特定高度所需的时间来表示α-淀粉酶活性的。 8、反水化作用:糖含量超过20%,会形成高渗透压,不仅会夺走自由水,还会吸附淀粉与 面筋之间的结合水,使面筋不宜形成,使面团变软。 9、淀粉糊化:淀粉不溶于冷水,当淀粉微粒与水一起加热时,则淀粉吸水膨胀,其体积可 增大近百倍,淀粉微粒由于过于膨胀而破裂,在热水中形成糊状物,这种现象称为糊化作用,在65℃时开始糊化。 10、 填空题: 1、硬质红春小麦(hard red spring)、软质白冬小麦(soft white winter) 2、小麦粉蛋白含量:含量在8%~14% 3、面筋蛋白:麦胶蛋白、麦谷蛋白 4、搅拌好的面团应有以下特性:胶粘的流动性(Fluidity)塑性(Plasticity)弹性(Elasicity0 5、面粉的品质评价:粉质曲线、拉伸曲线、降落数值、面筋含量、烘焙品质与蒸煮品质 6、小麦粉品质的改善:溴酸钾、L-抗坏血酸(Vc)、偶氮甲酰胺(氧化剂) 谷朊粉(提高蛋白含量) 大豆磷脂、单甘脂、(乳化剂) 麦芽粉(0.2~0.4%)或α-淀粉酶(0.03~0.035%)(酶制剂) 焦亚硫酸钠(还原剂) 7、高筋面粉:蛋白含量11%~13%,中筋面粉:蛋白含量9%~11%,低筋面粉:蛋白含 量7%~9%, 8、奶油、黄油需18-21℃时加工 9、白砂糖精制的蔗糖晶体,纯度最高;饴糖:糕点中做抗晶剂淀粉糖浆:防止蔗糖结晶 返砂转化糖浆:主要利用其吸湿性 10、蛋白起泡性:30℃时

汽油机电控tmp

发动机部分思考题 综述 1、 电喷发动机和化油器式发动机相比,有什么优缺点? 第一.进气管道中没有狭窄的喉管,空气流动阻力小,充气性能好因此输出功率也较大。第二.混合气分配均匀性较好。第三.可以随着发动机使用工况以及使用场合的变化而配制一个最佳的混合气成分,这种最佳混合气成分可同时按照发动机的经济性,动力性,特别是按减少排放有害物的要求来确定。第四.具有良好的加速等过渡性能另外汽油电控喷射系统不像化油器那样在进气管内留有相当的油膜层,这对于降低油耗也有一定的好处 汽油喷射发动机与化油器式发动机相比,突出的优点是能准确控制混合气的质量,保证气缸内的燃料燃烧完全,使废气排放物和燃油消耗都能够降得下来,同时它还提高了发动机的充气效率,增加了发动机的功率和扭矩 化油器缺点: 燃油雾化质量受空气密度的影响; 空燃比受空气密度的影响; 多缸混合不均匀; 负荷变动造成油耗和排放恶化; 体积效率低;化油器结冰; 发动机姿态受限制; 发动机倒拖影响排放和油耗; 电喷发动机 喷油量、点火时刻及能量等完全由控制器软件“柔性”控制,因此,汽油机性能可以大大优化。 或:单点喷射发动机和化油器式发动机相比,在哪些方面得到了改进? 单点喷射发动机的各缸混合器的均匀性总体上优于化油器式发动机。单点喷射可以改善燃烧状况,提高燃油经济性,降低废气排放。成本比多点燃油喷射系统低,易于替代用化油器的车辆。 或:电喷发动机哪些控制技术可以降低油耗?降低排放?提高动力性能? 降低排放可以通过控制: 1.空燃比, 2.三元催化器, 3. 监控排放, 4.稀薄燃烧, 5.结合EGR废气再循环 降低油耗可以通过控制: 1. 空然比, 2.怠速转速, 3.滑行或下坡时断油及停缸, 4.增大气门叠开角, 5.稀薄燃烧

