试验二十七透镜组基点的测量

试验二十七透镜组基点的测量
试验二十七透镜组基点的测量

实验二十七 透镜组基点的测量

一 实 验 目 的

1.加强对光具组基点的认识;

2.学习测定光具组基点和焦距的方法.

二 仪 器 和 用 具

光具座,测节器,薄透镜(几片),物屏,白屏,光源,准直透镜(焦距大一些),平面反射镜.

三 实 验 原 理

光学仪器中常用的光学系统,一般都是由单透镜或胶合透镜等球面系统共轴构成的.对于由薄透镜组合成的共轴球面系统 ,其物和像的位置可由高斯公式:p

p f 1'1'1-= (1) 确定.式中f’为系统 的像方焦距,p’为像距,p 为像距.物距是从第一主面到物的距离,像距是从第二主面到像的距离,系统的像方焦距是从第二主面像方焦点距离.各量的符号从各相应主面,沿光线进行方向测量为正,反向为负.共轴球面系统的物和像的位置,还可由牛顿公式表示:()'''f f ff xx -== (2) 即式中x 为从物方焦点量起的物方焦点到物的距离,x’为从像方焦点量起的像方焦点到像的距离.物方焦距f 和像方焦距f’分别是从第一、第二主面量到物方焦点和像方焦点的距离.符号规定同上.共轴球面系统的基点、基面具有如下的特性:

1 主点和主面

若将物体垂直于系统的光轴放置在第一主点H 处,则必成一个与物体同样大小的正立像于第二主点H’处,即主点是横向放大率1+=β的一对共轭点.过主点垂直于光轴的平面,分别称为第一、第二主面. 2 节点和节面

节点是角放大率1+=γ的一共轭点.入射光线(或其延长线)通过第一节点N 时,出射光线(或其延长线)必通过第二节点N’,并与N 的入射光线平行.过节点垂直于光轴

的平面分别称为第一、第二节面.

当共轴球面系统处于同一媒质时,两主点分别与两节点重合.

3 焦点和焦面

平行于系统主轴的平行光束,经系统折射后与主轴的交点F’称为

像方焦点;过F’垂直于主轴的面称为像方焦面.第二主点H’到像方焦点F’的距离,称为系统的像方焦距f’.此外,还有物方焦点F 、焦面和

焦距f..

显然,薄透镜的两主战火 与透镜的光心重合,而共轴球面系统两主点的位置,将随各组合透镜或折射面的焦距和系统的空间特性而异.下面以两个薄透镜的组合为例进行讨论.设两薄透镜的像方焦距分别为f’1和f’2,两透镜之间距离为d,则透镜组的像方焦距f’可由下式求出:

()','''''2121f f d

f f f f f -=-+= (3) 两点间位置 ()d f f d f l -+-=

212'''', ()d f f d f l -+=211''' (4) 计算时注意L’是从第二透镜光心量起,L 是从第一透镜光心量起.(问:试证明,对于二凸透镜组成的光具组,当dd;分析此种情况下,第一、第二主面可能的位置.)

图1

4 用测节器测定光具组基点的原理

设有一束平行光入射于由两片薄透镜组成的光

具组,光具组与平行光束共轴,光线通过光线通过光

具组后,会聚于白屏上的Q 点(图2),此Q 点即光具

组的像方焦点F ’. 以垂直于平行光的某一方向为轴,

将光具组转动一小角度,可有如下两种情况:

4.1 回转轴恰好通过光具组的第二节点N ’

因为入射第一节点N 的光线必从第二节点N ’射

出,而且出射光平行于入射光,现在N ’未动,入射光方向未变,所以通过光具组的光束,仍然会聚于焦平

面上的Q 点(图3),但是这时光具组的像方焦点F ’已离开Q 点.严格讲,回转后像的清晰度稍差.

4.2 回转轴未通过光具组的第二节点N ’

由于第二节点N ’未在回转轴上所以光具组转动后,N ’出

现移动,但由N ’的出射仍然平行于入射光,所以由N ’出射的

光线和前一情况相比将出现平移,光束的会聚点将从Q 移到

Q ’(图4).(问:分析Q ’相对Q 的移动方向和远近,能判断

N ’在回转轴O 的哪个方位吗?)

测节器是一可绕铅直轴OO ’转动的水平滑槽R,待测基点

的光具组L s (由薄透镜组成的共轴系统)可放置在滑槽上,位

置可调,并由槽上的刻度尺指示L s 的位置(图5).测量时轻轻

地转动一点滑槽,观察白屏P ’上的像是否移动,参照上述分析

去判断N ’是否位于OO ’轴上,如果N ’未在OO ’轴上,就调整

L s 在槽中位置,直至N ’在OO ’轴上,则从轴的位置可求出N ’对

L s 的位置.

四 实 验 内 容

1.测量透镜L 1和L 2的焦距f’1、f’2(L 1、L 2为组成光具组

的二薄透镜).

2.将L 1和L 2按d<(f’1 +f’2)组合成光具组置于测节器的

滑槽上.

3.按图5,将光源S 、物屏P 、准直物镜L 、测节器R 及白屏P ’置于光具座上,调节共轴.

4.用自准直方法调节物屏P 位于准直物镜L 的物方焦面上调好后P 和L 均不要移动.

5.照亮物屏P,移动白屏P ’得到清晰的像,轻轻少许转动滑槽,从像的移动判断N ’的位置,逐渐移动光具组L s ,直至其第二节点N ’在转轴OO ’上

为止.(可用放大镜观察像).记录OO ’轴

和焦点F ’相对于L 2的位置,重复几次.

6.将光具组转180o ,此时原来的节点

N 成为N ’,同上测量.

7.绘图表示光具组、主面及焦点的位

置,计算焦距f’之值.

8.取d>(f’1+f’2),重复上述5~7

的内容.

