汽液传质设备.

汽液传质设备.
汽液传质设备.

第九章汽液传质设备

本章学习要求

1.熟练掌握的内容

板式塔内气液流动方式;板式塔塔板上气液两相非理想流动;板式塔的不正常操作,全塔效率和单板效率;板式塔塔高和塔径的计算;填料塔内流体力学特性;气体通过填料层的压降;泛点气速的计算;填料塔塔径的计算。

2.理解的内容

板式塔的主要类型与结构特点,板式塔塔板上气液两相接触状况;筛板塔溢流装置的设计及踏板板面布置;筛板塔塔板校核;筛板塔负荷性能图的绘制及其作用;填料塔的结构;填料及其特性。

3.了解的内容

气液传质设备类型与基本要求;填料塔的附件;板式塔与填料塔的比较。

* * * * * * * * * * * *

§9.1 气液传质设备类型与基本要求

塔设备是化工、石油等工业中广泛使用的重要生产设备。塔设备的基本功能在于提供气、液两相以充分接触的机会,使质、热两种传递过程能够迅速有效地进行;还要能使接触之后的气、液两相及时分开,互不夹带。因此,蒸馏和吸收操作可在同样的设备中进行。

根据塔内气液接触部件的结构型式,塔设备可分为板式塔与填料塔两大类。

板式塔内沿塔高装有若干层塔板(或称塔盘),液体靠重力作用由顶部逐板流向塔底,并在各块板面上形成流动的液层;气体则靠压强差推动,由塔底向上依次穿过各塔板上的液层而流向塔顶。气、液两相在塔内进行逐级接触,两相的组成沿塔高呈阶梯式变化。

填料塔内装有各种形式的固体填充物,即填料。液相由塔顶喷淋装置分布于填料层上,靠重力作用沿填料表面流下;气相则在压强差推动下穿过填料的间隙,由塔的一端流向另一端。气、液在填料的润湿表面上进行接触,其组成沿塔高连续地变化。

目前在工业生产中,当处理量大时多采用板式塔,而当处理量较小时多采用填料塔。蒸馏操作的规模往往较大,所需塔径常达一米以上,故采用板式塔较多;吸收操作的规模一般较小,故采用填料塔较多。

气液传质设备的性能通常由以下几个要素表示:

1.塔设备的生产能力或通过能力:指单位时间单位塔截面积上的处理量或气液流量。

2.传质效率:对板式塔而言,传质效率通常用塔板效率来衡量,即实际塔板与理论塔板分离能力之比;对填料塔而言,传质效率通常用传质单元高度,即完成一个传质单元所需要的填料层高度来表示。

3.流体阻力:指气体通过每层塔板或每米填料层高度的压降。

4.塔设备的操作弹性:指最大气速负荷与最小气速负荷之比,其值的大小表明塔对负荷变化的适应能力。

5.塔的设备投资与操作成本、安装及维修方便等因素。

本章重点介绍板式塔的塔板类型,分析操作特点并讨论浮阀塔的设计,同时还介绍各种类型填料塔的流体流体力学特性和计算。

§9.2 板式塔

9.2.1 板式塔主要类型的结构和特点

工业上常用的板式塔有:

泡罩塔、浮阀塔、筛板塔、穿流栅孔板塔

浮阀塔具有的优点:

生产能力大,塔板效率高,操作弹性大,结构简单,安装方便。

9.2.2 板式塔的流体力学特性

1、塔内气、液两相的流动

A 使气液两相在塔板上进行充分接触以增强传质效果

B 使气液两相在塔内保持逆流,并在塔板上使气液量相保持均匀的错流接触,以获得较大的传质推动力。

2、气泡夹带:

液体在下降过程中,有一部分该层板上面的气体被带到下层板上去,这种现象称为气泡夹带。

3、液(雾)沫夹带:

气体离开液层时带上一些小液滴,其中一部分可能随气流进入上一层塔板,这种现象称为液(雾)沫夹带。

4、液面落差

液体从降液管流出的横跨塔板流动时,必须克服阻力,故进口一侧的液面将比出口这一侧的高。此高度差称为液面落差。

液面落差过大,可使气体向上流动不均,板效率下降。

5、气体通过塔板的压力降

压力降的影响:

A 气体通过塔板的压力降直接影响到塔低的操作压力,故此压力降数据是决定蒸馏塔塔底温度的主要依据。

B 压力降过大,会使塔的操作压力改变很大。

C 压力降过大,对塔内气液两相的正常流动有影响。

压力降:ΔPP=ΔPC+ΔPL+ΔPδ

塔板本身的干板阻力ΔPC

板上充气液层的静压力ΔPL

液体的表面张力ΔPδ

折合成塔内液体的液柱高度M,则

即hp=hc+hL+hδ

浮阀塔的压力降一般比泡罩塔板的小,比筛板塔的大。在正常操作情况,塔板的压力降以290—490 N/m2 .在减压塔中为了减少塔的真空度损失,一般约为98—245Pa 通常应在保证较高塔板效率的前提下,力求减少塔板压力降,以降低能耗及改善塔的操作性能。

6、液泛(淹塔)

汽液量相中之一的流量增大到某一数值,上、下两层板间的压力降便会增大到使降液管内的液体不能畅顺地下流。当降液管内的液体满到上一层塔板溢流堰顶之后,便漫但上层塔板上去,这种现象,称为液泛(淹塔)

如气速过大,便有大量液滴从泡沫层中喷出,被气体带到上一层塔板,或有大量泡沫生成。

如当液体流量过大时,降液管的截面便不足以使液体及时通过,于是管内液面即行升高。

上述两种情况导致液泛的情况中,比较常遇到的气体流量过大,故设计时均先以不发生过量液沫夹带为原则,定出气速的上限,在此限度内再选定一个合理的操作气速。

当气速增大到液滴所受阻力恰等于其净重时,液滴便在上升气流中处于稳定的悬浮状态。

因为d、ζ不易准确求得,

所以用C代替,即:

(1)史密斯关联图

横坐标:液气动能参数

纵坐标:C20

参数:HT-hL

(2)板间距HT

一般D<1.5m HT=0.2~0.4m

D>1.5m HT=0.4~0.6m

(3)板上液层高度hL

常压 hL=0.05~0.1m 通常取0.05~0.08m

减压 hL≤0.025m

(4)

C20:由图6—53查得的负荷稀疏值。

C:操作物系的负荷系数。

δ:操作物系的表面张力,N/m。

(5)适宜的空塔气速u,即:

u=(0.6~0.8)umax

对于直径较大、板间距较大及加压或常压操作的塔以及不易起泡物系,安全系数可取较高的数值,而对直径较小及减压操作的塔以及严重起泡的物系,安全系数应取较低的数值。

7、液沫夹带

是指板上液体被上升气流带入上一层塔板的现象。

为了保证板式塔能维持正常的操作效果,应使每千克上升气体夹埃到上一层塔板的液体联不超过0.1kg,即控制雾沫夹带量eV<0.1kg(液)/kg(气)。

影响雾沫夹带的因素很多,最主要的是空塔气速和塔板间距。对于浮阀塔板上雾沫夹带量的计算,迄今尚无适用于一般工业塔的确切公式。通常是间接地用操作时的空塔气速与发展液泛时的空塔气速的比值作为估算雾沫夹带量大小的指标。此比值称为泛点百分数或称泛点率。

在下列泛点率数值范围内,一般可保证雾沫夹带量达到规定的指标,即eV<0.1kg(液)/kg(气)。

大塔 F1<80~82%

负压塔 F1<75~77%

D<900mm的塔, F1<65~75%

式中,F1:泛点率,%。

CV:气相负荷系数,m3/s.

VS,LS:气相及液负荷,m3/s.

