专题:带电粒子在匀强电场中的运动教案+练习

专题:带电粒子在匀强电场中的运动教案+练习
专题:带电粒子在匀强电场中的运动教案+练习

13.9 带电粒子在匀强电场中的运动(2课时)

第1课时

一、教学目标

1.使学生理解并掌握带电粒子在电场中运动的特点和规律,能够正确分析和解答带电粒子在电场中的加速和偏转等方面的问题.

2.培养学生综合应用物理知识对具体问题进行具体分析的能力.

二、教学重点、难点分析:带电粒子在电场中的运动是电场知识的重要应用,注重分析判断带电粒子在电场力作用下的运动情况,掌握运用力的观点和能的观点求解带电粒子运动的思路和方法.带电粒子在电场中加速和偏转问题将使用大部分力学知识,所以在复习中应加以对照,帮助学生理解掌握.

三、教学方法:实验演示,启发式教学,计算机辅助教学

四、教具:实物投影仪(或幻灯片),投影片,平抛运动速度、位移分解图,示波管原

理,由沙摆得出简谐运动位移-时间图像装置图,电子束演示仪、示波管、示波器、讯号源、220V交流电源,计算机(模拟示波管YY和XX极板使电子束的偏转和扫描作用),自制教学课件

五、教学过程。

(一)引入新课

1、激发兴趣

【演示】利用示波器产生动态的正弦图形,指出这是电子经电场加速后又在两个相互垂直的电场作用下偏转的结果。

2、介绍带电粒子:一般把重力可忽略不计的微观粒子称为带电粒子,如质子、电子、原子核、离子等。

利用电场使带电粒子加速或偏转在电子技术和高能物理中有重要应用,如北京正负电子对撞机是利用电场加速的实例,刚才看到的示波器又是电子在加速及偏转的实例。

下面我们共同探讨带电粒子在电场中的运动规律。

【板书】第九节带电粒子在匀强电场中的运动

(二)进行新课

【板书】一、带电粒子的加速

1、匀强电场中的加速问题

如课本图13-50所示,在正极板处有一带正电离子,电量为q,初速度为v1=0,不计重

力;两竖直平行金属板间距离为d,电势差为U,有几种方法可求出正离子到达负极板时的速度v

学生小组讨论后,总结:

(1)运用运动学和动力学方法求解,因电场力为恒力,a=F/m=Uq/dm 、v 22-v 12

=2ad ,可求出v 2=m qU /2

(2)运用能量观点求解,qU=mv 22/2-mv 12/2,可求出v 2= m qU /2 (请同学比较在题设条件下那种方法更简便)。

提出问题:如何解决带电粒子在非匀强电场中的加速问题?

如课本图13-51所示,q 在金属丝和金属板间非匀强电场中加速,电场力为变力,只可用能量观点求解。

【板书】 2、非匀强电场中的加速问题qU=△E k

【板书】二、带电粒子在匀强电场中的偏转

【板图】(或投影)如课本图13-52所示

已知:带电粒子电性为负,电量大小为q ,质量为m ,重力不计,初速度v 0垂直于场强。 匀强电场:真空中YY ˊ极板水平放置,二板间距为d ,电势差为U ,板长为l 。

让学生讨论下述几个问题:-q 受力情况如何?运动性质如何?它的运动与力学中的那种运动相似?用什么方法研究-q 运动规律从而求出它射出电场时在竖直方向偏移原来运动方向的距离y 、末速度v 及偏转角度φ?(可利用平抛运动的投影图帮学生回忆)

【演示】电子束在电场中偏转,给出电场方向,先是让学生猜想电子束偏转方向如何,再用实验验证,以调动学生的积极性,然后再做定量分析。

这种带电粒子的匀变速曲线运动,可以用能量观点研究,也可以用运动分解与合成观点研究,要求y 和v 、φ,按本题条件,我们用后一种观点进行研究。 【板书】水平:匀速运动,v x =v 0,l =v 0t

竖直:初速度为零,加速度a=qU/md ,匀加速直线运动,v y =at ,y=at 2/2,

【板图】(或投影)

可求出d

mv U ql y 2022= d mv qlU v v x y 20tan ==φ 220y v v v += 作出末速度v 的反向延长线,交入射线于O ˊ点,可证d mv qlU B O y 20tan ='=

φ,它的物理意义是,粒子好像是从入射线中点O ˊ点直接射出一样。 思考:带电粒子在电场中位移大小及方向?(22l y s +=,φαtan 2

1tan ==l y )学生自学课本第139页例题2回答应注意的问题:(1)合运动和分运动具有等势性;(2)合运动和分运动具有独立性。即互不干涉、独立进行。

下面介绍使带电粒子先加速后偏转在电子技术中的应用——示波器。

【演示】示波器荧光屏光点上下移动,后又展开成正弦图形,然后介绍示波器核心——示波管。

【板书】三、示波管

【课件演示】示波管构造及工作原理

1.构造及功用: (1)电子枪:发射并加速电子

(2)偏转电极YY ˊ:使电子束竖直方向偏转(加信号电压)

XX ˊ:使电子束水平方向偏转(加扫描电压)

(3)荧光屏:

(4)玻壳。

2.原理:

(1)YY ˊ作用:被电子枪加速的电子在YY ˊ电场中作匀变速曲线运动,出电场后作匀速直线运动打到荧光屏上。见课本图14-56,由几何知识得:22l

l L y y +=',同学们自

己推导,偏移:

y ˊ=(U l L d

mv ql l L )2(tan )220+=+θ,若信号电压t U U ωsin max =,则: y ˊ=U l L d

mv ql l L )2(tan )220+=+θt U ωsin max ==t Y ωsin max ' y ˊ随信号电压同步调变化,但由于视觉暂留及荧光物质的残光特性,我们便看到一条亮线。

如何将这一条竖直亮线转化成正弦图形呢?就要加扫描电压。

(2)XX ˊ的作用:

【演示】示波器的扫描过程(扫描电压由慢至快)

【投影】由简谐运动物体——砂摆直接得出振动图象演示,学生讨论:以匀速拉出木板类推扫描原理。

总结:在扫描电压一个周期内,信号电压也变化一个周期,荧光屏将出现一完整的正弦图形。

(三)课堂小结

1.带电粒子在匀强电场中的运动:加速和偏转。

处理方法:运动学观点或能的观点。

2.示波管的构造及工作原理

第2课题

一、教学目标

1.使学生进一步理解并掌握带电粒子在电场中运动的特点和规律,能够正确分析和解答带电粒子在电场中的加速和偏转等方面的问题.

2.培养学生综合应用物理知识对具体问题进行具体分析的能力.

二、教学重点、难点分析

带电粒子在电场中的运动是电场知识的重要应用,注重分析判断带电粒子在电场力作用

下的运动情况,掌握运用力的观点和能的观点求解带电粒子运动的思路和方法.带电粒子在电场中加速和偏转问题将使用大部分力学知识,所以在复习中应加以对照,帮助学生理解掌握.

三、教学方法:讲练结合,启发式教学,学案导学

四、教具:幻灯片、投影仪

五、教学过程。

(一)引入新课

复习提问

上节课我们学习了带电粒子在匀强电场中的运动专题,带电粒子在匀强电场中的运动有加速和偏转两种情况,可以用什么方法求解?