五 复习思考题

1. 第一主面靠近第一个透镜,第二主面靠近第二个透镜,在什么条件下才是对的?(光具组由二薄凸

透镜组成)。

2. 由一凸透镜和一凹透镜组成的光具组,如何测量其基点?(距离d 可自己设定。)

2

3

图图5

共轭法凸透镜焦距的测量

物理实验报告 实验名称:共轭法凸透镜焦距的测量 学院、系:信工学院电信系 年级、班:2011级电信(2)班 学生姓名:金秋含、李婷、王茹 指导教师:刘浩 2012年6月25日

报告摘要 透镜是光学仪器中最基本的元件,反映透镜特性的一个主要参量是焦距,它决定了透镜成像的位置和性质(大小、虚实、倒立)。对于薄透镜焦距测量的准确度,主要取决于透镜光心及焦点(像点)定位的准确度。本实验在光具座上采用共轭法测量了3种凸透镜的焦距,以便了解透镜成像的规律,掌握光路调节技术,比较各种测量方法的优缺点,为今后正确使用光学仪器打下良好的基础。 关键词 左右逼近法,同轴等高,共轭法,自准法,物距像距法,误差分析。 一. 实验目的 1.了解凸透镜的成像规律; 2.掌握光学系统的共轴调节; 3.熟悉光学实验的操作规则; 4.测定凸透镜的焦距; 5.进一步熟悉数据记录和处理方法。 二. 实验仪器 光具座: 光具座所配之光源有半导体激光器与射灯光源。 凸透镜:根据光的折射原理制成的。凸透镜是中央较厚,边缘较薄的透镜。凸透镜有会聚作用故又称聚光透镜,较厚的凸透镜则有望远、会聚等作用,这与透镜的厚度有关。 平面反射镜 光源: 像屏: 观察屏: 三. 实验原理 1. 薄透镜成像公式 当透镜的厚度远比其焦距小的多时,这种透镜称为薄透镜。在近轴光线的条件下,薄透镜成像的规律可表示为:

自准法测薄透镜焦距光路图 f v u 1 11=+ 式中U 表示物距,V 表示像距,f 为透镜的焦距,U 、V 和f 均从透镜的光心O 点算起。并且规定U 恒取正值;当物和像在透镜异侧时,V 为正值;在透镜同侧时,V 为负值。对凸透镜f 为正值,对凹透镜f 为负值。 2. 凸透镜焦距的测定 (1)自准法 如图所示,将物AB 放在凸透镜的前焦面上,这时物上任一点发出的光束经透镜后成为平行光,由平面镜反射后再经透镜会聚于透镜的前焦平面上,得到一个大小与原物相同的倒立实像A ′B ′。此时,物屏到透镜之间的距离就等于透镜的焦距f 。 (2)物距像距法(U>f ) 物体发出的光线经凸透镜会聚后,将在另一侧成一实像,只要在光具座上分别测出物体、透镜及像的位置,就可得到物距和像距,把物距和像距代入下式得: v u uv f += 由上式可算出透镜的焦距f 。(根据不确定度传递公式可知,当U=V =2f 时,f 的相对不确定度最小)。 (3)共轭法 如图所示,固定物与像屏的间距为D(D>4f),当凸透镜在物与像屏之间移动时,像屏上可以成一个大像和一个小像,这就是物像共轭。根据透镜成像公式得知: U 1=V 2; U 2=V 1 (因为透镜的焦距一定)若透镜在两次成像时的位移为d , 则从图中可以看出1212u v u d D =+=- 故 2d D u -= ;

透镜焦距的测量实验报告

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 透镜焦距的测量 ***(201*******) (清华大学工程物理系,北京) 摘要利用焦距仪和已知焦距的长焦透镜测量了待测凸透镜和凹透镜焦距.分别用共轭法和焦距仪法测量了同一凸透镜焦距,分别用自准法和焦距仪法测量了同 一凹透镜焦距.实验测得凸透镜焦距为15.53cm(共轭法),15.62cm(焦距仪法),凹透镜焦距为-22.61cm(自准法),-22.67cm(焦距仪法).两种方法测得的透镜 焦距均符合得较好. 关键词凸透镜;凹透镜;焦距;焦距仪 1.概述 透镜是最基本的光学元件,根据光学仪器的使用要求,常需选择不同的透镜或透镜组.透镜的焦距是反映透镜特性的基本参数之一,它决定了透镜成像的规律.为了正确地使用光学仪器,必须熟练掌握透镜成像的一般规律,学会光路的调节技术和测量焦距的方法. 1.1实验目的 1)加深理解薄透镜的成像规律 2)学习简单光路的分析和调节技术 3)学习几种测量透镜焦距的方法 1.2薄透镜成像规律 透镜的厚度相对透镜表面的曲率半径可以忽略时,称为薄透镜.薄透镜的近轴光线成 像公式为: 其中:f为焦距,p为物距q为像距,y和y,分别为物的大小和像的大小,β为放大率. 1.3基本实验操作 1)等高共轴的调节[1]

依次放置光源、物、凸透镜和光屏在同一直线上,并让它们相互靠近,用眼睛观察判断并调节物的中心,透镜中心和光屏中央大致在一条与光具座导轨平行的直线上,各光学元件的平面相互平行并垂直于导轨.用梅花形物屏做物,用标有“+”的屏做像屏.使物与像屏间的距离大于透镜焦距的4倍,固定物屏和像屏滑块的位置.移动透镜,使物在光屏上两次成像,若所成大像和小像的中心重合在像屏“+”的中心,说明系统已处于等高共轴状态,反之则不共轴,此时应根据两次成像的具体情况做如下调节: (1) 若所成“大像”的中心不在“+”的中心, 则左右或上下调节物屏,使“大像”中心落在像屏“+”的中心. (2)移动透镜使物在像屏上成一小像, 若小像中心不在“+”的中心,则左右或上下调节透镜使小像中心落在“+”的中心. (3) 重复(1)、(2)两步骤、反复将大像和小像中心都调在像屏“+”的中心,直到所成大像和小像中心都重合在像屏“+”的中心为止. 2)凹透镜的使用 本实验所使用的凹透镜刻度不在凹透镜中心平面上,故实验操作时记录凹透镜位置每组至少应记录两次,分别将凹透镜双面朝同一方向,记录平均值作为本组实验的凹透镜位置. 2.共轭法测量凸透镜焦距 如果物屏与像屏的距离b保持不 变,且b>4f,在物屏与像屏间移动凸 透镜,可两次成像.当凸透镜移至O1 处时,屏上得到一个倒立放大实像, 当凸透镜移至O2处时,屏上得到一个 倒立缩小实像,由共轭关系结合焦距 的高斯公式得: 实验中测得a和b,就可测出焦距f.光路如上图所示: 2.1实验数据记录 物屏位置P=106.61cm,·像屏位置Q=2.30cm 1 2 3 4 5 6 O1位置(cm) 87.4 5 87.3 8 87.6 87.4 8 87.3 8 87.50 O2位置(cm) 21.1 0 21.1 8 21.1 8 21.1 21.0 8 作编号: GB8878185555334563BT9125X W 作者:凤呜大王*

