等比数列及其性质

等比数列及其性质
等比数列及其性质

§6.3 等比数列

一.课程目标

1.理解等比数列的概念,掌握等比数列的通项公式与前n 项和公式;

2.能在具体的问题情境中识别数列的等比关系,并能用有关知识解决相应的问题;

3.了解等比数列与指数函数的关系.

二.知识梳理

1.等比数列的概念

(1)如果一个数列从第2项起,每一项与它的前一项的比等于同一个非零常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q (q ≠0)表示.

数学语言表达式:a n a n -1

=q (n ≥2,q 为非零常数),或a n +1a n =q (n ∈N *,q 为非零常数). (2)如果三个数a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项,其中G =±ab .

2. 等比数列的通项公式及前n 项和公式

(1)若等比数列{a n }的首项为a 1,公比是q ,则其通项公式为a n =a 1q n -

1; 通项公式的推广:a n =a m q n -

m . (2)等比数列的前n 项和公式:当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n ) 1-q =a 1-a n q 1-q

. 3.等比数列的性质

已知{a n }是等比数列,S n 是数列{a n }的前n 项和.

(1)若k +l =m +n (k ,l ,m ,n ∈N *),则有a k ·a l =a m ·a n .

(2)数列}{},{),}({n n n n b a a c a c ?≠?0(}{n b 是等比数列),}{2n a ,}{n

a 1等也是等比数列。(3)相隔等距离的项组成的数列仍是等比数列,即a k ,a k +m ,a k +2m ,…仍是等比数列,公比为q m .

(4)当q ≠-1,或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n .

(5)等比数列{a n }的单调性:

当q >1,a 1>0或0<q <1,a 1<0时,数列{a n }是递增数列;

当q >1,a 1<0或0<q <1,a 1>0时,数列{a n }是递减数列;

当q =1时,数列{a n }是常数列.

(6)当n 是偶数时,q S S ?=奇偶;

当n 为奇数时,q S a S ?+=偶奇1

三.考点梳理

1.等比数列的概念及运算

例1.在单调递减的等比数列}{n a 中,若13=a ,2542=

+a a ,则1a =( ) A.2

B.4

C. 2

D.2 2

例2.公比不为1的等比数列}{n a 满足187465=+a a a a ,若91=m a a ,则m 的值为( )

A.8

B.9

C.10

D.11

例3.(2015·全国Ⅰ卷)在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n =________.

2.等比数列的性质

例 1.(2016·全国Ⅰ卷)设等比数列满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.

例2.设等比数列{a n }的前n 项和为S n ,若S 6S 3=3,则S 9S 6

=( ) A.2

B.73

C.83

D.3

例3.(2015·全国Ⅱ卷)已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( )

A.21

B.42

C.63

D.84

例4.设各项都是正数的等比数列{a n },S n 为前n 项和,且S 10=10,S 30=70,那么S 40等于( )

A.150

B.-200

C.150或-200

D.400或-50

例5.在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n 等于( )

A.12

B.13

C.14

D.15

例6.数列{a n }中,已知对任意n ∈N *,a 1+a 2+a 3+…+a n =3n -1,则a 21+a 22+a 23+…+a 2n 等

于( )

A.(3n -1)2

B.12(9n -1)

C.9n -1

D.14

(3n -1)

例7.在等比数列{a n }中,a 2=1,则其前3项的和S 3的取值范围是________.

例8.已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *),且a 2+a 4+a 6=9,则)

(l o g 9753

1a a a ++的值是( )

A .-5

B .-15

C .5

D .15

例9.在各项均为正数的等比数列{a n }中,121253+=-=a a ,,则7362232a a a a a ++=( )

A.8 B .6 C .4

D .248-

例10.若等比数列}{n a 的前n 项均为正数,且512911102e a a a a =+,则=+???++2021a a a ln ln ln _________.

例11.设等差数列}{n a 的前n 项和为S n ,若301163<<<<-a a ,,则9S 的取值范围是________.

