人形机器人避障模块研究与设计

人形机器人避障模块研究与设计
人形机器人避障模块研究与设计

2012年数学建模机器人避障问题

机器人避障问题 摘要 本文主要运用直线逼近法等规律来解决机器人避障问题.对于问题一:要求最短路径运用直线逼近法证得圆弧角三角形定理,得出结论:若一大圆弧角三角形完全包括另一小圆弧角三角形,则该三角形曲线周长必大于小的三角形周长.那么可知机器人在曲线过弯时,选择最小半径可满足路径最短,即为10个单位半径,通过观察可得可能的所有曲线,通过仅考虑直线段的大致筛选选出总长较小、长度相近(之差小于100)的曲线,然后利用平面几何知识对相关切点,进而求出各直线、曲线的长度,求和可得最段路线.对于问题二:通过对机器人过弯规律2 1.0100 e 1)(ρ ρ-+= =v v v 的分析可知,当过弯 半径13ρ=时,机器人速度达最大速度为50=v 个单位/秒,再大就无变化了,那么可分两种情况考虑:1)当13ρ>时,过弯速度无变化,但由圆弧角三角形定理可知,此时随着ρ的不断变大,其路线总长不断变大,这时ρ越小O A →所用时间最短;2)当13ρ≤时,统计计算ρ分别为10、11、12、13时,过弯速度v 也不断变化,计算所用时间发现随ρ不断变大,O A →所用时间越短,此时当13ρ=时,时间最短.综合上述可知:当 13ρ=时,时间最短. 关键词: 质点机器人 安全范围 直线逼近法 圆弧角三角形定理 10单位半径

1 问题重述 在一个800×800的平面场景中,在原点O(0, 0)点处有一个机器人,它只能在该平面场景范围内活动,其中有12个不同形状的区域是机器人不能与之发生碰撞的障碍物, 物的距离至少超过10个单位).规定机器人的行走路径由直线段和圆弧组成,其中圆弧是机器人转弯路径.机器人不能折线转弯,转弯路径由与直线路径相切的一段圆弧组成,也可以由两个或多个相切的圆弧路径组成,但每个圆弧的半径最小为10个单位.为了不与障碍物发生碰撞,同时要求机器人行走线路与障碍物间的最近距离为10个单位. 机器人直线行走的最大速度为50=v 个单位/秒.机器人转弯时,最大转弯速度为 2100.11 0()(1e ) v v v ρρ--==+,其中ρ是转弯半径.如果超过该速度,机器人将发 生侧翻,无法完成行走. 下面建立机器人从区域中一点到达另一点的避障最短路径和最短时间路径的数学模型.对场景图中4个点O(0, 0),A(300, 300),B(100, 700),C(700, 640),具体计算: (1) 机器人从O(0, 0)出发,O→A 、O→B 、O→C 和O→A→B→C→O 的最短路径. (2) 机器人从O (0, 0)出发,到达A 的最短时间路径. 2 问题分析 2.1问题一: 该问题要求路径最短,即不要求速度与时间,则可认为以最小半径10的圆过弯. 如图2.1所示:由圆弧角三角形定理(简单证明见模型准备5.3)可知过弯时,只有采用10单位半径过弯时,才会使得过弯路径最短,因此解决问题一的过弯拐角问题均采用10单位半径过弯路径. 2.2问题二: 由于O→A 过程中,机器人至少要经过一

避障机器人设计报告

开放性实验报告 ——避障机器人设计 系别:智能科学与技术 姓名:唐继鹏 姚武浩 姜飞鹏 郑光旭 指导老师:袁立行、王曙光、亢红波时间:2011.9.16——2012.4.28

目录 1 系统功能介绍 (1) 2 设计任务与要求 (1) 3 系统硬件设计 (1) 3.1系统总体设计框图 (1) 3.2寻线模块(ST188) (2) 3.3电机控制模块 (3) 3.4单片机最小模块 (4) 3.5数码管显示模块 (6) 4 系统软件实现 (7) 4.1 设计思路 (7) 4.2 软件程序流程图 (8) 4.3程序代码见附录Ⅰ (8) 5 调试结果 (8) 6 实验总结 (9) 附录Ι (10) 附录Ⅱ (18) 附录Ⅲ (19)

1 系统功能介绍 本设计以单片机作为控制核心,电路分为最小系统模块,黑线检测模块,电机驱动模块,数码管显示模块。黑线检测模块采用反射式关电传感器st188,并且接相应的三级管来规划传感器的输出,当输出高电平为正常情况。电机为伺服电机,给定脉宽为1.5ms的信号电机保持不动,给定脉宽为1.7ms的信号电机正向转到给定脉宽为1.3ms的信号电机逆向转到。数码管动态显示机器人行进过程所用的时间。 2 设计任务与要求 ◆熟悉51系列单片机的原理及应用。 ◆掌握ST188设计电路和传感器的使用。 ◆掌握直流电机的驱动方法。 ◆掌握动态数码管显示的方法。 ◆设计机器人的硬件电路及软件程序。 ◆制作机器人的硬件电路,并调试软件,最后实现机器人的自动测量黑线。 3 系统硬件设计 3.1系统总体设计框图 该系统中51单片机作为主微控芯片,其外多个I/O口作为通用I/O口接受传感器的信号并输出相应的控制信号。 系统硬件总体设计框图如下图3.1-1所示。

