纳米材料总结

纳米材料总结
纳米材料总结

纳米非晶结构材料与纳米微晶不同,它的颗粒组元是短程有序的非晶态。界面组元的原子排列是比颗粒组元内原子排列更混乱,总体来说,他是一种无序程度更高的纳米材料。

非晶体的原子径向分布概率函数第一峰对应于最近邻原子分布,它尖而高,位置与晶体中最近邻原子间距一致,但随着原子间距r的增大。概率函数的峰值变得越来越不显著。

在固体中处于激发态的核回到基态时无反冲地放出光子,这种光子被处于基态的同种核(又称吸收体)无反冲地共振吸收的吸收谱称为穆斯堡尔谱。

由于内部的某种原因使机械能逐渐被消耗的现象称为内耗。

由分子振动﹑固体中的光学声子等元激发与激发光相互作用产生的非弹性散射称为拉曼散射。

应当指出的是,拉曼谱上的拉曼位移为元激发,例如声子的能量,它与相应的晶格振动频率相同。

电子自旋能级在外加静磁场H作用下会发生塞曼分裂,如果在垂直于磁场的方向加一交变磁场,当它的频率满足等于塞曼能级分裂间距时,处于低能态的电子就会吸收交变磁场的能量跃迁到高能态,原来处于高能态的电子,也可以在交变磁场的诱导下跃迁到低能态,这就是电子自旋共振(ESR)

g因子直接反映了被测量子对象所包含的自由电子或者未成键电子的状态。

纳米材料结构中的缺陷

缺陷是指实际晶体结构中和理想的点阵结构发生偏差的区域。按照缺陷在空间分布的情况,晶体中的缺陷可以分为以下三类。

(1)点缺陷:包括空位、溶质原子(替代式和间隙式)和杂质原子等。

(2)线缺陷:位错是这一缺陷类型的主要代表。按照位错性质划分,位错可分为成刃型,螺型和混合型。

(3)面缺陷:包括层错,相界、晶界、孪晶面等。

孪晶是指两个晶体(或一个晶体的两部分)沿一个公共晶面构成镜面对称的位向关系,这两个晶体就称为"孪晶",此公共晶面就称孪晶面。

驰豫:一个宏观平衡系统由于周围环境的变化或受到外界的作用而变为非平衡状态,这个系统再从非平衡状态过渡到新的平衡态的过程就称为弛豫过程。弛豫过程实质上是系统中微观粒子由于相互作用而交换能量,最后达到稳定分布的过程。弛豫过程的宏观规律决定于系统中微观粒子相互作用的性质。因此,研究弛豫现象是获得这些相互作用的信息的最有效途径之一。

居里温度是指材料可以在铁磁体和顺磁体之间改变的温度。低于居里温度时该物质成为铁磁体,此时和材料有关的磁场很难改变。当温度高于居里温度时,该物质成为顺磁体,磁体的

磁场很容易随周围磁场的改变而改变。这时的磁敏感度约为10的负6次方。

康普顿轮廓:康普顿方程是假定电子是自由的、静止的,实际上电子不是静止不动的。康普顿散射中散射的X射线谱的轮廓随元素Z而变化,反映了不同元素中电子运动状态是不一样的。这种X射线谱的轮廓称康普顿轮廓,它直接反映了物质内部的电子动量分布。

荷兰物理学家塞曼在1896年发现把产生光谱的光源置于足够强的磁场中,磁场作用于发光体使光谱发生变化,一条谱线即会分裂成几条偏振化的谱线,这种现象称为塞曼效应。

纳米微粒一般为球形或类球形,也有其他各种形状。

纳米微粒的物理特性

一热学性质

纳米微粒的熔点、开始烧结的温度和晶化温度均比常规粉体低得多。

1 纳米微粒熔点比常规粉体低得多

2 纳米微粒的开始烧结温度也比常规粉体低得多,同时烧结后可获得更高的致密度。

3 非晶纳米微粒的晶化温度低于常规粉体。

纳米微粒的上述性质主要来自于纳米微粒的巨大界面,这些界面为原子提供了短程扩散途径和较高的扩散率。

二磁学性能

1 磁性和超顺磁性

(1)纳米磁性金属的磁化率比常规金属高出数十倍。

(2)纳米微粒的尺寸小到一定临界值时进入超顺磁状态。

2 矫顽力高

纳米微粒尺寸大于超顺磁性临界尺寸时通常具有比常规情况高得多的矫顽力。

3 居里温度下降

纳米微粒内原子间距随粒径下降而减小,居里温度也有所下降。

4 磁化率(Magnetic Susceptibility )

磁化率是表征磁介质属性的物理量。常用符号cm表示,等于磁化强度M与磁场强度H之比引,即M=cmH对于顺磁质,cm>0,对于抗磁质,cm<0,其值都很小。对于铁磁质,cm很大,且还与H有关(即M与H之间有复杂的非线性关系)。对于各向同性磁介质,cm 是标量;对于各向异性磁介质,磁化率是一个二阶张量。

三光学性能

1 宽频带强吸收

2 蓝移和红移现象

(1)与大块材料相比,纳米微粒的吸收带普遍存在“蓝移”现象,即吸收带移向短波长方向。

一是量子尺寸效应:

因为已被电子占据分子轨道能级与未被占据分子轨道能级之间的宽度随颗粒直径的减小而增大。

二是表面效应:

由于纳米微粒粒径小,大的表面张力引起晶格畸变使键长缩短,导致红外吸收带移向高波数。

(2)但是在某些情况下,当粒径减小到纳米级时,可以观察到光吸收带相对粗晶材料呈现“红移”,即吸收带移向长波长方向,这是因为粒径减小的同时,巨大的表面张力使晶格畸变,颗粒内部的内应力增加,电子波函数重叠加大,能级间距变窄。

3 量子限域效应

当量子点的尺寸接近其激子波尔半径时,随着尺寸的减小,其载流子(电子、空穴)的运动将受限,导致动能的增加,原来连续的能带结构变成准分立能级,并且由于动能的增加而使得量子点的有效带隙增加,相应的吸收光谱和荧光光谱发生蓝移,而且尺寸越小,蓝移程度越大,这就是量子限域效应。