发动机基础知识

发动机理论基础 一、填空/选择 1、四冲程发动机曲轴转2周,活塞在气缸内往复2次,进排气门各开闭1次,气缸里热能转化为机械能1次。 都必须经过进气、压缩、做功、排气一系列连续过程,过称发动机一个工作循环,曲轴转720°。 2、四缸四冲程发动机的做功顺序一般为1324或1243,六缸四冲程为153624或者142635。 3、气缸套有干式、湿式和无气缸套式3种形式。 4、发动机的主要性能指标是有效扭矩、有效功率和有效燃油消耗率。 5、汽油机由两大机构和五大系组成,两大机构是曲柄连杆机构和配气机构,五大系是润滑、冷却、点火、起动 和燃油供给系。 6、按冷却介质不同,发动机冷却方式有水冷和风冷。 7、配气相位角有进排气提前角、进排气滞后角和气门重叠角。 8、曲柄连杆机构通常由机体组、活塞连杆组和曲轴飞轮组组成。它是采用压力润滑和飞溅润滑相结合的润滑方 式。 9、由曲轴到凸轮轴的传动方式有齿轮传动、链传动和齿形带传动三种。 10、使用性能指标主要包括抗爆性和蒸发性。汽油牌号越高,则辛烷值越多,抗爆性越好。 11、电瓶点火系统是点火线圈和断电器将低压电转为高压电的,车用起动机作用是将电瓶提供的电能转为机械能, 产生力矩以起动发动机。 12、在一定范围内,提高发动机的压缩比可以提高发动机的热效率,但汽油机的压缩比不能像柴油机高,太高时, 汽油在燃烧时易发生爆燃,因此汽油机的耗油量比柴油柴高。 13、汽油机压缩比越大,对汽油的牌号要求越高。 14、二冲程汽油机的燃油经济性不如四冲程汽油机,但它结构简单,制造费用低,摩托车和微型汽车上广泛采用。 15、四缸四冲程汽油发动机的发火间隔角为180°,六缸则为120°。 16、连杆盖与连杆、主轴承盖与缸体轴承座孔不能互换和改变方向。 17、活塞销有全浮和半浮式。 18、发动机的转速起高,点火提前角越大。 19、当汽车耗电量很大,所需功率超过发电机功率时,除发电机向用电设备供电外,蓄电池也向用电设备供电。 20、汽车发动机一般按所用燃料分为:汽油机、柴油机、汽体燃料机。 21、活塞头部一般制成上大下小的阶梯形或截锥形,且头部直径小于裙部。 22、湿式缸套上平面比缸体上平面高。 23、液力挺柱在发动机温度升高后,挺柱有效长度变短。 24、发动机冷起动时需供给极浓可燃混合气。 25、在电喷发动机的供油系统中,油压调节器的作用是燃油压力与进气管压力差保持恒定。 26、转子式机油细滤器是依靠机油压力驱动其运转的。

汽油基础知识

汽油基础知识 汽油基础知识 车用汽油 车用汽油是一种重要的发动机燃料,消耗量巨大,我国2008年汽油总产量达6348万吨。 车用汽油均按辛烷值划分牌号,我国车用汽油按研究法辛烷值(RON)分为90号、93号及97号三个牌号,它们分别适用于压缩比不同的各种型号汽油机。 车用汽油特性: 具有较高的辛烷值和优良的抗爆性; 具有良好的蒸发性和燃烧性,能保证发动机运转平

稳、燃烧完全、积炭少; 具有较好的安定性,在贮运和使用过程中不易出现早期氧化变质,对发动机部件及储油容器无腐蚀性。 检测项目:辛烷值、抗爆指数、铅含量、馏程、蒸气压、实际胶质、诱导期、硫含量、博士试验或硫醇硫含量、铜片腐蚀、水溶性酸或碱、机械杂质及水分、苯含量、芳烃含量、烯烃含量、氧含量、甲醇含量、锰含量、铁含量。 几种标准的差异比较 汽油使用中常见问题 n敲缸:辛烷值过低 n熄火:供油不畅或含有大量水分 n进气管、汽化器和进气阀产生沉积物:实际胶质高 n金属部件腐蚀:活性硫、酸性物质多 n气阻:轻组分多,饱和蒸气压高 n生成油泥、颜色变深:烯烃等不饱和烃及非烃类物质等不稳定组分多。

汽油机在运转过程中,有时气缸中可能发出一种尖锐的金属敲击声,这就是爆震。汽油在发动机中燃烧时抵抗爆震的能力称为抗爆性。 研究法辛烷值是表示汽油抗爆性的指标,它是汽油最重要的质量指标。我国车用汽油的标号采用研究法测定的数值,93号汽油表示它的辛烷值不低于93,依此类推。 汽油标号低是汽油机在运转过程中出现敲缸的 主要原因。 汽油标号的高低只表示汽油的抗爆性能,不等同汽油的质量。标号的选择并非越高越好,应根据发动机压缩比的不同来选择不同标号的汽油。 每辆车的使用手册上都会标明所使用汽油的标 号。压缩比在8.5 —9.5之间的中档轿车一般应使 用93号汽油;压缩比大于9.5的轿车应使用97号 汽油。目前国产轿车的压缩比一般都在9以上,最 好使用93号或97号汽油。