ZL:板上液体流径长度,对单溢流塔板ZL=D-2Wd.。

Ab:板上也流面积,对单溢流塔板AB=AT-Af。

CF:泛点负荷系数,可根据气相密度ρV及板间距HT查得。

K:物系系数。

依上式算得的泛点率不在上述范围内,则应当调整有关参数,如板间距、塔径,重新计算,直至符合上述泛点率规定的范围为准。

8、泄漏

但气相符合减少,致使上升气体通过阀孔的动压不足以阻止流体经阀孔流下时,便会出现泄漏现象。

泄漏发生,塔板效率严重下降,正常操作时,泄漏应不大于液体流量的10%。经验证明,但阀孔动能因数F0=5~6时,泄漏量常接近10%。故取F0=5~6作为控制泄漏量的操作下限。

当浮阀在刚全开操作,气体通过阀孔处的动能因数F0=8~11。

9、降液管内液面高度与液体停留时间

为了防止液泛现象的发生,须控制降液管中的清液层和泡沫层高度不能高出上层塔板的出口堰顶,否则年内液体便会漫回本层塔板,令:

一般物系取Φ= 0.5

发泡暗中物系Φ=0.3~0.4

不发泡物系Φ= 0.6~0.8

在降液观被1—1’和下一层板上

液面2—2’之间列柏努利方程,得:

要保证气相夹带不超过允许的程度,降液观内液体停留时间θ应不小于3—5S。

10、塔板的负荷性能图

确定了塔板的工艺尺寸,再按前述的各项进行流体力学验算,便可确认所设计的塔板能在的任务规定的气液负荷下正常操作,此时,还要进一步揭示该塔板的操作性能,即求出维持该塔板正常操作所允许的气液负荷波动,这个范围通常以塔板负荷性能图的形式表示,在以VS,LS分别为纵横轴的直角坐标系中,标绘出各种不正常流体力学条件下的VS—LS关系曲线,在以这些曲线为界的范围之内,才是塔的适宜操作区。

(1)、液沫夹带上限线AA’

液沫夹带上限线表示雾沫夹带量eV<0.1kg(液)/kg(气)时的VS—LS关系,塔板的适宜操作区应在此线以下,否则将因过多的液沫夹带而使效率下降。

此线可根据下式作出,即:

对于一定的物系及一定的塔板结构尺寸CV,ZL,Ab,CF,K均为已知值,相应于雾沫夹带量eV<0.1kg(液)/kg(气)时的泛点率F1值亦可确定,将已知值代入,便可得出一个

的关系的函数式,据以作出AA’线。

(2)液泛线BB’(淹塔线)

此线表示降液管内泡沫层高度超过最大允许值时的VS—LS关系,塔板的适宜操作区应在此线以下,否则将可能发生液泛现象,破坏塔的正常操作。

将hc,hL,hl及hd的计算式代入上式,便可得出一个的关系的函数式,据以作出BB’线,据以作出BB’。

(3)液相负荷上限线CD

亦称降液管超负荷线,此线表明液体流量大小应保证液体在降液管内停留时间的起码条件。

θ不应小于3~5S,而按θ=5S计算,则:

依上式求得液相负荷上限LS的数值(常数),据以作出液相负荷上限线。

(4)泄漏线

气相负荷上限线,此线表明不发生严重泄漏现象的最低气相负荷,再低将产生超过液体量的10%泄漏量。对于FI重阀,当阀孔动能因数F0=5~6时,泄漏量接近10%,即以此阀孔动能因数作为气相负荷下限的依据,按F0=5计算,则

式中ρV,N,d都为已知值,故可依上式求出气相负荷VS的下限值,据以作出一条水平的泄漏线DE。

(5)液相负荷下限线EE’

对于平堰,一般取堰上液层高度how=0.06mm作为液相符合下限条件,低于此限时,便不能保证板上恩流的均匀分布,见低气液接触效果。

式中:Lh—塔内液体流量,m3/h.

Lw—堰长,m。

E—液流收缩稀疏,可从图6—57查得。

一般情况下可取E值为1。所引起的误差不大。

将已知的LW值及hOW的下限值,便可求得的下限值(常数),据以作出EE’。

在负荷性能图上有五条线所包围的阴影区域,应是塔四用于出力指定物系时的适宜操作区域。在此区域内,塔四上的流体力学状态是正常的,但区域内各点的板效率并不完全相同。如果塔的预定气液负荷的设计点P能落在该区域内的适中位置,则可望获得良好的操作效果,如果操作电紧靠某一条标界线,则当负荷稍有变动便会使效率急剧下降,甚至破坏塔的操作。

三、板式塔的设计原则

带有降液管的板式塔型虽多,但各种结构塔型的设计原则大致相同,下面一浮阀塔为例来说明。

1、板上液体的流动形式

板上液体流动形式,主要根据塔径与液体流量来确定,常用的形式有:

U形流:流体流径最长,塔板面积利用率也最高,但液面落差大,仅用于小塔。

单溢流:又称直径流,液体流径长,塔板效率较高,塔板结构简单,广泛用于直径2.2 m 以下的塔。

双溢流:又称半径流,可减小液面落差,但塔板结构复杂,一般用于直径2m以上的大塔。

阶梯式双溢流:结构最复杂,只宜于塔径很大,流量很大的特殊场合。

总之,液体在塔板上的流径愈长,气液接触时间就愈长,有利于提高分离效果;但是液面落差也随之增大,不利于气体均匀分布,使分离效果降低。

目前,凡直径在2.2m以下的浮阀塔,一般都采用单溢流。但在大塔中,由于液面落差大或造成浮阀开启不均,使气体分布不均匀及出现泄漏现象,应采用双遗留以及阶梯流。见表6—5。

2、降液管

确定降液管底隙高度的原则是:保证液体流经此处时的阻力不太大,同时要有良好的液封。

h0=Ls/(Lwu0`)

式中:Ls––塔内液体流量;

uo`––液体通过降液管时流速,一般可取0.07~0.25m/s 有时为了简单,可用下式:

h0 = hW - 0.006

hw––外堰高度

3、溢流堰

(1)外堰(出口堰)

堰长:单溢流取为(0.6~0.8)D;双溢流取为(0.5~0.7)D,其中D为塔径。

堰高:h L = h W+h0W

式中:h L––板上清液层高度

h OW––堰上清液层高度。

(2)内堰(进口堰)及受液盘

若h W>h0,h W`=hW

若h Wh0。

此外,为了保证液体有降液管流出时不致于受很大阻力,进口堰与降液管间水平距离h1>h0.

4、弓形降液管的宽度和截面积

降液管应有足够的横截面积,保证液体在降液管内有足够的沉将时间分离其中夹带的气泡。因此要验算降液管内液体停留时间θ

5、浮阀的数目与布置

(1)数目:浮阀塔的操作性能以浮阀刚刚全开时的最好。此时F0=8~11。所以设计时可在此范围内选择合适的F0,然后计算出U0

(2)排列:

正三角形

等腰三角形

对于整块塔板多采用正三角形排列,孔心距t为75mm,100mm,125mm,150mm等。

对于分块式塔板,宜采用等腰三角形叉排,t为75mm,t`为65mm,80mm,100mm等几种尺寸,必要时还可以调整孔心距,阀数,重新作图。

否则验算F0=8~11之间。

(3)开孔率

常压塔(减压塔)开孔率常在10~13%。

加压塔开孔率<10%,常见的为6~9%

四、塔板的流体力学验算

目的:验算所确定的塔,在设计任务规定的气液两相负荷下,能否正常操作。

内容:压降、液泛、液沫夹带、泄漏等项,直到合适为止。

§9.3 填料塔

一、填料塔的结构

1 塔体

金属或陶瓷塔体一般均为圆柱形

大型耐酸石或耐酸砖则以砌成放形或年多角形为便

2 填料

对操作影响较大的填料特性有:

比表面积δ:

δ=s/v=m2/m3=单位体积填料层所具有的表面积

δ传质面积

空隙率ε:

单位体积填料层所具有的空隙体积

ε应尽可能大,以提高气液通过能力和减小气液阻力

填料因子φ:

把有液体喷淋条件下实测的δ/2相应数值称湿填料因子,也称填料因子φ,单位:l/m

φ↓填料阻力↓发生液泛时的气速亦即流体力学性能好

单位堆积体积的填料数目:

填料尺寸↓数目δε↓气流阻力填料造价

填料尺寸塔壁处ε气流易短路,为控制气流不均匀,填料尺寸不应大于(1/10----1/8)D 填料的种类::

分实体填料和网体填料两大类

常用填料有::

拉西环、鲍尔环、阶梯环、弧鞍与矩鞍填料、网体填料

3 填料支承装置:删板填料支承、升气管式支承

4 液体的分布装置:

塔顶液体分布装置:a 莲蓬头式喷洒器b 盘式分布器c 齿槽式分布器

液体再分布器: a 截锥式液体再分布器b 升气管式支承板作液体再分布器

二、填料塔的流体力学特性

1 塔内气液两相的流动

当液体自塔顶向下借重力在填料表面作膜状流动时,膜内平均流速决定于流动的阻力。而此阻力来自于液膜与填料表面,及液膜与上升气流之间的摩擦

液膜厚度不仅取决于液体流量,而且与气体流量有关

气量液膜厚填料内的持液量

图8-31为不同液体喷淋量下取得的填料层压力降与空塔气速的双对数关系线

线A:气体通过干填料层时,压力降与空塔气速的关系,为直线

线B:有液体喷淋,液体量小

线C:有液体喷淋,液体量大

以线B为例:

u较低(点L以下):线与A线大致平行。u ?P 液体下流与流速无关

u大于u L以后:线斜率增大,上升气流开始阻碍液体顺利下流,?P

u大于u F以后:?P与u成垂直关系,表明上升气体足以阻止液体下流,于是液体填料层充满填料层空隙,气体只能鼓泡上升,随之液体被气流带出塔顶,发生液泛。

载点(L点):空塔气速u增大到u L以后,气速以使上升气流与下降液体间摩擦力开始阻碍液体顺利下流,使填料表面持液量增多,战去更多空隙,气体实际速度与空塔气速的比值显著提高,故压力降比以前增加的快,这种现象称载液,L点称载点。