4 纳米微粒的发光

纳米微粒的尺寸小到一定值时可在一定波长的光激发下发光。

这是由量子限域效应引起的,即电子的平均自由程受小粒子的限制被局限在很小的范围,空穴很易与之形成激子,电子和空穴的波函数重叠产生激子吸收带。

纳米材料特性

《纳米材料导论》作业 1、什么是纳米材料?怎样对纳米材料进行分类? 答:任何至少有一个维度的尺寸小于100nm或由小于100nm的基本单元组成的材料称作纳米材料。它包括体积分数近似相等的两部分:一是直径为几或几十纳米的粒子,二是粒子间的界面。纳米材料通常按照维度进行分类。原子团簇、纳米微粒等为0维纳米材料。纳米线为1维纳米材料,纳米薄膜为2维纳米材料,纳米块体为3维纳米材料,及由他们组成的纳米复合材料。 按照形态还可以分为粉体材料、晶体材料、薄膜材料。 2、纳米材料有哪些基本的效应?试举例说明。 答:纳米材料的基本效应有:一、尺寸效应,纳米微粒的尺寸相当或小于光波波长、传导电子的德布罗意波长、超导态的相干长度或投射深度等特征尺寸时,周期性的边界条件将被破坏,声、光、电、磁、热力学等特征性即呈现新的小尺寸效应。出现光吸收显著增加并产生吸收峰的等离子共振频移; 磁有序态转为无序态;超导相转变为正常相;声子谱发生改变等。例如,纳米微粒的熔点远低于块状金属;纳米强磁性颗粒尺寸为单畴临界尺寸时,具有很高的矫顽力;库仑阻塞效应等。二、量子效应,当能级间距δ大于热能、磁能、静磁能、静电能、光子能量或超导态的凝聚能时,必须考虑量子效应,随着金属微粒尺寸的减小,金属费米能级附近的电子能级由准连续变为离散能级的现象和半导体微粒存在不连续的最高被占据分子轨道和最低未被占据分子轨道,能隙变宽的现象均称为量子效应。例如,颗粒的磁化率、比热容与所含电子的奇、偶有关,相应会产生光谱线的频移,介电常数变化等。 三、界面效应,纳米材料由于表面原子数增多,晶界上的原子占有相当高的 比例,而表面原子配位数不足和高的表面自由能,使这些原子易与其它原子相结合而稳定下来,从而具有很高的化学活性。引起表面电子自旋构象和电子能谱的变化;纳米微粒表面原子运输和构型的变化。四、体积效应,由于纳米粒子体积很小,包含原子数很少,许多现象不能用有无限个原子的块状物质的性质加以说明,即称体积效应。久保理论对此做了些解释。 3、纳米材料的晶界有哪些不同于粗晶晶界的特点? 答:纳米晶的晶界具有以下不同于粗晶晶界结构的特点:1)晶界具有大量未被原子占据的空间或过剩体积,2)低的配位数和密度,3)大的原子均方间距,4)存在三叉晶界。此外,纳米晶材料晶间原子的热振动要大于粗晶的晶间原子的热振动,晶界还存在有空位团、微孔等缺陷,它们与旋错、晶粒内的位错、孪晶、层错以及晶面等共同形成纳米材料的缺陷。 4、纳米材料有哪些缺陷?总结纳米材料中位错的特点。 答:纳米材料的缺陷有:一、点缺陷,如空位,溶质原子和杂质原子等,这是一种零维缺陷。二、线缺陷,如位错,一种一维缺陷,位错的线长度及位错运动的平均自由程均小于晶粒的尺寸。三、面缺陷,如孪晶、层错等,这是一种二维缺陷。纳米晶粒内的位错具有尺寸效应,当晶粒小于某一临界尺寸时,位错不稳定,趋向于离开晶粒,而当粒径大于该临界尺寸时,位错便稳定地存在于晶粒 T 内。位错与晶粒大小之间的关系为:1)当晶粒尺寸在50~100nm之间,温度<0.5 m

纳米材料的制备方法

1化学气相沉积法 1.1化学气相沉积法的原理 化学气相沉积法(Chemical Vapour Deposition (CVD) )是通过气相或者在基板表面上的化学反应,在基板上形成薄膜。化学气相沉积方法实际上是化学反应方法,因此。用CVD方法可以制备各种物质的薄膜材料。通过反应气体的组合可以制备各种组成的薄膜,也可以制备具有完全新的结构和组成的薄膜材料,而且即使是高熔点物质也可以在很低的温度下制备。 用化学气相沉积法可以制备各种薄膜材料、包括单元素物、化合物、氧化物、氮化物、碳化物等。采用各种反应形式,选择适当的制备条件——基板温度、气体组成、浓度和压强、可以得到具有各种性质的薄膜构料。化学气相沉积的化学反应形式.主要有热分解反应、氢还原反应、金属还原反应、基板还原反应、化学输运反应、氧化反应、加水分解反应、等离子体和激光激发反应等。 化学气相沉积法制备纳米碳材料的原理是碳氢化合物在较低温度下与金属纳米颗粒接触时通过其催化作用而直接生成。化学气相沉积法制备碳纳米管的工艺是基于气相生长碳纤维的制备工艺。在研究气相生长碳纤维早期工作中就己经发现有直径很细的空心管状碳纤维,但遗憾的是没有对其进行更详细的研究[4]。直到Iijima在高分辨透射电子显微镜发现产物中有纳米级碳管存在,才开始真正的以碳纳米管的名义进行广泛而深入的研究。 化学气相沉积法制备碳纳米管的原料气,国际上主要采用乙炔,但也采用许多别的碳源气体,如甲烷、一氧化碳、乙烯、丙烯、丁烯、甲醇、乙醇、二甲苯等。在过渡金属催化剂铁钴镍催化生成的碳纳米管时,使用含铁催化剂,多数得到多壁碳纳米管;使用含钴催化剂,大多数的实验得到多壁碳纳米管;过渡金属的混合物比单一金属合成碳纳米管更有效。铁镍合金多合成多壁碳纳米管,铁钴合金相比较更容易制得单壁碳纳米管。此外,两种金属的混合物作为催化剂可以大大促进碳纳米管的生长。许多文献证实铁、钴、镍任意两种的混合物或者其他金属与铁、钴、镍任何一种的混合物均对碳纳米管的生长具有显著的提高作用,不仅可以提高催化剂的性能,而且可以提高产物的质量或者降低反应温度。催化裂解二甲苯时,将适量金属铽与铁混合,可以提高多壁碳纳米管的纯度和规则度。因而,包括像烃及一氧化碳等可在催化剂上裂解或歧化生成碳的物料均有形成碳纳米管的可能。Lee Y T 等[5]讨论了以铁分散的二氧化硅为基体,乙炔为碳源所制备的垂直生长的碳纳米管阵列的生长机理,并提出了碳纳米管的生长模型。Mukhopdayya K等[6]提出了一种简单而新颖的低温制备碳纳米管阵列的方法。该法以沸石为基体,以钴和钒为催化剂,仍是以乙炔气体为碳源。Pna Z W等[7]以乙炔为碳源,铁畦纳米复合物为基体高效生长出开口的多壁碳纳米管阵列。 1.2评价 化学气相沉积法该法制备的纳米微粒颗粒均匀,纯度高,粒度小,分散性好,化学反应活性高,工艺可控和连续,可对整个基体进行沉积等优点。此外,化学气相沉积法因其制备工艺简单,设备投入少,操作方便,适于大规模生产而显示出它的工业应用前景。因此,化学气相沉积法成为实现可控合成技术的一种有效途径。化学气相沉积法缺点是衬底温度高。随着其它相关技术的发展,由此衍生出来的许多新技术,如金属有机化学缺陷相沉积、热丝化学气相沉积、等离子体辅助化学气相沉积、等离子体增强化学气相沉积及激光诱导化学气相沉积等技术。化学气相沉积法是纳米薄膜材料制备中使用最多的一种工艺,广泛应用于各种结构材料和功能材料的制备。用化学气相沉积法可以制备几乎所有的金属,氧化物、氮化物、碳化合物、复合氧化物等膜材料。总之,随着纳米材料制备技术的不断完善,化学气相沉积法将会得到更广泛的应用。

