绝对值函数图象与性质

绝对值函数图象与性质
绝对值函数图象与性质

函数b a x k y +-=图象与性质

【问题提出】 将函数

()f x k x a b

=-+去掉绝对值符号后,写成分段函数

(),()(),k x a b x a f x k x a b x a

?-+≥?=?

--+

当x a ≥时,函数()y f x =与y kx =平行,且最低点为(,)a b ;当x a <时,函数()y f x =与y kx =-平行,

且最低点为(,)a b ;类比二次函数图象的记法,当0k >时,可知函数图象开口向上,顶点(最低点)为(,)a b . 同理可知,0k <时,

()f x k x a b

=-+的图象开口向下,顶点(最高点)为(,)a b .事实上,可以直接从

函数图象平移的角度去分析,即函数()f x k x a b =-+可看成()f x k x =平移而得.

【探究拓展】

探究1:设函数142)(+-=x x f ,若不等式ax x f ≤)(的解集非空,则实数a 的取值范围是___________.

2-

1

a 探究2:对任意的120x x <<,若函数12()f x a x x

b x x =-+-的大致图像为如图所示的一条折线(两侧的射线均平行于x 轴),试写出a 、b 应满足的条件 . 答案:0,0a b a +=>

提示:

??

?

??--++--++--=,

)(,)(,)()(111111bx ax x b a bx ax x b a bx ax x b a x f ,结合图像得,

0,0>-=+b a b a ,即0,0a b a +=>.

探究3.(2020年) 设函数f (x )的定义域为D ,如果存在正实数k ,使对任意x ∈D ,都有x +k ∈D ,且f (x +k )>f (x )恒成立,则称函数f (x )为D 上的“k 型增函数”.

(1)如果定义域为[)+∞-,1上的函数2)(x x f =是[)+∞-,1上的k 型增函数,则实数k 的取值范围是______;2>k

(2)已知f (x )是定义在R 上的奇函数,且当x >0时,f (x )=|x -a |-2a ,若f (x )为R 上的“2011型增函数”,则实数a 的取值范围是___________.

解 若a ≤0,则f (x )在x >0时为增

函数,

故对任意正实数k ,不等式f (x +k )>f (x )恒成

立.

若a >0,则函数y =f (x +k )的图象可由函数y =f (x )的图象向左平移k 个

单位而得(如图13).因k =2011,故仅当2011>6a 时,f (x +2011)>f (x ),所以此时0

综上,实数a 的取值范围是a <20116

(3)已知f (x )是定义在R 上的奇函数,且当x >0时,22)(a a x x f --=,

若f (x )为R 上的“4型增函数”,则实数a 的取值范围是___________. ()1,1-

变式1:如图所示,函数)(x f y =

的图象由两条射线和三条线段组成.若

R ∈?x

)1()(->x f x f ,则正实数a 的取值范围是 .

)6

1

,0(

变式2:函数)(x f 是定义在R 上的奇函数,当0≥x 时,

)3|2||(|2

1

)(222a a x a x x f --+-=,若R ∈?x ,)()1(x f x f ≤-,则实数a 的取值范

围为___________.

???

? ??-66,66

探究4:若对任意x R ∈,不等式x ax ≥恒成立,则实数a 的取值范围是________.

解析 在同一个坐标系中画出函数y x =与y ax =的图象(图1),要使得对任意x R ∈,不等式x ax ≥恒成立,则由一次函数性质与绝对值函数图象可知11a -≤≤,即1a ≤

探究5:函数||y k x a b =--+的图象与函数||y k x c d =-+的图象1(0,)3

k k >≠交与两

点(2,5),(8,3),则a c +的值为 .

分析 此题试题编制新颖,其中涉及到5个参数,让不少师生的思维分析遇到障碍. 事实上,本题主要考查的知识点是:绝对值函数()f x k x a b =++的性质与图象. 若能把握这一问题的本质,那么这个问题将迎刃

而解:

解析 函数

||y k x a b

=--+的图象开口向下,顶点为(,)a b ;函数

||y k x c d

=-+的图象开口向上,顶点为(,)c d ;若两函数图象相交的话,则构成四边形的两组对边分别平行,因此构成两定点和两交点构成一个平行四边形,如图2所示.

又两交点分别为(2,5),(8,3),那么由平行四边形对角线中点的横坐

标2822

a c ++=,可得10a c +=.

探究6:已知不等式321a x x ->-对任意的[1,2]x ∈-恒成立,则a 的取值范围______.

解析: 由321a x x ->-,()3,()21f x a x g x x =-=-;函数()3f x x a =-的顶点为(,0)3

a ,

开口向上,且左右两条射线的斜率分别为3,3-.在平面直角坐标系中,作出函数()g x 的图象(见图3);当0a =时,作出函数()3f x x a =-的图象作为参照线.

由两函数图象的位置关系可知,当0a ≤时,绝对值函数()3f x x a =-的图象始终在()g x 的图象上方;

当0a >时,将绝对值函数()3f x x a =-向右平

移,当

2

定点(,0)3

a 与1(,0)2重合时,即3

2

a =,此时,利用两函数的斜率大小关系得到()()f x g x ≥,当且仅当32a =时,等号成立;则可知3

2

a <时,()()f x g x >. 当32

a >,要使()()f x g x >,则要()3f x x a =-的左边部分永远在函

数()g x 上方,那么(2)(2)63f g a >?->,解得9a >.

综上可知,32a <或9a >时,321a x x ->-对[1,2]x ?∈-恒成立.

探究7:对任意()0,x ∈+∞,不等式11||2

x a x

-+≥恒成立,则实数a 的取值范围

是______.

解析 由11||2

x a x

-+≥转化为11||2x a x

-≥-,下在同

一个坐标系中分别画出函数y x a =-与112

y x

=-的图

(如图4).

易知函数112

y x

=-在(0,)+∞上为增函数,且过x 轴上点

(2,0)A ;那

么要使得绝对值函数y x a =-的图象始终在双曲线上方的话,则其

顶点(,0)a 的位置只能在点A 的右边或与其重合,即可得2a ≤.

探究8:若关于x 的不等式2

2x x t

<--至少有一个负数解,则实数t 的取值

范围是 .