汽柴油的调和技术

汽柴油的调和技术 一、什么是调合技术 调合技术就是用炼厂生产的一些国标或非标油品,油田生产中产生的轻烃(凝析油)及化工产品经过精制装置精制处理后,辅以一些添加剂,调合成符合客户要求的国标汽、柴油,以达到最大程度降低成本,节约石油资源的一门应用技术。 汽柴油的调合技术在国外油品的贸易领域已十分成熟,如可利用抗爆剂,将90#汽油调成93#、97#油,将-5#、0#柴油调合成-10#油出售。 在我国,每年都有生产几百吨石脑油产品,由于石脑油辛烷值低,RON 只有40—60左右,除小部分进入重整装置生产高辛烷值汽油组份外,大部分石脑油只能以乙烯裂解原料出售,价格低且不稳定,如果我们采取调 合技术,将石脑油通过精制脱去硫,并与高辛烷值组份混合,再加入抗爆 剂,就可调合出90#和93#汽油,这就可以为国家节约数量可观的石油资源。 由此可看出,汽柴油调合技术是有效节约成本,有效利用现有石油资源的有效途径的一门应用技术,应在国内大力推广。 说到这里,可能就有人问,调合油能用吗?质量可靠吗,要回答这问题,就要从炼厂生产的工艺谈起。 二、炼油厂汽柴油的生产方法 我国现在使用的汽、柴油,都是从石油中提炼出来的,未经炼制的石油,通常称为原油,用原油炼制汽柴油要经过以下基本过程: 1、先将原油脱盐脱水,然后进行常压蒸馏,分割出适宜作为汽、柴油的 馏分,这种馏叫做直馏馏分,如石脑油、常一、常二线柴油等。 2、再以炼制过程中产生的常、减压重油等为原料,用热裂化、催化裂化、 加氢裂化和延迟焦化等二次加工方法,将高沸点馏份裂解为适宜作燃料的低分子烃,经过分馏得到汽、柴油的热裂化,催化裂化和焦化组份。如果生产高辛烷值汽油,还需要采用催化重整和烷基化等方法,制得重整汽油组份和轻烷基化油。 3、将直馏馏份油和二次加工方法得到的馏分油分别进行电化学精制、加 氢精制、脱硫醇和脱蜡,除去其中的有害物质,提高油品质量。 4、最后根据不同牌号汽、柴油的质量要求,以上述各种馏份油为组份, 按所需的比例并加入适量的各种添加剂进行调和,即得到质量符合国家标准的汽、柴油。

汽油柴油馏程的意义及基础知识修订稿

汽油柴油馏程的意义及 基础知识 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

汽油馏程 1、什么是油品的馏程有何意义 对于一种纯的化合物,在一定的外压条件下,都有它自己的沸点,例如纯水在1个标准大气压力,它的沸点是100℃。油品与纯化合物不同,它是复杂的混合物,因而其沸点表现为一段连续的沸点范围,简称沸程。在规定的条件下蒸馏切割出来的油品,是以初馏点到终馏点(或干点)的温度范围,称为馏程(即“沸程”)来表示其规格的。我们可以从馏程数据来判断油品轻重馏分所占的比例及蒸发性能的好坏。 初馏点和10%点馏出温度的高低将影响发动机的起动性能,过高冷车不易起动,过低易形成“气阻”中断油路(特别是夏季)。 50%点馏出温度的高低将影响发动机的加速性能。 90%点和干点馏出温度表示油品不易蒸发和不完全燃烧的重质馏分含量多少。2、什么是初馏点 当油品在恩氏蒸馏设备进行加热蒸馏时,馏出第一滴液时的汽相温度(HK)。 3、什么是干点 当蒸馏到(恩氏蒸馏中进行)油品剩最后一滴液体时的最高温度(KK) 4、什么是蒸馏 蒸馏是将一种混合物反复地使用加热汽化和去热冷凝相结合的手段使其部分或完全分离的过程。它是利用液体混合物中各组分沸点和蒸汽压(即相对挥发度)的不同,在精馏塔内,轻组分不断汽化上升的提浓,重组发不断冷凝下降提浓,相互间不断地进行传热传质,在塔顶得到纯度较高的轻组分产物,在塔底得到纯度较高的重组分产物。它是实现分离目的的一种最基本也是最重要手段。 5、汽油的初馏点和10%馏出温度说明了什么 汽油的初馏点和10%馏出温度,说明了汽油在发动机中的启动性能。如10%馏出温度过高,在冬季严寒地区使用这种汽油时,汽车启动就有困难。 6、汽油的50%馏出温度说明了什么 汽油的50%馏出温度说明了汽油在发动机中的加速性能。若这一馏出温度过高,当发动机由低速骤然变为高速而需要加大油门增加进油量时,燃料就会来不及完全气化,使燃烧不完全,甚至燃烧不起来,发动机就不能发出需要的功率。50%点温度对发动机的启动,预热也有较大的影响。 7、汽油的90%馏出温度和干点说明了什么 90%馏出温度和干点说明了汽油在发动机中蒸发完全的程度。这个温度过高,说明重质成分过多,其结果是降低发动机的功率和经济性。 柴油馏程 1、50%馏出温度越低说明柴油中的轻质馏分含量多,柴油机易于起动。但柴油中轻质馏分含量过多,会使喷入气缸的柴油蒸发太快,易引起全部柴油迅速燃烧,造成压力剧增,使得柴油机工作粗暴。90%与95%馏出温度越低,说明柴油中重质馏分含量低,这就使得柴油的燃烧更加充分,不仅可以提高柴油机的动力性,减少机