光具组基点的测定

光具组的基点 摘要:本文主要介绍了如何利用光学参数测定仪的测节装置,测定透镜组的基点,加深对透镜组基点的理解和认识。 关键词:光具组主点主平面焦点焦平面节点节面 引言:任意实际光学系统都是由多个透镜组合而成。日常生活所用的光学仪器,如照相机镜头、显微镜物镜、目镜等,并非是单一薄镜头,而是由多个具有一定厚度的透镜组成的光组。 光组的作用和透镜相同,但成像质量更好。为了使成像问题变得更为简单,可以求出实际光学系统的三对基点,利用这些基点,就可以用一个等效的光具组代替整个实际光学系统,不必去考虑光在该系统中的实际路径,从而确定像的大小和位置,使成像问题大大简化。坐标原点如何更改,使高斯公式和横向放大率公式也适用于光组和薄透镜,是本实验的首要问题。 在光学中,由中心在同一直线上的两个或两个以上的球面组成的系统,称为共轴光组。共轴光组是最简单的一种球面组合系统,也是一般复杂光学系统的基本单元。若物方有一点、一直线或一平面,像方只有一点、一直线或一平面与之对应,则该系统称为理想共轴光组。当把共轴系统作为一个整体,而不逐一的研究每一个面的成像时,则可用系统的几个特别的点来表征系统的成像上的性质,这几个特别的点就是系统的主焦点、主点和节点,它们统称为系统的基点。无论共轴球面系统的具体布置如何,只要得知系统的这几个点,便可用非常简单的高斯公式或牛顿公式,计算共轭点的位置和成像的放大率等等。实验中采用测节器来测定光具组的基点。 原理: 测节器基本原理:如图1,设M、M’为光组二主平面,因光组在同一媒质中,光组的二主点主面与光轴之交点H、H’分别与N、N’相重合,F’为第二焦点。设平行光如图射至光组后会聚与Q点,光束中通过第一节点N的光线PN,按节点角放大率K=±1的性质,透射光中必有光线N’Q与其共轭,且N’Q//PN,N’ 即为第二节点。现假定光组绕N’点 转过θ(图中虚线示)。引入射光束方 向未变,原先通过第一节点N之光线 现变为P1N1,它与主光轴的夹角为α 1,过N1点作辅助平行线原光轴后不 难证明α’+θ=α1,说明P1N1//N’Q, 成像光线N’Q并未因光组的旋转而 改变方向和位置,即像点Q不因光组 可以整组前、后移动,同时还可以绕 垂直于它的主光轴的轴而转动。这就 可以在边移动、边转动中找出不因光

光具组基点测定

实验4 光具组基点的测定 有两个或两个以上的共轴薄透镜组合而成的光学系统(共轴球面系统),称 为光具组.最后成像的位置及像的大小可以利用作图法逐步求出,也可用薄透镜成像的高斯公式逐步计算出.但是,最简捷的方法通常是将光具组作为一个光学元件,不论光具组透镜焦距及透镜间的距离为何值,在表征系统成像的性质时,只需给出六个特别点,利用一次成像的高斯公式就可以得到所成像的位置及放大率.这六个点,统称为光具组的基点. ·实验目的 1.了解测节器的构造及工作原理; 2.加强对光具组基点性质的认识; 3.掌握光具组基点与焦距测定的方法. ·实验仪器 光具座,测节器,薄透镜(4片),物屏,光源,准直透镜,平面反射镜,白屏. 测节器由一个可绕铅直轴'OO 转动的水平滑槽R 与待测光具组(由透镜L 1、L 2共轴用套筒链接)组成如图4-1所示,光具组可沿滑槽水平移动,并可由槽上的刻度尺读出转轴、L 1、L 2的位置. ·实验原理 一、光具组的基点和基面 P R L 1 L S L 2 L O ' O 'P S 图4-1光具组基点测定实物图

1.主点和主面 若将物体垂直于系统的光轴,放置在物方主点H 处,则必成一个与物体同样大小的正立的像于像方主点H'处,即主点是横向放大率β=+1的一对共轭点.过主点垂直于光轴的平面,分别称为物方和像方主面,如图4-2中的MH 和M'H'. 2.节点 节点是角放大率γ=+1的一对共轭点.入射光线(或其延长线)通过物方节点N 时,出射光光线(或其延长线)必通过像方节点N ',并与N 的入射光线平行(如图4-1). 当共轴球面系统处于同一介质中时,两主点分别与两节点重合. 3.焦点、焦面 平行于系统主轴的平行光束,经系统折射后与主轴的交点F '称为像方焦点;过F '垂直于主轴的平面称为像方焦面.像方主点H '到像方焦点F '的距离,称为系统的像方焦距f '.此外,还有物方焦点F 及焦面和焦距f . 综上所述,薄透镜的两主点与透镜的光心重合,而共轴球面系统两主点的位置,将随各组合透镜或折射面的焦距和系统的空间特性而异.下面以两个薄透镜组合为例进行讨论. 设两薄透镜的像方焦距分别为f 1'和f 2',两透镜之间距离为d ,则透镜组的像方焦距f '可由下式求出: () d f f f f f -+='2'1' 2'1' (4-1) 光具组物方焦距与像方焦距大小相等,两主点位置为: () d f f d f p -+-='2'1'2' ()d f f d f p -+='2'1'1 (4-2) M ' M ' H 'N N H F ' F i ' i Q S P p 图4-2 理想光具组成像图

薄透镜焦距的测量完整版

一、实验原理: 薄透镜是指其厚度比两球面的曲率半径小得多的透镜。透镜分为两大类:一类是凸透镜(也称为正,对光线起会聚作用。焦距越短,会聚本领越大。另一类是凹透镜(也称负透镜透镜或会聚透镜),对光线起发散作用。焦距越短,发散本领越大。或发散透镜)在近轴光束(靠近光轴并且与光轴的家教很小的光线)的条件下,薄透镜(包括凸、凹透镜) 的成像公式为:111?? 1)…………(fuvvuuvf为正;虚为物距;为焦距。它的正、负规定为:实物、实像时,为像距;式中:、vuff为负。利用上式测定焦距,可以有几种方为正,凹透镜为正,为负;凸透镜物、虚像时,法,除了本实验中的方法以外,还可用焦距仪测量。利用上式时必须满足: a.薄透镜; b.近轴光线。 实验中常采取的措施是:在透镜前加一光阑以去边缘光线;a. 调节各元件使之共轴。b. 一般透镜中心厚度有几毫米,也会给测量带来一定的误差。当不考虑透镜厚度时,会有百分之几的误差,这是允许的。 1. 凸透镜焦距的测量方法 )物距像距法(1 vu及像距,利用(由实验分别测出物距1)式,求出焦距:uv?f)……(2vu?2)自准法(fu???v, 即当物体上各点发出的光经透镜后,变为不同方)式可知,当像距时,1 从(故为自准法,见下图。该方法利用实验装置本身产生平行光,向的平行光时,物距即为透镜的焦距。 )位移法 1 f4D?间移动可在屏上两次成像,如下图所示,一次成D当物AB与像屏的间距时,透镜在放大的像,另一次成缩小的像。 由公式(1)与图中的几何关系可得:111??……(3)fD?uu11111?? 4)……(f?d?dD?uu11由上两式右边相等得:??d?D?u)……(512将(5)式代入(3)式得:????22dDD?dd?D???f)……