解析 首先由

22x x t <--22||

x x t ?->-,在同一个

平面直角坐标系内分别画出两个函数图象,如

图4:

考虑临界情况:当2t ≥时,绝对值函数图

象在

抛物线下方的那部分横坐标都不小于0,即不等式解集中没有负实数;

3

图4

当直线与抛物线相切时,解得9=4t ±;又当9

4

t ≤-时,同理可知

解集中也没有负数解;则所求实数9

(,2)4

t ∈-.

探究9:设集合2

{|||20}A x x x a a a R =-++<∈,,{|2}B x x =<. 若A ≠?且A B ?,则实

数a 的取值范围是 .

解析 首先,不等式2

||20x x a a -++<等价于2

||2x

x a a

<+-,即可转化为函

数2

()f x x =与函数()||2g x x a a =+-的图象位置关系问题;

由题意可知,当(,2)x ∈-∞时,函数()

y g x =的图象上有部分始终位于抛物线2

y x =上方;又函

12

y x =

上;

()||2g x x a a =+-,开口向上,定点(,2)a a --在直线由此,可在同一平面直角坐标系内画出函数图象:

1) 当2a -=,即2a =-时,{|2}A x x ?<,符合题意,故2a =-适合; 2) 当2a ->,即2a <-时,由图象可知,不合题意;

3) 当2a -<,即2a >-时,首先考虑到顶点在直线1

2

y x =运动,那

么即要考虑临界情况,当绝对值函数的右支和抛物线2y x =相切

时,即方程2

2x x a a =+-的判别式0?=时,

解得1

4a =;又因为当14

a ≥时,A =?,故1

4a <;

综上可知,124

a -≤<.

探究10:定义在[)1+∞, 上的函数()f x 满足:①(2)2()f x f x =;②当[]24x ∈, 时,

()13

f x x =--,则集合{}()(36)x f x f =中的最小元素是_______. 12

5

图6

变式1:定义在[1,)+∞上的函数()f x 满足:①(2)()f x cf x =(c 为正常数);②当

24x ≤≤时,()13f x x =--.若函数()f x 的所有极大值点均落在同一条直线上,

则c = .

解1 由题意可知,当12x ≤≤时,()1(123)f x x c

=--,顶点为1

P 31(,)2c

当24x ≤≤时,()13f x x =--,顶点为2

P

(3,1);

当48x ≤≤时,()(13)2

x f x c =--,顶点为3

P (6,)c ;

当816x ≤≤时,()2

(13)4

x f x c =--,顶点为4

P

2(12,)c ;

…… 当22

2n

n x ≤≤时,()11

(13)2

n n x f x c --=-

-,顶点为1n P +11(32,)n n c --?.

那么,若函数()f x 的所有极大值点都落在同一条直线上,则必有点

1P 31

(,)2c

,2P (3,1),2

P (6,)c 三点共线,即由12P P u u u u r ∥23P P u u u u r 可解得1c =或2.

经检验,当1c =时,所有极大值点都在直线1y =上;当2c =时,所有极大值点都在直线3y x =上.

解2 可求得,当1

2n -≤x ≤2n

(n ∈N*)时, f (x ) =2

2

(1|

3|)2n n x c

----.

记函数f (x ) =2

2

(1|

3|)2

n n x c ----(12n -≤x ≤2n ,n ∈N*)图象上极大值的点为

P n (x n ,y n ). 令

2

302n

n x --=,即x n =2

32n -?时,y n =2

n c -,故P n (2

32n -?,2

n c -).

分别令n =1,2,3,得 P 1(32

,1c

),P 2(3,1),P 3(6,c ).

由21

23

P P P P k

k =(k 表示直线的斜率)得,c =2或c =1.

当c =2时,所有极大值的点均在直线13

y x =上;

当c =1时,y n =1对n ∈N*恒成立,此时极大值的点均在直线y =1上.

变式2:定义在[1,)+∞上的函数f (x )满足:①f (2x )=cf (x )(c 为正常数);②当2≤x ≤4时,

f (x )=1-|x -3|.若函数图象上所有取极大值的点均落在同一条以原点为顶点的抛物线上,则常数c = .

略解 以原点为顶点的抛物线方程可设为x 2=py (p ≠0)或y 2=qx (q ≠0).

若P n (2

32n -?,2

n c -)在抛物线x 2=py (p ≠0)上,则(2

32n -?)2=2

n pc -,即2

9()

4

n c p -=对n ∈N*恒成立,从而c =4;若P n (2

32n -?,2

n c -)在抛物线y 2=qx (q ≠0)上,

则(

2

n c -)2=2

32n q -?,即23

n q -=对n ∈N*恒成立,从而c .综上,c =4

【专题反思】你学到了什么?还想继续研究什么?

幂函数题型归纳

幂函数知识点归纳及题型总结 一、 幂函数定义:对于形如:() x f x α=,其中α为常数.叫做幂函数 定义说明: 1、 定义具有严格性,x α系数必须是1,底数必须是x 2、 α取值是R . 3、 《考试标准》要求掌握α=1、2、3、?、-1五种情况 二、 幂函数的图像 幂函数的图像是由α决定的,可分为五类: 1)1α>时图像是竖立的抛物线.例如:()2x f x = 2)=1α时图像是一条直线.即() x f x = 3)01α<< 时图像是横卧的抛物线.例如()1 2x f x = 4)=0α时图像是除去(0,1)的一条直线.即() 0x f x =(0x ≠) 5)0α<时图像是双曲线(可能一支).例如() -1 x f x = 具备规律: ①在第一象限内x=1的右侧:指数越大,图像相对位置越高(指大图高) ②幂指数互为倒数时,图像关于y=x 对称 ③结合以上规律,要求会做出任意一种幂函数图像 三、幂函数的性质 幂函数的性质要结合图像观察,随着α取值范围的变化,性质有所不同。 1、 定义域、值域与α有关,通常化分数指数 幂为根式求解 2、 奇偶性要结合定义域来讨论 3、 单调性:α>0时,在(0,+∞)单调递 增:α=0无单调性;α<0时,在(0,+∞)单调递减 4、 过定点:α>0时,过(0,0)、(1,1)两