(完整版)等比数列的概念与性质练习题

等比数列的概念与性质练习题 1.已知等比数列}{n a 的公比为正数,且3a ·9a =22 5a ,2a =1,则1a = A. 2 1 B. 22 C. 2 D.2 2. 如果1,,,,9a b c --成等比数列,那么( ) A 、3,9b ac == B 、3,9b ac =-= C 、3,9b ac ==- D 、3,9b ac =-=- 3、若数列}{n a 的通项公式是1210(1)(32),n n a n a a a =--+++=L 则 (A )15 (B )12 (C )-12 D )-15 4.在等比数列{a n }中,a 2=8,a 5=64,,则公比q 为( ) A .2 B .3 C .4 D .8 5..若等比数列{a n }满足a n a n +1=16n ,则公比为 A .2 B .4 C .8 D .16 6.若互不相等的实数,,a b c 成等差数列,,,c a b 成等比数列,且310a b c ++=,则a = A .4 B .2 C .-2 D .-4 7.公比为32等比数列{}n a 的各项都是正数,且31116a a =,则162log a =( ) A.4 B.5 C.6 D.7 8.在等比数列{}n a 中,5,6144117=+=?a a a a ,则 =10 20 a a ( ) A. 32 B.23 C. 32或23 D. -32或-23 9.等比数列{}n a 中,已知121264a a a =,则46a a 的值为( ) A .16 B .24 C .48 D .128 10.实数12345,,,,a a a a a 依次成等比数列,其中1a =2,5a =8,则3a 的值为( ) A. -4 B.4 C. ±4 D. 5 11.等比数列 {}n a 的各项均为正数,且5647a a a a +=18,则3132310log log log a a a +++L = A .12 B .10 C .8 D .2+3log 5 12. 设函数()()() * 2 ,311N n x n x x f ∈≤≤-+-=的最小值为n a ,最大值为n b ,则2n n n n c b a b =-是( ) A.公差不为零的等差数列 B.公比不为1的等比数列 C.常数列 D.既不是等差数列也不是等比数列 13. 三个数c b a ,,成等比数列,且0,>=++m m c b a ,则b 的取值范围是( ) A. ??????3, 0m B. ??????--3,m m C . ??? ??3,0m D. [)?? ? ???-3,00,m m 14.已知等差数列}{n a 的公差0≠d ,且931,,a a a 成等比数列,则 10 429 31a a a a a a ++++的值为 . 15.已知1, a 1, a 2, 4成等差数列,1, b 1, b 2, b 3, 4成等比数列,则 =+2 2 1b a a ______.

等差等比数列的性质总结

一、等差数列 1.等差数列的定义:d a a n n =--1(d 为常数)(2≥n ); 2.等差数列通项公式: * 11(1)()n a a n d dn a d n N =+-=+-∈ , 首项:1a ,公差:d ,末项:n a 推广: d m n a a m n )(-+=. 从而m n a a d m n --=; 3.等差中项 (1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2 b a A += 或b a A +=2 (2)等差中项:数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a 4.等差数列的前n 项和公式: 1()2n n n a a S += 1(1)2n n na d -=+211 ()22 d n a d n =+-2An Bn =+ (其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0) 特别地,当项数为奇数21n +时,1n a +是项数为2n+1的等差数列的中间项 ()()()12121121212 n n n n a a S n a +++++= = +(项数为奇数的等差数列的各项和等于项数乘以中间项) 5.等差数列的判定方法 (1) 定义法:若d a a n n =--1或d a a n n =-+1(常数* ∈N n )? {}n a 是等差数列. (2) 等差中项:数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a . ⑶数列{}n a 是等差数列?b kn a n +=(其中b k ,是常数)。 (4)数列{}n a 是等差数列?2 n S An Bn =+,(其中A 、B 是常数)。 6.等差数列的证明方法 定义法:若d a a n n =--1或d a a n n =-+1(常数* ∈N n )? {}n a 是等差数列. 7.提醒: (1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、n a 及n S ,其中1a 、d 称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。 (2)设项技巧: ①一般可设通项1(1)n a a n d =+- ②奇数个数成等差,可设为…,2,,,,2a d a d a a d a d --++…(公差为d ); ③偶数个数成等差,可设为…,3,,,3a d a d a d a d --++,…(注意;公差为2d ) 8..等差数列的性质: (1)当公差0d ≠时, 等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ; 前n 和211(1)()222 n n n d d S na d n a n -=+ =+-是关于n 的二次函数且常数项为0. (2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。 (3)当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=. 注:12132n n n a a a a a a --+=+=+=???,

(完整版)等比数列的性质练习题

考点1等比数列的通项与前n 项和 题型1已知等比数列的某些项,求某项 【例1】已知{}n a 为等比数列,162,262==a a ,则=10a 题型2 已知前n 项和n S 及其某项,求项数. 【例2】⑴已知n S 为等比数列{}n a 前n 项和,93=n S ,48=n a ,公比2=q ,则项数=n . ⑵已知四个实数,前三个数成等差数列,后三个数成等比数列,首末两数之和为37,中间两数之和为36,求这四个数. 题型3 求等比数列前n 项和 【例3】等比数列Λ,8,4,2,1中从第5项到第10项的和. 【例4】已知n S 为等比数列{}n a 前n 项和,13233331-+++++=n n a Λ,求n S 【例5】已知n S 为等比数列{}n a 前n 项和,n n n a 3)12(?-=,求n S . 【新题导练】 1.已知{}n a 为等比数列,6,3876321=++=++a a a a a a ,求131211a a a ++的值. 2.如果将100,50,20依次加上同一个常数后组成一个等比数列,则这个等比数列的公比为 . 3.已知n S 为等比数列 {}n a 的前n 项和,364,243,362===n S a a ,则=n ; 4.已知等比数列{}n a 中,21a =,则其前3项的和3S 的取值范围是 . 5.已知n S 为等比数列 {}n a 前n 项和,0>n a ,80=n S ,65602=n S ,前n 项中的数值最大的项为54,求100S . 考点2 证明数列是等比数列 【例6】已知数列{}n a 和{}n b 满足:λ=1a ,4321-+=+n a a n n ,)213()1(+--=n a b n n n ,其中λ为实数,+∈N n . ⑴ 对任意实数λ,证明数列{}n a 不是等比数列; ⑵ 试判断数列 {}n b 是否为等比数列,并证明你的结论.