(1)运动学和动力学方法(运动的分解与合成、运动学公式、牛顿运动定律)

(2)运用能量观点求解(动能定理、能量守恒定律)

这节课我们继续学习带电粒子在电场中的运动。

(二)进行新课

1.作业讲评

根据上节课学生作业中出现的问题进行适当评析。

2.例题精讲

(1)带电粒子在电场中运动判断与分析

①带电粒子在电场中的直线运动

【例1】如下图所示,在匀强电场E中,一带电粒子-q的初速度v0恰与电场线方向相同,则带电粒子-q在开始运动后,将(C)

A.沿电场线方向做匀加速运动

B.沿电场线方向做变加速运动

C.沿电场线方向做匀减速运动

D.偏离电场线方向做曲线运动

思考:带电粒子-q的初速度v0恰与电场线方向相反,情况怎样?

解析:带电粒子-q受力有什么特点?方向与初速度v0的方向的关系怎么样?

②带电粒子在电场中的曲线运动

【例2】如下图所示,两平行金属板间有匀强电场,场强方向指向下板,一带电量为-q 的粒子,以初速度v0垂直电场线射入电场中,则粒子在电场中所做的运动可能

是(C)

A.沿初速度方向做匀速运动

B.向下板方向偏移,做匀变速曲线运动

C.向上板方向偏移,轨迹为抛物线

D.向上板偏移,轨迹为一段圆弧

将带电粒子的运动与重力场中的平抛运动类比,寻求解决问题的思路.建立直角坐标系,将运动分解为垂直于场强方向和沿场强方向分别加以讨论.

解析:在匀强电场中,-q受电场力的特点为:方向与电场线方向相反,大小恒定,而初速度方向与电场力方向垂直,所以粒子一定做匀变速曲线运动,轨迹为抛物线.(2)研究带电粒子在电场中运动的方法

①运用牛顿定律研究带电粒子在电场中运动

基本思路:先用牛顿第二定律求出粒子的加速度,进而确定粒子的运动形式,再根据带电粒子的运动形式运用相应的运动学规律求出粒子的运动情况.

【例3】如下图所示,一个质量为m,带电量为q的粒子,从两平行板左侧中点沿垂直场强方向射入,当入射速度为v0时,恰好穿过电场而不碰金属板.要使粒子的入射速度变为v 0/2,仍能恰好穿过电场,则必须再使(AD)

A.粒子的电量变为原来的1/4

B.两板间电压减为原来的1/2

C.两板间距离增为原来的4倍

D.两板间距离增为原来的2倍

解析:带电粒子在电场中做匀变速曲线运动.由于粒子在平行板的方向上不受力,在垂直板方向受到恒定不变的电场力作用,因而可将此匀变速曲线运动视为沿平行板方向上的匀速直线运动与垂直板的方向上的初速度为零的匀加速直线运动的合运动.粒子恰好穿过电场时,它沿平行板的方向发生位移L所用时间,与垂直板方向上发生位移d/2所用时间相等,

设两板电压为U,则有:

2 L md v Uq

利用牛顿运动定律和运动学公式分解分别表示两个分运动遵从的规律.正确理解恰好穿过电场的含义.

运动生理学教案

《运动生理学教案》 绪论 教学目的与要求:使学生了解运动生理学研究对象和任务;掌握机体的基本生理特性及生理机能调节的方式和特点;了解运动生理学研究不同水平及方法。教学主要内容: 第一节生命的基本特征 第二节人体生理机能的调节 第三节人体生理机能调节的控制 第四节运动生理学研究的基本方法 第五节运动生理学的历史与研究现状 第六节运动生理学的发展趋势 教学重点难点:运动生理学研究的任务;机体的基本生理特性和生理机能调节的方式。 教学方法:讲授法 教学时数:2课时 教学过程: 第一课时 第一节生命的基本特征 一、概述 1、运动生理学的概念 人体生理学(human physiology)是生命科学的一个分支,是研究人体生命活动规律的科学,是医学科学的重要基础理论学科。 运动生理学(sports physiology)是人体生理学的分支,是专门研究人体的运动能力及对运动的反应和适应过程的科学,是体育科学中一门重要的应用基础理

论学科。 2、运动生理学的任务 在对人体生命活动规律有了基本认识的基础之上,进一步探讨体育运动对人体机能影响的规律及机制,阐明体育教学和运动训练过程中的生理学原理,研究不同年龄、性别、和训练水平的人群进行运动时的生理特点,以达到促进儿童少年的正常发育、增强全民体质、延缓衰老、防治某些疾病,提高运动机能术水平的目的。 二、生命的基本特征 (1)新陈代谢 新陈代谢(metabolism)是生物体自我更新的最基本的生命活动过程。新陈代谢包括同化和异化两个过程。生物体不断地从体外环境中摄取有用的物质,使其合成、转化为机体自身物质的过程,称为同化过程(assimilation);生物体不断地将体内的自身物质进行分解,并把所分解的产物排出体外,同时释放出能量供应机体生命活动需要的过程,称为异化过程(dissimilation)。在物质合成时,即在同化过程中需要吸收能量;而在物质分解时,即在异化过程中将释放出能量。因此,在新陈代谢过程中,物质代谢(material metabolism)和能量代谢(energy metabolism)是同时进行的。新陈代谢是生命活动的最基本特征,新陈代谢一旦停止,生物体的生命活动也就结束。 (2)兴奋性 在生物体内可兴奋组织具有感受刺激、产生兴奋的特性,称为兴奋性(excitability)。能引可兴奋组织产生兴奋的各种环境变化称为刺激(stimulus)。神经、肌肉和腺体等组织受刺激后,能迅速地产生可传布的动作电位,即发生兴奋,这些组织被称为可兴奋组织。在生理学中将这些可兴奋组织接受刺激后所产生的生物电反应过程及其表现,称之为兴奋(excitation)。因此,可兴奋组织感受刺激产生兴奋能力的高低反映了该组织兴奋性的高低。 可兴奋组织有两种基本的生理活动过程。一种是由相对静止状态转变为活动状态,或是兴奋性由弱变强,这种活动是兴奋活动;另一种是由活动状态转变为相对静止状态,或是兴奋性由强变弱,这种活动是抑制(inhibition)活动。兴奋和抑制二者是对立统一的生理活动过程。 (3)应激性