泛点F:u增大到u F以后?P与u成垂直关系,表明上升气体足以阻止液体下流,于是液体填料层充满填料层空隙,气体只能鼓泡上升,随之液体被气流带出塔顶,塔的操作极不稳定,甚至被完全破坏,这种现象称液泛,F 点称为泛点。

线C的载点和泛点气速都比线B的更低

目前一般认为填料塔的正常操作状态只到泛点为止。

2 填料层的压力降

吸收操作中,需知压力降以确定动力消耗;精馏操作中,需知压力降以确定釜压

目前多用埃克特的通用图而重新绘制的填料层压降和填料塔泛点的通用关联图求?P。

3 泛点气速

用图8-32计算

(1)先求横坐标

(2)过横坐标点作垂线,交泛点线得泛点纵坐标

(3)由泛点纵坐标求泛点气速

三、填料塔的设计原则

1 填料的选择

填料尺寸的选定

填料材质方面的选定

2塔径

塔径取决于气体的体积流量和适宜的空塔气速。前者由生产条件决定,后者则在设计时规定

泛点率:适宜空塔气速与泛点气速之比

u适宜=(50%--80%)u泛点

一般填料塔的操作气速大致在0.2--1.0m/s

D2=4V S/πu

u:适宜的空塔气速

用上法计算出的塔径要进行圆整,且要验算塔内液体的喷淋密度是否大于最小喷淋密度

喷淋密度U min=(L W)minδ

润湿率L W:指塔的横截面上,单位长度的填料周边上,液体的体积流量

L W=U/δ

一般D≤75mm (L W)min=0.08m3/mh

D>75mm (L W)min=0.12m3/mh

如果限于生产条件,所采用的喷淋密度使润湿率低于上述规定数值时,就要增高填料层作为补偿,即按正常方法算出的填料层高度再除以填料表面效率η

此外,为保证填料润湿均匀,还应注意使塔径与填料尺寸之比大于8,即选用填料不宜过大,以免使填料与塔壁之间存在额外空隙,而易于出现壁流现象

3 压力降

以图8-32计算。

若超出工艺要求时,则按由图8-31反求气速u,再重算塔径D

/m填料层

普通常压塔--490P

a

/m填料层

真空塔

a

4 填料高度

传质单元法

等板高度法

四、填料塔的附件

支承板支承板的主要用途是支承板内的填料,同时又能保证气液两相顺利通过。支承板若设计不当,填料塔的液泛可能首先在支承板上发生。对于普通填料,支承板的自由截面积应

不低于全塔面积的50%,并且要大于填料层的自由截面积,常用的支承板有栅板和各种具有升

气管结构的支承板。

液体分布器液体分布器对填料塔的性能影响极大。分布器设计不当,液体预分布不均,

填料层内的有效润湿面积减少而偏流现象和沟流现象增加,即使填料性能再好也很难得到满意

的分离效果。

填料塔内产生向壁偏流是因为液体触及塔壁之后,其流动不再具有随机性而沿壁流下。既

然如此,直径越大的填料塔,塔壁所占的比例越小,向壁偏流现象应该越小才是。然而,长期

以来填料塔确实由于偏流现象而无法放大。现已基本搞清,除填料本身性能方面的原因外,液

体初始分布不均,特别是单位塔截面上的喷淋点数太少,是产生上述状况的重要因素。

近一、二十年来,许多直径几米至十几米的大型填料塔的操作实践表明,填料塔只要设计正确,保证液体预分布均匀,特别是保证单位塔截面的喷淋点数与小塔相同填料塔的放大效应并不显著,大型塔和小型塔将具有一致的传质效率。

常用的液体分布器结构如所示。多孔管式分布器能适应较大的遗体流量波动,对安装水平度要求不高,对气体的阻力也很小。但是,由于管壁上的小孔容易堵塞,被分散的液体必须是洁净的。

槽式分布器多用于直径较大的填料塔。这种分布器不易堵塞,对气体的阻力小,但对安装水平要求较高,特别是当液体负荷较小时。

孔板型分布器对液体的分布情况与槽式分布器差不多,但对气体阻力较大,只适用于气体负荷不太大的场合。

除以上介绍的几种分布器外,各种喷洒式分布器也是比较常用的(如莲蓬头),特别是在小型填料塔内。这种分布器的缺点是,当气量较大时会产生较多的液沫夹带。

液体再分布器为改善向壁偏流效应造成的液体分布不均,可在填料层内部每隔一定高度设置一液体分布器。每段填料层的高度因填料种类而异,偏流效应越严重的填料,每段高度越小。通常,对于偏流现象严重的拉西环,每段高度约为塔径的5~10倍。

常用的液体再分布器为截锥形。如考虑分段卸出填料,再分布器之上可另设之承板。

除沫器除沫器是用来除去填料层顶部逸出的气体中的液滴,安装在液体分布器上方。当塔内气速不大,工艺过程由无严格要求时,一般可不设除沫器。

除沫器种类很多,常见的有折板除沫器,丝网除沫器,旋流板除沫器。折板除沫器阻力较小(50~100Pa), 的微小液滴,压降不大于250Pa,但造价较高。旋流板除沫器压降为300Pa以下,其造价比只能除去50m

丝网除沫器便宜,除沫效果比折板好。

五、填料塔与板式塔的比较

1 操作范围

2 物料要求和清洗

3 温度要求装置的安装难易

4 规模

5 准确可靠性

6 造价

7 对易气泡的物系的适用情况

8 对物系的腐蚀性的适用情况

9 热敏性物系

10 板压降,耗能

11 对气膜控制的适用

凝汽器型号知识

一、凝汽器的用途和特点: 汽轮机的凝汽设备是凝汽式汽轮机系统的重要组成部分。它的作用将凝汽式汽轮机的排汽凝结成水,形成并保持所要求的真空。其工作性能直接影响到整个系统的热经济性和运行可靠性。 凝汽设备是汽轮机组的重要辅机之一,是电力热力循环中的重要一环,对整个火电厂的建设和安全、经济运行都有着决定行影响。 1、凝汽设备的用途可归结为四个方面: 1)凝结作用——凝汽器通过冷却水与乏汽的热交换,带走乏汽的汽化潜热而使其凝结成水,凝结水经回收加热而作为锅炉给水重复使用。 2)建立并维持一定真空——这是降低机组终系数、提高电厂循环效率所必需的。 3)除氧作用——现代凝汽器,特别是不单设除氧器的燃气蒸汽联合循环装置中的凝汽器和沸水堆核电机组的凝汽器,都要求有除氧作用,以适应机组的防腐要求。 4)蓄水作用——凝汽器的蓄水作用即是汇集和贮存凝结水、热力系统中的各种疏水、排汽和化学补给水的需要,也是缓冲运行中机组流量急剧变化、增加系统调节稳定性的需要,同时还是确保凝结水泵必要的吸水压头的需要。 2、凝汽设备的特点: 1)优良的热力性能:凝汽器应具有较高的传热系数,以保证良好的传热效果,使汽轮机在一定条件下具有较低的运行背压,提高蒸汽动力装置的热效率。采用先进的流场计算软件和强度分析计算软件,根据不同工况下的工艺参数进行分析计算,保证产品在不同工况下均能满足设计要求。 在汽轮机进汽温度不变的条件下。排汽温度每降低10℃,装置效率提高3.5%;凝汽压力每改变1KPa,汽轮机功率将平均改变1%~~2%。 2)具有高度的密封性能:针对不同结构的密封,在结构和材料上进行优化设计,使设备具有良好的密封性能,提高真空系统的气密性,减少空气漏入量,保证凝汽器的传热性能。 3)凝汽设备要求有良好的回热性能,降低凝水的过冷度,以减少汽轮机回热抽汽,降低热耗。 4)良好的除氧性能:可根据系统的凝结水含氧要求,加设热并除洋装置,是凝汽器具有良好的除氧性能,防止凝结水管道和设备的腐蚀。 5)具有较小的流动阻力,也减少循环水泵的耗功。 通过热力计算、流场计算、强度计算分析,在满足性能的前提下,对结构进行优化设计,使设备性能得到优化,并通过结构及系统综合分析考虑,不仅要求设备性能满足要求,并且要求尽可能便于制造、安装和维修。 二、凝汽器与机组的配套情况 1、凝汽器的设计与机组特性密切相关,如机组的背压参数、冷却水品质及参数、冷却水流程数、凝汽器的背压要求等等。冷却水管的材料和形状选择也与凝汽器的设计关系甚密。因此凝汽器的设计,针对性强,在配套设计中需要详细的初始参数资料和改机组的配套要求。 2、列举部分凝汽器设计产品 1)25MW抽凝式汽轮机组配套N-2000型号凝汽器,背压8KPa,冷却水入口温度27℃,冷却管为锡黄铜管,凝汽器换热面积2000(平方米)。 2)100MW机组N-6815型号凝汽器,双壳体、双流程形式凝汽器,背压4.9KPa,冷却水进口温度20℃,冷却管为锡黄铜管,冷却面积6815(平方米)。 3)125MW机组N-7100型号凝汽器,单壳体、双流程形式凝汽器,背压4.9KPa,冷却水进口温度20℃,冷却管为锡黄铜管,冷却面积7100(平方米)。 4)200MW机组N-12586型号凝汽器,单壳体、双流程形式凝汽器,背压6.86KPa,冷却水进口温度20℃,冷却管为锡黄铜管,冷却面积12586(平方米)。 5)300MW机组N-16000型号凝汽器,单壳体、双流程形式凝汽器,背压5.4KPa,冷却水进口温度20℃,冷却管为锡黄铜管,冷却面积16000(平方米)。