点;α≤0时,过(1,1) 5、 由 ()0 x f x α=>可知,图像不过第四象限 一、幂函数解析式的求法 1. 利用定义 (1)下列函数是幂函数的是 ______ ①21()y x -= ②22y x = ③21(1)y x -=+ ④0 y x = ⑤1y = (2(3 2 3 1. (1)、函数3 x y =的图像是( ) (2)右图为幂函数y x α =在第一象限的图像,则,,,a b c d 的大小关系是 ( )

含绝对值的函数的图像

在下面分别从三个方面讲如何画含绝对值的函数的图像,以及在具体的题目中的应用。希望对雨我们学习这部分的知识有所帮助。 、三点作图法 三点作图袪是画函数ιy = ? f +? ?^-c(ak≠ 0)的图象的一种i罚捷方法(该函数图形?Ufft G V fl i故称召型图人 步曝是E①先画出站型图顶点,石; —) ②在顶点两侧各找出一点;卩 ③次顶点为端点分别与另两个点画两条射线,就得到函数y ≈k? ax+? I???≠ 0)的图彖* 例1作出下列各函数的圏象. (1) y =| 2x 亠J ll 一1; {2) y = 1- ∣2x ÷ 11 ? 解’⑴ 顶点:,-才两点g 0λ (b O)D其图彖如图1所示. 圏b <2)顶点f-lΛ两点(一1, 0), (0, 0).其图象如图2所示. I 2 j

图2 注 I 当40时图象奔口向上,当衣D时图彖开口向下?函数图象关于直线Λ= --对称口 翻转作图法是画函数y H .rω I的图象的一种简捷方法. 注I ? k>0时图象开口向上,当衣0时图象开口向下.函数图象关于直线Λ = --对称" 制转作图法是画函数丁H∕ω I的图象的一种简捷方法. 二爾转作IS 二詡转作l?

步麋是 * ?5t 作出 P = /(x) 的图彖;②若y - /(Λ)的图家不位于X轴下方, 则函数I y = /(>)的图象就??^ιy =| f{x) \的图象;③若函数4y = h∕(x)的图象育位于H轴下方的,则可把X轴下方的图象绕X轴翻转180φ到盟轴上方,就得到了函数 I y=I I/(Λ)∣的图家? 例t作出下列各函数的图讓. U) 7=U?-?i y=∣√-2^-3∣j ¢3) y=∣?(r+3)∣c 解;⑴先作出^=μ∣-l的图象如图3,把图3中盟轴下右的图家翻上去!得至(]图乳图召就是妾IsJ的函数图象n C2)先作出y = X2- 2x-3的图熟如图5.把图5中梵轴T方的图象翻±? ⑶ 先作出^ = Ig(X+ 3)的图熟如图亿把图7中忙轴下丹的图象翻上去,得 到图3.图&就是婪画的1S数图象? 三、分段破作图法 分段函数作图法是把瘟函数等价转化沟分段函数后再作图,这种右法是画含有绝对值的函数的图象的有效有法. 例1作出下列函数的图家U (I)J = Z a-2μ∣+b ¢2) J=μ + l∣ + μ-l∣j (3) jμ=∣Λ2-2τr-3h 图4

赏析幂函数的图象特征及应用

一、幂函数图像的分布规律 幂函数图像的分布规律可用“一全有、二一偶、三一奇、四全无”来说明。 1.“一全有”:指所有幂函数的图像在第一象限都出现, 分布情况如图1所示,其特点如下:①抓住三条特征 线:直线x=1,y=x ,y=1把幂函数的图像分为三个区 域,这三个区域对应着幂函数y=x α在α<0,0<α<1, α>1时的图像;②第一象限内幂函数y=x α图像的区 域分布情况为:在直线x=1的右边,α越大,图像越高,越趋向于直线x=1;在直线x=1的右边,α越小,其图像越低,越趋向于x 轴。 2.“二一偶”:指当幂函数为偶函数时,其图像关于y 轴对称,即幂函数的图像出现在第一、第二象限。 3.“三一奇”:指当幂函数为奇函数时,其图像关于原点对称,即幂函数的图像出现在第一、第三象限。 4.“四必无”:指由定义,知幂函数的图像不可能出现在第四象限。 二、幂函数图像的应用 1.识别图像 例1.图2中 的曲线是幂函数y=x α在第一象限的图像,已知α取±2,±12四个值,则其相应于曲线C 1,C 2,C 3,C 4的α依次为( ) A.-2,-12,12,2 B.2,12,-12,-2 C.- 12,-2,2,12 D.2,12,-2,-12 解:根据幂函数的图像特点,立即可以断定相应于曲线C 1,C 2,C 3,C 4的α值排序是由大到小,故选B 。 2.用于判断方程的个数 例2.方程x 2=2x 的根的个数为( ) A.1 B.2 C.3 D.

解:令f(x)=x2,g(x)=2x,在同一坐标平面内作出这两个函数的图象,如图三所示,由图可知,交点有三个,所以方程x2=2x的根的个数为3,故选C。

含绝对值函数的最值问题

专题三: 含绝对值函数的最值问题 1. 已知函数2()2||f x x x a =-- (0>a ),若对任意的[0,)x ∈+∞,不等式(1)2()f x f x -≥恒成立,求实数a 的取值范围、 不等式()()12f x f x -≥化为()2 212124x x a x x a ----≥-- 即:()242121x a x a x x ---+≤+-(*)对任意的[)0,x ∈+∞恒成立因为0a >,所以分如下情况讨论: ①当0x a ≤≤时,不等式(*)24120[0,]x x a x a ++-≥?∈对恒成立 ②当1a x a <≤+时,不等式(*)即24160(,1]x x a x a a -++≥?∈+对恒成立 由①知102 a <≤,2()416(,1]h x x x a a a ∴=-+++在上单调递减 2662a a ∴≤--≥-或 11626222 a -<∴-≤≤Q 2、已知函数f (x )=|x -a |,g (x )=x 2+2ax +1(a 为正数),且函数f (x )与g (x )的图象在y 轴上的截距相等.(1)求a 的值;(2)求函数f (x )+g (x )的最值. 【解析】(1)由题意f (0)=g (0),∴|a |=1、又∵a >0,∴a =1、 (2)由题意f (x )+g (x )=|x -1|+x 2+2x +1、 当x ≥1时,f (x )+g (x )=x 2+3x 在[1,+∞)上单调递增, 当x <1时,f (x )+g (x )=x 2+x +2在????? ???-121上单调递增,在(-∞,12-]上单调递减. 因此,函数f (x )+g (x )在(-∞,12-]上单调递减,在????? ???-12+∞上单调递增. 2min ()4120[0,]()(0)120 1 02 g x x x a a g x g a a =++-≥∴==-≥∴<≤Q 在上单调递增只需2min ()(1)420h x h a a a ∴=+=+-≥只需