透镜组基点的测3

大学物理 设计性试验 透镜组基点的测定 姓名:靳刚 学号:2009263024 专业:物理学类 (指导老师:张玉颖)

透镜组基点的测定 姓名:靳刚专业:物理学类学号:2009263024摘要:本文运用了透镜组基点的特性来用焦距仪和测节器两种方法来测定透 镜组的基点,并且比较两种方法。 关键字:主点,节点,焦点,测微目镜。 1引言: 关于测定透镜组基点的方法很多,而在未知组成透镜组中各透镜的焦距也无法测量各透镜之间间距的情况下,我们可以用焦距仪和测节器来测定透镜组的基点。 2原理: 21基本概念梳理 1.透镜组:两个或两个以上的薄透镜或厚透镜组成的共轴球面系统。 而我们为了描述透镜组的成像规律,需要一些特殊点,即基点;基点包括一对主焦点,一对主点和一对节点。 2.主焦点和主焦面:对于透镜组系统,若平行光束从左方入射到系统中,经透镜组折射后,光束会聚在系统的右方的光轴上的F'点,则F'为像方焦点及第二焦点。 反过来,若平行光束从像方空间入射到透镜组,则在另一侧光束的会聚点F,即为物方焦点或第一主焦点。过焦点做垂直于光轴平面即对应的第一主焦面。 3.主点和主平面:在系统光轴上,在物方空间和像方空间各有一个特殊的平面即系统的第一主平面和第二主平面。 特点:当物体垂直于光轴放置在第一主平面处,则在第二主平面处成一个与物体大小相等的正立实像,即主平面是横向放大率为1的一对共轭平面。 4.节点和节平面:在系统光轴上,在物方空间和像方空间各有一个特殊的平面即系统的第一节平面和第二节平面。 特点:当系统入射的光线(或延长线)通过第一节点N时,则系统出射的光线一定通过第二节点N',并与入射光线平行,即节点是角放大率为1的一对共轭点,通过节点做垂直于光轴平面即为节平面。

实验一 薄透镜焦距的测定

实验一 薄透镜焦距的测定 【实验目的】 1. 进一步理解透镜成像的规律; 2. 掌握测量薄透镜焦距的几种方法; 3. 学会光具座上各元件的共轴调节方法。 【实验仪器】 光具座、凸透镜、凹透镜、平面镜、像屏、物屏、光源。 【实验原理】 1、薄透镜焦距的测定 透镜的厚度相对透镜表面的曲率半径可以忽略时,称为薄透镜。薄透镜的近轴光线成像 公式为:f s s 1 11'=+ (3—1—1) 式中s 为物距,s '为像距,f 为焦距。其符号规定如下:实物时s 取正,虚物s 取负;实像时s '取正,虚像时s '取负;f 为透镜焦距,凸透镜取正,凹透镜取负 。 (1) 位移法测定凸透镜焦距 (贝塞尔法又称共轭成像法) 如图1所示,如果物屏与像屏的距离A 保持不变,且A > 4f ,在物屏与像屏间移动凸透镜,可以两次看到物的实像,一次成倒立放大实像,一次成倒立缩小实像,两次成像透镜移动的距离为L 。 据光线可逆性原理可得:s 1= s 2′,s 2= s 1′,则2s ' 21L A s -= =,2 ' 12L A s s +==, 将此结果代入式(3—1—1)可得: A L A f 42 2-= (3—1—2) 只要测出A 和L 的值,就可算出f 。 (2) 自准直法测凸透镜焦距 光路图如图2所示。当物体AB 处在凸透镜的焦距平面时,物AB 上各点发出的光束,经透 镜后成为不同方向的平行光束。若用一与主光轴垂直的平面镜将平行光反射回去,则反射光再经透镜后仍会聚焦于透镜的焦平面上,此关系就称为自准直原理。所成像是一个与原物等大的倒立实像A ′B ′(此时物到透镜的距离即为焦距)。所以自准直法的特点是:物、像在同 物 像 像 屏 屏 图2 自准直法测凸透镜焦距

光学实验教学大纲

光学实验教学大纲 一、课程目的和要求 在一学期内通过完成一定数量的光学基本实验和选做实验, 使学生学习和掌握光学实验的基本知识和基本方法, 培养学生的基本实验技能; 通过研究一些基本的光学现象, 加强对经典光学理论的理解, 提高对实验方法和技术的认识. 1. 由浅入深逐渐训练学生正确使用和调节基本光学实验仪器和装置(包括组合装置), 使学生了解仪器的构造原理及正常使用状态、操作要求、注意事项等, 使学生具有较好的光学实验操作技能. 2. 通过实验事实分析, 研究一些基本光学现象和规律, 使抽象的理论成为生动的现象. 理论联系实际, 既提高学生学习的主观能动性, 又为将来的工作打好基础. 3. 学会光学中基本物理量的一些测量方法. 在学习实验测量方法时, 使学生掌握它的设计思想、特点及其适用条件. 在实验测量过程中, 使学生注意观察和分析所发生的各种光学现象, 注意其规律性, 以加深和巩固对所学理论知识的理解, 并善于运用理论指导自己的实践, 提高解决实际问题的能力. 4. 学会分析光学实验中的基本光路, 了解光路组成元件的参量对实验产生的影响以及对各基本光路之间衔接配合的要求, 以锻炼学生的实践能力. 5. 继续学习误差分析的方法, 提高实验数据的处理能力, 能正确地表达和评价实验结果; 分析误差产生的原因以及减小实验误差的有效途径, 以加深对实验理论的认识和对所用测量方法和仪器的理解. 6. 在整个实验教学过程中要有意识地提高学生的实验素质, 培养学生正确的实验习惯和科学作风. 二、课程基本内容与学时安排 光学实验内容分为基本实验和选做实验, 其中基本实验8个题目, 选做实验3个题目, 每个实验安排3小时. 全学期每个学生必须做够6个以上的实验. 考试考核采用实验操作、笔试或写实验论文等形式进行. 学生的总成绩由考试成绩和平时成绩(实验预习、实验记录、实验报告等)按一定比例计算, 一般考试成绩占60%, 平时成绩占40%. 以下列出基本实验和选做实验的实验题目: (一) 基本实验 1.薄透镜焦距的测定 2.测定透镜组的基点 3.分光计的调节及棱镜折射率的测定 4.用双棱镜测定光波波长 5.用牛顿环测定透镜曲率半径 6.迈克尔逊干涉仪的调节和使用 7.衍射光栅测定光波波长 8.偏振现象的观察与分析 (二) 选做实验 1、单缝衍射的光强分布 2、液体折射率的测定 3、白光干涉 三、实验题目与基本要求 (一) 基本实验 1.薄透镜焦距的测定 [目的和要求] (1)学习光学系统的共轴条件; (2)透镜焦距的测定用一次成象法、二次成象法、自准法, 对凹透镜用辅助透镜成象法; (3)计算透镜焦距的平均误差及标准差.

