北斗地基增强系统站点选址要求

北斗地基增强系统站点选址要求
北斗地基增强系统站点选址要求

附件2:

北斗地基增强系统站点选址要求

1.观测环境

距易产生多路径效应的地物(如高大建筑、大面积玻璃墙、大型金属物体、树木、大面积水域、海滩和易积水地带等)的距离不小于200m;

点位视野开阔,视场内不宜有高度角大于10°的成片障碍物;

应远离强磁场、大功率无线电发射台、电视台、微波站、雷击区300米以上;远离高压输电线和微波无线电信号传递通道150米以上;

观测环境应安全僻静,且地质稳固。

2.地质环境

点位应选在稳定地质块体上,点位地面基础稳定,避开地质构造不稳定地区(如断裂带、易发生滑坡与沉陷等局部变形地区)和易受水淹或地下水位变化较大的地区,便于长期保存测量标志;

点位应避免选在近期利用或开工建设的区域内;

不应设立在易发生滑坡、沉陷、隆起等地面局部变形的地点;

不应设立在易受水淹、潮湿或地下水位较高的地点;

不应设立在距铁路200米,距公路100米内或其它受剧烈振动的地点;

屋顶站所在建筑物必须为钢筋混凝土框架结构,且建筑物高度不超过30米、竣工三年以上。

3.观测墩建设要求

屋顶观测墩,应建设在建筑物承重结构上。

观测墩应具备完善的防雷设施。

屋顶观测墩与屋顶面接合处应做防水处理。

如果屋顶多于一个观测墩,则观测墩的间距大于5m。

屋顶观测墩基座建设需求

a)凿开点位所在的水泥板尺寸应约为600×

600mm,深约10cm,直至露出楼面钢筋,与基座的钢筋

结构焊接。

b)凿开的楼面上在承重柱上需用水钻至少钻4

个深60~80cm、间距约为16cm 的矩形排列的钻孔(孔

径为38mm);并对钻孔进行清洗、风干。

c)需用镀锌铁板条焊接在支柱的主筋上作为防

雷的引线通出基座外。在不同的位置焊接两个上述的

引线。

d)对观测墩基座需进行防水处理并修复原建筑

物的防水层,并根据设计对基座进行外装饰。

e)布设观测墩到机房的BDS信号线保护管,保

护管的大小要合适(参考直径为63mm的饮水管)。4.上报资料清单

站点的详细地址和联系人及联系方式。

楼顶照片,总计6张,拟建站点的近景和远景照片两张,站立在拟建站点位置,在距离楼顶面米高度,东南西北四个方4张照片。

机房照片,拟放置机柜位置的近景和远景照片2张。

楼顶观测墩到机房机柜放置处的走线距离。

室内及室外的防雷设施,如有无避雷针、接地线等。

中国北斗卫星导航系统

中国北斗卫星导航系统(COMPASS,中文音译名称BeiDou,北斗政府网站:https://www.360docs.net/doc/b8290168.html,),作为中国独立发展、自主运行的全球卫星导航系统,是国家正在建设的重要空间信息基础设施,可广泛用于经济社会的各个领域。 北斗卫星导航系统能够提供高精度、高可靠的定位、导航和授时服务,具有导航和通信相结合的服务特色。通过19年的发展,这一系统在测绘、渔业、交通运输、电信、水利、森林防火、减灾救灾和国家安全等诸多领域得到应用,产生了显著的经济效益和社会效益,特别是在四川汶川、青海玉树抗震救灾中发挥了非常重要的作用。 中国北斗卫星导航系统是继美国GPS、俄罗斯格洛纳斯、欧洲伽利略之后,全球第四大卫星导航系统。北斗卫星导航系统2012年将覆盖亚太区域,2020年将形成由30多颗卫星组网具有覆盖全球的能力。高精度的北斗卫星导航系统实现自主创新,既具备GPS和伽利略系统的功能,又具备短报文通信功能。 北斗卫星导航系统的建设目标是:建成独立自主、开放兼容、技术先进、稳定可靠的覆盖全球的北斗卫星导航系统,促进卫星导航产业链形成,形成完善的国家卫星导航应用产业支撑、推广和保障体系,推动卫星导航在国民经济社会各行业的广泛应用。北斗卫星导航系统由空间段、地面段和用户段三部分组成,空间段包括5颗静止轨道卫星和30

颗非静止轨道卫星,地面段包括主控站、注入站和监测站等若干个地面站,用户段包括北斗用户终端以及与其他卫星导航系统兼容的终端。 按照“三步走”的发展战略,北斗卫星导航系统将于2012年前具备亚太地区区域服务能力,2020年左右建成由20余颗卫星、地面段和各类用户终端构成的、覆盖全球的大型航天系统。 北斗卫星导航系统的建设历程我国建设北斗导航检测认证体系 “三步走”计划 第一步即区域性导航系统,已由北斗一号卫星定位系统完成,这是中国自主研发,利用地球同步卫星为用户提供全天候、覆盖中国和周边地区的卫星定位系统。中国先后在2000年10月31日、2000年12月21日和2003年5月25日发射了3颗“北斗”静止轨道试验导航卫星,组成了“北斗”区域卫星导航系统。北斗一号卫星在汶川地震发生后发挥了重要作用。 第二步,即在“十二五”前期完成发射12颗到14颗卫星任务,组成区域性、可以自主导航的定位系统; 第三步,即在2020年前,有30多颗卫星覆盖全球。北斗二号将为中国及周边地区的军民用户提供陆、海、空导航定位服务,促进卫星定位、导航、授时服务功能的应用,为航天用户提供定位和轨道测定手段,满足导航定位信息交换的需要等。北斗闪耀星空照亮国人 之路——访中国航天科技集团公司总经理马兴瑞