含绝对值函数的综合问题一

含绝对值函数综合问题 一、含绝对值函数的最值 1、含一个绝对值的一次绝对值函数的最值、单调性、对称性 (1)()||f x x =的图像是以原点为顶点的“V ”字形图像;函数在顶点处取得最小值 “(0)0f =”,无最大值;在函数(,0],[0,)x ∈-∞↓+∞↑;对称轴为:0x = (2)()||(0)f x kx b k =+≠图像是以(,0)b k -为顶点的“V ”字形图像;在顶点取得最小值: “()0b f k -=”,无最大值;函数在(,],[,)b b x k k ∈-∞-↓-+∞↑;对称轴为:b x k =- (3)函数()||(0)f x k x b k =+≠: 0k >时,函数是以(,0)b -为顶点的“V ”字形图像;函数在顶点取得最小值: “()0f b -=”,无最大值;函数在(,],[,)x b b ∈-∞-↓-+∞↑;对称轴为:x b =- 0k <时,是以(,0)b -为顶点的倒“V ”字形图像,函数在顶点取得最大值: “()0f b -=”,无最小值;函数在(,],[,)x b b ∈-∞-↑-+∞↓;对称轴为:x b =- 2、含两个绝对值的一次绝对值函数的最值、单调性、对称性 (1)函数()||||()f x x m x n m n =-+-<的图像是以点(,),(,)A m n m B n n m --为折点的 “平底形”图像;在[,]x m n ∈上的每点,函数都取得最小值n m -,无最大值;函数 在(,],[,)x m x n ∈-∞↓∈+∞↑ ,在[,]x m n ∈无单调性;对称轴为2 m n x +=。 (2)函数()||||f x x m x n =---: 当m n >时,()f x 是以点(,),(,)A m n m B n m n --为折点的“Z 字形”函数图像;在 (,]x n ∈-∞上的每点,函数都取得最大值m n -,在[,)x m ∈+∞上的每点,函数都取得最小值n m -;函数在[,]x n m ∈↓,在(,]x n ∈-∞及[,)x m ∈+∞上无单调性;对称中心为(,0)2 m n +; 当n m >时,()f x 是以点(,),(,)A m m n B n n m --为折点的“反Z 字形”函数图像; 在(,]x m ∈-∞上的每点,函数都取得最小值m n -,在[,)x n ∈+∞上的每点,函数都 取得最大值n m -;函数在[,]x m n ∈↑,在(,]x n ∈-∞及[,)x m ∈+∞上无单调性;对 称中心为( ,0)2 m n +; (3)()||||()f x a x m b x n m n =-+-<图像是以(,()),(,())A m f m B n f n 为折点的折线。 当0a b +>时,两端向上无限延伸,故最小值,最小值为min{(),()}f m f n ; 当0a b +<时,两端向下无限延伸,故最大值,最大值为{(),()}Max f m f n ; 当0a b +=时,两端无限延伸且平行x 轴,故既有最大值又有最小值,最大值为 {(),()}Max f m f n ;最小值为min{(),()}f m f n 。 3、含多个绝对值的一次函数的最值、单调性 函数1212()||||||(,,,)n i n f x x a x a x a a R i n N a a a *=-+-++-∈∈<<< 设 (1)若21()n k k N *=-∈,则()f x 的图像是以(,())k k a f a 为顶点的“V ”字形图像 (a )当且仅当k x a =时,min 1211221[()]|()()|k k k k f x a a a a a a -++-=+++-+++ (b ) 函数()f x 在(,],[,)k k a a -∞↓+∞↑,若{}i a 为等差数列,则图像关于k x a =对称 (2)若2()n k k N *=∈,则()f x 的图像是以点11(,()),(,())k k k k A a f a B a f a ++为折点的“平 底形”图像 (a )当且仅当1[,]k k x a a +∈,min 12122[()]|()()|k k k k f x a a a a a a ++=+++-+++ (b ) 函数()f x 在1(,],[,)k k a a +-∞↓+∞↑,在1[,]k k x a a +∈无单调性。若{}i a 为等差数列, 则图像关于1 2 k k a a x ++= 对称 这一结论从一次绝对值函数图像上了不难看出,当1x a < 及 n x a >时,图像是分别向左、右两边向上无限伸展的两条射线,中间各段在区间1[,](1,2,1)i i a a i n +=- 上均为线段.它们首尾相连形成折线形,在中间点或中间段处最低,此时函数有最小值. 证明:当21()n k k N * =-∈时,1221()||||||k f x x a x a x a -=-+-++- , 1221k a a a -<<< 设由绝对值不等式性质得: 121121211|||||()()|k k k x a x a x a x a a a ----+-≥---=-,当且仅当121[,]k x a a -∈时取“=” 222222222|||||()()|k k k x a x a x a x a a a ----+-≥---=-, 当且仅当222[,]k x a a -∈时取“=”

绝对值函数图像的画法

For personal use only in study and research; not for commercial use For personal use only in study and research; not for commercial use 首先要从简单的绝对值函数画起。 2-=x y :是一条以()0,2为拐点的折线。 或者可以理解为将直线2-=x y 在x 轴下面的部分沿x 轴翻折上去 然后再着手于复杂的图像的画法。 22 1121-++=x x y ,先单独画出两个绝对值的图像,再合到一起。(叠加后直线的斜率不同) 其中-2和4由两个绝对值为零算的,3为由x=-2和x=4算得的y 值。 最后,最复杂的二次函数中的绝对值的画法。 122--=x x y ,很显然绝对值是将x 变成正数,由前面的图像可知a x y -=的图像总会关于a x =轴对称,故x y 21-=关于y 轴对称,又122-=x y 也关于y 轴对称,所以图像合并起来就容易多了。