第七章 汽轮机凝汽设备

第七章汽轮机凝汽设备 1.凝汽器内设置空气冷却区的作用是:【】 A. 冷却被抽出的空气 B. 避免凝汽器内的蒸汽被抽走 C. 再次冷却凝结被抽出的蒸汽和空气混合物 D. 降低空气分压力 2.凝结水的过冷度增大,将引起凝结水含氧量:【】 A. 增大 B. 减小 C. 不变 D. 无法确定 3.在凝汽器的两管板之间设中间隔板,是为了保证冷却水管有足够的:【】 A. 热膨胀 B. 刚度 C. 挠度 D. 强度 4.实际运行中在其它条件不变的情况下,凝汽器传热端差冬季的比夏季大的可能原因是: 【】 A. 夏季冷却水入口温度t1升高 B. 夏季冷却水管容易结垢 C. 冬季冷却水入口温度t1低,凝汽器内真空高,漏气量增大 D. 冬季冷却水入口温度t1低,冷却水管收缩 5.在其它条件不变的情况下,凝汽器中空气分压力的升高将使得传热端差【】 A. 增大 B. 减小 C. 不变 D. 可能增大也可能减小 6.某凝汽器的冷却倍率为80,汽轮机排汽焓和凝结水比焓分别为2450 kJ/kg和300 kJ/kg,冷却水的定压比热为4.1868kJ/kg,则其冷却水温升为【】 A. 3.2℃ B. 4.2℃ C. 5.4℃ D. 6.4℃ 7.凝汽器采用回热式凝汽器的目的是【】 A. 提高真空 B. 提高传热效果 C. 减小凝结水过冷度 D. 提高循环水出口温度 8.某凝汽设备的循环水倍率为40,当凝汽量为500T/h时,所需的循环水量为【】 A. 12.5 T/h B. 500 T/h C. 1000 T/h D. 20000 T/h 9.下列哪个因素是决定凝汽设备循环水温升的主要因素。【】 A. 循环水量 B. 凝汽器的水阻 C. 凝汽器的汽阻 D. 冷却水管的排列方式 10.关于凝汽器的极限真空,下列说法哪个正确?【】 A. 达到极限真空时,凝汽器真空再无法提高 B. 达到极限真空时,汽轮机功率再无法提高 C. 达到极限真空时,汽轮机综合效益最好 D. 以上说法都不对 11.凝汽器的冷却倍率是指【】 A. 进入凝汽器的冷却水量与进入凝汽器的蒸汽量之比

传质设备项目审查申请书模板

传质设备项目 审查申请书 一、项目发展背景 实施工业强市战略,做大工业总量,提升制造业质量效益和核心竞争力,加快发展电子信息、先进装备制造、食品加工3个千亿元产业,扶持壮大生物医药等特色优势产业,优化工业布局,进一步提高工业核心竞争力,基本建成面向西南中南、辐射东南亚的区域性现代制造业基地。“十三五”期间,全部工业总产值达到6500亿元,工业增加值占全市生产总值的比重达到33%以上。 (一)突出发展主导产业 突出发展电子信息、先进装备制造、生物医药三个主导产业,促进产业集聚发展,打造全产业链新优势,推动产业转型升级。 (二)大力培育和发展战略性新兴产业 加快建设一批战略性新兴产业核心区和重点特色园区,实施一批战略性新兴产业重大项目,培育一批战略性新兴产业龙头企业和自主品牌拳头产品,推动战略性新兴产业规模扩大、创新能力提升,成为工业新的增长点。 (三)优化提升传统产业

突出特色资源优势,加大传统产业技术改造力度,以绿色发展倒 逼转型升级,优化提升食品、化工、建材等传统产业。 (四)优化工业产业布局 实施园区经济倍增跨越计划,以园区为载体,以特色优势产业为 重点,按照整合资源、错位发展、打造品牌的要求,规范产业选择与 引入,加快产业集群化和规模化,延伸产业链,引导产业集聚发展, 推动产业集聚向产业集群转型升级。构建“3+4+N”工业空间体系,支 持三大国家级开发区完善配套设施和产业转型升级,严格准入门槛, 通过联营、托管等方式对县(区)工业园区整合提升,成为全市发展 高新技术产业和高端制造业的主要载体。发挥新兴产业园、江南工业 园区、六景工业园区、黎塘工业园区产业基础较好、发展空间大的优势,促进产业特色化、集聚化发展,形成特色产业高地。支持县(区)工业园区专业化、特色化、生态化发展。 (五)进一步提升工业核心竞争力 落实《中国制造2025》,加快实施信息化和工业化深度融合专项 行动计划,以智能制造、工业大数据集成等为重点,积极推进“互联 网+先进制造”行动。大力推动互联网、大数据等新一代信息技术与工 业制造融合发展,拉动重点行业大中型企业“两化”深度融合,加快

化工原理_第10章_气液传质设备

化工原理-第10章-气液传质设备 知识要点 用于蒸馏和吸收塔的塔器分别称为蒸馏塔和吸收(解吸)塔。通称气液传质设备。本章应重点掌握板式塔和填料塔的基本结构、流体力学与传质特性(包括板式塔的负荷性能图)。 1. 概述 高径比很大的设备叫塔器。 蒸馏与吸收作为分离过程,基于不同的物理化学原理,但其均属于气液两相间的传质过程,有共同的特点可在同样的设备中进行操作。 (1) 塔设备设计的基本原则 ① 使气液两相充分接触,以提供尽可能大的传质面积和传质系数,接触后两相又能及时完善分离。 ② 在塔气液两相最大限度地接近逆流,以提供最大的传质推动力。 (2) 气液传质设备的分类 ① 按结构分为板式塔和填料塔 ② 按气液接触情况分为逐级式与微分式 通常板式塔为逐级接触式塔器,填料塔为微分接触式塔器。 2. 板式塔 (1) 板式塔的设计意图:总体上使两相呈逆流流动,每一块塔板上呈均匀的错流接触。 (2) 筛孔塔板的构造 ① 筛孔——塔板上的气体通道,筛孔直径通常为3~8mm 。 ② 溢流堰——为保证塔板上有液体。 ③ 降液管——液体自上层塔板流至下层塔板的通道。 (3) 筛板上的气液接触状态 筛板上的气液接触状态有鼓泡接触、泡沫接触、喷射接触,比较见表10-1。 表10-1 气液接触状态比较 项 目 鼓泡接触状态 泡沫接触状态 喷射接触状态 孔速 很低 较高 高 两相接触面 气泡表面 液膜 液滴外表面 两相接触量 少 多 多 传质阻力 较大 小 小 传质效率 低 高 高 连续相 液体 液体 气体 分散相 气体 气体 液体 适用物系 重 轻σσ< (正系统) 重 轻σσ> (负系统) 工业上经常采用的两种接触状态是泡沫接触与喷射接触。由泡沫状态转为喷射状态的临界点称为转相点。 (4) 气体通过塔板的压降 包括塔板本身的干板阻力(即板上各部件所造成的局部阻力)、气体克服板上充气液层的静压力所产生的压力降、气体克服液体表面力所产生的压力降(一般较小,可忽略