小车自动避障与路径规划

第3章系统总体结构及工作原理 该系统主要以超声波测距为基本测距原理,并在相应的硬件和软件的支持下,达到机器人避障的效果。 3.1机器人总体硬件设计 3.1.1传感器的分布要求 为了全方位检测障物的分布状况,并及时为机器人系统提供全面的数据,可将所需的八个传感器均匀排列在机器人周围,相邻每对传感器互成45度角。为了避免相互干扰,八个传感器以程序运行周期为周期,进行循环测距。传感器排列示意图如下: 图3.1.1 传感器分布图

图3.1.2 硬件设计总体框架图 上图为支持机器人运行实用程序的硬件部分的总体设计框架图,由负责相关任务的同学提供。在超声波信号输入单片机以后,由存储在单片机中的主程序调用避障子程序,根据输入信号执行避障指令,并使相关数据返回主程序,转而提供给电机和LED显示器的驱动程序使用,最后,由电机执行转向指令,结果则显示在LED显示器上。

图3.1.3 软件总体框架图 由上图可知,本文作者负责的超声波避障程序为软件总体设计中的子程序部分。在主程序运行过程中,若调用超声波避障程序,机器人在自行轨迹规划后,将程序处理所得数据送给电机处理成立程序,控制电机动作。具体的避障程序设计将在第4章进行。 3.2超声波测距原理 测距原理:超声波是指频率高于20KHz的机械波。为了以超声波作为检测

手段,必须产生超生波和接收超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声波换能器或超声波探头。超声波传感器有发送器和接收器,但一个超声波传感器也可具有发送和接收声波的双重作用。超声波传感器是利用压电效应的原理将电能和超声波相互转化即在发射超声波的时候,将电能转换,发射超声波;而在收到回波的时候,则将超声振动转换成电信号。[8]超声波测距的原理一般采用渡越时间法TOF(time of flight)。首先测出超声波从发射到遇到障碍物返回所经历的时间,再乘以超声波的速度就得到二倍的声源与障碍物之间的距离,即:[8] D=ct/2 其中D为传感器与障碍物之间的距离,以m计,c为超声波速度,这里以340m/s计,t为超声波从发送到接收的总时间,以s计。据此原理可以用超声波传感器测得的距离为避障程序提供所需的数据。[8] 第4章轨迹规划算法的实现方案 4.1轨迹规划算法的层次化设计 根据上述材料分析,可以将机器人轨迹规划算法设计分为基础控制层、行为控制层和坐标计算层,三个层次进行。 4.1.1基础控制层设计 基础控制层可定义为基本行为层,这层算法的任务是寻找目标点,并确保机器人可以顺利到达指定目标位。在确定目的地位置的情况下,为了达到上述目的,计算机必须对机器人的方位进行时实计算。应用人工势场法原理,可以将目标点设为引力极,牵引机器人运动。对此动作建立相应的模型,可以使用建立平面坐标作为虚拟势场的方法来给机器人定义方位,将机器人关于目标点的时实偏角作为虚拟引力方向,以确定机器人下一步所需转过的角度,并时实检测,是否已到达目的地,若已到达,则可认为虚拟引力此刻为0,并发出信号控制程序终止运行总体程序。 由此,可确定基础控制层所需的各参数: (1)机器人的时实坐标x, y值,由专门的坐标计算层提供,为了提高精 确度,可以采用厘米为单位制。 (2)机器人的速度v,测量后设为定值使用。 (3)周期T,直接设置为定值使用。 (4)偏转角de,可通过机器人与横坐标之间的夹角pe,减去机器人到目 标点连线与横坐标的夹角E得到。

机器人避障优化模型讲解

机器人避障优化模型 摘要 “机器人避障问题”是在一个规定的区域范围内,有12个位置各异、形状不同的障碍物分布,求机器人从出发点到达目标点以及由出发点经过途中的若干目标点到达最终目标点的避障最短路径及其最短时间,其中必须考虑如圆与切线的关系等问题。基于优化模型,对于题目实际情况进行研究和分析,对两个问题都用合适的数学思想做出了相应的解答和处理,以此建立符合题意的数学模型。 问题一,要求建立机器人从原点出发到达以区域中另一点为终点的最短路径模型。机器人的避障路径规划主要包括环境建模、路径搜索、路径平滑等环节,针对本题的具体情况,首先对图形进行分析,并用AutoCAD 软件进行环境建模,使其在障碍物外围延伸10个单位,然后考虑了障碍物对路径安全的影响再通过蚁群算法来求它的的最短路径,由于此时最短路径中存在转弯路径,需要用人工势场法进行路径平滑处理,从而使它的最短路径在蚁群算法算出的结果情况下,可以进一步缩短其路径,从而存在机器人以区域中一点到达另一点使其避障的路径达到最短,在最终求解时,通过matlab 软件求其最优解。 问题二,仿照问题一机器人避障路径规划的基本环节所建立的一般模型,再根据题二所提出的具体问题,建立机器人从O (0,0)出发,使达到A 的最短时间路径模型。其中已知最大速度为50=v 个单位/秒,机器人转弯时,最大转弯速度为 2 1.0100 e 1)(ρρ-+= =v v v ,其中ρ是转弯半径,并有ν为增函数。且有0νν<恒成立,则可 知行走路径应尽量减少走圆弧,且可时间由走两段直线加圆弧的时间之和。 关键词: 最短路径 蚁群算法 人工势场法 机器人避障