纳米材料的研究进展及其应用全解

纳米材料的研究进展及其应用 姓名:李若木 学号:115104000462 学院:电光院

1、纳米材料 1.1纳米材料的概念 纳米材料又称为超微颗粒材料,由纳米粒子组成。纳米粒子也叫超微颗粒,一般是指尺寸在1~100nm间的粒子,是处在原子簇和宏观物体交界的过渡区域,从通常的关于微观和宏观的观点看,这样的系统既非典型的微观系统亦非典型的宏观系统,是一种典型人介观系统,它具有表面效应、小尺寸效应和宏观量子隧道效应。当人们将宏观物体细分成超微颗粒(纳米级)后,它将显示出许多奇异的特性,即它的光学、热学、电学、磁学、力学以及化学方面的性质和大块固体时相比将会有显著不同。 1.2纳米材料的发展 自20世纪70年代纳米颗粒材料问世以来,从研究内涵和特点大致可划分为三个阶段: 第一阶段(1990年以前):主要是在实验室探索用各种方法制备各种材料的纳米颗粒粉体或合成块体,研究评估表征的方法,探索纳米材料不同于普通材料的特殊性能;研究对象一般局限在单一材料和单相材料,国际上通常把这种材料称为纳米晶或纳米相材料。 第二阶段(1990~1994年):人们关注的热点是如何利用纳米材料已发掘的物理和化学特性,设计纳米复合材料,复合材料的合成和物性探索一度成为纳米材料研究的主导方向。 第三阶段(1994年至今):纳米组装体系、人工组装合成的纳米结构材料体系正在成为纳米材料研究的新热点。国际上把这类材料称为纳米组装材料体系或者纳米尺度的图案材料。它的基本内涵是以纳米颗粒以及它们组成的纳米丝、管为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系。

2、纳米材料:石墨烯 2.1石墨烯的概念 石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体。2004年,英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,成功从石墨中分离出石墨烯,证实它可以单独存在,两人也因此共同获得2010年诺贝尔物理学奖。 石墨烯既是最薄的材料,也是最强韧的材料,断裂强度比最好的钢材还要高200倍。同时它又有很好的弹性,拉伸幅度能达到自身尺寸的20%。它是目前自然界最薄、强度最高的材料,如果用一块面积1平方米的石墨烯做成吊床,本身重量不足1毫克便可以承受一只一千克的猫。 石墨烯目前最有潜力的应用是成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机。用石墨烯取代硅,计算机处理器的运行速度将会快数百倍。 另外,石墨烯几乎是完全透明的,只吸收2.3%的光。另一方面,它非常致密,即使是最小的气体原子(氦原子)也无法穿透。这些特征使得它非常适合作为透明电子产品的原料,如透明的触摸显示屏、发光板和太阳能电池板。 石墨烯目前是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光;导热系数高达5300 W/m·K,高于碳纳米管和金刚石,常温下其电子迁移率超过15000 cm2/V·s,又比纳米碳管或硅晶体(monocrystalline silicon)高,而电阻率只约10-6 Ω·cm,比铜或银更低,为目前世上电阻率最小的材料。 作为目前发现的最薄、强度最大、导电导热性能最强的一种新型纳米材料,石墨烯被称为“黑金”,是“新材料之王”,科学家甚至预言石墨烯将“彻底改变21世纪”。极有可能掀起一场席卷全球的颠覆性新技术新产业革命。