仅供个人用于学习、研究;不得用于商业用途。 For personal use only in study and research; not for commercial use. Nur für den pers?nlichen für Studien, Forschung, zu kommerzie llen Zwecken verwendet werden. Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des fins commerciales. толькодля людей, которые используются для обучения, исследований и не должны использоваться в коммерческих целях. 以下无正文

高中数学 含绝对值的函数图象的画法及其应用素材

含绝对值的函数图象的画法及其应用 一、三点作图法 三点作图法是画函数)0(||≠++=ak c b ax k y 的图象的一种简捷方法(该函数图形形状似“V ”,故称V 型图)。 步骤是:①先画出V 型图顶点?? ? ?? - c a b ,; ②在顶点两侧各找出一点; ③以顶点为端点分别与另两个点画两条射线,就得到函数)0(||≠++=ak c b ax k y 的图象。 例1. 作出下列各函数的图象。 (1)1|12|--=x y ;(2)|12|1+-=x y 。 解:(1)顶点?? ? ??-12 1 ,,两点(0,0) ,(1,0)。其图象如图1所示。 图1 (2)顶点?? ? ?? - 121 ,,两点(-1,0) ,(0,0)。其图象如图2所示。 图2 注:当k>0时图象开口向上,当k<0时图象开口向下。函数图象关于直线a b x -=对称。 二、翻转作图法 翻转作图法是画函数|)(|x f y =的图象的一种简捷方法。 步骤是:①先作出)(x f y =的图象;②若)(x f y =的图象不位于x 轴下方,则函数 )(x f y =的图象就是函数|)(|x f y =的图象; ③若函数)(x f y =的图象有位于x 轴下方的,则可把x 轴下方的图象绕x 轴翻转180°到x 轴上方,就得到了函数|)(|x f y =的图象。 例2. 作出下列各函数的图象。 (1)|1|||-=x y ;(2)|32|2 --=x x y ;(3)|)3lg(|+=x y 。 解:(1)先作出1||-=x y 的图象,如图3,把图3中x 轴下方的图象翻上去,得到图4。图4就是要画的函数图象。 图3 图4

幂函数的图像性质和应用

幂函数 分数指数幂 正分数指数幂的意义是:m n a =0a >,m 、n N ∈,且1n >) 负分数指数幂的意义是:m n a -= (0a >,m 、n N ∈,且1n >) 1、 幂函数的图像与性质 幂函数n y x =随着n 的不同,定义域、值域都会发生变化,可以采取按性质和图像分类记忆的方法.熟练掌握n y x =,当11 2,1,,,323 n =±±±的图像和性质,列表如下. 从中可以归纳出以下结论: ① 它们都过点()1,1,除原点外,任何幂函数图像与坐标轴都不相交,任何幂函数图像都不过第四象限. ② 11 ,,1,2,332a = 时,幂函数图像过原点且在[)0,+∞上是增函数. ③ 1 ,1,22a =---时,幂函数图像不过原点且在()0,+∞上是减函数. ④ 任何两个幂函数最多有三个公共点.

0n < 幂函数基本性质 (1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1); (2)α>0时,幂函数的图象都通过原点,并且在[0,+∞]上,是增函数 (3)α<0时,幂函数的图象在区间(0,+∞)上是减函数. 规律总结 1.在研究幂函数的性质时,通常将分式指数幂化为根式形式,负整指数幂化为分式形式再去进行讨论; 2.对于幂函数y =αx ,我们首先应该分析函数的定义域、值域和奇偶性,由此确定图象的位置,即所在象限,其次确定曲线的类型,即α<0,0<α<1和α>1三种情况下曲线的基本形状,还要注意α=0,±1三个曲线的形状;对于幂函数在第一象限的图象的大致情况可以用口诀来记忆:“正抛负双,大竖小横”,即α>0(α≠1)时图象是抛物线型;α<0时图象是双曲线型;α>1时图象是竖直抛物线型;0<α<1时图象是横卧抛物线型. O x y O x y O x y

幂函数的图像与性质

幂函数的图像与性质

(三)幂函数 1、幂函数的定义 形如y=x α(a ∈R )的函数称为幂函数,其中x 是自变量,α为常数 注:幂函数与指数函数有本质区别在于自变量的位置不同,幂函数的自变量在底数位置,而指数函数的自变量在指数位置。 例1.下列函数中不是幂函数的是( ) A .y x = B .3y x = C .2y x = D .1 y x -= 例2.已知函数()()2531m f x m m x --=--,当 m 为何值时,()f x : (1)是幂函数;(2)是幂函数,且是()0,+∞上的增函数; (3)是正比例函数;(4)是反比例函数;(5)是二次函数; 变式 已知幂函数2 223(1)m m y m m x --=--,当(0)x ∈+,∞时为减函数,则幂函数 y =_______. 2.幂函数的图像 幂函数y =x α的图象由于α的值不同而不同. α的正负:α>0时,图象过原点和(1,1),在第一象限的图象上升; α<0时,图象不过原点,在第一象限的图象下降,反之也成立;

3、幂函数的性质 y=x y=x 2 y=x 3 12 y x = y=x -1 定义域 R R R [0,+∞) {}|0x x R x ∈≠且 值域 R [0,+∞) R [0,+∞) {}|0y y R y ∈≠且 奇偶性 奇 偶 奇 非奇非偶 奇 单调性 增 x ∈[0,+∞)时,增; x ∈(,0]-∞时,减 增 增 x ∈(0,+∞)时,减; x ∈(-∞,0)时,减 定点 (1,1) 例3.比较大小: (1)112 2 1.5,1.7 (2)33( 1.2),( 1.25)--(3)112 5.25,5.26,5.26---(4)30.530.5,3,log 0.5 4.幂函数的性质及其应用 幂函数y =x α有下列性质: (1) 单调性:当α>0时,函数在(0,+∞)上单调递增; 当α<0时,函数在(0,+∞)上单调递减. (2)奇偶性:幂函数中既有奇函数,又有偶函数,也有非奇非偶函数,可以用函数奇偶性的定义进行判断. 例4.已知幂函数2 23 m m y x --=(m Z ∈)的图象与x 轴、y 轴都无交点,且关于 原点对称,求m 的值.