初中八年级(初二)物理 实验十二薄透镜焦距测量

光路调整和透镜参数的测量 透镜是光学基本元件,工程中常用它建立光路作为传输光能量和光信息,并是组成各种光学仪器的主要组件。不同的用途需要焦距不同的透镜或透镜组。通过测量透镜的焦距,我们可以掌握透镜成像规律,学会光路的分析和调整技术,这对了解光学仪器的构造和正确使用很有帮助,为探索其它学科提供了实际的手段和技能。 [预习要点] 1.什么是薄透镜?什么是近轴光线?透镜成像公式的使用条件是什么? 2.什么是自准法?它的光路及成像有什么特点? 3.什么是共轭法?用共轭法测透镜焦距有何优点? 4.什么叫等高同轴?用什么方法调节等高同轴? [实验重点] 1.加深理解透镜成像规律。 2.掌握简单光路、光轴的调节技术。 3.学习测量薄透镜焦距的方法。 4.学习不确定的计算方法。 [实验仪器] 光具座、凸透镜、物屏、像屏、白炽光源、平面镜、光具凳、光学平台、分光计(参阅教材P203,图4.3.2)。 [实验原理] 透镜的中心厚度(d)比透镜焦距f小很多,约为% f d,我们称之为薄透镜。 /≤ 5 1.薄透镜成像规律 (a)凸透镜(会聚透镜) 对光线具有会聚作用,当一束平行于透镜主光轴的光线通过透镜后,将会聚于主光轴上距透镜光心0为f的焦点F上,f OF=称为焦距,见图1(a)。

(b )凹透镜(发散透镜) 对光线具有发散作用。一束平行于透镜主光轴的光线通过透镜后,经折射变为发散光束,发散光的反向延长线与主光轴交于F 点,称焦点F 到透镜光心0的距离为焦距f ,见图1(b )。 在近轴光线的条件下,薄透镜的成像公式为: f q p 111 =+ (1) 式中,f —透镜的焦距,p 为物距,q 为像距。 符号规则: 物距p 为正值表示实物,为负值表示虚物。 像距q 为正值表示实像,为负值表示虚像。 焦距f 为正值表示凸透镜,又称正透镜;为负值表示凹透镜,又称负透镜。 2.透镜焦距的测量原理 (1)自准法(由光的可逆性原理求焦距) 这个方法是利用物距等于焦距使之产生平行光,在用平面镜把平行光原路返回到物屏上,看到成像。用像是否清晰检验调焦是否完成,用像所在位置检验透镜光轴与平面镜法线是否平行。 如图2,在凸透镜后面放一平面镜,当物距等于凸透镜焦距f 时,则物光经过凸透镜后成为平 行光,被平面镜反射回来的平行光再次经过凸透镜后所成的像也在焦平面上,且为倒像。据此就可测出焦距f 。 图1 透镜的焦距 图2 自准法测凸透镜焦距 图3 自准法测凹透镜焦距

测量透镜及透镜组参数

测量透镜及透镜组参数 实验目的 1.了解光学器件共轴的粗调方法 2.掌薄透镜焦距的几种测量方法 3.掌透镜组基点的测量方法 实验基本原理 按成像性质,透镜可分为两类,一类是会聚透镜也叫凸透镜;另一类是发散透镜也叫凹透镜.透镜表面有两个光学面,会聚透镜中心部分比边缘部分厚.发散透镜则相反,边缘部分比中心部分厚. 一. 关于薄透镜成像规律的几个概念 1.光心:光线通过透镜中心,其方向不改变,这个透镜的中心点称为光心,图1中O 为光心. 2.主轴:通过透镜的光心且与透镜相互垂直的轴称为透镜的主轴,透镜的主轴是唯一的. 副轴:通过光心且与主轴成一小角度的轴称为副轴,副轴有无穷多个. 3.焦点:平行于主轴的平行光线通过透镜折射后,会聚于一点,这一点称为透镜的焦点,凸透镜的焦点是实焦点,凹透镜的焦点是虚焦点.在透镜的两侧,各有一个焦点.分别称 为透镜的第一焦点和第二焦点,如图1中和. 4.焦平面:通过焦点与主轴垂直的平面称为透镜的焦平面. 焦平面的性质:平行于任一副轴的平行光,通过透镜后会聚于这一副轴与焦平面的交点,这一交点对应于这一副轴的副焦点,焦平面就是由许许多多这样的副焦点构成的平面.在透镜的两侧各有一个焦平面,分别称为前焦平面和后焦平面. 5.焦距:从光心到焦点的距离称为焦距.对于薄透镜来说,如果透镜两侧的介质相同,那么第一焦距和第二焦距相等. |f|=|f'| 6.高斯公式 透镜本身的厚度d比起其焦距f、物距s、像距s’的长度小得多的透镜叫薄透镜.薄透镜的成像公式即高斯公式为:

(1) s ,,分别为物距、像距、透镜第二焦距. 二.透镜组成像规律的几个概念 两个以上透镜组成的系统称为透镜组,如果所有透镜的主轴都在同一直线上,则这组透镜称为共轴系统,而该直线称为系统的主光轴. 在成像过程中,前一个折射面所成的像是后一个折射面的物.为了方便地描述透镜组的成像规律,引入基点(即焦点、主点、节点),将系统看成一个整体来处理成像问题. 只要能确定系统的基点,便可用公式法(高斯公式、牛顿公式)或作图法求解系统成像问题. 1.主焦点、主焦平面 如果平行光束从系统左边平行于主光轴入射(系统入射光的一边称为物空间),光束通过透镜组后,会聚在系统右侧(系统出射光一侧称为像空间)光轴上F’点,F’称为系统像空间的主焦点(或第二主焦点),如图2所示,通过F’作垂直于光轴的平面,该平面称为系统像空间的焦平面或第二主焦平面. 因为光路是可逆的,如果从像空间、平行于系统光轴射入平行光,会聚在光轴的F点,则F点称为系统物空间的主焦点或第一主焦点.通过F作垂直于光轴的平面称为系统空间的焦平面或第一焦平面,如图3所示.