一、带电粒子在匀强磁场中匀速圆周运动基本问题

一、带电粒子在匀强磁场中匀速圆周运动基本问题 找圆心、画轨迹是解题的基础。带电粒子垂直于磁场进入一匀强磁场后在洛伦兹力作用下必作匀速圆周运动,抓住运动中的任两点处的速度,分别作出各速度的垂线,则二垂线的交点必为圆心;或者用垂径定理及一处速度的垂线也可找出圆心;再利用数学知识求出圆周运动的半径及粒子经过的圆心角从而解答物理问题。 二、带电粒子在磁场中轨道半径变化问题 导致轨道半径变化的原因有:①带电粒子速度变化导致半径变化。如带电粒子穿过极板速度变化;带电粒子使空气电离导致速度变化;回旋加速器加速带电粒子等。②磁场变化导致半径变化。如通电导线周围磁场,不同区域的匀强磁场不同;磁场随时间变化。③电量变化导致半径变化。如吸收电荷等。总之,由 看m、v、q、B中某个量或某两个量的乘积或比值的变化就会导致带电粒子的轨道半径变化。 (06年全国2)如图所示,在x<0与x>0的区域中,存在磁感应强度大小分别为B1与B2的匀强磁场,磁场方向垂直于纸面向里,且B1>B2。一个带负电的粒子从坐标原点O以速度v沿x轴负方向射出,要使该粒子经过一段时间后又经过O点,B1与B2的比值应满足什么条件? 解析:粒子在整个过程中的速度大小恒为v,交替地在xy平面内B1与B2磁场区域中做匀速圆周运动,轨迹都是半个圆周。设粒子的质量和电荷量的大小分别为m和q,圆周运动的半径分别为和r2,有 r =①r2=② 1 分析粒子运动的轨迹。如图所示,在xy平面内, 粒子先沿半径为r1的半圆C1运动至y轴上离O点距离 为2 r1的A点,接着沿半径为2 r2的半圆D1运动至y轴的O1点,O1O距离 d=2(r2-r1)③ 此后,粒子每经历一次“回旋”(即从y轴出发沿半径r1 的半圆和半径为r2的半圆回到原点下方y轴),粒子y坐标就减 小d。 设粒子经过n次回旋后与y轴交于O n点。若OO n即nd满 足nd=2r1④ 则粒子再经过半圆C n+1就能够经过原点,式中n=1,2,3,……

高一物理第二章 匀变速直线运动专题练习(word版

一、第二章 匀变速直线运动的研究易错题培优(难) 1.某人驾驶一辆汽车甲正在平直的公路上以某一速度匀速运动,突然发现前方50m 处停着一辆乙车,立即刹车,刹车后做匀减速直线运动。已知刹车后第1个2s 内的位移是24m ,第4个2s 内的位移是1m 。则下列说法中正确的是( ) A .汽车甲刹车后做匀减速直线运动的加速度大小为2m/s 2 B .汽车甲刹车后做匀减速直线运动的加速度大小为23 12 m/s 2 C .汽车甲刹车后停止前,可能撞上乙车 D .汽车甲刹车前的速度为13.9m/s 【答案】A 【解析】 【分析】 【详解】 ABD .假设汽车甲8s 内一直做匀减速直线运动,根据2 41-=3x x aT 得 22 412 12423m/s m/s 33412 x x a T --= ==-? 根据2 101112 x v t at =+ 得初速度为 2 0123242212m/s 13.9m/s 2 v +??=≈ 速度减为零的时间为 00013.9 s 7.3s 2312 v t a --= ==- 可知汽车甲在8s 前速度减为零。 设汽车甲的加速度为a ,根据2 101112 x v t at =+ 得 02422v a =+ 汽车甲速度减为零的时间为 0000--v v t a a = = 采用逆向思维,最后2s 内的位移为 201 61m 2v x a a '=--=-()() 联立解得 a =-2m/s 2 v 0=14m/s

选项A 正确,BD 错误。 C .汽车甲刹车到停止的距离 22 000014 m 49m 50m 22(2) v x a --===?-< 可知甲不能撞上乙车,选项C 错误。 故选A 。 2.甲、乙两车在同一水平路面上做直线运动,某时刻乙车在前、甲车在后,相距x =6m ,从此刻开始计时,乙做匀减速运动,两车运动的v -t 图象如图所示。则在0~12s 内关于两车位置关系的判断,下列说法正确的是( ) A .t =4s 时两车相遇 B .t =4s 时两车间的距离为4m C .0~12s 内两车有两次相遇 D .0~12s 内两车有三次相遇 【答案】D 【解析】 【分析】 【详解】 AB .题中图像与时间轴围成的面积可表示位移,0~4s ,甲车的位移为48m ,乙车的位移为40m ,因在t =0时,甲车在乙车后面6m ,故当t =4s 时,甲车会在前,乙车会在后,且相距2m ,所以t =4s 前两车第一次相遇,t =4s 时两车间的距离为2m ,故AB 错误; CD .0~6s ,甲的位移为60m ,乙的位移为54m ,两车第二次相遇,6s 后,由于乙的速度大于甲的速度,乙又跑在前面,8s 后,甲车的速度大于乙的速度,两车还会有第三次相遇,当t =12s 时,甲的位移为84m ,乙的位移为72m ,甲在乙的前面,所以第三次相遇发生在t =12s 之前,所以在0~12s 内两车有三次相遇,故C 错误,D 正确。 故选D 。 3.一列复兴号动车进站时做匀减速直线运动,车头经过站台上三个立柱A 、B 、C ,对应时刻分别为t 1、t 2、t 3,其x -t 图像如图所示。则下列说法正确的是( )

等效法在复合场中圆周运动应用

探讨等效法在匀强电场中竖直面圆周运动的应用 王 强 物体仅在重力场中的运动是最常见、最基本的运动,但是对处在匀强电场中的宏观物体而言,它的周围不仅有重力场,还有匀强电场,同时研究这两种场对物体运动的影响,问题就会变得复杂一些。此时,若能将重力场与电场合二为一,用一个全新的“复合场”(可形象称之为“等效重力场”)来代替,不仅能起到“柳暗花明”的效果,同时也是一种思想的体现。那么,如何实现这一思想方法呢? 首先我们明确一下等效法,等效法是把复杂的物理现象、物理过程转化为简单的物理现象、物理过程来研究和处理的一种科学思想方法。它是物理学研究的一种重要方法。在中学物理中,合力与分力、合运动与分运动、总电阻与分电阻、平均值、有效值等,都是根据等效概念引入的。常见的等效法有“分解”、“合成”、等效类比、等效替换、等效变换,等效简化等,从而化繁为简、化难为易。匀强电场有许多性质与重力场非常相似,所以在有些电场问题解题的过程中,可以将电场与重力场加以比较,将匀强电场等效类比为重力场中熟悉的模型问题。今天我们将用此方法研究带电物体在匀强电场中的运动。 一、寻找竖直面内圆周运动“等效最低点”方法 1、在只有重力场的情况最低点是速度最大位置即动能最大,重力做正功最多,重力势能最小动能最大。当既有重力场和匀强电场时,合场也是恒定不变的,与重力场类似。所以可以把重力和电场力合成,求出合把这个合力等效成重力,我们把该合力称之为等效重力,此时相当于只有等效重力作用 ,那么运动过程中沿着等效重力的方向,合力做正功最多,则势能最少的地点则为等效最低点。 2、 受力平衡,最低点可以静止 在重力场中当物体处于静止和平衡时一点在最低点,且此时重力作用线与绳子拉力在一条线且沿半径背向圆心,如图1所示。当物体静止时,图 示位置即为最低点。带电粒子在复合场中做圆周运动的过程中与只有重力 场类似,由于电场重力场恒,所以合力是恒定的,因此当物体静止时一定 是平衡,此时等效重力的方向也应该和绳子的拉力在一条直线上,且也沿半径背向圆心。把我以上特点在匀强电场中寻找等效最低点方便快捷,从而使复杂问题简单化。 例 1 、如图2 在水平向左的匀强电场中,有一质量为m 带正电的小球, 用长为L 的绝缘细线悬挂于O 点,当小球所受到的电场力与重力大小相等,现给小球一个垂直于细线的初速度,使小球恰能在竖直面内做圆周运动.试问:小球在做圆 周运动的过程中,哪一位置速度最大. 解析 由于已经知道了重力 与电场力大小相等, 又已知小球 带正电,根据小球在复合场中的特 点, 则可以根据平行四边形定则 ( 如图3) 得出等效重力的方向, 与竖直方向成 4 5度角. 由此很 容易就知道速度最大的位置在绳子与竖直方向成 4 5度角的位置. ( 如图4 ) 二、寻找竖直面内圆周运动“物理最高点”方法 e mg 图1 图 2 图 3 图 4