等比数列的概念和通项公式(教学设计)

《等比数列》(第1课时)教学设计 授课地点:武威八中 授课时间:20XX年4月22日 授课人:武威六中杨志隆 一、教学目标 知识与技能 1.理解等比数列的概念; 2.掌握等比数列的通项公式; 3.会应用定义及通项公式解决一些实际问题。 过程与方法 培养运用归纳类比的方法去发现并解决问题的能力。通过实例,归纳并理解等比数列的概念,探索并掌握等比数列的通项公式,培养学生严密的思维习惯。情感态度与价值观 充分感受数列是反映现实生活的模型,体会数学是来源于现实生活,并应用于现实生活的,数学是丰富多彩的而不是枯燥无味的,提高学习的兴趣。 二、教学重点、难点 教学重点: 等比数列的概念及通项公式; 教学难点: 通项公式的推导及初步应用。 三、教学方法 发现式教学法,类比分析法 四、教学过程 (一)旧知回顾,情境导入 1. 回顾等差数列的相关性质 设计意图:通过复习等差数列的相关知识,类比学习本节课的内容,用熟知的等差数列内容来分散本节课的难点,为等比数列的学习做铺垫。 2.情境展示

情境1:“一尺之棰,日取其半,万世不竭。” 情境2:一张纸的折叠问题 把以上实例表示为数学问题,并引导学生通过观察、联想,得到两个数列: ① ??????16 1,81,41,21,1 ② 1,2,4,8,16,32,64?????? 设计意图:让学生通过观察,得到两个数列的共同特点:从第二项起,每一项与它前面一项的比都等于同一个常数.由此引入等比数列。 (二)概念探究 1.引导学生通过联想并类比等差数列给出该数列的名称:等比数列 2.归纳总结,形成等比数列的概念. 一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫等比数列,这个常数叫做等比数列的公比(引导学生经过类比等差数列的定义得出)。同时给出等比中项的定义,并和等差中项做比较,加深学生对概念的理解。 3.对等比数列概念的深化理解 给出几个数列让学生判断是否是等比数列,以加深对概念的理解。 问题1:等比数列的项可以为零吗? 问题2:等比数列的公比可以为零吗? 问题3:若0>q ,等比数列的项有什么特点?0

等比数列常考题型归纳总结很全面

等比数列及其前n 项和 教学目标: 1、熟练掌握等比数列定义;通项公式;中项;前n 项和;性质。 2、能熟练的使用公式求等比数列的基本量,证明数列是等比数列,解决与等比数列有关的简单问题。 知识回顾: 1.定义: 一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫等比数列,这个常数叫做等比数列的公比,公比通常用字母q 表示。用递推公式 表示为)2(1≥=-n q a a n n 或q a a n n =+1。注意:等比数列的公比和首项都不为零。(证明数列是 等比数列的关键) 2.通项公式: 等比数列的通项为:11-=n n q a a 。推广:m n m n q a a -= 3.中项: 如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项;其中ab G =2。 4.等比数列的前n 项和公式 ?? ? ??≠--==)1(1)1()1(11q q q a q na S n n 5.等比数列项的性质 (1)在等比数列{}n a 中,若m ,n ,p ,q N +∈且m n p q +=+,则q p n m a a a a =;特别的,若m ,p ,q N +∈且q p m +=2,则q p m a a a =2 。 (2)除特殊情况外,,...,,232n n n n n S S S S S --也成等比数列。n q q ='。 (其中特殊情况是当q=-1且n 为偶数时候此时n S =0,但是当n 为奇数是是成立的)。 4、证明等比数列的方法 (1)证: q a a n n =+1(常数);(2)证:112 ·+-=n n n a a a (2≥n ). 考点分析

等比数列的概念与性质

等比数列的概念与性质 一、知识归纳 1. ________________________________________________________________ 等比数列的概念:一般的,____________________________________________________________ ,那么这个数列 叫做等比数列,这个常数叫做,公比通常用字母q表示。即 a n J 2. 若a,G,b成等比数列,则G叫做a与b的___________ 。此时G=_____________ . 3. 等比数列的通项公式为: __________________________ 。 4. 首项为正数的等比数列的公比q =1时,数列为 ___________ 数列;当q ::: 0时,数列为 数列;当0 :::q ::: 1时,数列为___ 数列;当q时,数列为_______________ 数列。5. 等比数列性质: 在等比数列{a.}中,若m ? n二P q ,则a m a^a p a q 6. 等比数列的前n项和 当q =1 时,S n 二_____________ ;

当q =1 时,S n 二_______________ . 7用函数的观点看等比数列: (1)等比数列的通项公式是 ____________ 二、经典题目 1、判断正误: ① 1,2,4,8,16是等比数列; 1 1 1 ②数列1, — ,,,…是公比为2的等比数列; 2 4 8 a b . ③若,则a,b,c成等比数列; ④若= n n ? N ,则数列On 成等比数列; a n ⑤0,2,4,8,16 是等比数列; 2.判断下列数列玄[是否为等比数列: (1)a n =(-1 厂(W N* ; (3)a n= n 2n,n N* () () () ()(). ⑵ a n+2 n:N* ; (4)a n 二-1,n N* 思考:如何证明(判断)一个数列是等比数列?

