方程的根与函数的零点教案

方程的根与函数的零点教案
方程的根与函数的零点教案

3.1.1方程的根与函数的零点

一、教学内容解析

本节课的主要内容有函数零点的的概念、函数零点存在性判定定理。

函数f(x)的零点,是中学数学的一个重要概念,从函数值与自变量对应的角度看,就是使函数值为0的实数x;从方程的角度看,即为相应方程f(x)=0的实数根,从函数的图形表示看,函数的零点就是函数f(x)与x轴交点的横坐标.函数是中学数学的核心概念,核心的根本原因之一在于函数与其他知识具有广泛的联系性,而函数的零点就是其中的一个链结点,它从不同的角度,将数与形,函数与方程有机的联系在一起。

函数零点的存在性判定定理,其目的就是通过找函数的零点来研究方程的根,进一步突出函数思想的应用,也为二分法求方程的近似解作好知识上和思想上的准备。定理不需证明,关键在于让学生通过感知体验并加以确认,由些需要结合具体的实例,加强对定理进行全面的认识,比如

对函数与方程的关系有一个逐步认识的过程,教材遵循了由浅入深、循序渐进的原则.从学生认为较简单的一元二次方程与相应的二次函数入手,由具体到一般,建立一元二次方程的根与相应的二次函数的零点的联系,然后将其推广到一般方程与相应的函数的情形。

函数与方程相比较,一个“动”,一个“静”;一个“整体”,一个“局部”。用函数的观点研究方程,本质上就是将局部的问题放在整体中研究,将静态的结果放在动态的过程中研究,这为今后进一步学习函数与不等式等其它知识的联系奠定了坚实的基础。

本节是函数应用的第一课,因此教学时应当站在函数应用的高度,从函数与其他知识的联系的角度来引入较为适宜。

二、教学目标解析

1.结合具体的问题,并从特殊推广到一般,使学生领会函数与方程之间的内在联系,从而了解函数的零点与方程根的联系。

2.在学习过程中,体验函数与方程思想及数形结合思想。

三、教学问题诊断分析

1.通过前面的学习,学生已经了解一些基本初等函数的模型,掌握了函数图象的一般画法,及一定的看图识图能力,这为本节课利用函数图象,判断方程根的存在性提供了一定的知识基础。对于函数零点的概念本质的理解,学生缺乏的是函数的观点,或是函数应用的意识,造成对函数与方程之间的联系缺乏了解。由此作为函数应用的第一课时,有必要点明函数的核心地位,即说明函数与其他知识的联系及其在生活中的应用,初步树立起函数应用

的意识。并从此出发,通过问题的设置,引导学生思考,再通过实例的确认与体验,从直观到抽象,从特殊到一般的学习方式,捅破学生认识上的这层“窗户纸”。

2.对于零点存在的判定定理,教材不要求给予其证明,这需要教师提供一定量的具体案例让学生操作感知,同时鼓励学生举例来验证,最终能自主地获得并确认该定理的结论。对于定理的条件和结论,学生往往考虑不够深入,需要教师通过具体的问题,引导学生从正面、反面、侧面等不同的角度重新进行审视。

3.函数的零点,体现了函数与方程之间的密切联系,教学中应遵循高中数学以函数为主线的这一原则进行联结,侧重在从函数的角度看方程,同时为二分法求方程的近似解作知识和思想上的准备。

四、教学过程设计

(一)创设情景,揭示课题

1(教师)通过前面的学习,同学们已经了解一些基本初等函数的图象和性质,本节课开始,我们学习第三章,函数的应用。

2(教师)同学们看下面的问题:出示问题1,或指示学生看学案

已知下列函数,求函数值①32)(2--=x x x f ,求)1(-f ;②12)(2+-=x x x f ,求)1(f ; ③x x x f 2)(2-=,求)4(f .

3师生一起做,老师设置一些简单的问题,学生齐答

4(师)这几个题目共同特点?引入函数的零点概念

(二)互动交流 研讨新知

1(教师)板书函数零点概念:对于函数

,把使成立的实数叫做函数的零点.根据定义求函数的零点

2求函数零点的方法:问题2求下列函数的零点

①32)(2--=x x x f ;②12)(2+-=x x x f ;③32)(2+-=x x x f ;

小结:二次函数零点情况.

④ x x x f 2)(2-=.利用本题, 学生无法求方程022=-x

x 的根,老师提示还需要回

到函数,利用函数的图象和性质找到零点.