汽油机电控系统由哪几部分组成

汽油机电控系统一般具备哪些控制功能?控制功能的内容是什么? (一):汽油喷射控制:是电控系统最主要的控制功能。 (1)喷油正时控制,即喷油开始时刻控制,包括根据曲轴转角位置进行控制的同步喷射控制和根据发动机运行工况进行控制的异步喷射控制两种方式。 (2)喷油持续时间控制,即喷油量控制。包括发动机起动时的喷油持续时间控制,发动机起动后的喷油持续时间控制两种控制程序。 (3)停油控制:包括减速停油控制、超速停油控制及停油后的恢复供油控制。 溢流控制。 (4)电动汽油泵控制:包括发动机起动前电动汽油泵的预运转控制、发动机正常运转时和发动机停机时电动汽油泵运转控制。 (二):点火控制:是汽油机电控系统的第二个主要功能。 (1)点火正时控制:最佳点火提前角控制。包括基本点火提前角的确定、基本点火提前角的修正及点火控制。 (2)闭合角控制:点火线圈初级通电时间控制。包括初级线圈通电时间确定和通过电流的控制。 (3)爆震反馈控制:是汽油机电控系统特有的控制功能。包括爆震的检测和反馈修正控制。 (三):怠速控制:当发动机处于怠速工况时,ECU根据怠速转速的变化或附属装置接入与否,通过控制怠速控制装置,调整怠速工况的空气供给,使发动机保持最佳的怠速转速。 (四):排气净化控制:

(1)氧传感器的反馈控制:当ECU根据发动机的运行工况确定对空燃比实行闭环控制时,ECU根据氧传感器的反馈信号,修正喷油持续时间,把空燃比精确控制在14.7:1附近,使三元催化净化装置具有最高的净化效率。 (2)废气再循环控制:ECU根据发动机运行工况,通过真空电磁阀对废气再循环过程及废气再循环量进行控制,以降低NOx的生成量。 (3)二次空气喷射控制:ECU根据发动机运行工况及工作温度,向排气管或三元催化转化器喷入新鲜空气,以减少某些特殊工况下CO和HC的排放量。 (4)活性炭罐清洗控制:ECU定时打开炭罐清洗控制电磁阀,清洗活性炭罐层,恢复活性炭的吸附功能。 (五):进气控制:(1)进气谐振增压控制:ECU根据发动机的转速,控制谐振阀的开或关,以改善发动机高、低速工况时的功率和扭矩输出特性。 (2)进气涡流控制:ECU根据发动机的转速,控制涡流阀的开或关,以改变进气涡流强度,改善燃烧过程,提高发动机的输出扭矩和动力性。 (4)配气定时控制:ECU根据发动机的负荷和转速,通过改变配气定时,提高发动机的充气效率,改善发动机的动力性和经济性。 增压控制:ECU根据进气歧管压力控制增压器放器阀的开或关,使进气增压压力保持稳定。 (六):故障自诊断和带故障运行控制: (1)故障自诊断控制:当电控系统的组成元件发生故障时,ECU使故障警示 2装置及时发出警告信号,同时将故障信息储存到存储器只,供维修时调用和参考。 (2)带故障运行控制:在微机控制系统的组成元件发生故障后,ECU根据故障类型做出最适当的应急处理,在大多数情况下,使汽车仍能以稍差的性能行驶到汽修厂进行检修。

第三章 信息论基础知识(Part2)

信息论基础知识
主要内容:
信源的数学模型 信源编码定理 信源编码算法 信道容量 通信的容限
第 1 页 2011-2-21

引言
一、信息论的研究范畴 信息论是研究信息的基本性质及度量方法,研究信息的
获取、传输、存储和处理的一般规律的科学。 狭义信息论:通信的数学理论,主要研究信息的度量方 法,各种信源、信道的描述和信源、信道的编码定理。 实用信息论:信息传输和处理问题,也就是狭义信息 论方法在调制解调、编码译码以及检测理论等领域的应用。 广义信息论,包括信息论在自然和社会中的新的应用, 如模式识别、机器翻译、自学习自组织系统、心理学、生物 学、经济学、社会学等一切与信息问题有关的领域。
第 2 页 2011-2-21

二、信息论回答的问题
通信信道中,信息能够可靠传 输的最高速率是多少?
噪声信道编码定理 噪声信道编码定理
信息进行压缩后,依然可以从已压 缩信息中以无差错或低差错恢复的 最低速率是多少?
香农信源编码理论 香农信源编码理论
最佳系统的复杂度是多少?
第 3 页
2011-2-21

三、香农的贡献
香农(Claude Elwood Shannon,1916~2001年), 美国数学家,信息论的创始人。
创造性的采用概率论的方法来研究通信中的问题,并且对 信息给予了科学的定量描述,第一次提出了信息熵的概念。 1948年,《通信的数学理论》(A mathematical theory of communication ) 以及1949年,《噪声下的通信》标志了信息论的创立。 1949年,《保密通信的信息理论》,用信息论的观点对信息保密问题做了 全面的论述,奠定了密码学的基础。 1959年,《保真度准则下的离散信源编码定理》,它是数据压缩的数学基 础,为信源编码的研究奠定了基础。 1961年发表“双路通信信道”,开拓了多用户信息理论(网络信息论)的研 究;
第 4 页 2011-2-21