等比数列的概念与性质练习题

等比数列的概念与性质练习题 1.已知等比数列}{n a 的公比为正数,且3a ·9a =22 5a ,2a =1,则1a = A. 2 1 B. 22 C. 2 D.2 2. 如果1,,,,9a b c --成等比数列,那么( ) A 、3,9b ac == B 、3,9b ac =-= C 、3,9b ac ==- D 、3,9b ac =-=- 3、若数列}{n a 的通项公式是1210(1)(32),n n a n a a a =--+++=则 (A )15 (B )12 (C )-12 D )-15 4.在等比数列{a n }中,a 2=8,a 5=64,,则公比q 为( ) A .2 B .3 C .4 D .8 5..若等比数列{a n }满足a n a n +1=16n ,则公比为 A .2 B .4 C .8 D .16 6.若互不相等的实数,,a b c 成等差数列,,,c a b 成等比数列,且310a b c ++=,则a = A .4 B .2 C .-2 D .-4 7.公比为32等比数列{}n a 的各项都是正数,且31116a a =,则162log a =( ) A.4 B.5 C.6 D.7 8.在等比数列{}n a 中,5,6144117=+=?a a a a ,则 =10 20 a a ( ) A. 32 B.23 C. 32或23 D. -32或-23 9.等比数列{}n a 中,已知121264a a a =,则46a a 的值为( ) A .16 B .24 C .48 D .128 10.实数12345,,,,a a a a a 依次成等比数列,其中1a =2,5a =8,则3a 的值为( ) A. -4 B.4 C. ±4 D. 5 11.等比数列 {}n a 的各项均为正数,且5647a a a a +=18,则3132310log log log a a a ++ += A .12 B .10 C .8 D .2+3log 5 12. 设函数()()() * 2 ,311N n x n x x f ∈≤≤-+-=的最小值为n a ,最大值为n b ,则2n n n n c b a b =-是( ) A.公差不为零的等差数列 B.公比不为1的等比数列 C.常数列 D.既不是等差数列也不是等比数列 13. 三个数c b a ,,成等比数列,且0,>=++m m c b a ,则b 的取值范围是( ) A. ??????3, 0m B. ??????--3,m m C . ??? ??3,0m D. [)?? ? ???-3,00,m m 14.已知等差数列}{n a 的公差0≠d ,且931,,a a a 成等比数列,则 10 429 31a a a a a a ++++的值为 . 15.已知1, a 1, a 2, 4成等差数列,1, b 1, b 2, b 3, 4成等比数列,则 =+2 2 1b a a ______.

等比数列通项公式及性质练习

等比数列通项公式及性 质练习 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

等比数列通项公式及性质 1.若等比数列的首项为98,公比为23,3 1 n a ,则该数列的项数为( ) A .3 B .4 C .5 D .6 2.在等比数列{a n }中,a 2 010=8a 2 007,则公比q 的值为( ) A .2 B .3 C .4 D .8 3.已知等比数列{a n }满足a 1+a 2=3,a 2+a 3=6,则a 7=( ) A .64 B .81 C .128 D .243 4.已知等比数列{a n }的公比为正数,且a 3·a 9=2a 25,a 2=1,则a 1等于( ) D .2 5.已知等比数列{a n },a 4=7,a 6=21,则a 8等于( ) A .35 B .63 C .21 3 D .±21 3 6.在等比数列{a n }中,a 1=1,公比|q |≠1,若a m =a 1a 2a 3a 4a 5,则m =( ) A .9 B .10 C .11 D .12 7.已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6=( ) A .5 2 B .7 C .6 D .4 2 8.等比数列{a n }的各项均为正数,公比为q ,若q 2=4,则a 3+a 4a 4+a 5 的值为( ) B .±12 C .2 D .±2 9.(2012·新课标全国卷)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( ) A .7 B .5 C .-5 D .-7 10.已知等比数列{a n }中,有a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9等于 ( ) A .2 B .4 C .8 D .16