纳米材料学

1. 团簇:一般指由几~几百个原子的聚集体系,尺寸≤1nm.其结构多样化,呈线状,网状,层状,洋葱状,骨架状…… 2. 人造原子:是指包含一定数量的真正原子的量子点,准一维的量子棒,准二维的量子盘以及~100nm 的量子器件 3. 同轴纳米电缆: 4. 介孔固体: 5. 介孔复合体: 6. 纳米结构: 7. 自组织合成和分子自组织合成: 8. 阵列体系的模板合成: 9. 纳米碳管及其分类:是由碳原子组成的Φ:几~几十nm,长约几十nm~μm 的管子,侧边为六边型,顶端为五边型封顶.有单壁碳管和多壁碳管,多壁管还分为单臂,锯齿形和手性. 10. 光吸收带蓝移和红移:与大块材料相比,纳米微粒的吸收带移向短波方向,是由于尺寸下降,能隙变宽;还有由于纳米微粒颗粒小,大的表面张力使晶格畸变,晶格常数变小.红移可能是由于粒子表面形成的偶极层的库仑作用引起的红移大于粒子尺寸的量子限域效应引起的蓝移,还可能是表面形成束缚激子导致发光. 11. 超顺磁性:铁磁纳米微粒尺寸小到一定临界值,就不再服从居里-外斯定律,呈顺磁性. 12. 磁性液体(结成和特点) 13. 沉淀法和共沉淀法:包含一种或多种离子的可溶性盐溶液,当加入沉淀剂后,或于一定温度下使溶液水解,形成不溶性氢氧化物或盐类从溶液中析出,并将溶液中原有的阴离子洗去,经热分解即得到所需的氧化物粉料. 含多种阳离子的溶液中加入沉淀剂后,所有离子完全沉淀的方法称共沉淀法,分为单相共沉淀和混合物共沉淀. 14. 均相沉淀法:通过控制溶液中的沉淀剂浓度,使之缓慢地增加,则使溶液中的沉淀处于平衡状态,且沉淀能在整个溶液中均匀出现,这种方法称为均相沉淀. 15. 金属醇盐水解法:利用一些金属有机醇盐能溶于有机溶剂并可能发生水解,生成氢氧化物或氧化物沉淀的特性,制备细粉料的一种方法. 16. 纳米微粒的尺寸,结构和形貌特征:1~100nm;一般呈球型,还有其他与制备方法密切相关的其他形状;结构一般与大颗粒相同,但颗粒内部,特别是表面层晶格畸变,有时会出现与大颗粒差别很大的情况. 17. 什么是久保理论?它的基本点是什么?该理论的优缺点是什么?是关于金属粒子电子性质的理论,将超微粒子靠近费米面附近的电子状态看作是受尺寸限制的简并电子气,并进一步假设它们的能级为准粒子态的不连续能级,且忽略相互作用,得到的电子能级分布优于等能级间隔模型;还认为从超微粒子中取走或放入一个电子都是困难的,超微粒子是电中性的.久保理论解释了超微粒子在EPR,磁化率,比热等方面的量子尺寸效应,但对外界条件以及自旋-轨道相互作用对电子能级分布的影响没有考虑. 18. 量子尺寸效应:当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变为离散能级的现象和纳米半导体微粒存在不连续的最高被占据分子轨道和最低未被占据的分子轨道能级,能隙变宽现象均称为量子尺寸效应. 小尺寸效应:当超细微粒的尺寸与光波波长,德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏;非晶态纳米微粒的颗粒表面层附近原子密度减小,导致的声,光,电磁,热力学的新特性. 表面效应:纳米微粒尺寸小,表面能高,位于表面的原子占相当大的比例,使得表面原子具有高的活性,极不稳定,很容易与其他原子结合. 宏观量子隧道效应:一些宏观量,例如微颗粒的磁化强度,量子相干器件中的磁通量等亦具有贯穿势垒的能力,称为宏观量子隧道效应. 库仑堵塞与量子隧穿: 介电限域效应:当粒子的尺度下降到可与激子的玻尔半径相比拟时,屏蔽效应被减小,而颗粒间的库仑作用得到增强,导致ε增加,激子束缚能增加等效应. 19. 纳米微粒的基本热学特征:纳米微粒的熔点,开始烧结温度和晶化温度均比常规粉体低很多.由于颗粒小,纳米微粒的表面能高,比表面原子数多,这些表面原子近邻配位不全,活性大以及体积远小于大块材料,因此纳米粒子熔化所需增加的内能小得多,熔点急剧下降.纳米微粒尺寸小,表面能高,压制成块材后的界面具有高能量,在烧结中高的界面能成为原子运动的驱动力,有利与界面中的孔洞收缩,因此在较低温度下烧结就能达到致密化的目的. 20. 纳米微粒超顺磁性,高矫顽力,低T C 产生的原因:超顺磁性的起源:由于小尺寸下,当各向异性能减小到与热运动能可相比拟时,磁化方向就不再固定在一个易磁化方向,易磁化方向作无规律变化,结果导致超顺磁性的出现.纳米微粒尺寸高于超顺磁临界尺寸时呈现的高矫顽力,有一致转动模式和球链反转磁化模式.一致转动磁化:每个粒子就是一个单磁畴,要使这个磁铁去掉磁性,需要每个粒子整体的磁矩反转,这需要很大的反向磁场.由于小尺寸效应和表面效应而导致纳米粒子的本征和内禀的磁性变化,因此具有较低的居里温度. 21. 纳米材料往往呈现出常规粗晶不具有的发光现象,原因是什么?常规粗晶的结构存在平移对称性,由平移对称性产生的选择定则禁介使得它不能发光.当小到一定程度时,平移对称性消失.载流子的量子限域效应. 22. 如何分散纳米粒子?(1)加入反絮凝剂形成双电层.即选择恰当的电解质做分散剂,使纳米粒子表面吸引异电离子形成双电层,通过双电层之间库排斥作用使粒子之间发生团聚的引力大大降低,实现纳米微粒分散的目的.(2)加表(界)面活性剂包裹颗粒.使其吸附在粒子表面,形成微胞状态,由于活性剂的存在而产生了粒子间的排斥力,使得粒子间不能接触,从而防止团聚体的产生. 23. 低压气体中蒸发法的基本原理是什么?影响纳米粒子尺寸的因素是什么?是在低压的氩,氦等惰性气体中加热金属,使其蒸发后形成超微粒(1~1000nm)或纳米微粒.加热源又以下几种:电阻加热法;等粒子喷射法;高频感应法;电子束法;极光法. 可通过调节惰性气体压力,蒸发物质的分压即蒸发温度或速率,或惰性气体的温度来控制纳米微粒的尺寸. 24. 溅射法制备纳米微粒的基本原理:用两块金属板分别作为阳极和阴极,阴极为蒸发用的材料,在两电极间充入Ar 气(40~250Pa),两电极间施加的电压范围为0.3~1.5kV .由于两电极间的辉光放电使Ar 离子形成,在电场的作用下Ar 离子冲击阴极靶材表面,使靶材原子从其表面蒸发出来形成超微粒子,并在附着面上沉积下来.粒子的大小及尺寸分布主要取决于两电极间的电压,电流和气体压力. 25. 水热法制备纳米微粒方法的基本点:水热反应是高温高压下在水(水溶液)或蒸汽等流体中进行有关化学反应的总称.水热氧化;水热沉淀;水热合成;水热还原;水热分解;水热结晶. 26. 溶胶-凝胶法制备纳米粒子的基本原理与过程:基本原理是将金属醇盐或无机盐经水解,然后使溶质聚合凝胶化,再将凝胶干燥,焙烧,最后得到无机材料.过程包括:(1)溶胶的制备:一使先将部分或全部组分用适当沉淀剂先沉淀出来,经解凝,使原来团聚的沉淀颗粒分散称原始颗粒;另一种方法使由同样的盐溶液出发,通过对沉淀过程的仔细控制,使首先形成的颗粒不致团聚为大颗粒而沉淀,从而直接得到胶体凝胶.(2)溶胶-凝胶转化:溶胶中含有的大量的水,凝胶化过程中,体系失去流动性,形成一种开放的骨架结构.途径有二:一是化学法,通过控制溶胶中的电解质浓度来实现凝胶化;二是物理法,迫使胶颗粒间相互靠近,克服斥力,实现凝胶化.(3)凝胶干燥:一定条件下(如加热)使溶剂蒸发,得到粉料,干燥过程中凝胶结构变化很大. 27. 常用的评估纳米粒子直径的方法有哪些?测量原理及运用的范围.(1)透射电镜观察法:用此方法测得的颗粒粒径,不一定是一次颗粒,往往是由更小的晶体或非晶,准晶微粒构成的纳米级微粒.这是因为在制备电镜观察用的样品时,很难使它们全部分散成一次颗粒.(2)X 射线衍射线宽法:是测定微粒晶粒度的最好方法.晶粒度<100nm.(3)比表面积法:通过测定粉体单位重量的比表面积S w ,假设颗粒呈球形,则颗粒直径w S d ρ/6=.容量法:测定已知量的气体在吸附前后的体积差,进而得到气体的吸附量;重量法:直接测定固体吸附前后的重量差,计算吸附气体的量.(4)X 射线小角散射法:假定粉体粒子为均匀形状,大小,利用X 射线衍射中倒易点阵原点(000)结点附近的相干散射现象,计算求出粒度分布和平均尺寸.颗粒约几~几十nm.(5)Raman 散射法:通过测量Raman 谱中某一晶峰在纳米晶体和常规晶体中的偏移来得到纳米晶粒的平均粒径. 28. 纳米固体基本构成及分类:基本构成十纳米微粒以及它们之间的分界面(界面).按小颗粒结构状态可分为纳米晶体,纳米微晶,纳米准晶材料;按小颗粒键的形式可分为纳米金属,纳米离子晶体,纳米半导体,纳米陶瓷材料;由单相微粒构成的固体称为纳米相材料,每个纳米微粒本身由两相构成(一种相弥散于另一种相中)的成为纳米复相材料.纳米复合材料大致包括三种类型:一是0-0复合,即不同成分,不同相或者不同种类的纳米粒子复合而成的纳米固体;二是0-3复合,即把纳米粒子分散到常规的三维固体中;三是0-2复合,即把纳米粒子分散到二维薄膜材料中,又分均匀弥散和非均匀弥散. 29. 为什么纳米固体具有高比热,高热膨胀系数?体系的比热主要由熵贡献,在温度不太低的情况下,电子熵可以忽略,体系熵主要由振动熵和组态熵贡献.纳米结构材料的界面结构原子分布比较混乱,界面体积百分比大,因而纳米材料熵丢比热的贡献比常规粗晶材料大的多.固体的热膨胀与晶格非线形振动有关.纳米晶体在温度发生变化时,非线形热振动可分为两个部分,一时晶内的非线形热振动,二时晶界组分的非线形热振动,往往后者的非线形振动更为显著,可以说占体积百分数很大的界面对纳米晶热膨胀的贡献起主导作用. 30. 为什么纳米相材料在较宽的温度范围内具有好的热稳定性,而金属易长大?简述提高纳米相材料热稳定性的方法.因为金属纳米晶体晶粒生长激活能小,在热激活下,相对与纳米相材料晶粒易于长大,故热稳定温区较窄.提高热稳定性(1)降低界面迁移的驱动力.如果没有驱动力,则正向和反相运动的几率是相同的;在驱动力下使势垒产生不对称的偏移,就显示晶界的迁移.界面能量高及界面两侧相邻两晶粒的差别大有利于晶界迁移.纳米材料晶粒为等轴晶,粒径均匀,分布窄,保持纳米材料各向同性就会大大降低界面迁移的驱动力.(2)晶界结构弛豫.高能的晶界并不一定首先引起晶界迁移.晶界结构弛豫所需要的能量小于