新能源汽车基础知识200题

一、单选题 1.新能源车是指的采用( D )作为动力来源,综合车辆的动力控制和驱动方面的先进技术,形成的技术原理先进、具有新技术、新结构的汽车。 A 甲醇 B 电能 C 太阳能 D 一切新型能源 2.( B )年,爱丁堡的R.Davidson发明第一辆电动车,使用铁锌电池,不能充电。 A、1853 B、1871 C、1886 D、1902 3.1997年丰田的第一代( D )混合动力轿车下线。 A、卡罗拉 B、凯美瑞 C、皇冠 D、普锐斯 4.纯电动汽车是指以车载电源为动力源,用( A )驱动车轮行驶,符合道路交通、安全法规各项要求的车辆。 A、电动机 B、汽油机 C、柴油机 D、发电机 5.以下不属于纯电动汽车的优点的是( C )。 A、无废气污染、噪声小 B、结构简单、维修方便 C、续航里程长 D、能量转换率高 6. 新能源汽车车牌号码比传统汽油车多了一位数字,共有( B )个号码。 A、5 B、6 C、7 D、8 7. 吉利帝豪EV450是( A ) A 纯电动汽车 B 混合动力汽车 C 插电混动汽车 8.卡罗拉双擎汽车是( B ) A 纯电动汽车 B 混合动力汽车 C 插电混动汽车 9.比亚迪e5是( A ) A 纯电动汽车 B 混合动力汽车 C 插电混动汽车 10.特斯拉汽车是( A ) A 纯电动汽车 B 混合动力汽车 C 插电混动汽车 11.纯电动汽车与传统燃油汽车相比,优点有( D ) A 节能环保 B 动力性好 C 结构简单 D 以上全是 12.纯电动汽车在充电式的方式有( D ) A 快充充电 B 慢充充电 C 家用充电 D 以上全都是 ( D ) 不属于纯电汽车的结构元件是13. A 动力电池 B 车载充电机 C 电机 D 变速器 14.纯电动汽车最大的缺点是( B ) A 加速性能差 B 续航能力短 C 结构复杂 D 操作困难 15.下面哪项不属于新能源车激励政策是( B )。 A.购车补贴 B.免交保险 C.免征购置税 D.新能源车牌 16.燃料电池的排放物是( A )。 A.水 B.二氧化碳 C.一氧化碳 D.非甲烷烃 17、以下不属于新能源的是( A ) A、柴油 B、太阳能 C、地热能 D、风能 18、不可再生资源是( D ) A 波浪能 B 潮汐能 C 海流能 D 煤炭

《汽油机电子控制》复习题参考.doc

发动机、安全气囊、仪表等部分思考题 说明: 要求掌握以下这些内容,具体问题的提法可能有变化,但范围不变; 综述 1.电喷发动机和化油器式发动机相比,有什么优缺点?P20 或:单点喷射发动机和化油器式发动机相比,在哪些方面得到了改进?或:电喷发动机哪些控制技术可以降低油耗?降低排放?提高动力性能?答:电喷发动机优点: 1.混合气的各缸分配均匀性好(有利于发动机有害排放物的控制和燃油经济性的改善); 2.在任何情况下都能获得精确空燃比的混合气(对排放控制有利,可改善燃油经济性); 3.加速性能好(喷油器装在进气门附近,汽油又以一定的喷油压力从喷油嘴喷出,形成雾状,极易与空气混合,使送至气缸的混合气的空燃比能及时地随节气门开度变化而立即改变); 4.良好的起动性能和减速减油或断油(排放、燃油经济性); 5.充气效率高(动力性)。 2.电喷发动机控制系统的基本结构、原理? 答:传感器:检测发动机运行参数,并送至控制单元。 控制器(ECU):接受传感器的输入信号,分析计算后产生输出信号送至执行器。 执行器:接收控制单元的输出信号,产生执行动作,实现各种控制。 主要传感器部件:进气压力传感器、霍尔传感器、冷却温度传感器、进气温度传感器、节气门位置传感器、爆震传感器、氧传感器。 主要执行器部件:喷嘴、点火线圈、怠速稳定阀、汽油泵继电器、汽油泵 基于扭矩结构的控制算法模型 发动机最终输出的扭矩是发动机性能的重要指标,而且汽车的加速和减速过程其实就是发动机输出扭矩增加和减少的过程,因此发动机电子控制的核心是扭矩控制,所有发动机运行参数的控制都是I韦I绕扭矩来进行,通过扭矩数学模型计算出目标输出扭矩,然后再通过进气、喷油、点火等一系列动作来实现。 (在闭环控制系统中采用氧传感器反馈控制,可使空燃比的控制精度进-步提高。在汽车运行的各种条件下空燃比均可得到适当的修正,使发送机在各种工况下均能得到最佳的空燃比。与传统的化油器式发送机相比装有电控汽油喷射系统的发动机,动力性提高,经济性改善,更为重要的是汽车有害排放物得到很好的控制。) 3.汽油喷射控制系统(EFI)和发动机管理系统(EMS)的区别?P34 答:电控汽油喷射(electronic fuel injection, EFI)系统利用各种传感器检测发动机和汽车的各种状态,经微机的判断、计算,确定喷油脉宽、点火正时等参数,使发动机在不同工况下均能获得合适空燃比的混合气和合适的点火提前角。 发动机管理系统EMS (Engine Management System),就是将多项目控制集中在一个动