等差数列及等比数列的性质总结

等差数列与等比数列总结 一、等差数列: 一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫做等差数列的公差,公差常用小写字母d 表示; 等差中项,如果2 b a A += ,那么A 叫做a 与b 的等差中项;如果三个数成等差数列,那么等差中项等于另两项的算术平均数; 等差数列}{a n 的通项公式:)N n (d )1-n (a a 1n *∈+=; 等差数列}{a n 的递推公式:)2n (d a a 1n n ≥+=-; 等差数列}{a n 的前n 项和公式:n S =2n )a a (n 1?+=d 2)1-n (n na 1?+ = 中12na n )2d -a (n )2d (=?+?; 【等差数列的性质】 1、d )1-n (a a m n += 【说明】n 11m a d )1-n (a d )m -n (d )1-m (a d )m -n (a =+=++=+ 2、若m 、n 、p 、q *∈N ,且m+n=p+q ,则有q p n m a a a a +=+ 【说明】q p 11n m a a )2-q p (a 2d )2-n m (a 2a a +=++=++=+ 3、md 成等差数列,公差为、 a 、a 、a m 2k m k k ??++ 【说明】md a -a a -a m k m 2k k m k =??==+++ 4、k )1-n (nk k 2k 3k k 2k S -S S -S ,S -S ,S ??成等差数列,公差为d n 2 【说明】d n )a a a (-)a a a (S -)S -S (2n 21n 22n 1n n n n 2=+??+++??++=++, ) a a a (-)a a a ()S -S (-)S -S (n 22n 1n n 32n 21n 2n 2n n 2n 3+??+++??++=++++??=,d n 2 5、数列}{a n 成等差数列Bn An S ,a a a 2, q pn a 2n 1n 1-n n n +=+=+=?+

等比数列的性质总结

等比数列性质 2. 通项公式: a n a 1q n 1 a i q n A B n a 1 q 0, A B 0 , 首项:a 1;公比:q q 推广:a n a m q n m , 从而得q n m 也或q n a m a m 3. 等比中项 (1) 如果a,A,b 成等比数列,那么 A 叫做a 与b 的等差中项?即: A ab 或A 、. Ob 注意:同号的两个数才有等比中项,并且它们的等比中项 有两个(两个等比中项互为相反数) 2 (2) 数列a n 是等比数列 a n a n 1 a n 1 4.等比数列的前n 项和S n 公式: ⑴当q 1时,S n na 1 A B n A'B n A'(代 B,A',B'为常数) a 亠 q (q 为常数,a n 0) {a .}为等比数列 a n 0) {a n }为等比数列 {a n }为等比数列 A'B n A' A,B,A',B'为常数 {a n }为等比数列 6. 等比数列的证明方法 … a * 依据定义:若 — q q 0 n 2,且n N 或a n 1 qa n {a n }为等比数列 a n 1 7. 注意 (1) 等比数列的通项公式及前 n 和公式中,涉及到 5个元素:a 1、q 、n 、a n 及&,其中a 1、 基本元素。只要已知这 5个元素中的任意 3个,便可求出其余 2个,即知3求2。 (2) 为减少运算量,要注意设项的技巧,一般可设为通项; a n aq n1 1.等比数列的定义: a n a n 1 q q On 2,且 n N ,q 称为公比 ⑵当 a 11 q n a 1 1 a n q q h 1 q a 1 a 〔 n -q A 1 q 1 q 5.等比数列的判定方法 (1) 用定义:对任意的 n,都有 a n 1 qa n 或 (2) 2 等比中项:a n a n 1a n 1 ( a n 1a n 1 (3) 通项公式:a n A B n A B 0 (4) 前n 项和公式: & A A B^S n q 称作为

等比数列通项公式及性质练习

等比数列通项公式及性质 1.若等比数列的首项为98,公比为2 3,3 1 n a ,则该数列的项数为( ) A .3 B .4 C .5 D .6 2.在等比数列{a n }中,a 2 010=8a 2 007,则公比q 的值为( ) A .2 B .3 C .4 D .8 3.已知等比数列{a n }满足a 1+a 2=3,a 2+a 3=6,则a 7=( ) A .64 B .81 C .128 D .243 4.已知等比数列{a n }的公比为正数,且a 3·a 9=2a 25,a 2=1,则a 1等于( ) A.12 B.2 2 C. 2 D .2 5.已知等比数列{a n },a 4=7,a 6=21,则a 8等于( ) A .35 B .63 C .21 3 D .±21 3 6.在等比数列{a n }中,a 1=1,公比|q |≠1,若a m =a 1a 2a 3a 4a 5,则m =( ) A .9 B .10 C .11 D .12 7.已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6=( ) A .5 2 B .7 C .6 D .4 2 8.等比数列{a n }的各项均为正数,公比为q ,若q 2=4,则a 3+a 4 a 4+a 5的值为( ) A.12 B .±1 2 C .2 D .±2 9.(2012·新课标全国卷)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( ) A .7 B .5 C .-5 D .-7 10.已知等比数列{a n }中,有a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9等于( ) A .2 B .4 C .8 D .16 11.(2009·重庆)设{a n }是公差不为0的等差数列,a 1=2且a 1,a 3,a 6成等比数列,则{a n }的前n 项和S n =( ) A.n 24+7n 4 B.n 23+5n 3 C.n 22+3n 4 D .n 2+n 12.在等比数列{a n }中, (1)若a 4=27,q =-1 3,则a 6=____________;a n =________.(2)若a 2=18,a 4=8,则 a n =________. 13.等比数列{a n }中,若a 2,a 9是方程3x 2-11x +6=0的两根,则log 2(a 1a 2…a 10)=________. 14.在7和56之间插入a ,b 两数,使7,a ,b,56成等差数列,插入c ,d 两数,使7,c , d,56 成等比数列,则a +b +c +d =________.