纳米复合材料最新研究进展与发展趋势

智能复合材料最新研究进展与发展趋势 1.绪论 智能复合材料是一类能感知环境变化,通过自我判断得出结论,并自主执行相应指令的材料,仅能感知和判断但不能自主执行的材料也归入此范畴,通常称为机敏复合材料。智能复合材料由于具备了生命智能的三要素:感知功能(监测应力、应变、压力、温度、损伤) 、判断决策功能(自我处理信息、判别原因、得出结论) 和执行功能(损伤的自愈合和自我改变应力应变分布、结构阻尼、固有频率等结构特性) ,集合了传感、控制和驱动功能,能适时感知和响应外界环境变化,作出判断,发出指令,并执行和完成动作,使材料具有类似生命的自检测、自诊断、自监控、自愈合及自适应能力,是复合材料技术的重要发展。它兼具结构材料和功能材料的双重特性。 在一般工程结构领域,智能复合材料主要通过改变自身的力学特性和形状来实现结构性态的控制。具体说就是通过改变结构的刚度、频率、外形等方面的特性,来抑制振动、避免共振、改善局部性能、提高强度和韧性、优化外形、减少阻力等。在生物医学领域,智能复合材料可以用于制造生物替代材料和生物传感器。在航空航天领域,智能复合材料已实际应用于飞机制造业并取得了很好的效果,航天飞行器上也已经使用了具有自适应性能的智能复合材料。智能复合材料在土木工程领域中发展也十分迅速。如将纤维增强聚合物(FRP)与光纤光栅(OFBG)复合形成的FRP—OFBG 复合筋大大提高了光纤光栅的耐久性。将这种复合筋埋入混凝土中,可以有效地检测混凝土的裂纹和强度,而且它可以根据需要加工成任意尺寸,十分适于工业化生产。本文阐述了近年来发展起来的形状记忆、压电等几种智能复合材料与结构的研究和应用现状,同时展望了其应用前景。 2.形状记忆聚合物(Shape-Memory Polymer)智能复合材料的研究 形状记忆聚合物(SMP)是通过对聚合物进行分子组合和改性,使它们在一定条件下,被赋予一定的形状(起始态),当外部条件发生变化时,它可相应地改变形状并将其固定变形态。如果外部环境以特定的方式和规律再次发生变化,它们能可逆地恢复至起始态。至此,完成“记忆起始态→固定变形态→恢复起始态”的循环,聚合物的这种特性称为材料的记忆效应。形状记忆聚合物的形变量最大可为200%,是可变形飞行器

纳米材料学总结

《纳米材料》 一、名称解释 纳米材料:指在三维空间中至少有一维处于纳米尺度范围(1-100)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。久保理论:关于金属粒子电子性质的理论,是针对金属超微颗粒面附近电子能级状态分布而提出的。 量子尺寸效应: 自组装:基本结构单元(分子,纳米材料,微米或更大尺度的物质)自发形成有序结构的一种技术。在自组装的过程中,基本结构单元在基于非共价键的相互作用下自发的组织或聚集为一个稳定、具有一定规则几何外观的结构。 团簇:由几个乃至上千个原子、分子或离子通过物理或化学结合力组成的相对稳定的微观或亚微观聚集体,其物理和化学性质随所含的原子数目而变化。 二、简答 列举几个材料或化学类的期刊;列举说明几种表征手段;列举几个研究纳米材料的研究小组 三、纳米材料不同于其它材料的物理化学性质; 四、列举几种材料的制备方法 五、抑制团聚的措施 六、光催化原理 光催化剂纳米粒子在一定波长的光线照射下受激发生成电子-空穴对(当光子能量高于半导体吸收阈值的光照射半导体时,半导体的价带电子发生带间跃迁,即从价带跃迁到导带,从而产生光生电子()和空穴()),空穴分解催化剂表面吸附的水产生氢氧自由基,电子使其周围的氧还原成活性离子氧,从而具备极强的氧化-还原作用,能将绝大多数的有机物氧化至最终产物二氧化碳和水,甚至对一些无机物也能彻底分解。 第二章纳米微粒的基础 1. 量子尺寸效应:当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变为离散能级的现象和纳米半导体微粒存在不连续的最高被占据分子轨道和最低未被占据的分子轨道能级,能隙变宽现象。 2. 小尺寸效应:当超细微粒的尺寸与光波波长,德布罗意波长以及超导态的相干长度或者透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏,非晶态纳米微粒的颗粒表面层附近原子密度减小。 3. 表面效应:纳米微粒尺寸小,表面能大,表面原子配位不足,活性强。 4. 宏观量子隧道效应:微观粒子具有贯穿势垒的能力。 第三章纳米微粒结构与物理性质