(完整版)幂函数的图像与性质(2)

【知识结构】 1 ?有理数指数幕 (1)幕的有关概念 m ①正数的正分数指数幕:a n v'a m (a 0,m> n N ,且n 1); (三)幕函数 1、幕函数的定义 形如y=x " (a € R )的函数称为幕函数, m 1 1 a n m / ----- (a m n a a ②正数的负分数指数幕 0,m 、n N ,且n 1) ③0的正分数指数幕等于0,0的负分数指数幕没有意义 注:分数指数幕与根式可以互化,通常利用分数指数幕进行根式的运算 (2)有理数指数幕的性质 ①a f a s =a r+s (a>0,r 、s € Q ②(a r )s =a rs (a>0,r 、s € Q); ③(ab)r =a r b s (a>0,b>0,r € Q);. 例2 (1)计算: 3 "3 4 o 5 [(38)3(56) . 2 1 1 (0.008) 3 (0.02) ' (0.32円 0.06250.25 4 1 a 3 8a 3b 2 2 (2)化简:4b 3 23 ab a 3 (a 3 23 b) . a 3 a 2 a 引Ja Va 变式: (1) (2007执信A )化简下列各式(其中各字母均为正数) 2) 1 2 1 b 2 ( 3a?b 1) (4a? b 予.

其中x是自变量,a为常数 注:幕函数与指数函数有本质区别在于自变量的位置不同,幕函数的自变量在底数位置,而指数函数的自变量在指数位置。 例1.下列函数中不是幕函数的是() A. y Vx B. y X3 C y 2x D. y X1 例2.已知函数f x m2m 1 x 5m 3,当m为何值时,f x : (1)是幕函数;(2)是幕函数,且是0, 上的增函数; (3)是正比例函数;(4)是反比例函数;(5)是二次函数; 变式已知幕函数y (m2 m 1)x m 2m 3,当x (0,g)时为减函数,则幕函数 y _______ - 2. 幕函数的图像 幕函数y= x a的图象由于a的值不同而不同. a的正负:a> 0时,图象过原点和(1,1),在第一象限的图象上升; aV0时,图象不过原点,在第一象限的图象下降,反之也成立;

含参数含绝对值的函数综合题

含参数含绝对值的函数综合题探究 一.解题策略: 1.去绝对值的思考,2012年~2014年的高考流行的是“遇见绝对值就考虑分类讨论去绝对值变为分段函数”;这几年高考反而流行“不去绝对值”即“整体换元后进行画函数图像数形结合”。 2.分类讨论要“慢”; 3.能换元就“换”; 4.有函数就“画”。 二.精题例析 例1 (2017年4月浙江省学考第25题)已知函数) f=3|x?a|+|ax?1|,其中a∈R (x ①当a=1时,写出函数) (x f为偶函数,求实数a的值; (x f的单调区间;②若函数) ③若对任意的实数x∈[0,3],不等式) (x f≥3x|x?a|恒成立,求实数a的取值范围. 点评:2012年~2014年的高考流行的模式延续到2015年~2017的浙江省学考中。

练习1 (2016年10月浙江省学考第25题)设函数2)|1(|1)(a x x f --=的定义域为D ,其中1

例2 (2017年6月浙江省高考第 17题即填空题的最后一题) 已知R ∈a .函数()a a x x x f +-+ =4在区间[]4,1上的最大值是5,则a 的取值 范围是_____. 点评:这几年高考反而流行“不去绝对值”即“整体换元后进行画函数图像数形结合”,往往作为填空题考查学生,切忌小题大做,考查学生的转化与化归的思想意识、整体处理思想及数形结合。 练习1.(2018年4月浙江学考第22题即填空题的压轴题) 若不等式2x 2?(x ?a )|x ?a |?2≥0对于任意x ∈R 恒成立,则实数a 的最小值是________________. 练习 2. 设函数m m x x x f 2294)(2+-+-=在区间[]4,0上的最大值是9,则实数m 的取值范围是______________.

幂函数图象规律

幂函数图象有规律 幂函数()n y x n Q = 的图象看似复杂,其实很有规律。假如我们能抓住这些规律,那么幂函数图象问题就可迎刃而解。那么幂函数图象有哪些规律呢? 1.第一象限内图象类型之规律(如图1):1.n >1时,过(0,0)、(1,1)抛物线型,下凸递增。2.n =1时,过(0,0)、(1,1)的射线。 3.0<n <1时,过(0,0)、(1,1)抛物线型,上凸递增。4.n =O 时,变形为y =1(x ≠0),平行于x 轴的射线。 5.n <0时过(1,1),双曲线型,递减,与两坐标轴的正半轴无限接近。 2.第一象限内图象走向之规律(如图1): x ≥1部分各种幂函数图象,指数大的在指数小的上方;O <x <1部分图象反之,此二部分图象在(1,1)点穿越直线y =x 连成一体。 3.各个象限内图象分布之规律:设p n q = ,,p q 互质,,p Z q N 挝。 1.任何幂函数在第一象限必有图象,第四象限必无图象。 2.n =奇数/偶数时,函数非奇非偶,图象只在第一象限(如图1)。 3.n =偶数/奇数时,函数是偶函数、图象在第一、二象限并关于y 轴对称(如图2)。 4.n =奇数/奇数时,函数是奇函数,图象在第一、三象限并关于原点对称(如图3)。 5. 当n<0时,图像与x 轴,y 轴没有交点。 知识点:幂函数的图象特征: (1)任何幂函数在第一象限必有图象,第四象限必无图象. 先根据函数特征画出第一象限图象; ① 所有的幂函数在(0,+∞)都有定义, 并且图象都过点(1,1); ②0>α时,幂函数的图象通过原点, 并且在区间),0[+∞上是增函数. ③0<α时,幂函数的图象在区间),0(+∞上是减 函数.在第一象限内,当x 从右边趋向原点时,图象在y 轴右方无限地逼近y 轴正半轴, 当x 趋于∞+时,图象在x 轴上方无限地逼近x 轴正半轴. (2)如果幂函数是奇函数,在第 象限内有其中心(坐标原点)对称部分;如果幂函数是偶函数,在第 象限内有其轴(y 轴)对称部分;如果幂函数是非奇非偶函数,则其函数图象只在第一象限内.