《信息论基础》教学大纲

《信息论基础》教学大纲 课程编号:CE6006 课程名称:信息论基础英文名称:Foundation of Information Theory 学分/学时:2/32 课程性质:选修课 适用专业:信息安全,网络工程建议开设学期:6 先修课程:概率论与数理统计开课单位:网络与信息安全学院 一、课程的教学目标与任务 本课程是信息安全,网络工程专业选修的一门专业基础课。通过课程学习,使学生能够 较深刻地理解信息的表征、存储和传输的基本理论,初步掌握提高信息传输系统可靠性、有 效性、保密性和认证性的一般方法,为后续专业课学习打下坚实的理论基础。 本课程的教学目标: 本课程对学生达到如下毕业要求有贡献: 1.能够将数学、自然科学、工程基础和专业知识用于解决复杂工程问题。 2.能够应用数学、自然科学和工程科学的基本原理,识别、表达,并通过文献研究分 析复杂工程问题,以获得有效结论。 完成课程后,学生将具备以下能力: 1.能够针对一个复杂系统或者过程选择一种数学模型,并达到适当的精度。 2.能够应用数学、自然科学和工程科学的基本原理分析、识别、表达、处理及扩展信 息安全、网络工程专业的复杂问题。 本课程的性质: 本课程是一门理论性较强的专业基础课程,在实施过程中以理论为主,共32学时。 二、课程具体内容及基本要求 (一)绪论(2学时) 1.基本要求 (1)掌握消息、信息和信号;噪声和干扰的基本概念 (2)掌握通信系统模型 (3)明确Shannon信息论要解决的中心问题 2.重点与难点 (1)重点:掌握通信系统模型的构成及其相应功能 (2)难点:理解Shannon信息论要解决的中心问题

小型汽油发电机组原理和维修

交流发电机还可分为单相发电机与三相发电机 发电机原理 <一> 发电机概述 发电机是将其他形式的能源转换成电能的机械设备,它由水轮机、汽轮机、柴油机或其他动力机械驱动,将水流,气流,燃料燃烧或原子核裂变产生的能量转化为机械能传给发电机,再由发电机转换为电能。发电机在工农业生产,国防,科技及日常生活中有广泛的用途。 发电机的形式很多,但其工作原理都基于电磁感应定律和电磁力定律。因此,其构造的一般原则是:用适当的导磁和导电材料构成互相进行电磁感应的磁路和电路,以产生电磁功率,达到能量转换的目的。 <二>发电机的分类可归纳如下: 发电机分:直流发电机和交流发电机 交流发电机分:同步发电机和异步发电机(很少采用) 交流发电机还可分为单相发电机与三相发电机。 <三>发电机结构及工作原理 发电机通常由定子、转子、端盖及轴承等部件构成。 定子由定子铁芯、线包绕组、机座以及固定这些部分的其他结构件组成。 转子由转子铁芯(或磁极、磁扼)绕组、护环、中心环、滑环、风扇及转轴等部件组成。 由轴承及端盖将发电机的定子,转子连接组装起来,使转子能在定子中旋转,做切割磁力线的运动,从而产生感应电势,通过接线端子引出,接在回路中,便产生了电流。 柴油发电机工作原理 柴油机驱动发电机运转,将柴油的能量转化为电能。 在柴油机汽缸内,经过空气滤清器过滤后的洁净空气与喷油嘴喷射出的高压雾化柴油充分混合,在活塞上行的挤压下,体积缩小,温度迅速升高,达到柴油的燃点。柴油被点燃,混合气体剧烈燃烧,体积迅速膨胀,推动活塞下行,称为‘作功’。各汽缸按一定顺序依次作功,作用在活塞上的推力经过连杆变成了推动曲轴转动的力量,从而带动曲轴旋转。 将无刷同步交流发电机与柴油机曲轴同轴安装,就可以利用柴油机的旋转带动发电机的转子,利用‘电磁感应’原理,发电机就会输出感应电动势,经闭合的负载回路就能产生电流。 这里只描述发电机组最基本的工作原理。要想得到可使用的、稳定的电力输出,还需要一系列的柴油机和发电机控制、保护器件和回路。详细请进>>> 汽油发电机原理 汽油机驱动发电机运转,将汽油的能量转化为电能。 在汽油机汽缸内,混合气体剧烈燃烧,体积迅速膨胀,推动活塞下行作功。各汽缸按一定顺序依次作功,作用在活塞上的推力经过连杆变成了推动曲轴转动的力量,从而带动曲轴旋转。将无刷同步交流发电机与汽油机曲轴同轴安装,就可以利用汽油机的旋转带动发电机的转子,利用‘电磁感应’原理,发电机就会输出感应电动势,经闭合的负载回路就能产生电流。 详细请进>>>

汽油知识

汽油组成 1.Paraffins:分子式为CnH2n+2,分子呈链状结构。 2.Olefins:分子式为CnH2n,分子呈开链接构且含双键。 3.Naphthenes:分子式为CnH2n,分子呈环状结构。 4.Aromatic:分子呈环状结构,且含不饱和双键。 5.汽油组成为四碳至十二碳氢化合物,氧、氮、硫及微量金属。 汽油质量在引擎性能上的基本要求 1.低温下冷启动容易 2.暖车迅速 3.运转平顺 4.输出足够的马力且不会有爆震现象 5.可提供良好的燃料经济性及产生低的废气排放 6.汽油不会增加,引擎的积污、污染或腐蚀燃料系统 从实验室分析汽油质量评估对引擎性能的影响