纳米材料制备方法综述

纳米材料制备方法综述 摘要:纳米材料由于其特殊性质,近年来受到人们极大的关注。随着纳米科技的发展,纳米材料的制备方法已日趋成熟。纳米材料的制备方法按物态一般可归纳为气相法、液相法、固相法。目前,各国科学家在纳米材料的研究方面已取得了显著的成果。纳米材料将推动21世纪的信息技术、医学、环境、自动化技术及能源科学的发展, 对生产力的发展产生深远的影响。 关键字:纳米材料,制备,固相法,液相法,气相法 近年来,纳米材料作为一种新型的材料得到了人们的广泛关注。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料,具有表面与界面效应,量子尺寸效应,小尺寸效应和宏观量子隧道效应,因而纳米具有很多奇特的性能,广泛应用于各个领域。为此,本文综述了纳米材料制备的各种方法并说明其优缺点。 目前纳米材料制备采用的方法按物态可分为:气相法、液相法和固相法。 一、气相法 气相法是将高温的蒸汽在冷阱中冷凝或在衬底上沉积和生长低维纳米材料的方法。气相法主要包括物理气相沉积(PVD)和化学气相沉积(CVD),在某些情况下使用其他热源获得气源,如电阻加热法,高频感应电流加热法,混合等离子加热法,通电加热蒸发法。 1、物理气相沉积(PVD) 在PVD过程中没有化学反应产生,其主要过程是固体材料的蒸发和蒸发蒸气的冷凝或沉积。采用PVD可制备出高质量的纳米材料粉体。PVD可分为制备出高质量的纳米粉体。PVD可分为蒸气-冷凝法和溅射法。 1.1蒸气-冷凝法 此种制备方法是在低压的Ar、He等惰性气体中加热物质(如金属等),使其蒸发汽化, 然后在气体介质中冷凝后形成5-100 nm的纳米微粒。通过在纯净的惰性气体中的蒸发和冷凝过程获得较干净的纳米粉体。此方法制备的颗粒表面清洁,颗粒度整齐,生长条件易于控制,但是粒径分布范围狭窄。 1.2溅射法 用两块金属板分别作为阳极和阴极,阴极为蒸发用的材料,在两电极间充入Ar气(40~250Pa),两电极间施加的电压范围为0.3~1.5kv。由于两极间的辉光放电使Ar离子形成,在电场的作用下Ar离子冲击阴极靶材表面,使靶材原产从其表面蒸发出来形成超微粒子.并在附着面上沉积下来。用溅射法制备纳米微粒有许多优点:可制备多种纳米金属,包括高熔

纳米材料的主要制备方法

本科毕业论文 学院物理电子工程学院 专业物理学 年级 2008级 姓名贾学伟 设计题目纳米材料的主要制备方法 指导教师闫海龙职称副教授 2012年4月28日 目录 摘要 (1) Abstract (1) 1 引言 (1) 1.1纳米材料的定义 (1) 1.2纳米材料的研究意义 (2) 2 纳米材料的主要制备方法 (3) 2.1化学气相沉积法 (3) 2.2溶胶-凝胶法 (5) 2.3分子束外延法 (6) 2.4脉冲激光沉积法 (8) 2.5静电纺丝法 (9) 2.6磁控溅射法 (11) 2.7水热法 (12)

2.8其他制备纳米材料的方法 (13) 3 总结 (14) 参考文献 (14) 致谢 (15)

纳米材料的主要制备方法 学生姓名:贾学伟学号: 学院:物理电子工程学院专业:物理学 指导教师:闫海龙职称:副教授摘要:纳米材料由于其特殊的性质,近年来引起人们极大的关注。随着纳米科技的发展,纳米材料的制备方法已日趋成熟。本文主要介绍了纳米材料的制备方法,其中包括化学气相沉积法、溶胶—凝胶法、分子束外延法、脉冲激光沉积法、静电纺丝法、磁控溅射法、水热法等。在此基础上,分析了现代纳米材料制备方法的发展趋势。纳米技术对21世纪的信息技术、医学、环境、自动化技术及能源科学的发展有重要影响,对生产力的发展有重要作用。 关键词:纳米;纳米材料;纳米科技;制备方法 The preparation method of nanomaterials Abstract:Nanomaterials are attracting intense in recent years. With the development of nanotechnology, nanomaterials preparation method has been more and more mature. The preparation methods sush as, chemical vapor deposition method, molecular beam epitaxy, laser pulse precipitation, sintering, hydrothermal method, sol-gel method are introduced in this paper. New development trend of preparation methods are analysed. N anomaterials will promote the development of IT, medicine, environment, automation technology and energy science, and will have a great influenced on productive in the 21st century. Key words:nanometer;na nomaterials;nanotechnology;preparation 1 引言 1.1纳米材料的定义 纳米材料是指在三维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的晶体、非晶体、准晶体以及界面层结构的材料,这大约相当于10-100个原子紧密排列在一起的尺度[1]。通常材料的性能与其颗粒尺寸的关系极为密切,当小粒子尺寸进入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性,使纳米材料在各种领域具有重要的应用价值[2]。

纳米材料学教案

《纳米材料》教学大纲 一、课程基本信息 课程编号:2 中文名称:纳米材料 英文名称:Nano-materials 适用专业:化学工程与工艺 课程类别:专业选修课 开课时间:第5学期 总学时:32 总学分:2 二、课程简介(字数控制在250以内) 《纳米材料》是化学工程与工艺专业的一门专业选修课,本课程系统地讲授各类纳米材料的概念、制备方法、结构和性能特征以及表征技术和方法,在此基础上,对其发展前景进行了展望。通过本课程的学习,引导大学生对纳米科学和技术进行认知与了解,帮助他们掌握纳米科技和纳米材料学的基本概念、基本原理、研究现状以及未来发展前景,从而启迪大学生的创新思维,拓宽其科学视野,培养他们对纳米科技的学习兴趣。 三、相关课程的衔接 与相关课程的前后续关系。 预修课程(编号):高等数学B1(210102000913)、高等数学B2(210102000713)、物理化学A1(2)、物理化学A2(2),无机化学(A1)(2)、无机化学(A2)(2)。 并修课程(编号):无特别要求 四、教学的目的、要求与方法 (一)教学目的 通过本课程的学习,引导大学生对纳米科学和技术进行认知与了解,帮助他们掌握纳米科技和纳米材料学的基本概念、基本原理、研究现状以及未来发展前景,从而启迪大学生的创新思维,拓宽其科学视野,培养他们对纳米科技的学习兴趣。 (二)教学要求 掌握纳米科技和纳米材料学的基本概念、基本原理、研究现状,对未来发展前景有一定的认识。