凝汽器安装使用说明书

330MW汽轮机组 双流程凝汽器安装使用说明书 NC17A.80.01SY 2006年7月

一、设计数据 凝汽器压力: 5.2 KPa 凝汽量: 675 t/h 冷却水进口温度: 21℃ 冷却背率: 54 冷却水量: 36112 t/h 冷却水管内流速: 2.2 m/s 流程数: 2 清洁系数: 0.9 冷却面积: 螺旋管19000 m 2 冷却管数: 16112 根 冷却管长: 12410mm 二、对外接口规格 循环水入口管径: Φ1820 mm 循环水出口管径: Φ1820 mm 空气排出口管径: Φ273 mm 凝结水出口管径: Φ630 mm 三、凝汽器主要部件重量 凝汽器尺寸: 17338x8300x12960mm 无水凝汽器总重: 306 t 凝汽器运行时水重: 265 t 汽室中全部充水时水重: 700 t 管子重: 84.73 t 共 17 页 第 1 页 凝汽器安装使用说明书 N C 17A.80.01S Y 北 京 重型电机厂 实 施 批 准 编 制 校 对 审 核 标准化审查 图 样 标 记

水室比后水室高)。 管板与壳体通过一过渡段连接在一起,过渡段长为:300 mm(见图HR155.80.01.90-1、HR155.80.01.100-1)。 每块隔板下面用三根圆钢支撑,隔板与管子间用工字钢及一对斜铁连接,以便于调整隔板安装尺寸。隔板底部在同一平面上(见图NC17A.80.01-1)。隔板间用三根钢管连接,隔板边与壳体侧板相焊,每一列隔板用三根圆钢拉焊住,圆钢两端与管板过渡段相焊(见图HR155.80.01.01-1)。 壳体与热井通过垫板直接相连,热井分左右两半制造。在热井中有工字钢、支撑圆管加强,刚度很好。热井底板上开有三个方孔,与凝结水出口装置相连。 凝结水出口装置上部设有网格板,可防止杂物进入凝结水管道,也可防止人进入热井后从此掉下。 在空冷区上方设置挡板,阻止汽气混合物直接进入空冷区。空气挡板两边与隔板密封焊。每列管束在其中三块挡板上开有方孔,用三根方管拼联成抽气管,以抽出不凝结气体及空气(见图HR155.80.01.120-1)。 弧形半球形水室具有水流均匀、不易产生涡流、冷却水管充水合理、换热效果良好的特点。水室侧板用25mm厚的钢板,水室法兰用60 mm厚的16MnR,与管板和壳体螺栓连接,衬O型橡胶圈作密封垫,保证水室的密封性。前水室中设水室隔板及进出水管,其中进水管在下部,出水管在侧部。在水室上有人孔,以便检修。为防止检修时人不小心掉入循环水管,在进出水管加设了一道网板,网板由不锈钢组成,既可保证安全,又不增加水阻。水室上有放气口、排水孔、手孔以及温度、压力测点(见图HR155.80.01.15-1、HR155.80.01.95-1、HR155.80.01.105-1、HR155.80.01.200-1)。水室壁涂环氧保护层,并有牺牲阳极保护,牺牲阳极保护的安装位置参照(HR155.80.01.10-1)执行。 在凝汽器最上一排管子之上300 mm处设有8个真空测点,测量点是在两块间隔30 mm的板,从板中间的接头上引出φ14×3的管至接颈八个测真空处进行真空测量。 凝汽器热井位于汽机房下,装于弹簧和底板上(见图HR155.80.01.06-1)。弹簧根据汽机允许力进行设计,考虑到弹簧摩擦角产生的水平力,78个弹簧采用一半左旋一半右旋,以使力平衡。 为防止运行时凝汽器移动,造成凝汽器、低压缸不同心,对低压缸不利。热井底板上焊固定板,使底板与弹簧基础上埋入的钢板贴合,这样凝汽器只能上下移动(见图HR155.80.01.205-1)。 五、安装程序 (1)在底板(HR155.80.01.205-1序1 N17.80.01.416)定位后,在底板上安装弹簧支座板(HR68.80.01.39-1序1 N17.80.01.222)、弹簧,并调节弹簧位置,使处于标高之下。 (2)吊起凝汽器热井,安装热井底部的弹簧支座板(见图N17.80.01.111-1)

汽轮机使用说明书

N30-3.43/435型汽轮机使用说明书 1、用途及应用范围 N30-3.43/435型汽轮机系单缸、中温中压、冲动、凝汽式汽轮机。额定功率30MW,与汽轮发电机配套,装于热电站中,可作为电网频率为50HZ地区城市照明和工业动力用电。 其特点是结构简单紧凑、操作方便、安全可靠。汽轮机不能用以拖动变速旋转机械。 2、主要技术数据 2.1 额定功率:30MW 2.1 最大功率:33MW 2.3 转速:3000r/min 2.4 转向:从机头看为顺时针方向 2.5 转子临界转速:1622.97r/min 2.6 蒸汽参数: 压力: 3.43MPa 温度:435℃ 冷却水温:27℃(最高33℃) 排汽压力(额定工况):0.0086MPa 2.7 回热抽汽:4级(分别在3、6、8、11级后) 2.8给水加热:2GJ+1CY+1DJ 2.9 工况: 工 况 项 目进汽量抽汽量排汽量冷却水温电功率汽耗Go Gc Ge Ne t/h t/h t/h ℃kW Kg/kw·h 额定工况131.0 0.0 102.77 27 30007.1 4.366 夏季凝汽工况135.5 0.0 107.98 33 30029.4 4.512 最大凝汽工况145.0 0.0 114.14 27 33055.7 4.387 最大供热工况143.5 20.0 93.51 27 30049.2 4.776 70%额定负荷工况93.0 0.0 73.93 27 21013.9 4.426 50%额定负荷工况69.5 0.0 56.47 27 15009.0 4.631 高加切除工况122.0 0.0 107.8 27 30032.7 4.062 2.10 各段汽封漏汽流量 前汽封后汽封

陈敏恒《化工原理》(第4版)(下册)章节题库(气液传质设备)【圣才出品】

第10章气液传质设备 一、选择题 1.以下参数中,属于板式塔结构参数的是();属于操作参数的是()。 A.板间距 B.孔数 C.孔速 D.板上清液层高度 【答案】AB;CD 2.设计筛板塔时,若改变某一结构参数,会引起负荷性能图的变化。下面叙述中正确的一组是()。 A.板间距降低,使雾沫夹带线上移 B.板间距降低,使液泛线下移 C.塔径增大,使液泛线下移 D.降液管面积增加,使雾沫夹带线下移 【答案】D 3.塔板上设置入口安定区的目的是(),设置出口安定区的目的是()。 A.防止气体进入降液管

B.避免严重的液沫夹带 C.防止越堰液体的气体夹带量过大 D.避免板上液流不均匀 【答案】A;C 4.填料的静持液量与()有关,动持液量与()有关。A.填料特性 B.液体特性 C.气相负荷 D.液相负荷 【答案】AB;ABCD 5.用填料吸收塔分离某气体混合物,以下说法正确的是()。A.气液两相流动参数相同,填料因子增大,液泛气速减小B.气液两相流动参数相同,填料因子减小,液泛气速减小C.填料因子相同,气液两相流动参数增大,液泛气速减小D.填料因子相同,气液两相流动参数减小,液泛气速减小 【答案】AC 6.以下说法正确的是()。 A.等板高度是指分离效果相当于1m填料的塔板数 B.填料塔操作时出现液泛对传质无影响

C.填料层内气体的流动一般处于层流状态 D.液泛条件下单位高度填料层的压降只取决于填料种类和物系性质 【答案】D 二、填空题 1.在传质设备中,塔板上的气液两相之间可能的接触状态有:______、______和______。板式塔操作的转相点是指______。 【答案】鼓泡;泡沫;喷射;由泡沫状态转为喷射状态的临界点 2.在设计或研制新型气液传质设备时,要求设备具有______ 、______、______。 【答案】传质效率高;生产能力大;操作弹性宽;塔板压降小;结构简单(以上答案中任选三个) 3.对逆流操作的填料塔,液体自塔______部进入,在填料表面呈______状流下。 【答案】上;膜 4.液体在填料塔中流下时,造成较大尺度上的分布不均匀性的原因有:______ 和______ 。 【答案】初始分布不均匀;填料层内液流的不均匀性 5.填料操作压降线(Δp/Z-u)大致可分为三个区域,即______ 、______和______。填料塔操作时应控制在______区域。此时,连续相是______,分散相是______。 【答案】恒持液量区;载液区;液泛区;载液区;气体;液体