含绝对值函数的图象 0

含绝对值函数的图象 【基础内容与方法】 1.绝对值在自变量上,则去掉函数y 轴左边的图像,再把y 轴右边的图像沿y 轴翻折得到新的图像; 2.绝对值在函数解析式上,把x 轴下方的图像沿x 轴翻折得到新的图像; 3.同时,函数图像也遵循平移的原则. 类型一:含绝对值的一次函数 1.已知函数+2y k x b =+的图象经过点(2-,4)和(6-,2-),完成下面问题: (1)求函数+2y k x b =+的表达式; (2)在给出的平面直角坐标系中,请用适当的方法画出这个函数的图象,并写出这个函数的一条性质; (3)已知函数1 +12y x =的图象如图所示,结合你所画出+2y k x b =+的图象, 直接写出1 +2+12 k x b x +>的解集.

类型二:含绝对值的二次函数 (一)绝对值在自变量上 2.某班“数学兴趣小组”对函数y=﹣x2+2|x|+1的图象和性质进行了探究,探究过程如下,请补充完整. (1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下: 其中,m=. (2)根据上表数据,在如图所示的平面直角坐标系中描点,画出了函

数图象的一部分,请画出该函数图象的另一部分. (3)观察函数图象,写出两条函数的性质. (4)进一步探究函数图象发现: ①方程﹣x2+2|x|+1=0有个实数根; ②关于x的方程﹣x2+2|x|+1=a有4个实数根时,a的取值范围是. 3.写出函数1 x x f在什么范围内,y随x的增大而增大,y随x的 =x 2 ) (2+ - 增大而减小?

(二)绝对值在解析式上 4.探究函数 22y x x =-的图象与性质. (1)下表是y 与x 的几组对应值. x 其中m 的值为_______________; (2)根据上表数据,在如图所示的平面直角坐标系中描点,并已画出了函数图象的一部分,请你画出该图象的另一部分; (3)结合函数的图象,写出该函数的一条性质:_____________________________; (4)若关于x 的方程220x x t --=有2个实数根,则t 的取值范围是___________________.

【新课标】函数.幂函数课堂教案

§2.3幂函数(教案) 教学目标: 知识与技能 通过具体实例了解幂函数的概念,掌握幂函数的图象和性质,并能进行简 单的应用。 过程与方法 能够类比研究一般函数、指数函数、对数函数的过程与方法,研究幂函数 的图象和性质;培养学生数形结合、分类讨论的思想,以及分析归纳的能力。 情感、态度、价值观 体会幂函数的变化规律及蕴含其中的对称性,培养学生合作交流的意识。 教学重点: 重点 从五个具体幂函数图象中认识幂函数的一些性质。 难点 画五个具体幂函数的图象并由图象概括其性质,体会图象的变化规律。 教学关键:揭示出幂函数y x α =的图象的规律。 教学准备:多媒体课件,几何画板。 教学方式:引导教学法、探索讨论法、多媒体教学法。 学法指导:操作实验、自主探索、合作交流。 教学程序与环节设计: 教学过程与操作设计:

材料二:幂函数的图象变化规律归纳 ∞)都有定义,并且图象都经

板书设计: 幂函数 1、幂函数的定义例2 例4 2、幂函数的图象与性质 教案说明: (1)本节课的教学内容,课本中虽然只有3页,但内容丰富。课本通过几个特殊幂函数的图象类比

归纳,得到图象都通过点(1,1)。 (2)本节是新课标新增加的内容,教材不仅仅学习有关幂函数图象与性质的问题,还包含着教会学 生通过观察和思考,得到有关幂函数的一些知识的问题。 (3)有意识地将新知识的学习和研究方法渗透到教学过程之中,通过教学过程的设计,将这部分内 容适当展开,重新组合,使知识的传授和能力的培养有机地结合到一起。 (4)利用几何画板方便地研究出幂函数的图象,充分展示由幂指数的变化引起幂函数图象的变化的 内部规律。这样学生就容易从所举函数的个性中归纳出共性来,从而在整体上对幂函数的图象 与性质有较深刻的了解。

(完整版)幂函数图象及其性质

幕函数的图像与性质 1幕函数的定义 形如y=x "(a € R )的函数称为幕函数,其中 x 是自变量,a 为常数 注:幕函数与指数函数有本质区别在于自变量的位置不同, 幕函数的自变量在底数位置, 而 指数函数的自变量在指数位置。 例题、(1).下列函数中不是幕函数的是( ) A . y 仮 B . y x 3 c . y 2x D . y x 1 答案:C 例2.已知函数f x m 2 m 1 x 5m 3,当m 为何值时,f x 图像是上升曲线。 (1)是幕函数; (2)是幕函数,且是 0, 上的增函数;(3)是正比例函数;(4)是反 比例函数; (5) 是二次函数; 简解:(1) (2) (3) m 4 (4) m 5 (5) m 1 变式训练: 已知函数f x m 2 2m m 为何值时, 在第一象限内它的 2 小 简解:m m 0 2 m 2m 3 解得:m 0 U 3, 小结与拓展:要牢记幕函数的定义,列出等式或不等式求解。 2.幕函数的图像 幕函数y = x a 的图象由于a 的值不同而不同. a 的正负:a> 0时,图象过原点和(1,1),在第一象限的图象上升; 在第一象限的图象下降,反之也成立; aV 0,图象不过原点,

1 注:在上图第一象限中如何确定 y=x 3, y=x 2, y=x , y x 2 , y=x -1方法:可画出x=x o ; 当x o >l 时,按交点的高低,从高到低依次为 y=x 3, y=x 2, 当0