(三)教学方法 本课程遵循科学性、系统性、循序渐进、少而精和理论联系实际的教学原则,结合最新的研究成果着重讲述有关纳米材料的基本理论、理论知识的应用。本课程以课堂讲授教学为主,教学环节还包括学生课前预习、课后复习,习题,答疑、期末考试等。 五、教学内容(实验内容)及学时分配 (1学时) 第一章绪论(2学时) 1、教学内容 1.1纳米科技的基本内涵 1.2纳米科技的研究意义 1.3纳米材料的研究历史 1.4纳米材料的研究范畴 1.5纳米化的机遇与挑战 2、本章的重点和难点 本章重点是纳米科技与纳米材料的基本概念。 第二章纳米材料的基本效应(2学时) 1、教学内容 2.1 小尺寸效应 2.2 表面效应 2.3 量子尺寸效应 2.4宏观量子隧道效应 2.5 库仑堵塞与量子隧穿效应 2.6 介电限域效应 2.7 量子限域效应 2.8 应用实例 2、本章的重点和难点 重点:纳米材料的表面效应、小尺寸效应及量子尺寸效应。难点:宏观量子隧道效应。 第三章零维纳米结构单元(4学时) 1、教学内容 3.1 原子团簇

纳米材料

绪论 1、纳米科技的提出:源自于费曼大师1959年在美国物理学会年会上的一次演讲。Richard Feynman:世界上首位提出纳米科技构想的科学家。 2、纳米材料 (1)纳米材料的定义:物质结构在三维空间至少有一维处于纳米尺度,或由纳米结构单元组成且具有特殊性质的材料(也是以维数划分纳米材料的原因) (2)纳米尺度:1-100 nm范围的几何尺; 纳米的单位:1 nm = 10^-9 m,即千分之一微米(μm)。 (3)纳米结构单元:具有纳米尺度结构特征的物质单元,包括纳米团簇、纳米颗粒、纳米管、纳米线、纳米棒、纳米片等 (4)纳米材料的维度: ○1零维:纳米团簇、纳米颗粒、量子点(三维尺度均为纳米级,没有明显的取向性,近等轴状) ○2一维:纳米线、纳米棒、纳米管(单向延伸、二维尺度为纳米级、第三维尺度不限,、直径大于100 nm,具有纳米结构) ○3二维:纳米片、纳米带、超晶格、纳米薄膜(一维尺度为纳米级,面状分布,,厚度大于100 nm,具有纳米结构) ○4三维:纳米花、四脚针等(包含纳米结构单元,三维尺寸均超过纳米尺度,由不同型低维纳米结构单元复合形成) (5)纳米材料的分类○1具有纳米尺度外形的材料 ○2以纳米结构单元作为主要结构组分所构成的材料 3、久保理论:即金属的超微粒子将出现量子限域效应,显示出与块体金属显著不同的性能;金属纳米粒子,量子限域效应。 4、扫描隧道电子显微镜(STM):将探针靠近导电材料表面进行扫描,获得表面图像。分辨率达0.1~0.2 nm,可以直接观察和移动原子。 5、原子力显微镜(AFM):利用针尖和材料原子间的相互微弱作用力来获得材料表面的形貌图像。可用于研究半导体、导体和绝缘体。 AFM三大特点:原子级高分辨率、观察活生命样品和加工样品的力行为成就。6、纳米科技的研究内容:纳米科学、纳米技术与纳米工程 分支学科:纳米力学:研究物体在纳米尺度的力学性质 纳米物理学:研究物质在纳米尺度上的物理现象及表征 纳米化学:研究纳米尺度范围的化学过程及反应 纳米生物学:利用纳米的手段解决生物学问题,在分子水平揭示细胞内外的物质、能量与信息交换机制; 纳米医学:利用纳米科技解决医学问题的边缘交叉学科 纳米材料学:包括纳米材料的成分、结构、性能与使用效能四个方面。 成分:是影响性能的基础 结构:决定材料性能的关键材料 性能:各种物理或化学性质 效能:材料在使用条件下的表现

纳米材料的发展及研究现状

纳米材料的发展及研究现状 在充满生机的21世纪,信息、生物技术、能源、环境、先进制造技术和国防的高速发展必然对材料提出新的需求,元件的小型化、智能化、高集成、高密度存储和超快传输等对材料的尺寸要求越来越小;航空航天、新型军事装备及先进制造技术等对材料性能要求越来越高。新材料的创新,以及在此基础上诱发的新技术。新产品的创新是未来10年对社会发展、经济振兴、国力增强最有影响力的战略研究领域,纳米材料将是起重要作用的关键材料之一。 纳米材料和纳米结构是当今新材料研究领域中最富有活力、对未来经济和社会发展有着十分重要影响的研究对象,也是纳米科技中最为活跃、最接近应用的重要组成部分。近年来,纳米材料和纳米结构取得了引人注目的成就。例如,存储密度达到每平方厘米400g的磁性纳米棒阵列的量子磁盘,成本低廉、发光频段可调的高效纳米阵列激光器,价格低廉高能量转化的纳米结构太阳能电池和热电转化元件,用作轨道炮道轨的耐烧蚀高强高韧纳米复合材料等的问世,充分显示了它在国民经济新型支柱产业和高技术领域应用的巨大潜力。正像美国科学家估计的“这种人们肉眼看不见的极微小的物质很可能给予各个领域带来一场革命”。 纳米材料和纳米结构的应用将对如何调整国民经济支柱产业的布局、设计新产品、形成新的产业及改造传统产业注入高科技含量提供新的机遇。研究纳米材料和纳米结构的重要科学意义在于它开辟了人们认识自然的新层次,是知识创新的源泉。由于纳米结构单