3.对零点概念的理解

问题3:下表是三次函数的部分对应值表: (1):你能从中分析函数有哪些零点吗? (2):从函数图象的角度,你能对函数的零点换一种说法吗?

结论:函数的零点就是方程

实数根,亦即函数的图象与轴交点的横坐标.即:方程有实数根函数的图象与轴有交点

函数有零点. 4.零点存在定理的探究

(1):结合问题3图象与表格,你能发现此函数零点的附近函数值有何特点?生:两边的

函数值异号!

(2):如果一个函数f (x )满足f (a )f (b )<0,在区间(a,b)上是否一定存在着函数的零点?

x x x f 1

)(+=在区间]1,1[-上有零点吗?

(3):函数在区间上必须是连续的(图象能一笔画),从而引出零点存在性定理.

(三)反馈与讨论

1求下列函数零点:(1)352)(2--=x x x f ;(2)1)(3+=x x f ;

2已知32)(2+-=ax x x f 有一个零点为23

,则=)1(f ;

3已知二次函数332++=bx x y 恰有一个零点,则实数=b ;

4讨论函数x x x f 2)(2-=的零点个数.

5(课外思考讨论)你能改变零点存在性定理定的条件或结论,得到一些新的命题吗?

如1:加强定理的结论:若在区间[a ,b]上连续函数f (x )满足f(a)f(b)<0,是否意味着函数f(x)在[a,b]上恰有一个零点?

如2.将定理反过来:若连续函数f(x)在[a,b]上有一个零点,是否一定有f(a)f(b)<0? 如3:一般化:一个函数的零点是否都可由上述的定理进行判断?

(四)归纳整理,整体认识请回顾本节课所学知识内容有哪些?所涉及到的主要数学思想又有哪些?你还获得了什么?

新教材高中数学第三章函数3.2函数与方程、不等式之间的关系第1课时函数的零点及其与对应方程、不等式解集之

新教材高中数学第三章函数3.2函数与方程、不等式之间的关系第1课时函数的零点及其与对应方程、不等式解集之间的关系课 后课时精练新人教B 版必修第一册 A 级:“四基”巩固训练 一、选择题 1.下列说法中正确的有( ) ①f (x )=x +1,x ∈[-2,0]的零点为(-1,0); ②f (x )=x +1,x ∈[-2,0]的零点为-1; ③y =f (x )的零点,即y =f (x )的图像与x 轴的交点; ④y =f (x )的零点,即y =f (x )的图像与x 轴交点的横坐标. A .①③ B .②④ C .①④ D .②③ 答案 B 解析 根据函数零点的定义,f (x )=x +1,x ∈[-2,0]的零点为-1,函数y =f (x )的零点,即y =f (x )的图像与x 轴交点的横坐标.因此,说法②④正确.故选B. 2.函数f (x )=x 2 -x -1的零点有( ) A .0个 B .1个 C .2个 D .无数个 答案 C 解析 Δ=(-1)2 -4×1×(-1)=5>0,所以方程x 2 -x -1=0有两个不相等的实根,故函数f (x )=x 2 -x -1有2个零点. 3.函数f (x )=2x 2 -3x +1的零点是( ) A .-1 2,-1 B.12,1 C.1 2,-1 D .-12 ,1 答案 B 解析 方程2x 2-3x +1=0的两根分别为x 1=1,x 2=12,所以函数f (x )=2x 2 -3x +1的 零点是1 2 ,1. 4.函数y =x 2 -bx +1有一个零点,则b 的值为( )

A .2 B .-2 C .±2 D .3 答案 C 解析 因为函数有一个零点,所以Δ=b 2 -4=0,所以b =±2. 5.设a <-1,则关于x 的不等式a (x -a )? ?? ??x -1a <0的解集为( ) A .(-∞,a )∪? ?? ??1a ,+∞ B .(a ,+∞) C.? ????-∞,1a ∪(a ,+∞) D.? ?? ??-∞,1a 答案 A 解析 ∵a <-1,∴a (x -a )? ????x -1a <0?(x -a )? ?? ??x -1a >0.又a <-1,∴1a >a ,由函数f (x ) =(x -a )·? ?? ??x -1a 的图像可得所求不等式的解集为(-∞,a )∪? ?? ??1a ,+∞. 二、填空题 6.函数f (x )=? ???? 2x -4,x ∈[0,+∞, 2x 2 -3x -2,x ∈-∞,0的零点为________. 答案 2,-1 2 解析 当x ≥0时,由2x -4=0,得x =2;当x <0时,由2x 2 -3x -2=0,得x =-12或 2(舍去).故函数f (x )的零点是2,-1 2 . 7.已知函数f (x )=ax 2 -5x +2a +3的一个零点为0,则f (x )的单调递增区间为________. 答案 ? ????-∞,-53 解析 由已知,得f (0)=2a +3=0,∴a =-32,∴f (x )=-32x 2 -5x ,∴f (x )的单调递 增区间为? ????-∞,-53. 8.已知a 为常数,则函数f (x )=|x 2 -9|-a -2的零点个数最多为________. 答案 4 解析 令g (x )=|x 2 -9|,h (x )=a +2,在同一平面直角坐标系内画出两个函数的图像,如图所示.