带电粒子在圆形边界匀强磁场中的圆周运动例析

带电粒子在圆形边界匀强磁场中的圆周运动例析 (浙江永康二中 吕未寒 321300) 带电粒子以一定速度垂直射入匀强磁场中,洛伦兹力充当向心力,粒子将做匀速圆周运动。解决带电粒子在圆形匀强磁场中的偏转解题基本思路:(四项基本原则) ●画轨迹——根据初速度和受力方向画 ●定圆心——根据两条直径相交在圆心定 ●找关系——找力学关系、线度关系、角度关系 ●求变量——求半径或长度、周期或时间、其它物理量 解题时画好辅助线(半径、速度、轨迹圆的圆心、连心线)。偏转角度θ可由R r =2 tan θ求出,经历时间由qB m t θ=得出。注意:带电粒子运动具有对称性,射出线的反向 延长线必过磁场圆的圆心。 带电粒子在磁场中做匀速圆周运动的三个基本公式: ①洛伦兹力提供向心力 r m v qvB 2 = ②轨迹半径 ,qB m v r = ③周期 qB m T π2= (T 与r ,v 无关) 一、 临界值问题 例题1.如图所示,两个同心圆,半径分别为r 和2r ,在两圆之间的环形区域内存在垂直纸面向外的匀强磁场,磁感应强度为B 。圆心O 放射源,放出粒子的质量为m ,带电量为q ,假设粒子速度方向都和纸面平行。 (1)图中箭头表示某一粒子初速度的方向,OA 与初速度方向夹角为60°,要想使该粒子经过磁场第一次通过A 则初速度的大小是多少? (2)要使粒子不穿出环形区域,则粒子的初速度不能超过多少? 解:(1)如图所示,设粒子在磁场中的轨道半径为R 1,则由几何关系得 331r R = (2分) 由1 2 11R v m B qv =(2分)

得m Bqr v 331= (2分) (2)设粒子在磁场中的轨道半径为R 2, 则由几何关系 22 222)2(r R R r +=- (1分) 得r R 4 3 2= (1分) 由 2 22 2R v m B qv = (2分) 得m Bqr v 432= (1分) 例题2.甲图为质谱仪的原理图.带正电粒子从静止开始经过电势差为U 的电场加速后,从G 点垂直于MN 进入偏转磁场.该偏转磁场是一个以直线MN 为上边界、方向垂直于纸面向外的匀强磁场,磁场的磁感应强度为B ,带电粒子经偏转磁场后,最终到达照相底片上的H 点.测得G 、H 间的距离为 d ,粒子的重力可忽略不计. (1)设粒子的电荷量为q ,质量为m ,试证明该粒子的比荷为:22 8q U m B d =; (2)若偏转磁场的区域为圆形,且与MN 相切于G 点,如图乙所示,其它条件不变。要保证上述粒子从G 点垂直于MN 进 入偏转磁场后不能..打到MN 边界上(MN 足够长),求磁场区域的半径应满足的条件。 解:(1)粒子经过电场加速,进入偏转磁场时速度为v 有 221mv qU = ① (1分) 进入磁场后做圆周运动,轨道半径为r r v m qvB 2 = ② (2分) 打到H 点有 2d r = ③ (1分) 由①②③得 228d B U m q = (2)要保证所有粒子都不能打到MN 边界上,粒子在磁场中运动偏角小于90°,临界状态为90°,如图所示,磁场区半径 乙 N M G

匀变速直线运动图像专题(新编)

匀变速直线运动 图像专题 图象与 图象的比较: 图象与 图象 图象 速度示加速度 1. 两个物体a 、b 同时开始沿同一条直线运动。从开始运动起计时,它们的位移图象如右 图所示。关于这两个物体的运动,下列说法中正确的是A.开始时a 的速度较大,加速度较小 B.a 做匀减速运动,b 做匀加速运动 C.a 、b 速度方向相反,速度大小之比是2∶3 D.在t=3s 时刻a 、b 速度相等,恰好相遇 2. 某同学从学校匀速向东去邮局,邮寄信后返回学校,在图中能够正确反映该同学运动情况s-t 图像应是图应是( )

3.图为P 、Q 两物体沿同一直线作直线运动的s-t 图,下列说法中正确的有 ( ) A. t1前,P 在Q 的前面 B. 0~t1,Q 的路程比P 的大 C. 0~t1,P 、Q 的平均速度大小相等,方向相同 D. P 做匀变速直线运动,Q 做非匀变速直线运动 4.物体A 、B 的s-t 图像如图所示,由右图可知 ( ) A.从第3s 起,两物体运动方向相同,且vA>vB B.两物体由同一位置开始运动,但物体A 比B 迟3s 才开始运动 C.在5s 内物体的位移相同,5s 末A 、B 相遇 D.5s 内A 、B 的加速度相等 5. A 、 B 、 C 三质点同时同地沿一直线运动,其s -t 图象如图所示,则在0~t 0这段时间内,下列说法中正确的是 ( ) A .质点A 的位移最大 B .质点 C 的平均速度最小 C .三质点的位移大小相等 D .三质点平均速度不相等 6.一质点沿直线运动时的速度—时间图线如图所示,则以下说法中正确的是:( ) A .第1s 末质点的位移和速度都改变方向。 B .第2s 末质点的位移改变方向。) C .第4s 末质点的位移为零。 D .第3s 末和第5s 末质点的位置相同 0t

等效法处理电场中的圆周运动

例1 光滑绝缘的圆形轨道竖直放置,半径为R ,在其最低点A 处放一质量为m 的带电小球,整个空间存在匀强电场,使小球受到电场力的大小为m g 33,方向水平向右,现给小球一个水平向右的初速度0v ,使小球沿轨道向上运动,若 小球刚好能做完整的圆周运动,求0v . 例2如图所示,半径R = 0.8m 的光滑绝缘导轨固定于竖直平面内,加上某一方向的匀强电场时,带正电的小球沿轨道内侧做圆周运动.圆心O 与A 点的连线与竖直成一角度θ,在A 点时小球对轨道的压力N = 120N ,此时小球的动能最大.若小球的最大动能比最小动能多32J ,且小球能够到达轨道上的任意一点(不计空气阻力).则: (1)小球的最小动能是多少? (2)小球受到重力和电场力的合力是多少? (3)现小球在动能最小的位置突然撤去轨道,并保持其他量都不变, 若小球在0.04s 后的动能与它在A 点时的动能相等,求小球的质量. 例3、如图12所示为一真空示波管的示意图,电子从灯丝K 发出(初速度可忽略不计),经灯丝与A 板间的电压U 1加速,从A 板中心孔沿中心线KO 射出,然 后进入两块平行金属板M 、N 形成的偏转电场中(偏转电场可视为匀强电场),电子进入M 、N 间电场时的速度与电场方向垂直,电子经过电场后打在荧光屏上的P 点。 已知M 、N 两板间的电压为U 2,两板间的距离为d ,板长为L ,电子的 质量为m ,电荷量为e ,不计电子受到的重力及它 们之间的相互作用力。 (1)求电子穿过A 板时速度的大小; (2)求电子从偏转电场射出时的侧移量; (3)若要使电子打在荧光屏上P 点的上方,可采 取哪些措施?