STEAM课例《避障机器人》教学反思

STEAM课例《避障机器人》教学反思 从兴趣入手,充分调动学生学习的主动性和积极性,在课堂学习中,学生的注意力高度集中,思维异常活跃,求知欲异常强烈,创造思维活动得以启动运行。《避障机器人》是让学生通过学习,能够正确地编写“机器人避障”的程序,能够为机器人设置障碍物环境,让机器人顺利地在此环境自由地行走。为了让学生对机器人编程学习有一个好的开始,花了不少心思对本课内容进行了阅读、理解、推敲,最后从以下几方面着手进行教学设计: 一、趣味导入,动静结合,激发学生的直接学习兴趣。 通过观察体验机器人避障功能,学生开始对“超声波传感器”(在学习之前学生还不知道这个部件就是红外)产生了求知欲,它到底能让机器人干什么?这个时候如果切入到机器人的学习,恐怕学生会大失所望。于是我用心地拍了一段视频,学生在观看视频中进一步明白了机器人也要装眼睛才可以看见物体,从而自然地引出课题,也调动学生的学习情绪。 二、启发思维,张扬个性,提高学生的创新意识和创新能力。 机器人避障的流程图编写是本节课的重点。学生通过自主学习基本上可以完成框架的搭建,甚至有些学生还可以正确地设置条件判断、电机的参数,但是我们要求学生学习程序编写真正目的不仅是会搭框架,还要理解每个模块的作用,整个流程图的设计思路,也就是

常言道“知其然,还知其所以然”,从而让学生的思维在这个过程中得到训练。 三、循循善诱,言简意赅,让学生的兴趣在思考中升华。 机器人从无眼睛到装上了眼睛,从四处撞墙到巧妙地避开自由行走,贯穿整个课堂。本节课的教学引导没有过多的教师语言,只是在环节衍接处适当地以视频方式展示情境,通过设置问题启发学生观察思考体验,每一个问题都与下一个学习紧密相联,学生的兴趣从开始被吸引,到最后升华。 但是在下载到机器人的时候,机器人中的超声波传感器的两个探测头的距离和位置是很难把握的,有时上传程序的时候就会失败,这就需要我们在不断的实验中把握尺度,总结规律,也需要让学生不断的进行调试,让他们能自己总结出规律,加深记忆。

2012年高教社杯数学建模D题--机器人避障问题论文

机器人避 障问题 摘要 本文研究了机器人避障最短路径和最短时间路径的问题。主要研究了在一个区域中存在12个不同形状障碍物,由出发点到达目标点以及由出发点经过途中的若干目标点到达最终目标点的多种情形,寻找出一条恰当的从给出发点到目标点的运动路径使机器人在运动中能安全、无碰撞的绕过障碍物而使用的路径和时间最短。由于规定机器人的行走路径由直线段和圆弧组成,其中圆弧是机器人转弯路径,机器人不能折线转弯。所以只要给定的出发点到目标点存在至少一个障碍物,我们都可以认为最短路径一定是由线和圆弧所组成,因此我们建立了切线圆结构,这样无论路径多么复杂,我们都可以将路径划分为若干个这种切线圆结构来求解。在没有危险碰撞的情况下,圆弧的半径越小,路径应该越短,因此我们尽量选择最小的圆弧半径以达到最优。对于途中经过节点的再到达目标点的状况,我们采用了两种方案,一种是在拐点和节点都采用最小转弯半径的形式,另一种是适当扩大拐点处的转弯半径,使得机器人能够沿直线通过途中的目标点。然后建立了最优化模型对两种方案分别进行求解,把可能路径的最短路径采用穷举法列举出来,用lingo 工具箱求解得出了机器人从O(0,0)出发,O→A、O→B、O→C 和O→A→B→C→O 的最短路径;利用matlab 中的fminbnd 函数求极值的方法求出了机器人从O(0,0)出发,到达A 的最短时间路径。本文提出一种最短切线圆路径的规划方法,其涉及的理论并不高深,只是应用了几何知识和计算机程序、数学工具计算,计算简易,便于实现,能搞提高运行效率。 问题一 O→A 最短路径为:OA L =471.0372 O→B 最短路径为:=1OB L 853.8014 O→C 最短路径为:4OC L =1054.0 O→A→B→C→O 最短路径为: 问题二机器人从O(0,0)出发,到达A 的最短时间路径: 最短时间是94.5649,圆弧的半径是11.5035,路径长4078.472=OA L 关键词最短路径;避障路径;最优化模型;解析几何;数学工具 一、问题重述 图1是一个800×800的平面场景图,在原点O(0,0)点处有一个机器人,它只能在该平面场景范围内活动。图中有12个不同形状的区域是机器人不能与之发生碰撞的障碍物,障碍物的数学描述如下表:

智能机器人设计报告

智能机器人设计报告 参赛者:庆东肖荣于腾飞 班级:级应用电子技术 指导老师:远明 日期:年月日 一、元器件清单: ,,,,,,,蜂鸣器,光敏电阻,光敏三极管,电阻、电容若干,超亮及普通发光管。二、主要功能: 本设计按要求制作了一个简易智能电动车,它能实现的功能是:从起跑线出发,沿引导线到达点。在此期间检测到铺设在白纸下的薄铁片,并实时存储、显示在“直道区”检测到的薄铁片数目。电动车到达点以后进入“弯道区”,沿圆弧引导线到达点继续行驶,在光源的引导下,利用轻触开关传来的电信号通过障碍区进入停车区并到达车库,完成上述任务后能够立即停车,全程行驶时间越少越好。 本寻迹小车是以有机玻璃为车架,单片机为控制核心,加以减速电机、光电传感器、光敏三极管、轻触开关和电源电路以及其他电路构成。系统由通过口控制小车的前进后退以及转向。寻迹由超亮发光二极管及光敏电阻完成,避障由轻触开关完成,寻光由光敏三极管完成。 并附加其他功能: .声控启动 .数码显示 .声光报警 三、主体设计 车体设计 左右两轮分别驱动,后万向轮转向的方案。为了防止小车重心的偏移,后万向轮起支撑作用。对于车架材料的选择,我们经过比较选择了有机玻璃。用有机玻璃做的车架比塑料车架更加牢固,比铁制小车更轻便,美观。而且裁减比较方便! 电机的固定采用的是铝薄片加螺丝固定,非常牢固,且比较美观。 轮子方案 在选定电机后,我们做了一个万向轮,万向轮的高度减去电机的半径就是驱动轮的半径。轮子用有机玻璃裁出来打磨光华的,上面在套上自行车里胎,以防止打滑。 万向轮 当小车前进时,左右两驱动轮与后万向轮形成了三点结构,这种结构使得小车在前进时比较平稳。

避障小车设计实验报告

福州大学至诚学院 题目:避障小车设计实验报告 姓名: 学号: 210992044 同组者: 专业:电气工程及其自动化专业 年级: 09级 指导教师: 2011年04月24日

1、实验材料:MultiFLEX?2-A VR控制器;红外线接近传感器两个;红外线 测距传感器一个;碰撞传感器一个;轮子四个;舵机四个;结构 件若干。(“创意之星”机器人套件) 2、原理:碰撞传感器是由一个按钮开关和外围电路构成,其输出信号为 数字信号。当按钮按下时,信号输出端输出低电平;按钮被释放时, 信号输出高电平。可以充当开关使用。红外接近传感器是利用被检 测物对光束的遮挡或反射,由同步回路选通电路,从而检测物体有 无的。光电开关将输入电流在发射器上转换为光信号射出,接收器 再根据接收到的光线的强弱或有无对目标物体进行探测。当红外线 传感器遇到障碍时,信号输出端输出低电平,没有障碍时,信号输 出端输出高电平,从而实现小车的避障功能。红外线测距传感器 GP2D12主要是由红外发射器、PSD(位置敏感检测装置)及相关处 理电路构成,红外发射器发射一束红外光线,红外光线遇到障碍物 被反射回来,通过透镜投射到PSD上,投射点和PSD的中心位置存 在偏差值a,GP2D12根据下图所示的a、b、α三个值就可以计算出 H的值,并输出相应电平的模拟电压。利用此功能来实现小车判断 前方是否有坑的功能。

3、小车的功能介绍: (1)按下碰撞传感器按钮,小车停止运动,再次按,小车继续运动; (2)检测前方是否有障碍,有则避之; (3)检测前方是否有坑,有则避之; (4)在一个由两堵墙构成的死角,通过左右避障次数的累计绕出死角。 4、步骤:(1)熟悉机器人零件及其应用; (2)搭建小车,调试舵机及其编号; (3)编程——编译——下载程序; (4)检验程序结果,对小车进行调试,并对程序进一步改进。5、机器人逻辑判断流程:

机器人避障问题的最短路径分析

机器人避障问题的最短路径分析 摘要 本论文研究了机器人避障最短路径和最短时间路径的问题。主要讨论了在一个区域中存在12个障碍物,由出发点到达目标点以及由出发点经过若干目标点最终到达出发点的两种情况。采用传统的避障方法——切线图法。建立了线圆结构,这样任何路径,我们都可以将路径划分为若干个这种线圆结构来求解。对于途中经过节点再到达目标点的状况,我们采用在转弯点和节点都采用最小转弯半径,以节点为切点的形式。然后建立了最优化模型,利用MATLAB软件对方案进行求解。 问题一:把路径分解成若干个线圆结构来求解,然后把可能的最短路径采用穷举法列举出来,最终得出最短路径: A O→最短路径为:471.0 O→最短路径为:869.5 B O→最短路径为:1093.3 C 对于O → → →我们将A、B、C看作切点,同样采用线圆结构 C B A O→ 计算。 O→ → → →最短路径为:2827.1 A O C B 问题二:考虑避障路径和转弯速度,我们建立时间与路径之间的模型,用MATLAB软件求出最优解。当转弯半径为11.5的时候,可以得出最短时间为:T=94.3 关键词最优化模型避障路径线圆结构切线图法

一、问题重述 本文是求一个机器人在800×800的平面场景图中避开障碍物,建立从原点O(0, 0)点处出发达到终点的最短路径和最短时间路径的模型。即求:1、O→A 、O→B 、O→C 和O→A→B→C→O 的最短路径。2、O →A 的最短时间路径。 机器人在行走时的要求是:1、它只能在该平面场景范围内活动2、图中有12个不同形状的区域是机器人不能与之发生碰撞的障碍物(障碍物的分布如图1)3、障碍物外指定一点为机器人要到达的目标点(要求目标点与障碍物的距离至少超过10个单位)。4、规定机器人的行走路径由直线段和圆弧组成,其中圆弧是机器人转弯路径。机器人不能折线转弯,转弯路径由与直线路径相切的一段圆弧组成,也可以由两个或多个相切的圆弧路径组成,但每个圆弧的半径最小为10个单位。5、为了不与障碍物发生碰撞,同时要求机器人行走线路与障碍物间的最近距离为10个单位,否则将发生碰撞。 机器人直线行走的最大速度为50=v 个单位/秒。机器人转弯时,最大转弯速 度为2 1.0100 e 1)(ρρ-+==v v v ,其中ρ是转弯半径。 已知场景图中4个点O(0, 0),A(300, 300),B(100, 700),C(700, 640)。图中各个点 的坐标见下表。 图1 编号 障碍物名称 左下顶点坐标 其它特性描述 1 正方形 (300, 400) 边长200 2 圆形 圆心坐标(550, 450),半径70 3 平行四边形 (360, 240) 底边长140,左上顶点坐标(400, 330)

《智能避障车》教学设计

《智能避障车》教学设计 一、教材分析 本节课是基于教科版《信息技术基础》第三章第二节《信息的编程加工》进行课程内容开发,以mbot教育机器人为载体,利用基于scratch的编程工具Mblock进行机器人编程教学。本节内容在学习程序设计中,加入机器人硬件,通过实现智能避障车的过程,介绍机器人程序设计的方法。 二、学情分析 高一的学生思维活跃,已经有了一定的逻辑思维能力和自主探究能力,具备了本节课学习的能力要求。虽然通过前一节课,学习了Mblock中的编程方法,但大多数学生还没形成程序设计思维,对于实际操作机器人和机器人编程来说,也还比较陌生。因此,课堂教学中要注意降低起点,逐步引导。 三、教学目标 1、知识与技能: 知道程序的三种基本结构,能在程序设计中熟练运用选择结构和循环结构。 2、过程与方法: 能够将解决实际问题的方法转化为程序设计的流程图,并在程序中加以实现。 3、情感态度与价值观: 提高科技素养,激发创新精神、探究精神和团结协作精神。 四、教学重难点 教学重点:选择结构和循环结构应用、机器人程序设计方法。 教学难点:机器人程序设计方法。 五、教学方法 本课的设计贯彻“任务驱动”的教学思想,把学习的主动权交给学生,让学生置身于自主探究、解决问题的氛围中。使用实物演示和启发式教学法引导学生分析并画出智能避障车流程图;使用小组竞赛的方法组织教学,以提高学生自主探究的积极性和效率;对学生探究过程中遇到的普遍性问题,通过讲授法统一指导。

六、教学媒体 1、mbot教育机器人 2、Mblock编程工具 3、知新网络教学评价系统 4、信息技术学习平台 5、多媒体机房 七、教学过程

机器人避障问题的解题分析(建模集训)