北斗地基增强系统建设实施方案

1.1构建地基增强系统 地基增强系统是基于BD/GPS卫星定位技术、计算机网络技术、数字通讯技术等高新科技,通过在一定区域布设若干个GNSS连续运行参考基站(CORS),对区域GNSS定位误差进行整体建模,通过无线数据通讯网络向用户播发定位增强信息,提高用户的定位精度,且定位精度分布均匀、实时性好、可靠性高。地基增强系统辅助空间卫星,可以显著或成倍提高定位和授时精度,可使终端的定位精度提高到米级以内。 地基增强系统由参考站、数据处理中心、数据传输系统、定位导航数据播发系统、用户应用系统五个部分组成,各基准站与监控分析中心间通过数据传输系统连接成一体,形成专用参考站网络,数据传输系统与定位导航数据播放系统共同完成通信传输。 北斗卫星地基增强系统是动态的、连续的空间数据参考框架,可快速、高精度的获取空间数据和地理特征,它也是区域规划、管理、决策的基础。 1.1.1建设原则 北斗卫星地基增强系统建设将坚持“技术先进、高效可靠、经济实用和易于扩展”的基本原则。 1)总体规划、分步实施 系统建设中,应先行进行总体规划和设计,全盘考虑系统建设目标。根据总体规划指导和要求,进行项目的分期建设的设计和实施,避免不合理的建设投入。 2)先进性 系统拟采用的BDS/GPS技术融合了网络RTK技术和PPP技术的各自优势,充分借鉴了网络RTK和PPP技术的工作模式,因而其技术本身可具备以下优势:

(1)北斗为主,兼容GPS、GLONASS系统。具有BDS独立组网进行高精度定位增强的能力,同时提供CGR三系统、CG双系统、CR双系统、GR双系统等4种组合定位增强模式,实现 GEO/IGSO(高轨)卫星与MEO(GPS/GLONASS中圆轨道)卫星联合解算技术。 (2)区域网络RTK与广域PPP技术融合统一,区域CORS网内和网外用户采用同一套数据处理软件,相同的数据处理模式,实现区域增强与广域增强服务自动无缝切换,具有近海高精度定位增强服务能力。 (3)坐标同时兼容CGCS2000和WGS 84坐标系统。 (4)现有的GPS B 级点可以结合IGS 站点,实现CJK-CORS监测系统中的基准点的坐标联测的起算点。 3)可靠性 (1)系统设计充分考虑系统运行的可靠性以及个BDS/GPS定位技术的可靠性。从系统设备部署、基准站布网分布、系统软件自适应性及可靠性、合理高效的备份机制等方面,保证系统全天候、稳定正常运行; (2)系统设计以北斗信号为主,兼容GPS、GLONASS信号,对于GPS定位技术而言存在更多的冗余性,有利于提高定位的精度与可靠性。对于北斗三星GPS CORS系统监测,其在扩展时间可用性的同时,能有效地缩短初始化时间。 (3)全方位的完好性监测方法和预警技术。对导航星座、CORS基站、大气扰动、网络环境、硬件设备进行实时监测,面向系统决策层、系统管理员和终端用户各自不同的需求,建立相应的系统完好性参数化模型,实时发布完好性差分数据、监测数据和预警信息,提升系统服务的可靠性和完备性。 3)资源集约利用 (1)利用一带一路周边现有的基站站可利用的设施,在其基础上扩展CORS 监测系统,尽量避免重复投资。 (2)在确保系统性能指标和质量不受影响的情况下,采用合理、节省的方法设计系统,尽可能节约工程建设总费用。 4.易用可扩展 (1)系统设计要保证系统建成后易用性,包括系统管理、系统维护、用户应用的易用性,用户端实现简单培训后即可操作作业,管理端进行短期培训实习后

北斗卫星导航定位系统简介

北斗卫星导航定位系统,是中国自行研制开发的区域性有源三维卫星定位与通信系统(CNSS),是除美国的全球定位系统(GPS)、俄罗斯的GLONASS之后,第三个成熟的卫星导航系统。卫星导航系统是重要的空间基础设施,它综合了传统天文导航定位和地面无线电导航定位的优点,相当于一个设置在太空的无线电导航台,可带来巨大的社会经济效益。在测绘、电信、水利、公路交通、铁路运输、渔业生产、勘探、森林防火和国家安全等诸多领域会逐步发挥重要作用。 世界上第一个全球卫星导航系统是美国从1973年开始实施的GPS系统,军民两用。但长期以来,美国对本国军方提供的是精确定位信号,对其他用户提供的则是加了干扰的低精度信号――也就是说,地球上任何一个目标的准确位置,只有美国人掌握,其他国家只知道个“大概”。为打破美国的垄断,俄罗斯耗资30多亿美元建起了自己的全球卫星导航系统GLONASS。2002年,欧盟启动了伽利略(Galileo)全球卫星导航定位系统计划,将在2008年投入运营,预计投资36亿欧元。2003年,我国与欧盟签署了有关伽利略计划的合作协定,目前双方合作项目已有14个。我国自上世纪80年代引进首台GPS接收机以来,已成为GPS应用大国。作为一个拥有广阔领土和海域的国家,中国有能力也有必要拥有自己的全球定位系统。 北斗卫星导航定位系统的系统构成有:由两颗地球静止卫星(800E和1400E)、一颗在轨备份卫星(110.50E)、中心控制系统、标校系统和各类用户机等部分组成。可向用户提供全天候、二十四小时的即时定位服务,定位精度可达20纳秒的同步精度,水平精度100米(1σ),设立标校站之后为20米(类似差分状态)。其精度与GPS相当。工作频率为2491.75MHz,系统容纳的最大用户数达每小时540000户,短报文通信一次可传送多达120个汉字的信息(GPS不具备此项功能),精密授时的精度达20纳秒。 2007年2月3日,第四颗试验“北斗星”在西昌成功发射。 这一系统目前共有四颗导航定位卫星,其发射时间分别为: 2000年10月31日; 2000年12月21日; 2003年5月25日,第三颗是备用卫星。 2007年2月3日,北斗导航试验卫星升空。 中国向着努力开发一个堪与美国GPS系统和欧洲伽利略系统(Galileo)媲美的定位系统又迈进了一步。“北斗”导航卫星通过“长征三号甲”运载火箭成功发射,凸显中国政府发展航天工业的决心。此前数周,中国用一种由导弹发射的“动能拦截器”击毁了一颗老化气象卫星,美国对此表示担忧。 北斗卫星导航定位系统——英文名为“Compass”——的计划一直处于保密状态,官方一再拒绝透露意图。不过,最近的卫星发射,似乎是要加强一个相对不很精确的系统,该系统以2000年至2003年发射的三颗北斗卫星为基础。今年初将发射两颗地球静止卫星,使北斗卫星导航系统到2008年能够覆盖中国全境和邻近国家部分区域。北斗卫星导航系统最终将通过由30颗非静止轨道卫星组成的卫星“星座”,扩展到覆盖全球。它将类似于美国的GPS系统(全球定位系统)和欧洲的伽利略卫星网络。 更为精确的定位,对于中国军队来说将是一项重大财富。扩展后的北斗卫星导航系统,将使用与伽利略系统相同的无线电频率,可能也会与GPS系统相同,在战时使敌方更难以干扰网络。 北斗卫星导航系统的开发,可能会对伽利略系统的商业成功构成挑战。虽然中国是伽利略项目的合作方之一,中国政府和企业在相关设施及商业应用研究方面投入了2亿欧元(合2.6亿美元),但中国正成为该 项目的一个潜在竞争者。