幂函数的图像与性质之令狐文艳创作

2.3幂函数 令狐文艳 学习目标 1. 通过具体实例了解幂函数的图象和性质; 2. 体会幂函数的变化规律及蕴含其中的对称性并能进行简单的应用. 学习重点 幂函数的图像与性质 学习难点 幂函数性质的应用 学习过程 问题:分析以下五个函数,它们有什么共同特征? (1)边长为a 的正方形面积2 S a =,S 是a 的函数; (2)面积为S 的正方形边长12 a S =,a 是S 的函数; (3)边长为a 的立方体体积3 V a =,V 是a 的函数; (4)某人ts 内骑车行进了1km ,则他骑车的平均速度1/v t km s -=,这里v 是t 的函数; (5)购买每本1元的练习本w 本,则需支付p w =元,这里p 是w 的函数. 1.幂函数的概念:一般地,形如 y x α =()a R ∈的函数称为幂函数,其中α为常数. 判断下列函数哪些是幂函数. ① 1 y x = ;②22y x =;③3 y x x =-;④1y =. 2.幂函数的图象与性质 作出下列函数的图象:(1)y x =;(2)12 y x =;(3) 2y x =; (4)1 y x -=;(5)3 y x =. 从图象分析出幂函数所具有的性质. x y = 2x y = 3x y = 2 1x y = 1-=x y 定义域 值域 奇偶性 单调性 定点

1.幂函数的性质: 2.幂函数图象变化规律:. 练习:下列关于幂函数的命题中不正确的是( ) A 幂函数的图象都经过点(1,1) B 幂函数的图象不可能在第四象限内 C 当n x y =的图象经过原点时,一定有n>0 D 若n x y =是奇函数,则n x y =在其定义域内一定是减函数 例1讨论()f x x =在[0,)+∞的单调性. 解析:证明函数的单调性一般用定义法。 证明:任取),0[,21+∞∈x x ,且21x x <,则 2 1212 121212121) )(()()(x x x x x x x x x x x x x f x f +-= ++-= -=-, 因为21x x <,021>+x x ,所以 02 121<+-x x x x , 所以)()(21x f x f <,即()f x x =在[0,)+∞为增函数。 点评:证明函数的单调性要严格按照步骤和格式写。 例2利用单调性比较大小: (1)215与3 15 ; (2)223 (2) a -+与23 2- ; (3)1.19.0与8 .02.1. 关于指数式值的比较,主要有:①同底异指,用指数函数单调性比较; ②异底同指,用幂函数单调性 比较; ③异底异指,构造中间量(同 底或同指)进行比较。

幂函数的图象及性质

课件6幕函数图象及性质 课件编号:AB I -2-3-1. 课件名称:幕函数图象及性质? 课件运行环境:几何画板4.0以上版本. 课件主要功能:配合教科书“ 2.3幕函数”的教学.利用几何画板绘制函数图象的功能,绘制出幕函数的图象,再利用幕函数的图象研究函数的性质. 课件制作过程: (1)新建画板窗口.单击【Graph](图表)菜单中的【Define Coordinate System!(建立直角坐标系),建立直角坐标系.选中原点,按Ctrl + K,给原点加注标签A,并用【文本]工具把标签改为O. (2)单击【Graph]菜单的【Plot New Function](绘制函数图象),弹出“New Function”函数式编辑器,编辑函数f (x)= x,单击【OK]后画出函数f (x) 1 , , _ 2 3 —_ 1 =x的图象.同法编辑函数g (x)= x,h (x)= x,q(x)=x2和函数r(x)二一的 x 图象.选中函数图象,单击【Display](显示)菜单中的【Line Width](线型)中的【Thick](粗线).把上述图象设置成粗线,单击【Display](显示)菜单中的【Color](颜色)的选择各种不同的颜色给每一个函数图象着色,如图1. 图1 (3)再选中直线f (x) = x,单击【Edit](编辑)菜单,选择【Action

Buttons] (操作类按钮),单击【Hide/Show](隐藏/显示),此时屏幕上出现【Hide Function Plot](隐藏对象)按钮,选择【文本工具】,双击【Hide Function Plot】按钮, 出现对话框,将其中的【Label](标签)改为“ f (x)= x”,再单击【确定】?此时,单击“f (x)二x”按钮就会隐藏或显示直线f (x)二x ?用同样的方法制作 1 【Hide Function Plot】按钮g (x)= x2,h(x)=x3,q(x)=x2和r(x)二-,如图 x 2. (4)单击【File】(文件)菜单的【Document Options】(文档选项)对话框,将【Page Namd (页面名称)改为“画图象”,单击【0K】. (5)单击【File】(文件)菜单的【Document Options】(文档选项)对话框, 单击【Add Page](增加页),单击【Blank Pagd (空白页),将页面名称改为“ g 2” (X)= x ? (6)单击【Graph】菜单的【Plot New Function】(绘制函数图象),弹出 “New Function”函数式编辑器,在对话框内依次单击x,A,2,单击【OK】后画出函

含绝对值的函数问题处理

含绝对值的函数问题处理 1.(2005年江苏卷)已知a ∈R ,函数f(x)=x 2|x-a|. (I)当a=2时,求使f(x)=x 成立的x 的集合; (II)求函数y=f(x)在区间[1,2]上的最小值. 解析:(I)若a=2,则有:22 2(2),2()2(2),2x x x f x x x x x x ì?- ?=-=í ?--0时, 函数f(x)在区间() 2a 2a ,0(,),(0, )3 3 -ト+ 递增在区间递减. ②当x 0时, 函数f(x)在区间() 2a 2a ,0(,),(0, )3 3 -ト+ 递减在区间递增. 由于所求区间为[1,2],故a 按所求区间进行讨论: ①若a ≤1,则 22,33 a £取f 1(x)图象在x>a 部分,因函数f1(x)在区间[1,2]部分单调递增,故当x=1 时取最小值,即m=f 1(1)=1-a; ②若1a 时,f 1(x)从0单调递增;当xa ≥2, 则242,33 a > 函数f 2(x)在区间为先增后减,当x= 23 a 时取最大值,则最小值为 m 1=f 2(1)=-1+a 或m 2=f 2(2)=-8+4a,下面讨论m 1与m 2的大小问题: a. 若2≤a< 73 ,则m 1>m 2,最小值为m 2=-8+4a;b.若 73 ≤a<3,则则m 2>m 1,最小值为m 1=-1+a.

相关文档
最新文档