机器人避障问题的解题分析 摘要:本文对2012年全国大学生数学建模竞赛D题机器人避障问题进行了全面分析,对最短路的设计进行了理论分析和证明,建立了机器人避障最短路径的几何模型,对最短时间路径问题通过建立非线性规划模型,有效地解决了转弯半径、圆弧圆心位置和行走时间等问题。 关键词:机器人避障;最短路径;Dijkstra算法;几何模型;非线性规划模型 1 引言 随着科学技术的进步和计算机技术的发展,机器人的应用越来越广泛,在机器人的应用中如何使机器人在其工作范围内为完成一项特定的任务寻找一条安全高效的行走路径,是人工智能领域的一个重要问题。本文主要针对在一个场景中的各种静态障碍物,研究机器人绕过障碍物到达指定目的地的最短路径问题和最短时间问题。 本文以2012年“高教社”杯全国大学生数学建模竞赛D题“机器人避障问题”为例进行研究。假设机器人的工作范围为800×800的平面正方形区域(如图1),其中有12个不同形状的静态障碍物,障碍物的数学描述(如表1): 图1 800×800平面场景图

表1 在原点O(0, 0)点处有一个机器人,它只能在该平面场景范围内活动,机器人不能与障碍物发生碰撞,障碍物外指定一点为机器人要到达的目标点。规定机器人的行走路径由直线段和圆弧组成,其中圆弧是机器人转弯路径。机器人不能折线转弯,转弯路径由与直线路径相切的一段圆弧组成,也可以由两个或多个相切的圆弧路径组成,但每个圆弧的半径最小为10个单位。为了不与障碍物发生碰撞,同时要求机器人行走线路与障碍物间的最近距离为10个单位,否则将发生碰撞,若碰撞发生,则机器人无法完成行走。机器人直线行走的最大速度为50=v 个单位/秒。机器人转弯时,最大转弯速度为2 1.0100 e 1)(ρρ-+==v v v (ρ是转弯 半径)。如果超过该速度,机器人将发生侧翻,无法完成行走。 场景图中有4个目标点O(0, 0),A(300, 300),B(100, 700),C(700, 640),下面我们将研究机器人从O(0, 0)出发,求O→A、O→B、O→C和O→A→B→C→O的最短路径,以及机器人从O(0, 0)出发,到达A 的最短时间路径问题。 2 静态避障问题中机器人行走最短路径的分析 2.1 行走路径的设计 在本例中障碍物有4种不同形状:矩形、平行四边形、三角形和圆形。考虑到机器人

可避障机器人设计报告

可避障机器人设计报告 姓名*** 班级机械设计制造及其自动化1班学号3011201*** 任课教师洪鹰 2014年12 月16 日

目录 一、概述??????????????????????????????????????????????3 二、方案设计?????????????????????????????????????????4 1、硬件设计?????????????????????????????????????4 1.1避障基本方法?????????????????????????????4 1.2主控芯片选择?????????????????????????????4 1.3电源设计??????????????????????????????????5 1.4电机选择?????????????????????????????????5 2、主程序设计??????????????????????????????????5 三、总结??????????????????????????????????????????????7

一、概述 机器人是一类能够自动完成某项功能的机械系统,机器人通过传感器和执行机构与外界进行信息物理和交互,处理器负责处理传感器采集来的信息并将相应的控制命令送给执行机构执行。机器人因其对环境的强适应性,使得他在很多领域取代了人的劳动,将人从繁重、危险的环境中解放出来。机器人广泛应用于工业生产、科学研究、危险品处理乃至国防领域。而我这次设计的应该是最基础的一种机器人——自动避障机器人,它能通过传感器感知外部环境,实现避障。

智能避障机器人设计外文翻译

INTELLIGENT VEHICLE Our society is awash in “machine intelligence” of various kinds.Over the last century, we have witnessed more and more of the “drudgery” of daily living being replaced by devices such as washing machines. One remaining area of both drudgery and danger, however, is the daily act ofdriving automobiles 1.2 million people were killed in traffic crashes in 2002, which was 2.1% of all globaldeaths and the 11th ranked cause of death . If this trend continues, an estimated 8.5 million people will be dying every year in road crashes by 2020. In fact, the U.S. Department of Transportation has estimated the overall societal cost of road crashes annually in the United States at greater than $230 billion. When hundreds or thousands of vehicles are sharing the same roads at the same time, leading to the all too familiar experience of congested traffic. Traffic congestion undermines our quality of life in the same way air pollution undermines public health.Around 1990, road transportation professionals began to apply them to traffic and road management. Thus was born the intelligent transportation system(ITS). Starting in the late 1990s, ITS systems were developed and deployed. In developed countries, travelers today have access to signifi-cant amounts of information about travel conditions, whether they are driving their own vehicle or riding on public transit systems. As the world energy crisis, and the war and the energy consumption of oil -- and are full of energy, in one day, someday it will disappear without a trace. Oil is not in resources. So in oil consumption must be clean before finding a replacement. With the development of science and technology the progress of the society, people invented the electric car. Electric cars will become the most ideal of transportation. In the development of world each aspect is fruitful, especially with the automobile electronic technology and computer and rapid development of the information age. The electronic control technology in the car on a wide range of