GNSS星基增强系统综述

GNSS星基增强系统综述 摘要:自GPS提供全球导航定位服务以来,无论是在经济、政治还是军事、民用 等方面都发挥了重要的作用,基于此,目前许多国家都在论证和建设自己的卫星 导航定位系统,比如,俄罗斯的GLONASS、欧盟的Galileo等,中国的北斗卫星 导航定位系统(BeiDou Navigation Satellite System,BDS)也于2012年底正式运行,并到2020年将能够提供全球服务。由各国卫星导航系统所构成的全球卫星导航 系统(Global Navigation Satellite System, GNSS)广泛应用于位置服务、道路铁路、航空航天、农业、测绘、授时同步等多个领域,特别是在民用航空领域,其优势 更加突出[1]。 在状态空间域差分技术中广域精密定位技术主要以载波观测量为主,可以达 到分米甚至厘米级的定位精度,但其需要解算模糊度参数,因此初始化时间长, 且在卫星机动条件下,其解算的卫星星历及星钟差分改正数精度较低;而广域差 分技术,主要以伪距观测量为主,定位精度只有1-3m,但其模型简单,解算速度快,不需要初始化时间,且能够提供完备性信息,因此在民用航空领域得到了广 泛的应用。 关键词:星基增强、卫星导航、广域差分 1 意义 当前中国民航正在实施民航强国战略,要求加快建设现代空中交通服务系统。到2020年,中国民航运输机队规模将达到4000架,通用航空机队规模将达到5000架,航空器年起降架次将超过1500万,运输总周转量将达到1700亿吨公里以上,旅客运输量将超过7亿人次。中国是一个多地形国家,机场环境差异较大,依靠传统的仪表着陆系统、测距仪等陆基导航设备无法对飞机的安全起降做出充 分的保证,且其设备投资巨大,维护费用较高。当前国际民用航空领域正在从陆 基导航向星基导航(卫星导航系统及其增强系统)过渡。但我国目前在主要航路 和终端、进近仍以陆基导航为主要设备源,因此,基于中国民航运输航空运行需 求和导航技术发展现状,中国民航在其制定的导航技术发展战略的中期(2021年~2030年)将稳步推进从陆基导航向星基导航过渡,并建议开展星基增强系统(Satlellite Based Augmentation System,SBAS)的研究和实验工作。 2 研究现状 2.1 算法研究现状 最早的广域差分系统算法是由斯坦福大学的Parkinson提出,其通过已知精确坐标的监测站对导航卫星的实时监测,将站钟、星钟和星历放在一起进行最小二 乘估计,但这种方法的计算效率较慢;后来Enge P对该算法进行了优化,先将站 钟通过时间传递分离出来,然后再对星历及星钟进行统一解算;1999年斯坦福大 学与美国喷气推进实验室的工作小组对上述方法进一步改进,采用站间单差的方 法消除星钟误差来解算星历误差,再利用解算的星历误差来估计星钟误差[2],目 前大部分的广域增强系统算法都是采用这种矢量差分的方法。2004年德国地学研 究中心对上述几种算法进行了综合分析,认为上述几种算法是等效的,其实质都 是星历与星钟的统一解算[3]。 国外目前对于GPS广域差分系统的研究较多,而对于BDS广域差分系统的研 究则还没有,国内目前对于GPS广域差分系统的算法的研究基本与国外一致,其

最新北斗卫星导航系统详解

北斗卫星导航系统详 解

北斗卫星导航系统包括北斗一号和北斗二号两代系统,是中国研发的卫星导航系统。北斗一号是一个已投入使用的区域性卫星导航系统,北斗二号则是一个正在建设中的全球卫星导航系统。北斗卫星导航系统和美国全球定位系统、俄罗斯格洛纳斯系统、欧盟伽利略定位系统被联合国确认为全球4个卫星导航系统核心供应商。 北斗一号 北斗卫星定位系统是由中国建立的区域导航定位系统。该系统由四颗(两颗工作卫星、2颗备用卫星)北斗定位卫星(北斗一号)、地面控制中心为主的地面部份、北斗用户终端三部分组成。北斗定位系统可向用户提供全天候、二十四小时的即时定位服务,授时精度可达数十纳秒(ns)的同步精度,北斗导航系统三维定位精度约几十米,授时精度约100ns。美国的GPS三维定位精度P码目前己