体操体能训练教案

名师精编优秀教案 体操体能训练教案

2、体能的分类:依据体能的范围、性质、对象,结合上述体能的概念和体能针 对的对象及实际需要,可将体能分为两大类,①与健康有关的体能②与运动技能 有关的体能。特点:①与健康有关的体能适合的对象是一般普通人群;②与运动 有关的体能则主要针对专业运动员。 3、体能训练的内容体能训练的内容包括 运动素质训练、身体机能训练和专项所需的身体形态训练等,体操运动员在体操 训练中,不仅要有突出的身体素质, 还要有体能的发展。 (一)力量素质 (二) 速度素质(三)耐力素质(四)柔韧素质(五)灵敏素质二、体能训练的 常用手段1、力量素质训练 (一) 主要手段 (1)负重抗阻力练习 (2)对 抗练习(3)克服弹性物体的练习 (4)利用力量训练器械的练习 (5)克服 (6) 克服自身重力的练习 (7)电刺激 (二) 注意事项 (1)力量素质的发展要全面而有重点 (2)紧密结合项目特点和专项技术安排力量训练 (3)进行力量练习时,要全 神贯注,念动一致,注意安全 (4)进行力量练习时,要掌握正确的呼吸方法 (5)要采用大负荷与循序递增 负荷进行训练 (6)练习时要使肌肉充分拉长和收缩, 练习后要使肌肉充分放松 (7) 力量素质训练要系统科学安排,不间断 2、速度素质训练、 (一)、主要 手段 (1)、位移速度训练:30~60米快速跑;下坡跑、上坡跑;扶肋木或 墙后蹬跑、高抬腿练习等。 (2)、专项技术速度训练: 俯撑直臂快速击掌, 俯撑10米快速爬行,靠墙摆快速倒立, 快速仰卧起坐或俯卧快速背屈伸; 连续侧 手翻。后手翻、后手翻,连续快速的前手翻、后手翻等。 (二)、注意事项 (1)、依据时间、练习内容和运动负荷三个方面来确保速度素质训练的有效性。 选择运动员技术成熟的动作,以最快的速 度来重复完成. 教 学 过 程 新 课 内 容 外部环境阻力的练习

高中物理-匀变速直线运动练习题整理

一、选择题 1、关于速度和加速度的关系,下列说法中正确的是( ) A .加速度的正负表示了物体运动的方向 B .加速度越来越大,则速度越来越大 C .运动的物体加速度大,表示了速度变化快 D .加速度的方向与初速度方向相同时,物体的运动速度将增大 2. 做匀加速直线运动的物体的加速度为3 m/s 2 ,对任意1 s 来说,下列说法中正确的是 ( ) A.某1 s 末的速度比该1 s 初的速度总是大3 m/s ; B.某1 s 末的速度比该1 s 初的速度总是大3倍; C.某1 s 末的速度比前1 s 末的速度大3 m/s ; D.某1 s 末的速度比前1 s 初的速度大6 m/s 3.物体从斜面顶端由静止开始滑下做匀加速直线运动,经t 秒到达位移中点,则物体从斜 面顶端到底端共用时间为( )A .2t B .t C .2t D .2 t /2 4.做自由落体运动的甲、乙两物体,所受的重力之比为2 : 1,下落高度之比为l: 2,则( ) A .下落时间之比是1:2 B .落地速度之比是1:1 C .落地速度之比是1: 2 D .下落过程中的加速度之比是2:1 5.光滑斜面的长度为L ,一物体自斜面顶端由静止开始匀加速滑至底端,经历的时间为t , 则下列说法正确的是。( ) A .物体运动全过程中的平均速度是L/t B .物体在t /2时的即时速度是2L/t C .物体运动到斜面中点时瞬时速度是2L/t D .物体从顶点运动到斜面中点所需的时间是2t/2 6. 如图所示为一质点作直线运动的速度-时间图像,下列说法中正确的是( ) A. 整个过程中,CD 段和DE 段的加速度数值最大 B. 整个过程中,BC 段的加速度数值最大 C. 整个过程中,C 点所表示的状态,离出发点最远 D. BC 段所表示的运动通过的路程是34m 7.两辆游戏赛车a 、b 在两条平行的直车道上行驶。t =0时两车都在同一计时线处,此时比赛开始。 它们在四次比赛中的v-t 图如图所示。哪些图对应的比赛中,有一辆赛车追上了另一辆 ( ) A . B . C . D . 8.下列所给的图像中能 t /s t /s t /s t /s

运动生理学教案(共十五章)

运动生理学教案(共十五章) 绪论 一、生命的基本特征 1.新陈代谢——启发学生举例说明新陈代谢 概念:通过同化和异化过程,生物体实现自我更新的最基本生命活动过程,即机体与外界环境之间的物质转换和能量转换过程。为最基本的生命活动特征,新陈代谢一旦停止,生命也就结束。 同化过程:生物体不断地从体外环境中摄取有用的物质,使其合成、转化为机体自身物质的过程。吸收能量过程。 异化过程:生物体不断地将自身物质进行分解,并将分解产物排出体外的过程。产生能量过程。 以上两过程同时进行并相互依存,是需要酶作用的一系列复杂的生化反应过程。新陈代谢包括物质代谢和能量代谢,物质代谢必然伴随着能量的产生和转移、利用,而能量的转变也必然伴随着物质的合成和分解。 2.应激性 3.兴奋性 概念:生物体内可兴奋组织感受刺激产生兴奋的特性。 刺激:引起组织产生兴奋的环境变化。物理、化学、生物、机械等分类,有强度和作用时间的要求。 可兴奋组织:神经、肌肉、腺体。 兴奋:可兴奋组织受刺激后产生可扩布的动作电位。 兴奋性表现:兴奋:相对静止——活动,弱——强 抑制:活动——相对静止,强——弱 例:肌肉活动的兴奋——收缩耦联、神经系统的兴奋抑制活动、心脏活动的强弱变化。 比较应激性和兴奋性的区别。 4.适应性 概念:生物体所具有的适应环境的能力。 客观环境的长期影响可使生物体形成与环境相适应的,适合自身生存的反应模式。 例:气候服习、高原环境中人体红细胞增多 耐力运动员心脏肥大,肌纤维增粗。运动训练过程实质上为人体机能对运动形式和运动强度的适应过程。 启发学生结合运动实例说明适应性在训练比赛中的重要性 5.生殖 二、人体生理机能的调节及调节的控制 细胞外液——内环境:人体细胞、组织、器官的生存环境。 内环境理化因素相对稳定——稳态 稳态不断受到影响,又不断得以维持——正常生理机能维持 人体与外界环境之间也保持相互联系和彼此影响。体内调控机制调节生理机能,使人体对内外环境变化产生适应并维持内环境的稳定和生物节律。 体内主要调控机制:神经调节、体液调节、自身调节、生物节律 例:神经系统对运动中代谢率增高的适应性性调节:心输出量增加,呼吸频率变化等内分泌对运动中代谢率增高的适应性调节:心输出量增加,呼吸频率变化等。