光具组基点的测定

实验四 光具组基点的测定 实验目的 1.了解测节器的构造及工作原理。 2.加强对光具组基点的认识。 3.学习测定光具组基点和焦距的方法。 实验仪器 光具座,测节器,薄透镜(几片),物屏,光源,准直透镜(焦距大一些),平面反射镜,光具组,尖头棒,T 形辅助棒,白屏。 实验原理 1.用测节器测定光具组的基点 设有一束平行光入射于由两片薄透镜组成的光具组,光具组与平行光束共轴,光线通过光具组后,会聚于白屏上的Q 点,如图5—4—1所示,此Q 点为光具组的像方焦点' F 。若以垂直于平行光的某一方向为轴,将光具组转动一小角度 ,可有如下两种情况 (1)回转轴恰好通过光具组的第二节点' N 因为入射第一节点N 的光线必从第二节点'N 射出,而且出射光平行于入射光。现在' N 未动,入射角光束方向未变,所以通过光具组的光束,仍然会聚于焦平面上的 Q 点,如图5—4—2(a )所示。但是,这时光具组的像方焦点'F 已离开Q 点,严格地 讲,回转后像的清晰度稍差。 1 45—— 图 2 45——图) (a ) (b

(2)回转轴未通过光具组的第二节点' N 由于第二节点' N 未在回转轴上,所以光具组转动后,' N 出现移动,但由' N 的出射光仍然平行于入射光,所以由' N 出射的光线和前一情况相比将出现平移,光束的会聚点将从Q 移到' Q ,如图5—4—2(b )所示。 测节器是一个可绕铅直轴' OO 转动的水平滑槽R ,待测基点的光具组S L (由薄透 镜组成的共轴系统)放置在滑槽上,位置可调,并由槽上的刻度尺指示S L 的位置如图5—4—3所示。测量时轻轻地转动一点滑槽,观察白屏' P 上的像是否移动,参照上述分析判断' N 是否位于' OO 轴上,如果' N 未在' OO 轴上,就调整S L 在槽中位置,直至' N 在' OO 轴上,则从轴的位置可求出' N 对S L 的位置。 2.用牛顿公式测量光具组基点 牛顿公式 ''ff xx =)'(f f ?= (5—4—1) 式中x 为从物方焦点量起的物方焦点到物的距离,' x 为从像方焦点量起的像方焦点到像的距离。物方焦距f 和像方焦距' f 分别是从第一和第二主面量到物方焦点和像方焦点的距离。 实验内容 1.用测节器测定光具组的基点 (1)测量透镜1L 和2L 的焦距' 1f 、' 2f (1L 、2L 为组成光具组的二薄透镜)。 3 45——图

薄透镜焦距的测定 物理实验报告

南昌大学物理实验报告 课程名称:大学物理实验 实验名称:薄透镜焦距的测定 学院:信息工程学院专业班级: 学生姓名:学号: 实验地点:基础实验大楼座位号:01 实验时间:第7周星期3下午4点开始

二、实验原理: (一)凸透镜焦距的测定 1.自准法 如图所示,在待测透镜L的一侧放置一被光源照明的物屏AB,在另一侧放一平面反射镜M,移动透镜(或物屏),当物屏AB正好位于凸透镜之前的焦平面时,物屏AB上任一点发出的光线经透镜折射后,仍会聚在它的焦平面上,即原物屏平面上,形成一个与原物大小相等方向相反的倒立实像。此时物屏到透镜之间的距离,就是待测透镜的焦距,即 由于这个方法是利用调节实验装置本身使之产生平行光以达到聚焦的目的,所以称之为自准法,该法测量误差在之间。

2.成像法 在近轴光线的条件下,薄透镜成像的高斯公式为 当将薄透镜置于空气中时,则焦距为: 式中为像方焦距,为物方焦距,为像距,为物距。 式中的各线距均从透镜中心(光心)量起,与光线行进方向一致为正,反之为负,如图所示。若在实验中分别测出物距和像距,即可用式求出该透镜的焦距。但应注意:测得量须添加符号,求得量则根据求得结果中的符号判断其物理意义。 3.共轭法 共轭法又称为位移法、二次成像法或贝塞尔法。如图所示,使物与屏间的距离并保持不变,沿光轴方向移动透镜,则必能在像屏上观察到二次成像。设物距为时,得放大的倒立实像;物距为时,得缩小的倒立实像,透镜两次成像之间的位移为d,根据透镜成像公式,可推得: 物像公式法、自准法都因透镜的中心位置不易确定而在测量中引进误差。而共轭法只要在光具座上确定物屏、像屏以及透镜二次成像时其滑块移动的距离,就可较准确地求出焦距。这种方法无需考虑透镜本身的厚度,测量误差可达到。