由16m提高到6m,C/A码目前己由25-100m提高到12m,授时精度日前约20ns。。北斗一号导航定位卫星由中国空间技术研究院研究制造。2008年北京奥运会期间,它将在交通、场馆安全的定位监控方面,和已有的GPS卫星定位系统一起,发挥“双保险”作用。北斗一号卫星定位系统的英文简称为BD,在ITU(国际电信联合会)登记的无线电频段为L波段(发射)和S波段(接收)。 系统工作原理 “北斗一号”卫星定位系出用户到第一颗卫星的距离,以及用户到两颗卫星距离之和,从而知道用户处于一个以第一颗卫星为球心的一个球面,和以两颗卫星为焦点的椭球面之间的交线上。另外中心控制系统从存储在计算机内的数字化地形图查寻到用户高程值,又可知道用户出于某一与地球基准椭球面平行的椭球面上。从而中心控制系统可最终计算出用户所在点的三维坐标,这个坐标经加密由出站信号发送给用户。 “北斗一号”的覆盖范围是北纬5°一55°,东经70°一140°之间的心脏地区,上大下小,最宽处在北纬35°左右。其定位精度为水平精度100米(1σ),设立标校站之后为20米(类似差分状态)。工作频率:2491.75MHz。系统能容纳的用户数为每小时540000户。 北斗系统三大功能 快速定位:北斗系统可为服务区域内用户提供全天候、高精度、快速实时定位服务,定位精度20—100m;

北斗卫星导航系统定位原理及应用

xxxx导航系统定位原理及其应用 北斗卫星定位系统是由中国建立的区域导航定位系统。该系统由四颗(两颗工作卫星、2颗备用卫星)北斗定位卫星(北斗一号)、地面控制中心为主的地面部份、北斗用户终端三部分组成。北斗定位系统可向用户提供全天候、二十四小时的即时定位服务,授时精度可达数十纳秒(ns)的同步精度,北斗导航系统三维定位精度约几十米,授时精度约100ns。美国的GPS三维定位精度P码目前己由16m提高到6m,C/A码目前己由25-100m提高到12m,授时精度日前约20ns。。 北斗一号导航定位卫星由中国空间技术研究院研究制造。四颗导航定位卫星的发射时间分别为: 2000年10月31日; 2000年12月21日; 2003年5月25日, 2007年4月14日,第三、四颗是备用卫星。2008年北京奥运会期间,它将在交通、场馆安全的定位监控方面,和已有的GPS卫星定位系统一起,发挥?双保险?作用。北斗一号卫星定位系统的英文简称为BD,在ITU(国际电信联合会)登记的无线电频段为L波段(发射)和S波段(接收)。北斗二代卫星定位系统的英文为Compass(即指南针),在ITU登记的无线电频段为L波段。北斗一号系统的基本功能包括: 定位、通信(短消息)和授时。北斗二代系统的功能与GPS相同,即定位与授时。 其工作原理如下: ?北斗一号?卫星定位系出用户到第一颗卫星的距离,以及用户到两颗卫星距离之和,从而知道用户处于一个以第一颗卫星为球心的一个球面,和以两颗卫星为焦点的椭球面之间的交线上。另外中心控制系统从存储在计算机内的数字化地形图查寻到用户高程值,又可知道用户出于某一与地球基准椭球面平行的椭球面上。从而中心控制系统可最终计算出用户所在点的三维坐标,这个坐标

北斗卫星导航系统在智能交通系统中的应用

The Application of Compass in the Intelligent Transportation System Zhigang Xu Police Maritime Academy, Ningbo, China Xzg6708@https://www.360docs.net/doc/b8290168.html, Abstract: According to the current development problems of developed urban transportation and Intelligent Transportation System (ITS), and the characteristics of Compass application in the ITS, the all aspects of applications of Compass in the ITS are analyzed in this paper, and then some problems about these applications and their suggestions are also proposed. Keywords: Compass; Intelligent Transportation System (ITS); Location Based Service (LBS) 北斗卫星导航系统在智能交通系统中的应用 徐志刚 公安海警学院,宁波,中国,315801 Xzg6708@https://www.360docs.net/doc/b8290168.html, 【摘要】根据当前发达城市交通以及我国在智能交通系统发展中存在的问题,结合北斗卫星导航系统在智能交通系统中应用的特点,分析了北斗卫星导航系统在智能交通系统各方面的应用,并针对这些应用提出了可能存在的问题及建议。 【关键词】北斗卫星导航系统;智能交通系统;基于位置服务 1 引言 我国是一个经济持续发展的发展中国家,改革开放以来,城市化与汽车化发展十分迅猛。改革开放前,城市化水平不足19%,据今年公布的人口普查结果,我国的城镇人口接近6.66亿人,城镇化率达到 49.68 %;相应的车辆增长也非常快速,截至2011年6月底,全国机动车总量达2.17亿辆,其中私家车达7206万辆,并且私家车拥有率呈不断增长的趋势。反观中国城市道路建设情况,改革开放以来,中国道路交通设施及管理设施虽然有较大改观,但远远跟不上机动车增长速度,而且总体水平与发达国家有较大差距,特别是大多数城市路网结构不合理,道路功能不完善,道路系统不健全。造成城市交通拥塞严重,交通效率大大下降。另外,交通拥堵、车速下降以及车况差、车辆技术性能低等,致使汽车尾气对城市的空气污染剧增。同时,车辆状况差也直接影响到城市交通,并已成为制约我国城市交通的重要因素。以车况较好的北京市为例,平均日故障次数达500次以上,给城市交通带来巨大压力。另外一个问题,就是我国大多城市交通管理设施缺乏,管理水平不高。即使各地都建立了交通控制中心,大多只是实现了监视功能,而远没有发挥控制功能。 正是由于的车辆、道路和管理发展不均衡所带来的问题,迫切需要发展智能交通系统(Intelligent Transportation System,ITS)来缓解上述问题。智能交通系统是以信息、通信、控制和计算机技术将人、车、路三者紧密协调、和谐统一,而建立起的大范围内、全方位发挥作用的实时、准确、高效的运输管理系统。ITS将有效地利用现有交通设施、减少交通负荷和环境污染、保证交通安全、提高运输效率、促进社会经济发展、提高人民生活质量,并以推动社会信息化及形成新产业受到各国的重视,目前已成为世界21世纪交通系统的发展方向。我国在上世纪90年代末期就确立智能交通系统的研究和发展战略,并已经在北京、上海、广州等一些发达城市实施了ITS的“关键技术开发和示范工程”。经过十多来年的发展,我国ITS 发展总体形势良好,但在管理面层主要存在问题如下:体制分散,统一协调不够;引进太多,消化创新不够;政府主导,民间参与不够。从技术的战略面层来看,我国几乎所有的ITS都是建立在美国的全球定位系统(GPS)的基础上的,这是个基础性战略性的缺陷。现在我国的北斗卫星导航系统(下述简称“北斗系统”)发展快速,完全可以取代GPS在ITS的地位,北斗系统将在我国的ITS中具有更加重要和更广泛的应用。。 2 北斗卫星导航系统在智能交通系统中应用的特点 北斗卫星导航系统由空间星座、地面控制和用户终端三大部分组成。空间星座部分由 5 颗对地球静止轨道(GEO)卫星和30 颗对地球非静止轨道 (Non-GEO)卫星组成。北斗卫星导航系统建成后将