匀变速直线运动习题及答案

匀变速直线运动习题及答案 一、选择题: 1、甲、乙两辆汽车速度相等,在同时制动后,设均做匀减速运动,甲经3s停止,共前进了36m,乙经停止,乙车前进的距离为( ) (A)9m (B)18m (C)36m (D)27m 2、汽车在平直公路上行驶,它受到的阻力大小不变,若发动机的功率保持恒定,汽车在加速行驶的过程中,它的牵引力F和加速度a的变化情况是( ) (A)F逐渐减小,a也逐渐减小 (B)F逐渐增大,a逐渐减小 (C)F逐渐减小,a逐渐增大 (D)F逐渐增大,a也逐渐增大 3、图为打点计时器打出的一条纸带,从纸带上看,打点计时器出的毛病是( ) (A)打点计时器接在直流电源上 (B)电源电压不够大 (C)电源频率不够大 (D)振针压得过紧 4、质量都是m的物体在水平面上运动,则在下图所示的运动图像中表明物体做匀速直线运动的图像的是( ) 5、物体运动时,若其加速度恒定,则物体: (A)一定作匀速直线运动; (B)一定做直线运动; (C)可能做曲线运动; (D)可能做圆周运动。 6、以A点为最高点,可以放置许多光滑直轨道,从A点由静止释放小球,记下小球经时间t所达到各轨道上点的位置,则这些点位于( ) (A)同一水平面内 (B)同一抛物面内 (C)同一球面内 (D)两个不同平面内 7、根据打点计时器打出的纸带,可以从纸带上直接得到的物理量是( ) (A)位移 (B)速度 (C)加速度 (D)平均速度

8、皮球从3m高处落下, 被地板弹回, 在距地面1m高处被接住, 则皮球通过的路程和位移的大小分别是( ) (A) 4m、4m (B) 3m、1m (C) 3m、2m (D) 4m、2m 9、一石块从楼房阳台边缘向下做自由落体运动, 到达地面, 把它在空中运动的时间分为相等的三段, 如果它在第一段时间内的位移是, 那么它在第三段时间内的位移是( ) (A) (B) (C) (D) 10、物体的位移随时间变化的函数关系是S=4t+2t2(m), 则它运动的初速度和加速度分别是( ) (A) 0、4m/s2 (B) 4m/s、2m/s2 (C) 4m/s、1m/s2 (D) 4m/s、4m/s2 二、填空题: 11、如图所示,质点甲以8m/s的速度从O点沿Ox轴正方向运动,质点乙从点(0,60)处开始做匀速运动,要使甲、乙在开始运动后10s在x轴相遇。乙的速度大小为________m/s,方向与x轴正方向间的夹角为________。 12、一颗子弹沿水平方向射来,恰穿透三块相同的木板,设子弹穿过木板时的加速度恒定,则子弹穿过三块木板所用的时间之比为________。 13、一个皮球从离地面高处开始沿竖直方向下落,接触地面后又弹起,上升的最大高度为,在这过程中,皮球的位移大小是________,位移方向是________,这个运动过程中通过的路程是____________. 14、火车从甲站出发做加速度为 a 的匀加速运动,过乙站后改为沿原方向以 a 的加速度匀减速行驶,到丙站刚好停住。已知甲、丙两地相距24 k m ,火车共运行了 24min ,则甲、乙两地的距离是____ k m ,火车经过乙站时的速度为____ km / min 。 15、以 v = 10 m / s 的速度匀速行驶的汽车,第 2 s 末关闭发动机,第 3s 内的平均速度大小是 9 m / s ,则汽车的加速度大小是____ m / s2 。汽车10 s 内的位移是____ m 。 16、一辆汽车在平直公路上行驶,在前三分之一的路程中的速度是υ1,在以后的三分之二路程中的速度υ2=54千米/小时,如果在全程中的平均速度是U=45千米/小时,则汽车在通过前三分之一路程中的速度υ1= 千米/小时.

[计划]体能训练教案

[计划]体能训练教案 跑——体验速度第1学时(三年级) 1、在多种方法的练习中,提高耐久跑的能力学习目标 2、能体验到克服身体疲劳时的感受 (1) 跑:400—600米自然地形跑学习内容 (2) 游戏:听音乐走跑交替 教学重难点跑的自然;呼吸均匀 教法提示学法提示一、激发兴趣阶段 1、亲切地向学生问好~ 1、体委整队,亲切地向老师问好~ 2、组织学生进行队列练习。 2、认真地进行队列练习。 3、组织学生进行小游戏。 3、积极地参与游戏。 4、组织学生做韵律体操。 4、跟随教师做韵律体操。二、发展能力合作探究阶段 1、讲解自然地形跑的意义,以1、分散进行原地慢跑,想象模仿各种地形及通过各种地形是的动作、速度跑的动作。 与呼吸的方法。 2、带领学生慢跑,熟悉地形,2、在老师的带领下,进行慢跑,熟悉地形,提示特殊地形的通过方法。尝试特殊地形的通过法。 教学步骤 3、安排学生走、跑交替练习,3、200米走与慢跑的结合,体会慢跑与呼吸巡回指导,提示三步一吸的节奏节奏的配合方法。 呼吸法。 4、按体能分组,由小组长带领,按规定路4、布置自然地形跑的路线和方线和方向练习600—800米自然地形跑,体向,重点提示跑得轻松、自然,验跑动中通过各种自然地形的动作方法,相呼吸有节奏。要求跑完后放松慢互鼓励。休息时相互交流自己的感觉。跑或走,进行休息调整。

1、跟随老师舞蹈放松。 三、愉悦身心阶段 2、与老师共同小结学习情况。 1、组织学生进行韵律舞蹈放松。 3、跟老师亲切道别~ 2、与学生共同小结本节课的学4、归还器材。 习情况。 3、跟学生道别~ 课后反思 跑——体验速度第2学时(三年级) 1、在自然地形跑时做到呼吸自然,动作协调 2、能体验在耐久跑过程中克服身体疲劳时的感受学习目标 (1)600—800米自然地形跑 学习内容 (2)游戏:跑向北京2008 教学重难点速度平稳,呼吸均匀;学生坚持能力 教法提示学法提示一、激发兴趣阶段 1、亲切地向学生问好~ 1、体委整队,亲切地向老师问好~ 2、组织学生进行队列练习。 2、认真地进行队列练习。 3、组织学生进行小游戏。 3、积极地参与游戏。 4、组织学生做韵律体操。 4、跟随教师做韵律体操。二、发展能力合作探究阶段 1、身体不舒服时及时向教师汇报。分散原1、了解学生的身体状况后,带地练习摆臂,体会呼吸方法。领学生做好充分的准备活动,组织学生进行原地摆臂与呼吸配2、通过中速跑150米的练习,体验跑的动合的练习。作轻松与呼吸的配合协调。 2、组织学生进行中速跑的练习,提示跑的轻松、动作与呼吸的配3、按体能分组,由组长带领练习自然地形教学步骤合协调。跑,体验长距离跑的感觉。 3、指导学生根据自己体质,选4、