凝汽器检漏装置说明书

NJL型系列 凝汽器捡漏装置 说明书 南京电力自动化设备总厂

NJL型系列 凝汽器捡漏装置 说明书 编写何鹰 审核顾文献 批准高永生 一九九九年六月

目次 1.概述 2.性能参数 3.工作原理 4.结构形式 5.安装和高度 6.使用和维修 7.产品的成套 8.产品服务

1概述 凝汽器是火力发电厂中降低排汽压力、提高蒸汽动力循环效率、将排汽冷凝为凝结水的重要设备。凝汽器中的冷凝管一般采用铜管或钛管(当冷却水为海水时),冷凝管与凝汽器管板的固接方式一般采用涨接方式。随着机组运行中的振动,热胀冷缩和化学腐蚀等现象的影响,凝汽器会发生冷却水泄漏事故,而其泄漏点一般在管板涨接处。如何快速地判断凝汽器是否泄漏,准确检测泄漏点的位置,对化学和汽机专业都是非常重要的。 NJL型凝汽器捡漏装置是利用真空泵将凝结水从处于真空运行状态下的凝汽器热井中抽出,将抽出的样水通过在线化学分析仪表测量其相关化学指标,综合比较分析其测量值以达到检测出凝汽器泄漏点并计算泄漏率以即时处理的目的。它的推广应用,将保证凝汽器长期安全可靠地运行,并大大降低凝汽器泄漏事故检修时工作人员的劳动强度,耗费时间及效益损失。 2性能参数 (1)管路系统设计压力 1.0MPa; (2)管路系统工作压力 0.25Mpa; (3)工作液体温度≤55℃; (4)样水进口公称通径40mm,连接方式为承插焊接; (5)样水出口,回气出口和回水出口公称通径DN25mm,连接方式为承接焊接;(6)真空泵性能参数: 额定流量:30L/min 额定扬程:25mH?O; 额定电压:三相380V; 额定电流:4.2A; 额定功率:1.5KW; 吸入口通径:DN40mm; 出水口通径:DN25mm; (7)工作环境条件 环境温度和相对湿度: 检漏取样架要求环境温度5?50℃; 相对湿度≤95%; 检漏盘要求环境湿度5?45℃; 相对湿度≤85%; 电源: 装置供电电源为380V/220V,三相四线制,5KW电源。 3工作原理 一.样水抽取 凝汽器捡漏装置的工作原理,是通过同时具有高抽吸能力和小容量特性的真空泵凝结水从处于高真空运行状态下的凝汽器中抽出,经在线化学分析仪表测量其各项化学指标,进而达到目的。 从凝汽器热井取样点抽出有代表性和实时性的凝结水样,样水经取样架上的进水阀门后汇流至Y型过滤器,滤除颗粒杂质后进入监流器,随后进入吸水箱。

凝汽器端差和凝汽器过冷度详解

今天学习与凝汽器相关的专业术语。) 学习内容摘要: 1、冷却倍率 2、凝汽器的极限真空 3、凝汽器的最有利真空 4、凝汽器端差 4.1、凝汽器端差的定义 4.2、影响凝汽器端差的因素 4.3、循环冷却水量和凝汽器端差的关系 5、凝汽器的过冷度 5.1、过冷度的定义 5.2、产生过冷度的原因 5.3、过冷度增加的分析 5.4、为什么有时过冷度会出现负值 1、冷却倍率 所谓冷却倍率,就是冷却介质的质量(冷源质量)与被冷却介质质量(热源质量)的商值。相当于冷却1kg热源所需的冷源的质量。 比如,凝汽器的冷却倍率=循环水量/排汽量,一般取50~80。 2、凝汽器的极限真空 一般说来,需要采取各种手段,保证凝汽器有良好的真空。但是并不是说真空越高越好,二是有一个极限值的。这个极限值由汽轮机末级叶片出口截面的膨胀程度决定,当通过末级叶片的蒸汽已达到膨胀极

限时,如果继续提高真空,不可能得到经济上的效益,相反会降低经济效益。 极限真空一般由生产厂家提供。 3、凝汽器的最有利真空 同一个凝汽器,在极限真空内,提高真空,可使蒸汽在汽轮机中的焓降增大,从而提高汽轮机的输出功率,但是,提高真空,需要增大循环水量,循泵的功耗率增大。因此,就需要选择一个最佳工作点,即所提高的汽轮机输出功率与循泵增加的功耗率之差为最大时,此状态所对应的真空值为最有利真空。 4、凝汽器端差(端差在汽轮机的相关学习资料中讲得比较简单,没有详尽的资料,这里得出的结论是参考了几篇论文分析学习得出的)换管清洗请联系188 038 18668 (1)凝汽器端差:凝汽器排汽压力所对应的饱和蒸汽温度与循环水出水温度的差值。端差则反映凝汽器传热性能、真空严密性和冷却水系统的工作状态况等,所以,在凝汽设备运行监测中,传热端差是一个非常重要的参数,是衡量凝汽器换热性能的一个重要参数。 (2)哪些因素影响凝汽器端差:对一定的凝汽器,端差的大小与凝汽器冷却水入口温度、凝汽器单位面积蒸汽负荷、凝汽器铜管的表面洁净度,凝汽器内的漏入空气量以及冷却水在管内的流速有关。凝汽器端差增加的原因有: A、凝器铜管水侧或汽侧结垢; B、凝汽器汽侧漏入空气; C、冷却水管堵塞;

东汽N-34000型凝汽器说明书

版本号:A 东 方 汽 轮 机 厂 第 全 册 N-34000型凝汽器说明书 M700-053000ASM 编号 2003年02月

编号M700-053000ASM 编制 校对 审核 会签 审定 批准

word 资料下载可编辑 目录 序号章-节名称页数备注1 0-1 N-34000型凝汽器说明书16

0-1 N-34000型凝汽器说明书 1概述 凝汽器是汽轮机辅助设备中最主要的一个部套,它的作用是用循环冷却水使汽轮机排出的蒸汽凝结,在汽轮机排汽空间建立并维持所需要的真空,并回收纯净的凝结水以供锅炉给水。 1.1 特征 1.1.1凝汽器是模块式双背压凝汽器,冷却水为海水。 1.1.2回热管系消除凝结水过冷和减小含氧量,提高机组循环热效率。 1.1.3水室为弧型结构,水力特性、受力特性好,为防腐,与海水接触的水室内表面采用了衬胶处理。 1.1.4冷却水管为钛管,端管板为钛复合板。 1.2 凝汽器的主要特性参数 冷却面积:17000/17000m2 冷却水设计进口温度:20℃ 冷却水设计压力:0.25MPa(g) 冷却水设计流量:73652t/h 设计背压: 4.9 kPa(a)(平均)[LP/HP 4.35/5.51 kPa(a)] 冷却水介质:海水 此外,装配好后无水时凝汽器重量约750t(含低加)。凝汽器正常运行时的水重约450t,汽室中全部充满水时的水重约1550t。 2结构简介 本凝汽器是系双壳体、单流程、双背压表面式凝汽器。由两个斜喉部、两个壳体(包括热井、水室,回热管系),循环水连通管及底部的滑动、固定支座等组成的全焊结构(见

第十一节气液传质设备

第一节板式塔 一、板式塔的主要类型与结构 1、概述 板式塔是一种应用极为广泛的气液传质设备,它由一个通常呈圆柱形的壳体及其中按一定间距水平设置的若干塔板所组成。如图11-1所示,板式塔正常工作时,液体在重力作用下自上而下通过各层塔板后由塔底排出;气体在压差推动下,经均布在塔板上的开孔由下而上穿过各层塔板后由塔顶排出,在每块塔板上皆贮有一定的液体,气体穿过板上液层时,两相接触进行传质。 为有效地实现气液两相之间的传质,板式塔应具有以下两方面的功能: ①在每块塔板上气液两相必须保持密切而充分的接触,为传质过程提供足够大而且不断更新的相际接触表面,减小传质阻力; ②在塔内应尽量使气液两相呈逆流流动,以提供最大的传质推动力。 由吸收章可知,当气液两相进、出塔设备的浓度一定时,两相逆流接触时的平均传质推动力最大。在板式塔内,各块塔板正是按两相逆流的原则组合起来的。但是,在每块塔板上,由于气液两相的剧烈搅动,是不可能达到充分的逆流流动的。为获得尽可能大的传质推动力,目前在塔板设计中只能采用错流流动的方式,即液体横向流过塔板,而气体垂直穿过液层。 由此可见,除保证气液两相在塔板上有充分的接触之外,板式塔的设计意图是,在塔内造成一个对传质过程最有利的理想流动条件,即在总体上使两相呈逆流流动,而在每一块塔板上两相呈均匀的错流接触。 2、板式塔的类型 按照塔内气液流动的方式,可将塔板分为错流塔板与逆流塔板两类。 ①错流塔板 塔内气液两相成错流流动,即流体横向流过塔板,而气体垂直穿过液层,但对整个塔来说,两相基本上成逆流流动。错流塔板降液管的设置方式及堰高可以控制板上液体流径与液层厚度,以期获得较高的效率。但是降液管占去一部分塔板面积,影响塔的生产能力;而且,流体横过塔板时要克服各种阻力,因而使板上液层出现位差,此位差称之为液面落差。液面落差大时,能引起板上气体分布