北斗地基增强系统数据处理中心技术要求-编制说明

项目计划号:20180784-T-801 北斗地基增强系统数据处理中心 技术要求 编制说明 (征求意见稿) 中国兵器工业标准化研究所 2019年12月30日

北斗地基增强系统数据处理中心技术要求 编制说明 (一)工作简况 1.1 任务来源 本标准是国家标准委2019年12月6日的《关于<北斗地基增强系统数据处理中心>等5项国家标准制修订的通知》下达的计划,项目计划编号为20180784-T-801。本标准由中央军委装备发展部提出;由全国北斗卫星导航标准化技术委员会(SAC/TC544)归口;由中国兵器工业标准化研究所负责起草。 1.2 主要工作过程、标准主要起草人及其所做工作 标准编制任务下达后,2019年1月,成立了由中国兵器工业标准化研究所(以下简称(兵器标准化所)、中国兵器科学研究院、北方信息控制研究院集团有限公司(以下简称信控集团)、千寻位置网有限公司(以下简称千寻)等组成的GB/T ××××-20××《北斗地基增强系统数据处理中心技术要求》编制组。该项国家标准的制定具有“北斗地基增强系统工程标准”《北斗地基增强系统数据综合处理系统建设规范》DZB 16-2016的支撑背景。该标准是在研制过程中,北斗地基增强系统数据处理中心技术为标准制定提供了基础,标准制定过程的技术研讨反过来又深化和完善了北斗地基增强系统数据处理中心技术内容,形成了标准与北斗地基增强系统数据处理中心技术互动支持、相互推动提升的过程,因此,该标准具有充实可靠的技术背景。本次国家标准的编制组的主体成员与工程标准《北斗地基增强系统数据综合处理系统建设规范》DZB 16-2016的标准编制组成员基本是一致,都是斗地基增强系统建设工程的技术骨干。编制组制定了标准编制工作计划,明确了标准编制依据和原则等,并讨论了标准内容编写框架和主要技术内容。 编制组成立后,开展了标准相关技术内容的调研工作,广泛查询的标准制定对象相关标准,以及标准涉及的主要技术内容,主要包括北斗地基增强系统数据处理系统的总体架构、数据处理中心机房、硬件支撑平台、软件支撑平台、核心业务软件、信息安全防护平台等方面。

北斗卫星导航系统主要应用领域

北斗卫星导航系统主要应用领域 1、交通运输重点运输监控管理、公路基础设施、港口高精度实时定位调度监控; 2、海洋渔业船位监控、紧急救援、信息发布、渔船出入港管理; 3、水文监测多山地域水文测报信息的实时传输; 4、气象监测气象测报型北斗终端设备,大气监测预警系统应用解决方案; 5、森林防火定位、短报文通信; 6、通信时统开展北斗双向授时,研制出一体化卫星授时系统; 7、电力调度基于北斗的电力时间同步; 8、救灾减灾提供实时救灾指挥调度、应急通信、信息快速上报、共享; 9、军工领域定位导航;发射位置的快速定位;搜救、排雷定位等。 国家积极推动北斗民用化进程,一系列的鼓励政策,为北斗的应用发展提供了广阔的空间。北斗卫星导航系统解决了精准定位的问题,靠一个北斗终端就能走遍大江南北。北斗系统的定位服务将在未来智慧生活中发挥巨大作用。 如今的北斗卫星导航系统已成功应用于测绘、电信、水利、渔业、交通运输、森林防火、减灾救灾和公共安全等诸多领域,北斗卫星导航系统在使用中产生显着的经济效益和社会效益。 在气象行业,北斗卫星导航系统广泛应用于气象观测、灾害监测和气象信息的收集与发布,包括大气风向风速、水汽含量、海风海浪、雷电观测和预警等,极大提升气象观测、预报和灾害预警发布水平,增强气象领域防灾减灾能力。 中国海洋渔业水域面积300多万平方公里,现有渔船100多万艘、渔业人口2000多万,海洋渔业涉及渔民生命安全、国家海洋经济安全、海洋资源保护和海上主权维护,现已成为北斗民用规模最大的行业。北斗卫星海洋渔业安全生产信息服务系统的应用极大地保障了渔船的出海安全,巩固和发展了渔业生产,推动了“平安渔业”建设。以赴南沙生产作业的渔船为例。农业部南海区渔政局建立了“南沙渔船船位监控指挥管理系统”,系统建成后,监控中心能随时获知渔船方位,大大方便了相关职能部门对渔业生产的管理,实现看得见的管理调度。当渔民在海上遇险时,可以通过渔船上的卫星导航通信系统向监控中心发送遇险报告,监控中心收到报告时就可以根据卫星定位确定距离遇险渔船最近的船只,