行走机器人避障问题

机器人行走问题 摘要 本文研究了机器人避障最短路径的问题。主要研究了在一个区域中存在四个障碍物,由出发点到达目标点以及由出发点经过途中的若干目标点到达最终目标点的两种情形。我们通过证明具有圆形限定区域的最短路径是由两部分组成的:一部分是平面上的自然最短路径(即直线段),另一部分是限定区域的部分边界,这两部分是相切的,互相连接的。依据这个结果,我们可以认为最短路径一定是由线和圆弧做组成,因此我们建立了线圆结构,这样无论路径多么复杂,我们都可以将路径划分为若干个这种线圆结构来求解。对于途中经过节点的再到达目标点的状况,我们采用了两种方案,一种是在拐点和节点都采用最小转弯半径的形式,另一种是适当扩大拐点处的转弯半径,使得机器人能够沿直线通过途中的目标点。然后建立了最优化模型对两种方案分别进行求解。 问题一,我们很容易分解成线圆结构来求解,然后把可能路径的最短路径采用穷举法列举出来,最终得出最短路径: R→A 最短路径为:70.5076 R→B 最短路径为:107.9587 R→C 最短路径为:102.0514 问题二,我们方案都进行优化,求得最终结果: 第一种方案最短路径为:156.471 第二种方案最短路径为:157.752 关键词最短路径最优化模型避障路径解析几何

一、问题重述 下图是一个100×80的平面场景图,在R(0,0)点处有一个机器人,机器人只能在该100×80的范围内活动,图中四个矩形区域是机器人不能与之发生碰撞的障碍物,障碍物的数学描述分别为B1(20,40;5,10)、B2(30,30;10,15)、B3(70,50;15,5)、B4(85,15;5,10),其中B1(20,40;5,10)表示一个矩形障碍物,其中心坐标为(20,40),5表示从中心沿横轴方向左右各5个单位,即矩形沿横轴方向长5×2=10个单位,10表示从中心沿纵轴方向上下各10个单位,即矩形沿纵轴方向长10×2=20个单位,所以,障碍物B1的中心在(20,40),大小为10×20个单位的矩形,其它三个障碍物的描述完全类似。 在平面场景中、障碍物外指定一点为机器人要到达的目标点(要求目标点与障碍物的距离至少超过1个单位),为此,须要确定机器人的最优行走路线——由直线段和圆弧线段组成的光滑曲线,其中圆弧线段是机器人转弯路线,机器人不能折线转弯,转弯路径是与直线相切的一圆形曲线段,也可以是两个或多个相切的圆弧曲线段组成,但每个圆形路线的半径都必须大于某个最小转弯半径,假设为1个单位。另外,为了不与障碍物发生碰撞,要求机器人行走线路与障碍物间的最短距离为1个单位,越远越安全,否则将发生碰撞,若碰撞发生,则机器人无法到达目标点,行走失败。请回答如下问题: 1.场景图中有三个目标点A(50,40)、B(75,60)、C(95,20),请用数学建 模的方法给出机器人从R(0,0)出发安全到达每个目标点的最短路线。 2.求机器人从R(0,0)出发,依次安全通过A、B到达C的最短路线。

(完整word版)智能避障机器人设计开题报告

课题名称智能避障机器人设计 课题来源教师拟定课题类型EX 指导教师XXX 学生姓名XXX 学号XXX 专业XXX 一、调研资料的准备 智能避障机器人设计不仅是对所学理论知识的综合运用,同时也是锻炼了实际操作能力和自学创新能力。本次设计包含了硬件电路设计和软件电路。在硬件电路设计中我首先在图书馆和网络上查阅了一些关于智能避障机器人设计的相关电路图以及原理知识,同时参考了童诗白老先生的模拟电子技术基础,阎石的数字电子技术基础中的存储器部分,徐科军主编的传感器与检测技术中的传感器部分;在软件设计中主要参考了张毅刚的单片机原理及应用;在电路仿真中参考了赵景波所编的Prote199SE应用与实例教程;在整体电路设计中参考了万方数据和中国知网。 二、设计目的 在科学探索和紧急抢险中经常会遇到对与一些危险或人类不能直接到达的地域的探测,这些就需要用机器人来完成。而在机器人在复杂地形中行进时自动避障是一项必不可少也是最基本的功能。因此,自动避障系统的研发就应运而生。我们的自动避障小车就是基于这一系统开发而成的。 随着生产自动化的发展需要,机器人的智能化与集成度越来越高,已经越来越广泛的应用到生产生活中。伴随的科技水平的提高,机器人的能够使用的传感器种类也越来越多,其中红外线传感器已经成为机器人自动行走和驾驶的重要部件。此系统是基于红外传感器的系统,即运用红外传感器实现对前方障碍物的检测。 红外传感器的典型应用领域为自主式智能导航系统,机器人要实现自动避障功能就必须要感知障碍物,对障碍物的感知相当于给机器人一个视觉功能。在现在生活中,例如在一些火宅或者一些自然灾害的现场,经常需要进入到对一些危险或人类不能直接到达的地方进行观察,采集数据,这些就需要用机器人来完成。而在机器人在上述等环境中行进时自动避障是一项必不可少也是最基本的功能。因此,自动避障系统的研发就应运而生。自动避障小车可以作为困难环境检测机器人和紧急抢险机器人的运动系统,让机器人在行进中自动避过障碍物,帮助人们完成相应的任务。