等比数列的性质(含解析)

等比数列的性质 班级:____________ 姓名:__________________ 1.等比数列x,3x +3,6x +6,…的第四项等于( ) A .-24 B .0 C .12 D .24 2.对任意等比数列{a n },下列说法一定正确的是( ) A .a 1,a 3,a 9成等比数列 B .a 2,a 3,a 6成等比数列 C .a 2,a 4,a 8成等比数列 D .a 3,a 6,a 9成等比数列 3.在等比数列{a n }中,T n 表示前n 项的积,若T 5=1,则( ) A .a 1=1 B .a 3=1 C .a 4=1 D .a 5=1 4.已知等比数列{a n }中,a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9等于( ) A .2 B .4 C .8 D .16 5.已知数列{a n }为等差数列,a 1,a 2,a 3成等比数列,a 1=1,则a 2 016=( ) A .5 B .1 C .0 D .-1 6.在正项等比数列{a n }中,a n +1

等比数列性质及其应用知识点总结与典型例题(经典版)

等比数列知识点总结与典型例题 1、等比数列的定义:()()*1 2,n n a q q n n N a -=≠≥∈0且,q 称为公比 2、通项公式: ()11110,0n n n n a a a q q A B a q A B q -== =??≠?≠,首项:1a ;公比:q 推广:n m n m n n n m m a a a q q q a --=?=?=3、等比中项: (1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项,即:2A ab = 或A =注意:同号的两个数才有等比中项,并且它们的等比中项有两个( (2)数列{}n a 是等比数列211n n n a a a -+?=? 4、等比数列的前n 项和n S 公式: (1)当1q =时,1n S na = (2)当1q ≠时,()11111n n n a q a a q S q q --= = -- 11''11n n n a a q A A B A B A q q = -=-?=---(,,','A B A B 为常数) 5、等比数列的判定方法: (1)用定义:对任意的n ,都有1 1(0){}n n n n n n a a qa q q a a a ++==≠?或 为常数,为等比数列 (2)等比中项:21111(0){}n n n n n n a a a a a a +-+-=≠?为等比数列 (3)通项公式:()0{}n n n a A B A B a =??≠?为等比数列 6、等比数列的证明方法: 依据定义:若 ()()*1 2,n n a q q n n N a -=≠≥∈0且或1{}n n n a qa a +=?为等比数列 7、等比数列的性质: (2)对任何*,m n N ∈,在等比数列{}n a 中,有n m n m a a q -=。 (3)若*(,,,)m n s t m n s t N +=+∈,则n m s t a a a a ?=?。特别的,当2m n k +=时,得2n m k a a a ?= 注:12132n n n a a a a a a --?=?=??? 等差和等比数列比较:

等比数列及其性质

§6.3 等比数列 一.课程目标 1.理解等比数列的概念,掌握等比数列的通项公式与前n 项和公式; 2.能在具体的问题情境中识别数列的等比关系,并能用有关知识解决相应的问题; 3.了解等比数列与指数函数的关系. 二.知识梳理 1.等比数列的概念 (1)如果一个数列从第2项起,每一项与它的前一项的比等于同一个非零常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q (q ≠0)表示. 数学语言表达式:a n a n -1=q (n ≥2,q 为非零常数),或a n +1a n =q (n ∈N *,q 为非零常数). (2)如果三个数a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项,其中G =±ab . 2. 等比数列的通项公式及前n 项和公式 (1)若等比数列{a n }的首项为a 1,公比是q ,则其通项公式为a n =a 1q n - 1; 通项公式的推广:a n =a m q n - m . (2)等比数列的前n 项和公式:当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n ) 1-q =a 1-a n q 1-q . 3.等比数列的性质 已知{a n }是等比数列,S n 是数列{a n }的前n 项和. (1)若k +l =m +n (k ,l ,m ,n ∈N *),则有a k ·a l =a m ·a n . (2)数列}{},{),}({n n n n b a a c a c ?≠?0(}{n b 是等比数列),}{2 n a ,}{ n a 1 等也是等比数列。(3)相隔等距离的项组成的数列仍是等比数列,即a k ,a k +m ,a k +2m ,…仍是等比数列,公比为q m . (4)当q ≠-1,或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n . (5)等比数列{a n }的单调性: 当q >1,a 1>0或0<q <1,a 1<0时,数列{a n }是递增数列; 当q >1,a 1<0或0<q <1,a 1>0时,数列{a n }是递减数列; 当q =1时,数列{a n }是常数列. (6)当n 是偶数时,q S S ?=奇偶; 当n 为奇数时,q S a S ?+=偶奇1 三.考点梳理