元的尺度(1~100urn)与物质中的许多特征长度,如电子的德布洛意波长、超导相干长度、隧穿势垒厚度、铁磁性临界尺寸相当,从而导致纳米材料和纳米结构的物理、化学特性既不同于微观的原子、分子,也不同于宏观物体,从而把人们探索自然、创造知识的能力延伸到介于宏观和微观物体之间的中间领域。在纳米领域发现新现象,认识新规律,提出新概念,建立新理论,为构筑纳米材料科学体系新框架奠定基础,也将极大丰富纳米物理和纳米化学等新领域的研究内涵。世纪之交高韧性纳米陶瓷、超强纳米金属等仍然是纳米材料领域重要的研究课题;纳米结构设计,异质、异相和不同性质的纳米基元(零维纳米微粒、一维纳米管、纳米棒和纳米丝)的组合。纳米尺度基元的表面修饰改性等形成了当今纳米材料研究新热点,人们可以有更多的自由度按自己的意愿合成具有特殊性能的新材料。利用新物性、新原理、新方法设计纳米结构原理性器件以及纳米复合传统材料改性正孕育着新的突破。1研究形状和趋势纳米材料制备和应用研究中所产生的纳米技术很可能成为下一世纪前20年的主导技术,带动纳米产业的发展。世纪之交世界先进国家都从未来发展战略高度重新布局纳米材料研究,在千年交替的关键时刻,迎接新的挑战,抓紧纳米材料和柏米结构的立项,迅速组织科技人员围绕国家制定的目标进行研究是十分重要的。纳米材料诞生州多年来所取得的成就及对各个领域的影响和渗透一直引人注目。进入90年代,纳米材料研究的内涵不断扩大,领域逐渐拓宽。一个突出的特点是基础研究和应用研究的衔接十分紧密,实验室成果的转化速度之快出乎人们预料,基

纳米材料科学与技术

聚合物基纳米复合材料的研究进展 摘要:本文总结了聚合物基纳米复合材料的研究进展,主要涉及纳米复合材料的制备方法、性能介绍和应用情况等方面,对聚合物基纳米复合材料的合成技术方法、不同的类型和相应性能特点进行了重点分析。对于聚合物基纳米复合材料,纳米填料的分散性、与聚合物基体的界面性能以及基体的性质都是影响其物理、热性能、机械等性能的重要参数。最后,简要介绍了目前在聚合物基纳米复合材料研究领域存在的问题,并对中国在该领域的未来发展以及纳米复材的产业化应用提出了相关建议。 关键词:纳米复合材料;聚合物;进展 Progress in Polymer Nanocomposites Development Abstract:This article summarizes some of the highlights of newest development in polymer nanocomposites research. It focuses on the preparation, properties and applications of polymer nanocomposites. The various manufacturing techniques, analysis of kinds of polymer nanocomposites and their applications have been described in detail. In the case of polymer nanocomposites, filler dispersion, intercalation/exfoliation, orientation and filler-matrix interaction are the main parameters that determine the physical, thermal, transport, mechanical and rheological properties of the nanocomposites. Finally, the recent situation of research in polymer nanocomposites was introduced and some constructive suggestions were proposed about the industrialization of polymer nanocomposites in China. Keywords:nanocomposites; polymer; progress

低维材料

低维材料的发展现状及前景 —碳纳米管的制备及其应用 摘要:碳纳米管具有奇异的物理化学性能,如独特的金属或半导体导电性、极高的机械强度、储氢能力、吸附能力和较强的微波吸收能力等,90年代初一经发现即刻受到物理、化学和材料科学界以及高新技术产业部门的极大重视。应用研究表明,碳纳米管可用于多种高科技领域。如用它作为增强剂和导电剂可制造性能优良的汽车防护件;用它作催化剂载体可显著提高催化剂的活性和选择性;碳纳米管较强的微波吸收性能,使它可作为吸收剂制备隐形材料、电磁屏蔽材料或暗室吸波材料等。碳纳米管被认为是一种性能优异的新型功能材料和结构材料,世界各国均在制备和应用方面投入大量的研究开发力量,期望能占领该技术领域的制高点。 关键词:碳纳米管,碳纳米管的批量制备,储氢技术 一、碳纳米管的批量制备 碳纳米管要实现工业应用,首先必须解决碳纳米管的低成本大量制备问题。碳纳米管自1991年被发现以来,其制备工艺得到了广泛研究。目前,有三种主要的制备方法,即电弧放电法、激光烧蚀法和固定床催化裂解法。电弧放电法和激光烧蚀法制得的产物中,碳纳米管均与其他形态的碳产物共存,分离纯化困难,收率较低,且难以规模化。第三种固定床催化裂解法由天然气制备碳纳米管具有工艺简便、成本低、纳米管规模易控制、长度大、收率较高等优点,有重要的研究价值,但该方法中催化剂只能以薄层的形式展开,才会有好的效果,否则催化剂的利用率就低,因而产量难以提高。 沸腾床催化裂解反应工艺气固接触良好,适合处理大量固体颗粒催化剂,用沸腾床催化裂解法代替固体床催化裂解法可大幅度提高碳纳米管的制备量。 在沸腾床催化裂解反应器中,原料气体以一定的流速通过气体分布板,将气体分布板上活化了的催化剂“吹”成“沸腾”状态。催化剂颗粒一直处于运动之中,催化剂颗粒之间的距离要比固定床中催化剂颗粒之间的距离大得多,催化剂表面上易生长出直的碳纳米管,又因催化剂颗粒之间的相互碰撞,碳纳米管容易从催化剂表面脱出。这两种作用的结果保证了直而开口率高的碳纳米管的形成。同时沸腾床中催化剂的量可以大量增加,原料气体仍能与催化剂表面充分接触,保证了催化剂的高利用率。 尽管沸腾床催化裂解法在碳纳米管的批量制备上有了较大突破,但与碳纳米管所有的现有制备方法一样,只能间歇操作,不利于低成本大批量碳纳米管的制备。 要实现碳纳米管的大批量制备,必须首先解决催化剂连续投放问题和催化剂与产物及时导出的问题。这们的研究表明,通过特殊的反应装置和工艺可以实现碳纳米管的连续制备,从而达到低成本大批量制备碳纳米管的目的。 连续制备碳纳米管是通过如下过程实现的:在封闭的移动床催化裂解反应器中,经过还原处理的纳米级催化剂通过喷嘴连续均匀地布洒到移动床上,移动床以一定的速度移动。催化剂在恒温区的停留时间可通过控制移动床的运动速度加以调节。原料气的流动方向可与床层的运动方向一致也可相反。原料气在催化剂表面裂解生成碳纳米管。当催化剂在移动床上的停留时间达到设定值时,催化剂连同在其上生成的碳纳米管从移动床上脱出进入收集器,反应尾气通过排气口排出。 采用移动床催化裂解反应器可实现设计尺寸碳纳米管的连续制造,可望大幅度降低生产成本,为碳纳米管的工业应用提供保证。 二、碳纳米管的应用研究

相关文档
最新文档