1.驾驶性(Driveability):汽车之驾驶性系指引擎之启动(START)、暖车(WARMS UP)、运转(RUNS)。 2.驾驶性的问题包括:启动困难(Hard Starting)、回火(Backfire)、怠速不平顺(Rough Idle)、油门加速的反应性不好(Poor Throttle Response)。 汽油之挥发性(Volatility) 蒸气压(Vapor Pressure):为冷启动及暖车之最重要性质,汽油蒸气压较低时,引擎启动就须要较长的时间。如果太低,可能会造成无法启动的问题。 蒸馏曲线(Distillation Curve, D-86):汽油蒸馏曲线即汽油在一特定条件下,测得之馏出汽油体积百分比与对应之温度关系图,如图一。不同蒸馏范围之油料特性可影响之引擎性能。 汽液比(Vapor-Liquid Ration):汽油的蒸馏曲线前段温度及蒸气压,是影响气障Vapor Locking发生倾向的因素,影响气障的原因即V/L=20的温度。 图一 不同蒸馏范围之油料特性可影响之引擎性能 1.前段挥发性调整与下列性能相关:易冷启动、易热启动、vapor lock的自由度、低蒸发运转损失污染。 2.中段挥发性调整与下列性能相关:快速热车及平顺运转、良好短程燃油经济性、良好马力及加速性、避免喉嘴结冰及热失速。 3.尾段挥发性调整与下列性能相关:热车后良好燃油经济性、引擎积污的自由度、减少燃油稀释曲轴箱油、减少HC排放污染。

信息论基础试卷(期末A卷

重庆邮电大学2007/2008学年2学期 《信息论基础》试卷(期末)(A卷)(半开卷) 一、填空题(本大题共10小空,每小空1分,共20分) 1.按信源发出符号所对应的随机变量之间的无统计依赖关系,可将离散信源分为有记忆信源和无记忆信源两大类。 2.一个八进制信源的最大熵为3bit/符号 3.有一信源X,其概率分布为 123 x x x X 111 P 244 ?? ?? ? = ?? ? ?? ?? ,其信源剩余度为94.64%;若对该信源进行十次扩展, 则每十个符号的平均信息量是15bit。 4.若一连续消息通过放大器,该放大器输出的最大瞬间电压为b,最小瞬时电压为a。若消息从放大器中输出,则该信源的绝对熵是∞;其能在每个自由度熵的最大熵是log(b-a)bit/自由度;若放大器的最高频率为F,则单位时间内输出的最大信息量是2Flog(b-a)bit/s. 5. 若某一信源X,其平均功率受限为16w,其概率密度函数是高斯分布时,差熵的最大值为1 log32e 2 π;与 其熵相等的非高斯分布信源的功率为16w ≥ 6、信源编码的主要目的是提高有效性,信道编码的主要目的是提高可靠性。 7、无失真信源编码的平均码长最小理论极限制为信源熵(或H(S)/logr= H r(S))。 8、当R=C或(信道剩余度为0)时,信源与信道达到匹配。 9、根据是否允许失真,信源编码可分为无失真信源编码和限失真信源编码。 10、在下面空格中选择填入数学符号“,,, =≥≤?”或“?” (1)当X和Y相互独立时,H(XY)=H(X)+H(X/Y)。 (2)假设信道输入用X表示,信道输出用Y表示。在无噪有损信道中,H(X/Y)> 0, H(Y/X)=0,I(X;Y)

汽车汽油基础知识

汽油的性能 一、汽油的使用性能:蒸发性、抗爆性、化学和物理安定性、腐蚀性、清洁性等。 1、蒸发性: 由液态转化为气态的性质,即汽油的蒸发性。汽油的蒸发性不好,将使燃油混合气 品质变坏,发动机功率下降,耗油量增加,有害气体排放量增加,磨损加剧。适当 的蒸发性能保证低温起动性好,预热时间短,加速灵敏,运行稳定;蒸发性过好, 会使系统在夏季产生气阻,油管和使用中的蒸发损失增加。评定指标是馏程和饱和 蒸气压。 2、抗爆性: 汽油在发动机燃烧室中燃烧时防止爆燃的能力。评定指标是辛烷值抗爆性差易产生 金属敲击声,引起发动机振动。 3、化学和物理安全性: 化学安全性不好,会产生氧化缩合生成胶质,导致中断供油,耗油增大,影响发动 机工作,生成积碳,散热不良,引起爆燃,加剧磨损,物理安定性不好,会影响起 动性能,油耗增加等,与蒸发性相同。 4、腐蚀性: 汽油应无腐蚀性,否则是对金属产生直接或间接腐蚀作用,对汽油腐蚀性有严格要 求。 5、清洁性: 评定指标是机械杂质和水分,清洁性不好,会使喷油嘴堵塞或磨损,使燃烧室产生 积碳加速发动机磨损。 二、 1、辛烷值测定方法分:研究法和马达法两种,为反映汽油的灵敏度,我国汽油规格标准采 用了抗蚀指数,这项新指标,抗爆指数是汽油研究法辛烷值与马达辛烷值之和的1/2。 抗爆指数反映一般运行条件下汽油的平均抗爆性。 2、辛烷值越高,抗爆性越好,无铅汽油是用添加甲基叔丁基醚(MTBE)和叔丁基醇(TBA) 等含氧化物来提高汽油的辛烷值。 3、我国车用汽油的规格按研究法辛烷值分为90号、93号、97号3个牌号。 4、按汽车的使用汽油规定选用汽油牌号,压缩比低的选用低牌号,压缩比高的选用高牌号, 一般压缩比7~8之间选用90号汽油,压缩比在8以上,选用93或97号汽油。 5、对于装有三无催化器的车,必须使用无铅汽油。