化工原理_第10章_气液传质设备

化工原理-第10章-气液传质设备 知识要点 用于蒸馏和吸收塔的塔器分别称为蒸馏塔和吸收(解吸)塔。通称气液传质设备。本章应重点掌握板式塔和填料塔的基本结构、流体力学与传质特性(包括板式塔的负荷性能图)。 1. 概述 高径比很大的设备叫塔器。 蒸馏与吸收作为分离过程,基于不同的物理化学原理,但其均属于气液两相间的传质过程,有共同的特点可在同样的设备中进行操作。 (1) 塔设备设计的基本原则 ① 使气液两相充分接触,以提供尽可能大的传质面积和传质系数,接触后两相又能及时完善分离。 ② 在塔气液两相最大限度地接近逆流,以提供最大的传质推动力。 (2) 气液传质设备的分类 ① 按结构分为板式塔和填料塔 ② 按气液接触情况分为逐级式与微分式 通常板式塔为逐级接触式塔器,填料塔为微分接触式塔器。 2. 板式塔 (1) 板式塔的设计意图:总体上使两相呈逆流流动,每一块塔板上呈均匀的错流接触。 (2) 筛孔塔板的构造 ① 筛孔——塔板上的气体通道,筛孔直径通常为3~8mm 。 ② 溢流堰——为保证塔板上有液体。 ③ 降液管——液体自上层塔板流至下层塔板的通道。 (3) 筛板上的气液接触状态 筛板上的气液接触状态有鼓泡接触、泡沫接触、喷射接触,比较见表10-1。 表10-1 气液接触状态比较 项 目 鼓泡接触状态 泡沫接触状态 喷射接触状态 孔速 很低 较高 高 两相接触面 气泡表面 液膜 液滴外表面 两相接触量 少 多 多 传质阻力 较大 小 小 传质效率 低 高 高 连续相 液体 液体 气体 分散相 气体 气体 液体 适用物系 重 轻σσ< (正系统) 重 轻σσ> (负系统) 工业上经常采用的两种接触状态是泡沫接触与喷射接触。由泡沫状态转为喷射状态的临界点称为转相点。 (4) 气体通过塔板的压降 包括塔板本身的干板阻力(即板上各部件所造成的局部阻力)、气体克服板上充气液层的静压力所产生的压力降、气体克服液体表面力所产生的压力降(一般较小,可忽略

第十章 气液传质设备

第十章习题 板式塔 1.某筛板塔在常压下以苯―甲苯为试验物系,在全回流下操作以测定板效率。今测得由第九、第十两块板(自上向下数)下降的液相组成分别为0.652与0.489(均为苯的摩尔分率)。试求第十块板的默弗里湿板效率。 2.甲醇-水精馏塔在设计时规定原料组成x f=0.40,塔顶产品组成0.90,塔釜残液组成0.05(均为甲醇的摩尔分率),常压操作。试用O’connell关联图估计精馏塔的总塔效率。 3.一板式吸收塔用NaOH水溶液吸收氯气。氯气的浓度为2%(mol),要求出塔浓度低于0.002%。各块塔板的默弗里板效率均为50%,不计液沫夹带,求此塔应有多少块实际板。 NaOH溶液与氯气发生不可逆化学反应,可设相平衡常数m=0。 4.某厂常压操作下的甲苯-邻二甲苯精馏塔拟采用筛板塔。经工艺计算知某塔板的气相流量为2900m3/h,液相流量为9.2m3/h。有关物性数据如下: 气相密度为3.85kg/m3,液相密度为770kg/m3, 液体的表面张力为17.5mN/m。 根据经验选取板间距为450mm,泛点百分率为80%,单流型塔板,溢流堰长度为75%塔径。 试用弗尔的泛点关联图以估计塔径。 填料塔 5.某填料精馏塔用以分离氯仿-1,1-二氯乙烷,在全回流下测得回流液组成x D = 8.05×10-3,残液组成x W=8.65×10-4(均为1,1-二氯乙烷的摩尔分率)。该塔的填充高度8m,物系的相对挥发度为α=1.10,问该种填料的理论板当量高度(HETP)是多少? 6.在装填(乱堆)25×25×2mm瓷质拉西环之填料塔内,拟用水吸收空气与丙酮混合气中的丙酮,混合气的体积流量为800m3/h,内含丙酮5%(体积)。如吸收是在101.3kPa、30℃下操作,且知液体质量流量与气体质量流量之比是2.34。试估算填料塔直径为多少米?(每米填料层的压降是多少?) 设计气速可取泛点气速的60%。 61

1000MW凝汽器、低加、轴加说明书修改版

CCLN1000-25/600/600型汽轮机辅机部分说明书 CCH02.000.4SM-4 第全册 中华人民共和国 哈尔滨汽轮机厂有限责任公司 2010

CCLN1000-25/600/600型汽轮机辅机部分说明书 CCH02.000.4SM-4 第全册 编制王铁2010.2.12 校对王琨2010.2.12 审核张俊芬2010.2.12 标准检查张俊芬2010.2.12 审定武君2010.2.12 2010年2月

CCH02.000.4SM-4 共1页第1页 目录 1凝汽器说明书( N477.00SM)------------------------------------------ -----------1 R579.00SM-1 2 低压加热器说明书(R580.00SM-1)--------------------------------12 R581.00SM-1 3 减温减压器说明书(WY73.00SM) ---------------------------------------------21 4汽封冷却器说明书(QL52.00SM)--------------------------------------------25 5压差形成器说明书(Y09.00SM)--------------------------------------------------28 6气动式止逆阀及控制装置说明书(FK267.00SM)------- -------- ------------30 7阴极保护装置说明书(YJ03.00SM)---------------------------------------------33 更改页----------------------------------------------------------------------------------36

汽轮机表面式凝汽器抽气设备

附 录 C (资料性附录) 抽气设备 C.1 抽气设备能力的确定 C.1.1 凝汽器中需要抽出的不凝结气体的来源包括但不仅限于以下几项: ——低于大气压下运行的系统部件中漏进的空气; ——进入凝汽器的疏水和排汽释放的气体; ——进入凝汽器的补给水释放的气体; ——循环冷却中所使用的凝结水平衡箱内所产生的气体; ——在某些形式的核燃料的循环中,从给水中解析出来的氧气、氢气及其他不凝结气体。 C.1.2 除不凝结气体外,还应抽出一定量的附带蒸汽,以确保凝汽器的正常性能,并产生合理的气流速度,使凝汽器汽侧的腐蚀减少到最小程度。 C.2 设计吸入压力 抽气设备的吸入压力应符合下列要求: ——电站汽轮机凝汽器的设计吸入压力为3.386 kPa (a )或凝汽器设计压力,取二者中的较小值。最终选择还应考虑到在整个预期的运行压力内的凝汽器与其抽气设备的协调运行。此外,当选择设计吸入压力时,还应考虑抽气设备的实际位置。 ——工业和船用汽轮机或泵等其他机械动力设备用凝汽器的设计吸入压力为凝汽器设计压力减去 3.386 kPa 或为运行所要求的最低压力,取二者中的较小值,但不得低于3.386 kPa (a )。 C.3 设计吸入温度 设计吸入温度(即抽吸的汽-气混合物温度),应为抽气设备设计压力相对应的饱和蒸汽温度t vs (℃)减去0.25(t s -t w1)或4.16 ℃中的较大值(t s 为蒸汽凝结温度,t w1为冷却水进口温度)。 运行中抽气口的蒸汽实际温度受到运行特性、不凝结气体负荷和抽气设备容量特性的影响,不一定等于设计吸入温度。 C.4 水蒸汽量的计算 混合气体中饱和水蒸汽量与不凝结气体的比值按公式(C.1)计算: w VS w g g w 18 P P P M W W -? = .................................. (C.1) 式中: W w ——混合气体中的饱和水蒸汽质量,单位为千克(kg ); W g ——混合气体中的不凝结气体质量,单位为千克(kg ); P w ——与凝汽器抽气口处温度相对应的水蒸汽的饱和压力,单位为千帕[kPa (a )]; M g ——不凝结气体的平均分子量。不凝结气体为干空气时其分子量为29;

新型传质设备-FG格栅填料

FG蜂窝格栅填料 化学工程联合国家重点实验室(清华大学) 地址:北京市海淀区清华园化学工程系 联系人:钱建兵/朱慎林 电 话:132********/136******** Email:happycarol@https://www.360docs.net/doc/b83179771.html,