测量薄透镜焦距的方法

实验原理 薄透镜是指透镜的中心厚度d 远小于其焦距f (d<

透镜组基点的测定思考题

1、实验室必须保证测微目镜牢固的固定在光具座上,在移动测微目镜时,其与光具座的相对位置不得发生变化,由于实验室可能固定不牢或者实验过程中造成二者发生相对位移,导致测量不准确。 2. 实验时由于是人眼进行成像清晰度的判定,而像的清晰度在某一小距离范围内的变化时人眼无法察觉的,这就引进了误差。 3. 采用焦距仪测量时,节点的位置是在焦距测量出以后进行计算的,这会引起计算的误差。 4、从实验前的预习提出问题,到实验过程中探索问题,再到实验后大家一起讨论问题。每一个步骤都可以让我们受益匪浅,在其中我们或者互相学期锻炼团结协作能力或者培养我们独立解决问题的能力。通过实验提高了我们自身的综合素质和实验能力,为我们以后的工作和生活打下了坚实的基础。 思考题 2、节点和节平面:当系统入射的光线(或延长线)通过第一节节点(物方节点)时,则系 统出射的光线一定通过第二节点(像方节点),并与入射光线平行,即节点是角放 大率为1的一对共轭点,通过节点做垂直于光轴的平面就是节平面。 主点和主平面:横向放大率恒为1的一对共轭面,就是主平面,属于物方的叫物主面,属于像方的叫做像方主面,属于像方的叫做像方主面,其轴上的对应的点分别是物 方主点和像方主点。 由于透镜组两边的物质都是空气,所以物方和像方的媒质上网折射率相等时,节点与主点相同 4、.光具座上各光学元件同轴等高的调节: 先利用水平尺将光具座导轨在实验桌上调节成水平,然后进行各光学元件共轴等高的粗调和细调(用位移法的两像中心重合或不同大小的实像中心重合或图3中对应光轴点不动),直到各光学元件的光轴共轴,并与光具座导轨平行为止 因为如果不等高共轴,光源发出的光就很难准确经过透镜在像屏上成像,对实验会造成误差或者无法实验。不是这个条件可能导致: A 光具轴产生空间角 像的大小差异;图形失真;最重要的是轴向产生空间角后距离是没有办法测量的。 B 光具轴无空间角,相互错开 图像平移;可能移到屏幕外

应用光学实验报告

成绩 信息与通信工程学院实验报告 (操作性实验) 课程名称:应用光学 实验题目:薄透镜焦距测量和光学系统基点测量指导教师:班级:学号:学生: 一、实验目的 1.学会调节光学系统共轴。 2.掌握薄透镜焦距的常用测定方法。 3.研究透镜成像的规律。 4.学习测定光具组基点和焦距的方法 二、仪器用具 1、光源(包括LED,毛玻璃等) 2、干板架 3、目标板 4、待测透镜(Φ50.0,f75.0mm) 5、反射镜

6、二维调节透镜/反射镜支架 7、 白屏 8、 节点器(含两Φ40透镜,f 200和f 350) 三、基本原理 1.自准直法测焦距 如下图所示,若物体AB 正好处在透镜L 的前焦面处,那么物体上各点发出的光经过透镜后,变成不同方向的平行光,经透镜后方的反射镜M 把平行光反射回来,反射光经过透镜后,成一倒立的与原物大小相同的实象B A '',像B A ''位于原物平面处。即成像于该透镜的前焦面上。此时物与透镜之间的距离就是透镜的焦距f ,它的大小可用刻度尺直接测量出来。 图1.2 自准直法测会聚透镜焦距原理图 2. 二次成像法测焦距 由透镜两次成像求焦距方法如下: 图1.3 透镜两次成像原理图 L M

当物体与白屏的距离f l 4>时,保持其相对位置不变,则会聚透镜置于物体与白屏之间,可以找到两个位置,在白屏上都能看到清晰的像.如上图所示,透镜两位置之间的距离的绝对值为d ,运用物像的共扼对称性质,容易证明: l d l f 42 2-= ' 上式表明:只要测出d 和l ,就可以算出f '.由于是通过透镜两次成像而求得的f ',这种方法称为二次成像法或贝塞尔法.这种方法中不须考虑透镜本身的厚度,因此用这种方法测出的焦距一般较为准确. 3.主面和主点 若将物体垂直于系统的光轴,放置在第一主点H 处,则必成一个与物体同样大小的正立的像于第二主点H '处,即主点是横向放大率β=+1的一对共轭点。过主点垂直于光轴的平面,分别称为第一和第二主面,如图1中的MH 和M ' H '。 4.节点和节面 节点是角放大率γ=+1的一对共轭点。入射光线(或其延长线)通过第一节点N 时,出射光线(或其延长线)必通过第二节点N ',并于N 的入射光线平行(如图所示)。过节点垂直于主光轴的平面分别称为第一和第二节面。当共轴球面系统处于同一媒质时,两主点分别与两节点重合。 图1.4 透镜组光路示意图

薄透镜焦距的测量实验报告

一、实验综述 1、实验目的及要求 (1)了解对简单光学系统进行共轴调节 (2)学会用自准直法测量薄凸透镜的焦距 (3)学会用位移法测量薄凸透镜的焦距 (4)学会用物距-像距法测量薄凸透镜的焦距 (5)学会用物距-像距法测凹透镜的焦距 2、实验仪器、设备或软件 光具座,凸透镜,凹透镜,光源,物屏,平面反射镜,水平尺和滤光片等 二、实验过程(实验步骤、记录、数据、分析) (1)观测依据 1.自准直法测薄凸透镜的焦距 根据焦平面的定义,用右图所示的光路,可方便地 测出凸透镜的焦距 f = | x l - x 0 | 2.物距——像距法测凸透镜焦距 在傍轴光线成像的情况下,成像规律满足高斯公式 v u f 1 11+= v u v u f +?= 如图所示,式中u 和v 分别为物距和像距, f 为凸透镜焦距,对f 求解,并以坐标代入则有 f = o i l i o l x x x x x x --?- (x o <x L <x i ) x o 和x L 取值不变(取整数),x i 取一组测量平均值。 3.位移法测透镜焦距 (亦称共轭法、二次成像法) 如右图所示,当物像间距 D 大于 4 倍焦距 即D > 4 f 时,透镜在两个位置上均能对给定物成理 想像于给定的像平面上。两次应用高斯公式并以几何关系和坐标代入,则得到 x o 和x i 取值不变(取整数),x L1和x L2各取一组测量平均值。 4.用物距-像距法测凹透镜的焦距 o i l l o i x x x x x x D d D f -?---=-=4)()(421222 2