匀变速直线运动计算题专题训练答案

高一物理必修一 匀变速直线运动计算题专题训练 1、汽车由静止开始做匀加速直线运动,经10s速度达到20m/s,求: (1)汽车加速度的大小(2)10s内汽车通过的位移大小. 2、某高速公路最大限速为40m/s,一辆小车以30m/s的速度在该路段紧急刹车,滑行距离 为60m.(汽车刹车过程可认为做匀减速直线运动) (1)求该小车刹车时加速度大小; (2)若该小车以最大限速在该路段行驶,驾驶员的反应时间为0.3s,求该车的安全距离为 多少?(安全距离即驾驶员从发现障碍物至停止,车运动的距离) 18. 解:(1)由静止加速到20m/s,根据v=at得: (2)由静止加速到20m/s,根据得: 答:(1)汽车加速度的大小为 (2)10s内汽车通过的位移大小为100m 3、一物体做匀加速直线运动,初速度为0.5m/s,第7秒内的位移比第5秒内的位移多4m。求:(1)物体的加速度;(2)物体在5s内的位移。

4、汽车以10m/s的速度在平直公路上匀速行驶,刹车后做匀减速运动经2s速度变为6m/s,求:(1)刹车后2s内前进的距离及刹车过程中的加速度;(2)刹车后前进9m所用时间;(3)刹车后8s内前进的距离. 25.【答案】(1)解:根据匀变速直线运动平均速度公式得出车后2s内前进的距离为: x= = t= ×2=16m 根据匀变速直线运动的速度时间公式v=v0+at得:a= m/s2=﹣2m/s2 (2)解:汽车从刹车到停止的时间为: 根据x=v0t+ 得:9=10t﹣ 解得:t=1s (3)解:根据(2)可知汽车经10s停下,所以刹车后12s前进的距离即汽车刹车10s前进的距离, 由逆向思维法可得:x= = =50m 5、如图所示,小球在较长的斜面顶端,以初速度v0=2m/s,加速度a=2m/s2向下滑,在 到达底端的前1s内,所滑过的距离为 7 15 L,其中L为斜面长,则 (1)小球在斜面上滑行的时间为多少? (2)斜面的长度L是多少? 14:3s 15m

最新运动训练——标枪教案(9个教案)

标枪教案1 授课内容:1、简介掷标枪运动概况 2、学习标枪握持方法和原地插枪技术练习 课的任务:1、初步建立掷标枪运动的完整技术概念 2、初步掌握标枪的握持方法和正确的出手动作 3、通过教学培养学生学习标枪项目的兴趣

课的部分教学内容 时 间 组织教法 基本部分一、简介掷标枪运动概况 1、掷标枪运动的发展 (1)来自于生活实践,起源于北欧,有 着悠久的历史。 (2)世锦赛、奥运会正式比赛项目。 (3)世界与我国标枪运动成绩水平。 2、掷标枪技术 (1)是一项兼有周期性与非周期性动作 的技术较为复杂的田径投掷项目。 (2)完整技术由握持枪、助跑(预助跑 与投掷步助跑)、最后用力、身体缓 冲几部分组成。 (3)最后用力是主要技术环节,助跑与 最后用力的结合是技术的关键。 3、简介场地器材、比赛规则等 (1)标枪场地由内场与外场两部分构 成。 (2)男女标枪形状、长度、重量、材料 及其变化。 (3)有效的投掷、远度的丈量、成绩的 判定。 二、学习握持枪技术 1、两种握枪 (1)学习拇指中指握枪法 要领:将枪斜放在掌心上,拇指和中 指握在枪绳把末端第一圈上沿,食指自 然的斜握于枪身,无名指和小指握在绳 把上。 (2)介绍拇指食指握枪法 60 分 钟 ○○○○○○○○ △ 在投掷场地进行 组织教法: 1、教师简述掷标枪运动的发展 概况。 2、在观看中外优秀运动员比赛 录像、技术图片等影像资料 中,进一步讲解掷标枪技术 及其要点,初步建立完整技 术概念。 3、结合场地器材、示范动作, 实地讲解场地器材与比赛 规则。 注意点: 1、教学中要注重利用学生已有 经验,多采用启发式讲解。 2、将语言讲解、图片观看、实 地感受紧密结合起来,充分 发挥多感官功能。 ○○○○ ○○○○ △ 组织教法: 1、教师示范、讲解握持方法要 领、及不同方法的优劣。 2、学生握持枪练习,体会感觉 动作要领。 教师集体纠正与学生互相纠正 错误动作相结合。

电场中的圆周运动.

《电场中的圆周运动》 一、带电粒子在电场中的偏转(重点知识回顾) 设带电粒子质量为m,带电荷量为q,以速度v0垂直于电场线方向射入匀强偏转电场,偏转电压为U,两极板间距为d,若粒子飞离偏转电场时的偏距为y,偏转角为θ,求:速度的偏转角的tan θ,侧位移y,电荷飞出电场时的动能E K (1)方法一:用运动的分解 tan θ= y=E K= (2)方法二:动能定理求E K 二、怎样求带电粒子在电场中的圆周运动? 练习:1、如图所示,一条长为l的细线,上端固定,下端拴一质量为m的带电小球,将它置于一匀强电场中,电场强度大小为E,方向是水平的,已知当细线离开竖直位置的偏角为α时,小球处于平衡. (1)小球带何种电荷?求出小球所带电量. (2)如果使细线的偏角由α增大到?,然后将小球由静止开始释放,则?应为多大,才能使细线到达竖直位置时小球的速度刚好为零? 2、如图,半径为R的光滑圆环,竖直置于场强为E的水平方向的匀强电场中,今有质量为m,带电量为+q的空心小球穿在环上,求当小球由顶点A从静止开始下滑到与圆心O等高的位置B时,小球对环的压力?.N=2mg+3qE 方向水平向右