FG蜂窝格栅填料 FG蜂窝格栅填料创新 为了提高塔的通量、改善两相的流道、减小沟流、壁流和轴向返混等不良影响以传质效率和抗堵塞、抗结焦性能,对目前规整填料的结构进行优化设计,填料的结构如图: FG格栅是在与垂直方向倾斜一定角度的多层平面上平行排列金属板,在金属板之间按一定距离(20-100mm)插入相应的金属隔板,插入的隔板与金属板垂直;在每一块金属板及格板上都开有多排舌片,两邻两排的舌片开口方向相反,舌片与金属板成一定角度(如450或1350角);在金属板及隔板上的开孔率为板面积的5-15%左右;在与分离塔塔壁接触的金属板面和隔板部分做成与塔壁相一致的圆弧线形。该填料结构的性能特点如下: (1)主体采用蜂窝型,使两相的流动分布更为合理; (2)单板与水平面成45度或135度,减小两相的易聚物在填料表面的停留时间,以防止聚合结焦,并且使液体对沉积在填料表面的脏堵物有自清洗作用; (3)相邻两层填料采用90度角交叉安装,加动两相的扰动程度,使其混合更加均匀,提高传质效率; (4)单板上开设的舌片,使得各板之间的两相物质交换更加充分,并有效地提高了填料表面的利用率,提高传质效率; (5)各板之间的大板间距(60-100mm)大大提高了两相的通量;

(6)与塔壁接触的单板采用弧线形,减小壁流和轴向返混等不良影响,提高传质效率。 主要特性参数 型 号 厚度(mm) 重量(Kg/m3)空隙率% 比表面积(m2/m3) 格栅距(mm) FG-I-60 1.5mm 200 96.4 36 60 FG-I-80 160 97.5 30 80 FG-I-100 110 97.9 20 100 FG-II-60 1.5mm 185 96.4 30 60 FG-II-80 140 97.5 25 80 FG-II-100 105 97.9 19 100 FG-Ⅲ-60 1.5mm 200 96.4 36 60 FG-Ⅲ-80 160 97.5 30 80 FG-Ⅲ-100 110 97.9 20 100

设备设计与选型

设备设计与选型 6.1设备设计依据 《钢制压力容器》 GB150《压力容器用钢板》 GB6654《奥氏体不锈钢焊接钢管选用规定》 HG20537.1《化工装置用不锈钢大口径焊接钢管技术要求》 HG20537.4《安全阀的设置和选用》 HG/T20570.2《爆破片的设置和选用》 HG/T20570.3《设备进、出管口压力损失计算》 HG/T20570.9《钢制化工容器设计基础规定》 HG20580《钢制化工容器材料选用规定》 HG20581《钢制化工容器强度计算规定》 HG20582《钢制化工容器结构设计规定》 HG20583《钢制化工容器制造技术规定》 HG20584《化工设备设计基础规定》 HG/T20643《压力容器无损检测》 JB4730《钢制压力容器焊接工艺评定》 JB4708《钢制压力容器焊接规程》 JB/T4709《钢制压力容器产品焊接试板的力学性能检验》 JB4744《压力容器用钢锻件》 JB4726-472

6.2典型塔器设计计算与选型 6.2.1概述 塔设备是化工、石油化工和炼油等生产中最重要的设备之一,塔可以使气液相或者液液相之间进行紧密接触,达到较为良好的相际传质及传热的目的。 在塔设备中常见的单元操作有:吸收、精馏、解吸和萃取等。此外工业气体的冷却与回收、气体的湿法净制和干燥,以及兼有气液两相传质和传热的增湿和减湿等效果。 6.2.2设计依据 《化工容器设计》王志文蔡仁良第三版化学工业出版社《化工设计概论》李国庭等著化学工业出版社《化工工艺设计手册》第二版化学工业出版社6.2.3设计原则 作为主要用于传质过程的塔设备,首先必须使气液两相能充分接触,以获得较高的传质效率。此外,为满足工业生产的需要,塔设备还得考虑下列各项要求: (1)生产能力大。在较大的气(汽)液流速下,仍不致发生大量的雾沫夹带、拦液、或液泛等破坏正常操作的现象; (2)操作稳定、弹性大。当塔设备的气(汽)液负荷量有较大波动时,仍能在较高的传质效率下进行稳定的操作,并且塔设备应保证能长期稳定操作; (3)流体流动的阻力小,即流体通过塔设备的压降小。这将大大节省生产中的动力消耗,以降低正常操作费用。对于减压蒸馏操作,较大的压力降还将使系统无法维持必要的真空度; (4)结构简单、材料耗用量小,制造和安装容易。这可以减少基建过程中

【专业资料】凝汽器(冷凝器)说明书

Z78802.80.05/01 N-2400-18 冷凝器说明书 XX汽轮电机(集团)有限责任公司

磁盘(带号)底图号 旧底图号归档 签名 简要说明文件代号页次数量标记编制徐XX 2011.3.28校核王XX 2011.3.28审核王XX 2011.3.29会 签 刘XX 2011.3.29标准审查郝XX 2011.3.29 审定批 准

目次 1.作用与工作原理3 2.技术规范3 3.冷凝器的构造3 4.冷凝器的运行与注意事项5 5.冷凝器的清洗6 6.严密性试验6

⒈作用与工作原理 1.1作用 1.1.1冷凝器的作用是建立并维持汽轮机排汽口的高度真空,使蒸汽在汽轮机内膨胀到很低的压力,增大蒸汽的作功能力,从而使蒸汽在汽轮机中有更多的热能转变成机械能,提高循环效率。 1.1.2将排汽转变为凝结水收集起来,以便重新在循环中使用。由于凝结水是品质最好的锅炉给水,所以收集凝结水对保证锅炉正常运行和提高电厂经济性有着重要的作用。 1.2工作原理 本冷凝器为列管表面式热交换器,汽轮机排出的蒸汽进入冷凝器后,其热量被冷却水带走,蒸汽被冷却,凝结成凝结水。由于在相同压力下蒸汽的体积比水的体积要大很多倍。例如在0.005MPa(a)汽压的压力下,干饱和蒸汽比水的体积约大28720倍。所以在排汽冷却的凝结过程中,体积急剧缩小,原来被蒸汽充满的空间就形成了高度真空,在此过程中,不凝结的气体系统中漏入的气体不断地被抽气器抽出,以维持冷凝器的这一高度真空。 ⒉技术规范 型号N-2400-18 型式分列二道制表面回热式(对分制双流程表面回热式) 冷却面积2400m2 汽轮机排汽量88.3t/h 冷却循环水温度20℃ 冷凝器压力0.0049MPa(a) 冷却循环水流量6500t/h(淡水) 凝结水温度32.5℃ 冷却管材料316L不锈钢直管 注:供货材质以合同或技术协议为准 冷却管规格Φ25×0.7×7562(3920根) 冷却水流速 2.1m/s 水阻53kPa 冷凝器净重39.3t 冷凝器运行重量63t 冷凝器灌水时重量98t 强度设计压力 壳侧:-0.1/0.1MPa 管程:0.6MPa ⒊冷凝器的构造 冷凝器的结构简图如下:

凝汽器说明书

密级:工厂秘密版本号:A 东方汽轮机厂 N-38000A型凝汽器说明书 编号M700-076000ASM 第全册 2003年12月

编号M700-076000ASM 编制 校对 审核 会签 审定 批准

N-38000型凝汽器说明书 M700-076000ASM 目录 序号章-节名称页数备注 1 0-1 N-38000型凝汽器说明书16

0-1 N-38000型凝汽器说明书 1用途 凝汽器是汽轮机辅助设备中最主要的一个部套,它的作用是用循环冷却水使汽轮机排出的蒸汽凝结,在汽轮机排汽空间建立并维持所需要的真空,并回收纯净的凝结水以供锅炉给水。 2主要特性参数 冷却面积:38000m2 冷却水设计进口温度:20℃ 冷却水设计压力:0.4MPa(g) 冷却水设计流量:66024t/h 设计背压: 4.9 kPa(a)(平均)[LP/HP 4.4/5.4 kPa(a) 冷却水介质:淡水 此外,装配好后无水时凝汽器重量约860t(含低加)。凝汽器正常运行时的水重约600t,汽室中全部充满水时的水重约1950t。 3结构简介 本凝汽器系双壳体、单流程、双背压表面式凝汽器。由两个斜喉部、两个壳体(包括热井、水室,回热管系),循环水连通管,汽轮机排汽缸与凝汽器采用不锈钢波形膨胀节连接,底部的滑动、固定支座等组成的全焊结构,(见图0-1-8)。 3.1 喉部 凝汽器喉部由高压侧喉部和低压侧喉部两部分组成。 凝汽器喉部的四周由20mm厚的钢板焊成,内部采用一定数量的钢管及工字钢组成桁架支撑,因此整个喉部的刚性较好。 3.1.1喉部上布置有组合式低压加热器、给水泵汽轮机的排汽接管、汽轮机旁路系统的三

相关文档
最新文档