等比数列性质教学教案

等比数列(二) 教学重点 等比数列的通项公式、性质及应用. 教学难点 灵活应用等比数列的定义及性质解决一些相关问题. 教学过程 一、复习 1.等比数列的定义. 2.等比数列的通项公式: ) 0,(11 1≠?=-q a q a a n n , ) 0,(≠?=-q a q a a m m n m n , ) 0,(≠=B A AB a n n 3.{an }成等比数列?) 0,( 1 ≠∈=+ +q N n q a a n n 二、讲解新课: 思考:类比等差中项的概念,你能说出什么是等比中项吗? 1.等比中项:如果在a 与b 中间插入一个数G ,使a, G ,b 成等比数列,那么称这个数G 为a 与b 的等比中项. 即G=±ab (a,b 同号) ,则ab G ab G G b a G ±=?=?=2 , 反之,若G 2 =ab,则G b a G = ,即a,G ,b 成等比数列 ∴a,G ,b 成等比数列?G 2 =ab (a ·b ≠0) 例1.三个数成等比数列,它的和为14,它们的积为64,求这三个数. 解:设m,G ,n 为所求的三个数, 有已知得m+n+ G =14, 64=??G n m , ,2 mn G = ,4643 =?=∴G G ???=?=+∴,16,10n m n m ?? ?==???==∴. 8, 2,2,8n m n m 或 ∴这三个数为8,4,2或2,4,8. 解法二:设所求三个数分别为 , ,,aq a q a 则 , 4,643 =∴=a a 又 ,14=++aq a q a 14 444=++∴ q q 解得 , 21,2= =q q 或 ∴这三个数为8,4,2或2,4,8. 2.等比数列的性质:若m+n=p+k ,则k p n m a a a a = 在等比数列中,m+n=p+q , k p n m a a a a ,,,有什么关系呢?

高中数学等比数列的性质总结

等比数列性质 (一)、等比数列的公式 1. 等比数列的定义: ()()*1 2,n n a q q n n N a -=≠≥∈0且,q 称为公比 2. 通项公式: ()1110n n a a q a q -=?≠, 首项:1a ;公比:q n m n m a a q -=, 3. 等比中项 (1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项.即:2 A ab = 或A =注意:同号的两个数才有等比中项,并且它们的等比中项有两个(两个等比中项互为相反数) (2)数列{}n a 是等比数列?211n n n a a a -+=? 4. 等比数列的前n 项和n S 公式: (1) 当1q =时, 1n S na = (2) 当1q ≠时,() 11111n n n a q a a q S q q --==-- 11''11n n n a a q A A B A B A q q =-=-?=---(,,','A B A B 为常数) 5. 等比数列的判定方法 (1)用定义:对任意的n,都有11(0)n n n n n a a qa q q a a ++==≠或为常数,?{}n a 为等比数列 (2) 等比中项:211n n n a a a +-=(11n n a a +-≠0)?{}n a 为等比数列 (3) 通项公式:()0n n a A B A B =??≠?{}n a 为等比数列 (4) 前n 项和公式:()'',,','n n n n S A A B S A B A A B A B =-?=-或为常数?{}n a 为等比数列 6. 等比数列的证明方法 依据定义:若()()*1 2,n n a q q n n N a -=≠≥∈0且或1n n a qa +=?{}n a 为等比数列 7. 注意 (1)等比数列的通项公式及前n 和公式中,涉及到5个元素:1a 、q 、n 、n a 及n S ,其中1a 、q 称作为 基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。 (2)为减少运算量,要注意设项的技巧,一般可设为通项;11n n a a q -= 如奇数个数成等差,可设为…,22,,,,a a a aq aq q q …(公比为q ,中间项用a 表示);

等比数列及其性质复习讲义(教师版)

<教师备案>本讲内容分成两部分:3.1等比数列的基本量;3.2等比数列的性质初步.本讲内容较少, 可以与上一讲进行一个时间上的均衡.本讲思路是:先从直观上认识等比数列,通过一些具体的数列感受等比数列并学习等比中项,之后再学习等比数列的通项公式,熟悉通项公式以及正确计算等比数列的项数.再学习等比数列的求和公式,以及一些简单的性质.希望把概念分开讲解,分别配例题.国际象棋的故事在暑期指数函数已经讲过了,此处就尽量不用了,由汉诺塔引入. 等比数列引入 汉诺塔 在印度,有这么一个古老的传说:在世界中心贝拿勒斯(在印度北部)的圣庙里,印度教的主神大梵天在创造世界的时候做了三根金刚石柱子,在其中一根柱子上从下到上地放着由大到小的64片黄金圆盘,这就是所谓的汉诺塔(如下图).不论白天黑夜,总有一个僧侣在按照下面的法则移动这些圆盘:一次只移动一片.......,不管在哪根柱子上,小圆盘必在大圆盘上面...........当所有的金盘都从梵天放好的那根柱子上移到另外一根上时,世界就将在一声霹雳中消灭,梵塔、庙宇和众生都将同归于尽.故汉诺塔问题又被称为“世界末日问题.” 3.1等比数列基本量计算 知识切片 数列1级 与数列的第一次 亲密接触 等比数列及其性质