北斗地基增强系统基准站入网技术要求-编制说明

项目计划号:20180786-T-801 北斗地基增强系统基准站入网 技术要求 编制说明 (征求意见稿) 中国兵器工业标准化研究所 2019年12月30日

北斗地基增强系统基准站入网技术要求 编制说明 (一)工作简况 1.1 任务来源 本标准是国家标准委2019年12月6日的《关于<北斗地基增强系统数据处理中心>等5项国家标准制修订的通知》下达的计划,项目计划编号为20180786-T-801。本标准由中央军委装备发展部提出;由全国北斗卫星导航标准化技术委员会(SAC/TC544)归口;由中国兵器工业标准化研究所负责起草。 1.2 主要工作过程、标准主要起草人及其所做工作 标准编制任务下达后,2019年1月,成立了由中国兵器工业标准化研究所(以下简称(兵器标准化所)、中国兵器科学研究院、北方信息控制研究院集团有限公司(以下简称信控集团)、千寻位置网有限公司(以下简称千寻)等组成的《北斗地基增强系统基准站入网技术要求》编制组。该项国家标准的制定具有“中国第二代卫星导航系统重大专项标准”《北斗地基增强系统基准站入网资格评定要求》BD440016-2017的支撑背景。该标准是在研制过程中,基准站入网技术为标准制定提供了基础,标准制定过程的技术研讨反过来又深化和完善了基准站入网技术内容,形成了标准与基准站入网技术互动支持、相互推动提升的过程,因此,该标准具有充实可靠的技术背景。本次国家标准的编制组的主体成员与重大专项标准《北斗地基增强系统基准站入网资格评定要求》BD440016-2017的标准编制组成员基本是一致,都是斗地基增强系统建设工程的技术骨干。编制组制定了标准编制工作计划,明确了标准编制依据和原则等,并讨论了标准内容编写框架和主要技术内容。 编制组成立后,开展了标准相关技术内容的调研工作,广泛查询的标准制定对象相关标准,以及标准涉及的主要技术内容,主要包括入网基准站的技术要求、入网基准站运维能力要求、入网基准站安全保密要求、入网管理流程、入网申请及评定步骤、入网检查及测试要求等方面。

北斗性能提升与广域分米星基增强技术及应用

北斗性能提升与广域分米星基增强技术及应用 提名者:中国测绘学会 提名意见: “北斗性能提升与广域分米星基增强技术及应用”项目是由北京卫星导航中心联合中国科学院上海天文台、北京航天航空大学、上海司南卫星导航技术股份有限公司、上海华测导航技术股份有限公司、泰斗微电子科技有限公司、北京神州天鸿科技有限公司共同完成。该项目组织了国内北斗卫星导航系统的总体单位、建设单位、终端生产和应用单位,经过了由科研到关键技术攻关最终到工程应用转化的过程。项目突破了北斗卫星导航系统实时分米级服务的技术瓶颈,提出了北斗卫星导航系统“基本导航、广域增强、精密定位”集成一体的体系架构、成套理论方法,研制了“北斗性能提升与星基广域增强系统”,实现了北斗系统性能大幅提升,使北斗系统具备了国际先进的分米级空间信号精度。研制了从SoC 芯片、板卡到应用终端的系列北斗高精度装备,广泛应用于国家安全、国民经济建设、民生服务等领域,并推广至“一带一路”国家,直接经济效益逾33亿元,军事和社会效益巨大项目成果对提升北斗系统国际竞争力、规模化产业应用做出了重大贡献。 同意提名该项目为国家科学技术进步奖二等奖。 项目简介 北斗卫星导航系统是国家重大战略基础设施和军民融合系统,是服务我国“一带一路”战略的国家名片。为提升北斗系统国际竞争力、满足泛在高精度定位需求、支撑国家战略新兴产业转型,在国家863计划、第二代卫星导航系统重大专项、国家自然科学基金、总部计划等项目支持下,针对异质导航业务一体化融合、广域实时高精度多元误差修正、性能提升平台研制及终端应用等存在的“限”、“杂”、“容”等难题,突破了北斗性能提升与星基广域增强理论方法和关键技术;研制了“北斗性能提升与星基广域增强系统”,取代了原导航业务处理系统,大幅提升北斗系统性能;研制了系列北斗高精度用户终端核心器件及装备,开拓了在电力、通信、交通、农业、反恐维稳、海洋权益维护、精确打击等领域的应用,取得了重大社会、经济和国防效益。 主要创新点如下:

北斗卫星导航系统常识简介

北斗卫星导航系统常识简介一、北斗卫星导航系统现状 中国北斗卫星导航系统(BeiDouNavigationSatelliteSystem,BDS)是中国自行研制的全球卫星导航系统。是继美国全球定位系统(GPS)、俄罗斯格洛纳斯卫星导航系统(GLONASS)之后第三个成熟的卫星导航系统。北斗卫星导航系统(BDS)和美国GPS、俄罗斯GLONASS、欧盟GALILEO,是联合国卫星导航委员会已认定的供应商。 北斗卫星导航系统由空间段、地面段和用户段三部分组成,可 在全球范围内全天候、全天时为各类用户提供高精度、高可靠定位、导航、授时服务,并具短报文通信能力,已经初步具备区域导航、 定位和授时能力,定位精度10米,测速精度0.2米/秒,授时精度10纳秒。 北斗卫星导航系统空间段由5颗静止轨道卫星(又称24小时轨道,指轨道平面与赤道平面重合,卫星的轨道周期等于地球在惯性 空间中的自转周期,且方向亦与之一致,即卫星与地面的位置相对 保持不变,故这种轨道又称为静止卫星轨道。一般用作通讯、气象 等方面)和30颗非静止轨道卫星组成,2012年左右,“北斗”系统将覆盖亚太地区,2020年左右覆盖全球。中国正在实施北斗卫星导航系统建设,截止2016年10月已成功发射16颗北斗导航卫星。

2000年,首先建成北斗导航试验系统,使我国成为继美、俄之 后的世界上第三个拥有自主卫星导航系统的国家。北斗导航系统是 覆盖中国本土的区域导航系统,覆盖范围东经约70°-140°,北纬5°-55°。北斗卫星系统已经对实现全覆盖。该系统已成功应用于测绘、电信、水利、渔业、交通运输、森林防火、减灾救灾和公共安全等 诸多领域,产生显着的经济效益和社会效益。特别是在2008年北京奥运会、汶川抗震救灾中发挥了重要作用。 北斗产业应用前景广阔,预计到2020年,仅北斗卫星导航市场将达到年产值4000亿元人民币,年复合增长率达到40%以上。”中国科学院院士、中国工程院院士、着名测量与遥感学家李德仁介 绍说 二、卫星定位原理 北斗卫星导航系统35颗卫星在离地面2万多千米的高空上,以固定的周期环绕地球运行,使得在任意时刻,在地面上的任意一点都可以同时观测到4颗以上的卫星。 由于卫星的位置精确可知,在接收机对卫星观测中,我们可得到卫星到接收机的距离,利用三维坐标中的距离公式,利用3颗卫星,就可以组成3个方程式,解出观测点的位置(X,Y,Z)。考虑到卫星的时钟与接收机时钟之间的误差,实际上有4个未知数,X、Y、Z和钟差,因而需要引入第4颗卫星,形成4个方程式进行求解,从而