调和汽油(黑配方)

“黑配方”导致汽油质量出问题 字号:小大 2012-03-14 17:15 近期发生在云南、贵州、广西等地的93#汽油导致发动机故障事件,再次引发公众对调和汽油的关注。 一位熟悉调油行业的业内人士向记者透露,本以混合芳烃、石脑油(轻油)等为原料的调和汽油,在原料价格高涨的背景下,被一些调油商换成了甲缩醛、甲醇、碳酸二甲酯、非芳烃等低价原料,甲缩醛本是制造杀虫剂的原料,直接造成如今调和汽油的质量常出问题。 山东一些调油商也向记者证实,在调油界,目前这种现象已成为公开“秘密”,不少调油商采取这种方式以获取更多利润。 “调和汽油质量是完全可以把控的,但利益使得很多调油商昧着良心,整个调和油市场也没有一个明确的行业规范,缺乏监管机制。”上述业内人士说。 杀虫剂原料被用于调汽油 据了解,调和汽油本是调油商采购大量的非标准油,加入一堆相应调整各个指标的其他化学产品组分或是添加剂后,调出的接近国标的汽油。 上述业内人士称,调和汽油作为汽油一类分支,很早就存在于油品市场。目前,调和汽油主流原料有催化汽油、MTBE、混合芳烃、石脑油(轻油)、C5、C9、芳烃汽油等。这类原料经过一定比例合理调配后,甚至能达到国家标准。 但近期,一些调油商为了降低成本,追求更大利润,在调和汽油中添加甲缩醛、甲醇、碳酸二甲酯、非芳烃等多类原料。 “这在我们行业内已是公开的‘秘密’,不少调油商都知道,也都是这样操作的,技术好的虽然原料差点,调出的汽油还是能达到国标,技术差的就没办法了。”山东一家有调和油业务的炼油企业内部人士说。 “这类原料本身存在一定的调和缺陷,并不适合调和汽油,”上述业内人士说,“甲缩醛这类原本只应用在杀虫剂中。” 资料显示,甲缩醛是一种无色澄清易挥发可燃液体,主要用于杀虫剂配方、皮革和汽车上光剂、空气清新剂等;甲醇则是主要用于农药(杀虫剂、杀虫螨)、医药(磺胺类、合霉素类)等的原料。 国家石油天然气产品质量监督检验中心郭桦此前曾对《每日经济新闻》记者表示,有些不法企业为了赚取差价,在汽油中添加非法添加物,有些非法添加物目前并不在国标的检测指标中。

使用发电机需要注意的安全事项

使用发电机需要注意的安全事项江苏星光发电设备有限公司的技术人员现在给大家讲解一下使用发电机应注意的安全事项: 1.使用场合 (1)发电机在使用时应安放在室外或机房内通风良好的地方,不能靠近门窗及通风口,避免一氧化碳进入室内。 (2)不得在易燃易爆材料附近使用发电机。 (3)发电机应安放在干燥的地方,若需要露天安装使用,必须使用天蓬式的建筑物遮挡,以防止因潮湿而发生触点事故。 (4)不要在室内使用便携式发电机,如车库、车棚、地下室及封闭式的场合等。在这些场合下使用便携式发电机,即使打开窗门或或进行机械通风,并不能防止一氧化碳在室内的聚集,有可能导致一氧化碳中毒、引发火灾,甚至造成触电事故。 2.燃油的存放和使用 (1)发电机燃油应存放于专用的库房内,库内的设施必须符合消防部门的规定。 (2)使用的燃油种类应与发电机使用说明书或标签上要求的相符。 (3)发电机内不能存留过多的燃油,特别是汽油发电机组,如果未使用的时间可能长达30天,则应添加汽油稳定剂,以防止汽油挥发而引起事故。

(4)添加燃油前,应先关闭发电机,待发电机冷却后再添加,以防止汽油渐到温度较高的机件上而着火,造成灾害。 3.线路连接 (1)户外线的规格必须能满足所用电器负载的要求。 (2)当使用加长的电线时,要确认其与地之间的绝缘良好。 (3)不能将发电机的出线直接插入住宅原电源插座上供电,这样会形成反馈,可能造成由同一台变压器供电的用户发生触电事故。正确的连接方式是由电工安装电力转换开关。 4、保持柴油的清洁。 在使用油桶加注柴油之前,要经过充分沉淀,沉淀时间最好在3天以上。加油时还应仔细过滤,以防机械杂质的混入。在操作时还应保持储油容器和加油工具的清洁。 5、不同标号的柴油可以混用。

相关文档
最新文档