2012年高教社杯数学建模D题--机器人避障问题论文设计

机器人避障问题 摘要 本文研究了机器人避障最短路径和最短时间路径的问题。主要研究了在一个区域中存在12个不同形状障碍物,由出发点到达目标点以及由出发点经过途中的若干目标点到达最终目标点的多种情形,寻找出一条恰当的从给出发点到目标点的运动路径使机器人在运动中能安全、无碰撞的绕过障碍物而使用的路径和时间最短。由于规定机器人的行走路径由直线段和圆弧组成,其中圆弧是机器人转弯路径,机器人不能折线转弯。所以只要给定的出发点到目标点存在至少一个障碍物,我们都可以认为最短路径一定是由线和圆弧所组成,因此我们建立了切线圆结构,这样无论路径多么复杂,我们都可以将路径划分为若干个这种切线圆结构来求解。在没有危险碰撞的情况下,圆弧的半径越小,路径应该越短,因此我们尽量选择最小的圆弧半径以达到最优。对于途中经过节点的再到达目标点的状况,我们采用了两种方案,一种是在拐点和节点都采用最小转弯半径的形式,另一种是适当扩大拐点处的转弯半径,使得机器人能够沿直线通过途中的目标点。然后建立了最优化模型对两种方案分别进行求解,把可能路径的最短路径采用穷举法列举出来,用lingo 工具箱求解得出了机器人从O(0, 0)出发,O →A 、O →B 、O →C 和O →A →B →C →O 的最短路径;利用matlab 中的fminbnd 函数求极值的方法求出了机器人从O (0, 0)出发,到达A 的最短时间路径。本文提出一种最短切线圆路径的规划方法,其涉及的理论并不高深,只是应用了几何知识和计算机程序、数学工具计算,计算简易,便于实现,能搞提高运行效率。 问题一 O →A 最短路径为:OA L =471.0372 O →B 最短路径为:=1OB L 853.8014 O →C 最短路径为:4OC L =1054.0 O →A →B →C →O 最短路径为: 问题二机器人从O (0, 0)出发,到达A 的最短时间路径: 最短时间是94.5649,圆弧的半径是11.5035,路径长4078.472=OA L 关键词 最短路径;避障路径;最优化模型;解析几何;数学工具

智能避障机器人设计与研究(硬件)毕业设计论文

智能避障机器人设计与研究(硬件) 摘要 在科学探索和紧急抢险中经常会遇到对一些危险或人类不能直接到达的地域的探测,这些就需要用机器人来完成。而机器人在复杂地形中行进时自动避障是一项必不可少也是最基本的功能。因此,自动避障系统的研发就应运而生。自动避障机器人就是基于这一系统开发而成的。随着科技的发展,对于未知空间和人类所不能直接到达的地域的探索逐步成为热门,这就使机器人的自动避障有了重大的意义。自动避障机器人可以作为地域探索机器人和紧急抢险机器人的运动系统,让机器人在行进中自动避过障碍物。 本文提出了一种经济实用的智能避障机器人系统设计方法,采用了小车底盘作为载体、直流电机作为执行元件、红外传感器作为检测元件、STC89C52单片机作为主控芯片、L298N作为驱动芯片和稳压电源芯片完成了检测电路设计、主控电路设计、电机驱动电路设计、稳压电路设计等硬件设计和制作,并对系统进行了仿真和综合调试,解决了一系列的难题,成功实现了自动避障功能。 关键词:智能避障机器人,红外传感器,单片机,L298N,PWM调速

THE DESIGN AND STUDY OF INTELLIGENT OBSTACLE AVOIDANCE ROBOT(HARDWARE) ABSTRACT In scientific exploration and emergency rescue often encounter some danger or human can not directly reach the area of detection, these will need to use the robot to complete. The robot's automatic obstacle avoidance movement in complex terrain is an essential and most basic function. Therefore, the automatic obstacle avoidance system development is made. Automatic obstacle avoidance robot development based on this system is made of. With the development of technology for the unknown space and mankind can not be directly accessible to gradually become a hot area of exploration, which makes the automatic obstacle avoidance robot has great significance. Automatic obstacle avoidance robot can serve as a regional exploration and emergency rescue robot system that allows robots to automatically avoid obstacles in the road. This paper presents an economical and practical design of intelligent obstacle avoidance robot system, using the car chassis as the carrier, the DC motor as the actuator, infrared sensors as detection devices, STC89C52 microcontroller as the main chip, L298N as the driver chip and regulated power supply chip to complete the detection circuit design, master control circuit design, motor driver circuit design, voltage regulator circuit design of hardware design and production. A lot of simulation and integrated debugging have been done to the system and a series of problems have been solved.

相关文档
最新文档