汉诺塔初始模型 64 636221C B A ?????? 要把圆盘移动到另外一根柱子上,至少需要移动多少次呢?设有n 个圆盘,要从A 移动到C ,至 少需要移动的次数为n a .易知12n =,时,1213a a ==,,3n =的时候,可以考虑先将上面两个小的移 到B 上,要23a =次,再将最大的那个移到C 上,要1次,最后将B 上的两个移到C 上,要23a =次,总共要2217a +=次. 对于一般的n ,我们可以类似考虑(如下图):先将上面1n -个圆盘移到B 上,要1n a -次;然后将最大的那个盘子移到C 上,要1次移动;最后再将B 上的那1n -个圆盘移到C 上,要1n a -次.这种方法需要的次数为111121n n n a a a ---++=+. n -1 1 n ??? ???A B C 22C B A ?????? n 1n -1 ① ② n ??????A B C 12 ③ 下面简单说明一下,至少要移动的次数121n n a a -=+.只需要考虑最大的那个圆盘移动到C 上的时 候,此时,比较小的1n -个圆盘必定是图②中的摆放方式,这1n -个圆盘从A 到B 要1n a -次,然后这1n -个盘子移到C 又要1n a -次,因此总共至少要121n a -+次才行. 综上可得到数列{}n a 的递推公式121n n a a -=+,则 232121231212212221222121n n n n n n n a a a a a -----=+=++=+++= =++ ++=- (也可变形为()1121n n a a -+=+,于是()()()2112112121212n n n n n a a a a ---+=+=+==+=. ) 假设一秒钟能移动一次,那完成目标需要的时间就是6421-秒,大概是5845亿年,地球是远撑不到那个时候的. 当然,我们不是要探讨地球什么时候毁灭,而是要研究像231222, ,,,这样的数列,比如怎么求和,类似于这样的数列就是等比数列.

(完整版)等比数列的概念与性质练习题.doc

等比数列的概念与性质练习题 1. 已知等比数列 { a n } 的公比为正数,且 a 3 · a 9 =2 a 2 , a 2 =1,则 a 1 = 5 A. 1 B. 2 C. 2 D.2 2 2 2. 如果 1, a,b,c, 9 成等比数列,那么( ) A 、 b 3, ac 9 B 、 b 3, ac 9 C 、 b 3, ac 9 D 、 b 3, ac 9 3、若数列 a n 的通项公式是 a n ( 1)n (3n 2), 则 a 1 a 2 L a 10 ( A ) 15 ( B ) 12 ( C ) D ) 4. 在等比数列 { a } 中, a =8, a = 64,,则公比 q 为( ) n 2 5 A . 2 B .3 C . 4 D . 8 5..若等比数列 { a n } 满足 a n a n+1 =16 n ,则公比为 A .2 B . 4 C . 8 D . 16 6. 若互不相等的实数 a, b,c 成等差数列, c, a,b 成等比数列,且 a 3b c 10 ,则 a A . 4 B . 2 C .- 2 D .- 4 7.公比为 3 2 等比数列 { a n } 的各项都是正数,且 a 3a 11 16 ,则 log 2 a 16 =( ) A. 4 B. 5 C. D. 8.在等比数列 a n 中, a 7 a 11 6, a 4 a 14 a 20 ( ) 5 ,则 a 10 A. 2 B. 3 C. 2 或 3 D. - 2 或- 3 3 2 3 2 3 2 9.等比数列 { a n } 中,已知 a 1a 2 a 12 6 4 ,则 a 4 a 6 的值为( ) A . 16 B .24 C .48 D . 128 10. 实数 a 1, a 2 , a 3 , a 4 ,a 5 依次成等比数列,其中 a 1 =2, a 5 =8,则 a 3 的值为( ) A. - 4 B.4 C. ± 4 D. 5 11.等比数列 a n 的各项均为正数,且 a 5a 6 a 4 a 7 = 18,则 log 3 a 1 log 3 a 2 L log 3 a 10 = A . 12 B .10 C . 8 D . 2+ log 3 5 12. 设函数 f x x 1 2 n 1 x 3, n N * 的最小值为 a n ,最大值为 b n ,则 c n b n 2 a n b n 是( ) A. 公差不为零的等差数列 B. 公比不为 1的等比数列 C. 常数列 D. 既不是等差数列也不是等比数列 13. 三个数 a,b,c 成等比数列,且 a b c m, m 0 ,则 b 的取值范围是( ) A. 0, m B. m, m C. 0, m D. m,0 0, m 3 3 3 3 14. 已知等差数列 { a n } 的公差 d 0 ,且 a 1 , a 3 , a 9 成等比数列,则 a 1 a 3 a 9 的值为 . a 2 a 4 a 10 15. 已知 1 2 1 2 3 a 1 a 2 ______ . 1, a , a , 4 成等差数列, 1, b , b , b , 4 成等比数列,则 b 2 1

相关文档
最新文档