3、如图所示,质量为m,带电量为q(q>0)的小球,用一长为L 的绝缘细线系于一足够大的匀强电场中的O 点,电场方向竖直向下,电场强度为E ,为使带电小球能在竖直面内绕O 点作完整的圆周运动,求:(1)在最低点时施给小球水平初速度v 0至少是多少?(2)小球在运动中细线受到的最大拉力是多少?(3)小球从B 点运动到A 点的过程中电势能和机械能的改变量。 4、如图所示,在竖直向下的匀强电场中有一绝缘的光滑轨道,一个带负电的小球从斜轨道上的A 点由静止释放,沿轨道下滑,已知小球的质量为m 、电荷量为-q ,匀强电场的场强大小为E ,斜轨道的倾角为α(小球的重力大于其所受的电场力) (1)求小球沿斜轨道下滑的加速度的大小; (2)若使小球通过圆轨道顶端的B 点,A 点距水平地面的高度h 至少应为多大? (3)若小球从斜轨道h =5R 处由静止释放,假设其能够通过B 点,求在此过程中小球机械能的改变量。 5、如图所示,BCDG 是光滑绝缘的34 圆形轨道,位于竖直平面内,轨道半径为R ,下端与水平绝缘轨道在B 点平滑连接,整个轨道处在水平向左的匀强电场中.现有一质量为m 、带 正电的小滑块(可视为质点)置于水平轨道上,滑块受到的电场力大小为34 mg ,滑块与水平轨道间的动摩擦因数为0.5,重力加速度为g. (1)若滑块从水平轨道上距离B 点x =3R 的A 点由静止释放,滑块到达与圆心O 等高的C 点时速度为多大? (2)在(1)的情况下,求滑块到达C 点时受到轨道的作用力大小.

匀变速直线运动经典习题及易错题

高一物理必修一 匀变速直线运动经典及易错题目和答案 1.如图甲所示,某一同学沿一直线行走,现用频闪照相机记录了他行走过程中连续9个位置的图片,仔细观察图片,指出在图乙中能接近真实反映该同学运动的v-t图象的是(A) 2.在军事演习中,某空降兵从飞机上跳下,先做自由落体运动, 在t 1时刻,速度达较大值v 1 时打开降落伞,做减速运动,在t 2 时 刻以较小速度v 2 着地。他的速度图像如图所示。下列关于该空降 兵在0~t 1或t 1 ~t 2 时间内的的平均速度v的结论正确的是(B) A. 0~t 1 1 2 v v< B. 0~t1 2 1 v v> C. t 1~t 2 12 2 v v v + < D. t1~t2, 2 2 1 v v v + > 3.在下面描述的运动中可能存在的是(ACD)A.速度变化很大,加速度却很小 B.速度变化方向为正,加速度方向为负 C.速度变化很小,加速度却很大 D.速度越来越小,加速度越来越大 t 00 t t t

4. 如图所示,以8m/s匀速行驶的汽车即将通过路口,绿灯还有2 s将熄灭,此时汽车距离停车线18 m 。该车加速时最大加速度大小为2m/s2,减速时最大加速度大小为5m/s2。此路段允许行驶的最大速度为11.5m/s,下列说法中正确的有(CA) A.如果立即做匀加速运动且不超速,则汽车可以在绿 灯熄灭前通过停车线 B.如果立即做匀加速运动并要在绿灯熄灭前通过停车 线,则汽车一定会超速 C.如果立即做匀减速运动,则在绿灯熄灭前汽车一定不能通过停车线 D.如果在距停车线5m处开始减速,则汽车刚好停在停车线处 5.观察图5-14中的烟和小旗,关于甲乙两车的相对于房子的运动情况,下列说法中正确的是( (AD ) A.甲、乙两车可能都向左运动。 B.甲、乙两车一定向右运动。 C.甲车可能运动,乙车向右运动。 D.甲车可能静止,乙车向左运动。(提示:根据相对速度来解题) 6.物体通过两个连续相等位移的平均速度分别为v 1=10m/s,v 2 =15m/s ,则物体在整个运动

专题一-匀变速直线运动专题

高三复习专题一匀变速直线运动 一.对匀变速直线运动的理解 知识要点 (1)匀变速直线运动四大基本公式: _______________________________________________________________________________ _______________________________________________________________________________ (2)几个重要推论 ①平均速度/中间时刻的瞬时速度: _______________________________________________________________________________ ②中间位置的瞬时速度: _______________________________________________________________________________ ③相邻两端等时位移差公式: _______________________________________________________________________________ ④初速度为0的几个比值: _______________________________________________________________________________ 练习: 1. 火车刹车后 7 s 停下来,设火车匀减速运动的最后 1 s 内的位移是 2 m ,则刹车过程中的位移是多少米? 2. 质点的初速度为10m/s,加速度为10m/s2,求4s后质点的位移与第四秒质点的位移。 3.某航母跑道长为200m,飞机在航母上滑行的最大加速度为6m/s2,起飞需要的最低速度为50m/s.那么,飞机在滑行前,需要借助弹射系统获得的最小初速度为?

用等效法解决带电体在匀强电场中的圆周运动问题

用等效法解决带电体在匀强电场中的圆周运动问题 (1)等效思维方法就是将一个复杂的物理问题,等效为一个熟知的物理模型或问题的方法。常见的等效法有“分解”“合成”“等效类比”“等效替换”“等效变换”“等效简化”等。 带电粒子在匀强电场和重力场组成的复合场中做圆周运动的问题是一类重要而典型的题型。对于这类问题,若采用常规方法求解,过程复杂,运算量大。若采用“等效法”求解,则过程比较简捷。 (2)解题思路: ①求出重力与电场力的合力,将这个合力视为一个“等效重力”。 ②将a=F合 m 视为“等效重力加速度”。 ③将物体在重力场中做圆周运动的规律迁移到等效重力场中分析求解。 [典例]在水平向右的匀强电场中,有一质量为m、带正电的小球,用长为l的绝缘细线悬挂于O 点,当小球静止时,细线与竖直方向夹角为θ,如图所示,现给小球一个垂直于悬线的初速度,小球恰能在竖直平面内做圆周运动,试问: (1)小球在做圆周运动的过程中,在哪一位置速度最小?速度最小值多大? (2)小球在B点的初速度多大? 对应练习: 1.如图所示,绝缘光滑轨道AB部分为倾角为30°的斜面,AC部分为竖直平面上半径为R的圆轨道,斜面与圆轨道相切。整个装置处于场强为E、方向水平向右的匀强电场中。现有一个质量为m的小球, 带正电荷量为q=3mg 3E ,要使小球能安全通过圆轨道,在O点的初速度应为多大?

2.(2012·合肥质检)如图所示,在竖直平面内固定的圆形绝缘轨道的圆心为O、半径为r、内壁光滑,A、B两点分别是圆轨道的最低点和最高点。该区间存在方向水平向右的匀强电场,一质量为m、带负电的小球在轨道内侧做完整的圆周运动(电荷量不变),经过C点时速度最大,O、C连线与竖直方向的夹角 θ=60°,重力加速度为g。 (1)求小球所受到的电场力的大小; (2)求小球在A点速度v0多大时,小球经过B点时对圆轨道的压力最小? 3.如图所示的装置是在竖直平面内放置的光滑绝缘轨道,处于水平向右的匀强电场中,带负电荷的小球从高h的A处由静止开始下滑,沿轨道ABC运动并进入圆环内做圆周运动。已知小球所受电场力是其重力的3/4,圆环半径为R,斜面倾角为θ=60°,s BC=2R。若使小球在圆环内能做完整的圆周运动,h至少为多少?(sin 37°=0.6,cos 37°=0.8,重力加速度为g)

相关文档
最新文档