B! 在上图中:L1为凸透镜,L2为凹透镜,凹透镜坐标位置为X L ,F1为凸透镜的焦点,F2为凹透镜的焦点,AB 为光源,A1B1为没有放置凹透镜时由凸透镜聚焦成的实像,同时也是放置凹透镜后凹透镜的虚物,坐标位置为X O ,A2B2为凹透镜所成的实像,坐标位置为X i 。 对凹透镜成像,虚物距u=X L -X o ,应取负值(x L <x o );实像距v=X i -X L 为正值(x L <x i );则凹透镜焦距f 2为: ) () ()(2o i l i o l X X X X X X v u v u f --?-= +?= <0 (凹透镜焦距为负值!!!) x L 取值不变,x o 和x i 各取一组测量平均值。 (2)实验步骤: 1.自准直法测凸透镜焦距 如图1布置光路,调透镜的位置,高低左右等,使其对物成与物同样大小的实像于物的 下方,记下物屏和透镜的位置坐标 x 0 和 x L 。 2.物距——像距法测凸透镜焦距 如图2布置光路,固定物和透镜的位置,使它们之间的距离约为焦距的 2 倍;移动像屏使成像清晰; 调透镜的高度,使物和像的中点等高;左右调节透镜和物屏,使物与像中点连线与光具座的轴线平行;用左右逼近法确定成理想像时,读像屏的坐标。重复测量 5 次。 3.用位移法进行共轴调节 参照图3布置光路,放置物屏和像屏,使其间距 D > 4 f ,移动透镜并对它进行高低、 左右调节,使两次所成的像的顶部(或底部)之中心重合,需反复进行数次调节,方能达到共轴要求。 4.位移法测焦距 在共轴调节完成之后,保持物屏和像屏的位置不变,并记下它们的坐标 x 0 和x i ,移动透镜,用左右逼近法确定透镜的两次理想位置坐标 x L 1 和 x L 2 。测量5次。 5.用物距——像距法测量凹透镜的焦距,要求测三次。 6.组装显微镜并测其放大率。 数据记录和处理 1 根据公式:f = | x l - x 0 |=195 2.物距——像距法 物坐标 x 0 = mm 透镜坐标 x L = mm x i 的测量平均值为 mm B2 L2

应用光学实验报告

报告 (操作性实验) 课程名称:应用光学 实验题目:薄透镜焦距测量与光学系统基点测量 指导教师: 班级:学号:学生姓名: 一、实验目得 1、学会调节光学系统共轴。 2、掌握薄透镜焦距得常用测定方法。 3、研究透镜成像得规律。 4、学习测定光具组基点与焦距得方法 二、仪器用具 1、光源(包括LED,毛玻璃等) 2、干板架 3、目标板 4、待测透镜(Φ50、0,f7 5、0mm) 5、反射镜 6、二维调节透镜/反射镜支架 7、白屏 8、节点器(含两Φ40透镜,f200与f 350) 三、基本原理 1、自准直法测焦距如下图所示,若物体正好处在透镜L得前焦面处,那么物体上各点发出得光经过透镜后,变成不同方向得平行光,经透镜后方得反射镜 M把平行光反射回来,反射光经过透镜后,成一倒立得与原物大小相同得实象,像

位于原物平面处。即成像于该透镜得前焦面上。此时物与透镜之间得距离就就是透镜得焦距,它得大小可用刻度尺直接测量出来。 L M 图1、2 自准直法测会聚透镜焦距原理图 2、二次成像法测焦距 由透镜两次成像求焦距方法如下: 图1、3 透镜两次成像原理图 当物体与白屏得距离时,保持其相对位置不变,则会聚透镜置于物体与白屏之间,可以找到两个位置,在白屏上都能瞧到清晰得像.如上图所示,透镜两位置之间得距离得绝对值为,运用物像得共扼对称性质,容易证明: 上式表明:只要测出与,就可以算出.由于就是通过透镜两次成像而求得得,这种方法称为二次成像法或贝塞尔法.这种方法中不须考虑透镜本身得厚度,因此用这种方法测出得焦距一般较为准确. 3、主面与主点 若将物体垂直于系统得光轴,放置在第一主点H处,则必成一个与物体同样大小得正立得像于第二主点H'处,即主点就是横向放大率β=+1得一对共轭点。过主点垂直于光轴得平面,分别称为第一与第二主面,如图1中得MH与M'H'。 4、节点与节面 节点就是角放大率γ=+1得一对共轭点。入射光线(或其延长线)通过第一节点

光具组基点的测定及数据处理

曲靖师范学院物理系 实验报告 实验题目:光具组基点的测定 专业:物理学 班级学号:2011121149 姓名:赵旭 组别:第三组 实验时间:2012年5月31日

【实验目的及要求】 1.成像法确定光具组的基点位置,验证高斯公式; 2.利用测节器原理,确定透镜组的基点位置; 3.进一步了解光学系统基点的性质。 【实验原理】 光学仪器中常用的光学系统,一般都是由单透镜或胶合透镜等球面系统共轴构成,对于由薄透镜组合成的共轴球面系统,其物和像的位置可由高斯公式: 111 s s f ' ' -= 确定式 f '为系统的像方焦距,s ' 为像距,s 为像距。物距是从第一主面到物的距离,像距是从第 二主面到像的距离,系统的像方焦距是从第二主面像方焦点的距离。各量的符号从各相应主面,沿光线进行方向测量为正,反向为负。共轴球面系统的物和像的位置,还可由牛顿公式表示: ()xx ff f f '''==- 即式中x 为从物方焦点量起的物方焦点到物的距离,x ' 为从物方焦点量起的像方焦点到像的距离,物方焦距f 和像方焦距 f '分别是第一、第二主面量到物方焦点的距离,符号规则同上,共轴球面系统的基点、基 面具有如下的特点: 1.主点和主面 若将物体垂直于系统的光轴放置在第一主点H 处,则必成一个与物体同样大小的正立像于第二主点H 处,即主点是横向放大率β=+1的一对共轭点,过主轴垂直于光轴的平面,分别称为第一、第二主面。 2.节点和节面 节点是放大率γ=+1的一共轭点,入射光线(或其延长线)通过第一节点N 时,出射光线(或其延长 线)比通过第二节点N ' ,并与N 的入射光线平行,过节点垂直于光轴的平面分别称为第一、第二节面。 当共轴球面系统处于同一媒质时,两主点分别与两节点重合。 3.焦点和焦面 平行于系统主轴的平行光束,经系统折射后与主轴的交点F ' 称为像方焦点;过F ' 垂直于主轴的面称为像方焦面。第二主点H '到像方焦点F ' 的距离,称系统的像方焦距f ',此外,还有物方焦点F 、焦面 和焦距f 。 显然,薄透镜的两主平面与透镜的光心重合,而共轴球面系统两主点的位置,将随各组合透镜或折射面的焦距和系统的空间特性而异,下面以两个薄透镜的组合为例进行讨论,设两薄透镜的像方焦距分别为 1f ' 和 2f ' ,两透镜之间的距离为d ,则透镜组的像方焦距 f '可由下式求出:

相关文档
最新文档