北斗卫星导航系统在智慧城市中的应用

北斗卫星导航系统在智慧城市中的应用 学院空间科学与技术学院 专业航天工程 学生姓名赵琨 学号1513122970 老师张华副教授

伴随着城市扩大化,“城市病”成为困扰各个城市的建设与管理 的首要难题,资源短缺、环境污染、交通拥堵、安全隐患等问题日益突出。联合全球卫星定位系统、物联网技术、云计算技术和新一代通讯技术等信息技术,建立智慧城市,将成为解决城市问题的可行方案。北斗卫星导航系统是中国自主研制的全球卫星导航系统,具有全天候、全天时快速定位、短报时通信、精密授时服务三大功能,为物联网提供了导航信息和测绘信息等核心信息。智慧交通、智慧社区、智慧环保、智慧快递等北斗卫星民用项目的建立,可以促进北斗卫星深入人们的生活,逐步获得人们的认可。对北斗卫星进一步投入到我国全方位应用领域具有重要意义,进而更好地服务于城市建设和管理,促进社会和谐发展。 一、智慧城市的技术应用 智慧城市可理解为:把传感器装备到城市生活的各种物体上,通过超级计算机和云计算实现物联网整合,智慧城市是数字城市与物联网相结合的产物,包含智慧传感网、智慧控制网和智慧安全网。 1、北斗卫星 北斗卫星导航系统由空间段、地面段和用户段三部分组成,空间段包括5颗静止轨道卫星和30颗非静止轨道卫星,地面段包括主控站、注入站和监测站等若干个地面站,用户段包括北斗用户终端以及与其他卫星导航系统兼容的终端。北斗卫星导航系统的工作过程是:首先由中心控制系统向卫星I和卫星II同时发送询问信号,经卫星转发器 向服务区内的用户广播。用户响应其中一颗卫星的询问信号,并同时

向两颗卫星发送响应信号,经卫星转发回中心控制系统。中心控制系统接收并解调用户发来的信号,然后根据用户的申请服务内容进行相应的数据处理。北斗卫星具有全天候、全天时快速定位、短报时通信、精密授时服务三大功能,为物联网提供了导航信息和测绘信息等核心信息。导航信息包括位置、速度、时间,它们是物联网核心信息;测绘和地理信息包括周围环境(影像信息)、地理空间信息、虚拟空间信息等,是物联网的参照信息。 2、物联网 物联网是通过射频识别、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议把任何物品与互联网联接起来,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络。两院院士李德仁巧妙形象地把它描述为,把感应器嵌入和装备到电网、交通设施、建筑、供水系统、大坝、油气管道等各种物体中,并且被普遍连接,形成物联网,也就是物理设施首先被感知(感知层),然后通过有线、无线网络、云平台等信息技术使物理设施向外延伸并相互连接(传输层),最终达到为用户提供丰富的特点服务的目的(应用层)。 3、云计算 云计算是一种基于网络的支持异构设施和资源流转的服务供给模型,侧重于信息的处理和存储,通过平台进行数据整合,实现协同工作。智慧城市多个应用系统之间需要信息共享交互,各不同的应用系统需要共同选取数据综合计算、分析,最终得出综合结果,这就需

北斗地基增强系统建设方案

北斗地基增强系统建设 方案 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

1.1构建地基增强系统 地基增强系统是基于BD/GPS卫星定位技术、计算机网络技术、数字通讯技术等高新科技,通过在一定区域布设若干个GNSS连续运行参考基站(CORS),对区域GNSS定位误差进行整体建模,通过无线数据通讯网络向用户播发定位增强信息,提高用户的定位精度,且定位精度分布均匀、实时性好、可靠性高。地基增强系统辅助空间卫星,可以显着或成倍提高定位和授时精度,可使终端的定位精度提高到米级以内。 地基增强系统由参考站、数据处理中心、数据传输系统、定位导航数据播发系统、用户应用系统五个部分组成,各基准站与监控分析中心间通过数据传输系统连接成一体,形成专用参考站网络,数据传输系统与定位导航数据播放系统共同完成通信传输。 北斗卫星地基增强系统是动态的、连续的空间数据参考框架,可快速、高精度的获取空间数据和地理特征,它也是区域规划、管理、决策的基础。 建设原则 北斗卫星地基增强系统建设将坚持“技术先进、高效可靠、经济实用和易于扩展”的基本原则。 1)总体规划、分步实施 系统建设中,应先行进行总体规划和设计,全盘考虑系统建设目标。根据总体规划指导和要求,进行项目的分期建设的设计和实施,避免不合理的建设投入。 2)先进性 系统拟采用的BDS/GPS技术融合了网络RTK技术和PPP技术的各自优势,充分借鉴了网络RTK和PPP技术的工作模式,因而其技术本身可具备以下优势:

(1)北斗为主,兼容GPS、GLONASS系统。具有BDS独立组网进行高精度定位增强的能力,同时提供CGR三系统、CG双系统、CR双系统、GR双系统等4种组合定位增强模式,实现 GEO/IGSO(高轨)卫星与MEO(GPS/GLONASS中圆轨道)卫星联合解算技术。 (2)区域网络RTK与广域PPP技术融合统一,区域CORS网内和网外用户采用同一套数据处理软件,相同的数据处理模式,实现区域增强与广域增强服务自动无缝切换,具有近海高精度定位增强服务能力。 (3)坐标同时兼容CGCS2000和WGS 84坐标系统。 (4)现有的GPS B 级点可以结合IGS 站点,实现CJK-CORS监测系统中的基准点的坐标联测的起算点。 3)可靠性 (1)系统设计充分考虑系统运行的可靠性以及个BDS/GPS定位技术的可靠性。从系统设备部署、基准站布网分布、系统软件自适应性及可靠性、合理高效的备份机制等方面,保证系统全天候、稳定正常运行; (2)系统设计以北斗信号为主,兼容GPS、GLONASS信号,对于GPS定位技术而言存在更多的冗余性,有利于提高定位的精度与可靠性。对于北斗三星GPS CORS系统监测,其在扩展时间可用性的同时,能有效地缩短初始化时间。 (3)全方位的完好性监测方法和预警技术。对导航星座、CORS基站、大气扰动、网络环境、硬件设备进行实时监测,面向系统决策层、系统管理员和终端用户各自不同的需求,建立相应的系统完好性参数化模型,实时发布完好性差分数据、监测数据和预警信息,提升系统服务的可靠性和完备性。 3)资源集约利用 (1)利用一带一路周边现有的基站站可利用的设施,在其基础上扩展CORS监测系统,尽量避免重复投资。 (2)在确保系统性能指标和质量不受影响的情况下,采用合理、节省的方法设计系统,尽可能节约工程建设总费用。 4.易用可扩展

地面增强服务系统技术方案

柳州市北斗卫星地面增强服务系统 技术方案 上海北斗卫星导航平台有限公司 2013年10月

目录第1章项目概述 1.1项目背景 1.2建设原则 1.3建设依据 1.4建设目标 1.5建设内容 第2章项目建设必要性 2.1国家战略安全领域的需要 2.2提高北斗系统竞争力的需要 2.3国家北斗地基增强系统的需要 2.4推动卫星导航产业化发展的需要 第3章系统总体设计 3.1设计依据 3.2系统性能指标 3.3系统结构设计 3.4系统工作流程 3.4.1系统内部数据流 3.4.2系统外部数据流 3.5系统软件设计 3.5.1软件功能特色 3.5.2软件可拓展性 3.6参考站分布设计 3.6.1参考站分布设计原则 3.6.2柳州市自然地理概况 3.6.3参考站分布设计 第4章项目建设内容 4.1参考站网系统 4.1.1系统功能 4.1.2系统构成 4.1.3选址设计 4.1.4基准站接收机 4.1.5接收机天线与馈线 4.1.6安全防护监控设备 4.1.7电源保障 4.1.8观测墩建设 4.1.9防雷工程 4.1.10电涌防护

4.1.11基建施工 4.2控制中心系统 4.2.1功能分析与设计 4.2.2数据结构分析与设计 4.2.3数据中心设计 4.3通讯系统 4.3.1设计原则 4.3.2功能实现及设计 4.3.3通讯协议设计 4.4用户终端及使用流程 4.4.1用户终端 4.4.2用户使用流程 第5章项目实施进度计划 第6章经费预算 6.1费用说明 6.2费用预算 第7章项目建设成效 7.1经济效益预测 7.2项目社会效益 7.3系统服务类别 第1章项目概述 1.1项目背景 全球卫星导航系统(GNSS,即Global Navigation Satellite System)是全球所有卫星导航系统及其增强系统的总称,GNSS可为用户提供高精度、全天时、全天候的导航定位和授时服务,是最重要的时空基准信息资源之一。GNSS 包含全球系统、区域系统、天基增强系统和地面增强系统。目前,GNSS包含美国的GPS、俄罗斯的GLONASS、欧盟的Galileo系统、中国的Compass(北斗),全部建成后其可用的卫星数目达到100颗以上。 发展以北斗卫星导航系统为核心的卫星应用服务产业已经成为国家战略,卫星导航系统是国家时空基准领域的重要基础设施,是现代军事装备及信息化条件下立体作战指挥的重要依托和影响战争胜败的关键因素,是社会信息化的重要支撑和国家经济社会安全运行的重要保障,对加快经济发展方式转变、推动产业结构升级、提高生产安全效率都意义重大。 为了构建自主、安全、高效的卫星导航系统,国家投入巨资启动了国家卫星导航应用平战结合重大工程,建成了北斗卫星导航系统的基本框架。《国务院关于加快培育和发展战略性新兴产业的决定》(国发〔2010〕32号)中明确指出,

北斗地基增强系统站点选址要求

附件2: 北斗地基增强系统站点选址要求 1.观测环境 距易产生多路径效应的地物(如高大建筑、大面积玻璃墙、大型金属物体、树木、大面积水域、海滩和易积水地带等)的距离不小于200m; 点位视野开阔,视场内不宜有高度角大于10°的成片障碍物; 应远离强磁场、大功率无线电发射台、电视台、微波站、雷击区300米以上;远离高压输电线和微波无线电信号传递通道150米以上; 观测环境应安全僻静,且地质稳固。 2.地质环境 点位应选在稳定地质块体上,点位地面基础稳定,避开地质构造不稳定地区(如断裂带、易发生滑坡与沉陷等局部变形地区)和易受水淹或地下水位变化较大的地区,便于长期保存测量标志; 点位应避免选在近期利用或开工建设的区域内; 1

不应设立在易发生滑坡、沉陷、隆起等地面局部变形的地点; 不应设立在易受水淹、潮湿或地下水位较高的地点; 不应设立在距铁路200米,距公路100米内或其它受剧烈振动的地点; 屋顶站所在建筑物必须为钢筋混凝土框架结构,且建筑物高度不超过30米、竣工三年以上。 3.观测墩建设要求 屋顶观测墩,应建设在建筑物承重结构上。 观测墩应具备完善的防雷设施。 屋顶观测墩与屋顶面接合处应做防水处理。 如果屋顶多于一个观测墩,则观测墩的间距大于5m。 屋顶观测墩基座建设需求 a)凿开点位所在的水泥板尺寸应约为600×600mm,深约 10cm,直至露出楼面钢筋,与基座的钢筋结构焊接。 b)凿开的楼面上在承重柱上需用水钻至少钻4个深 60~80cm、间距约为16cm 的矩形排列的钻孔(孔径为 38mm);并对钻孔进行清洗、风干。 c)需用镀锌铁板条焊接在支柱的主筋上作为防雷的引线 通出基座外。在不同的位置焊接两个上述的引线。 d)对观测墩基座需进行防水处理并修复原建筑物的防水2

相关文档
最新文档