方程的根与函数的零点

方程的根与函数的零点 教学重点:确定方程实数根的个数 教学难点:通过计算器或计算机做出函数的图象 教学方法:探讨法 教学过程: 引入问题 一元二次方程20(0)ax bx c a ++=≠的根与二次函数2 (0)y ax bx c a =++≠的图象有什么关系? 通过复习二者之间的关系引出新课(板书课题): 1.函数零点的定义: 对于函数()y f x =,我们把使()0f x =的实数x 叫做函数()y f x =的零点(zero point ).这样,函数()y f x =的零点就是方程()0f x =的实数根,也就是函数()y f x =的图象与x 轴的交点的横坐标,故有 2.一般结论 方程()0f x =有实数根?函数()y f x =的图象与x 轴有交点?函数()y f x =有零点 3.函数变号零点具有的性质 对于任意函数()y f x =,只要它的图象是连续不间断的,则有 (1)当它通过零点时(不是二重零点),函数值变号。如函数2()23f x x x =--的图象在零点1-的左边时,函数值取正号,当它通过第一个零点1-时,函数值由正变为负,再通过第二个零点3时,函数值又由负变成正(见教材第102页“探究”题)。 (2)在相邻两个零点之间所有的函数值保持同号。 4.注意点 (1)函数是否有零点是针对方程是否有实数根而言的,若方程没有实数根,则函数没有零点。 (2)如方程有二重实数根,可以称函数有二阶零点。 5.勘根定理 如果函数()y f x =在区间[,]a b 上的图象是连续不间断的一条曲线,并且有 ()()0f a f b ?<那么函数()y f x =在区间(,)a b 内有零点, 即存在(,)c a b ∈,使得()0f c =,这个c 也就是方程()0f x =的实数根。 例1.求函数()ln 26f x x x =+-的零点个数。 分析:求函数的零点个数实际上是判断方程有没有实数根,有几个实数根的方法,其步骤是:

教学案例《方程的根与函数的零点》

《方程的根与函数的零点》教学案例 肃南一中程斌斌 一、教学内容分析 本节课选自《普通高中课程标准实验教课书数学I必修本(A版)》第94-95页的第三章第一课时3.1.1方程的根与函数的的零点。 函数与方程是中学数学的重要内容,既是初等数学的基础,又是初等数学与高等数学的连接纽带。在现实生活注重理论与实践相结合的今天,函数与方程都有着十分重要的应用,再加上函数与方程还是中学数学四大数学思想之一,因此函数与方程在整个高中数学教学中占有非常重要的地位。 就本章而言,本节通过对二次函数的图象的研究判断一元二次方程根的存在性以及根的个数的判断建立一元二次方程的根与相应的二次函数的零点的联系,然后由特殊到一般,将其推广到一般方程与相应的函数的情形.它既揭示了初中一元二次方程与相应的二次函数的内在联系,也引出对函数知识的总结拓展。之后将函数零点与方程的根的关系在利用二分法解方程中(3.1.2)加以应用,通过建立函数模型以及模型的求解(3.2)更全面地体现函数与方程的关系,逐步建立起函数与方程的联系.渗透“方程与函数”思想。 总之,本节课渗透着重要的数学思想“特殊到一般的归纳思想”“方程与函数”和“数形结合”的思想,教好本节课可以为学好中学数学打下一个良好基础,因此教好本节是至关重要的。 二学生学习情况分析 地理位置:学生大多来自基层,学生接触面较窄,个性较活跃,所以开始可采用竞赛的形式调动学生积极性;学生数学基础的差异不大,但进一步钻研的精神相差较大,所以可适当对知识点进行拓展。 程度差异性:中低等程度的学生占大多数,程度较高的学生占少数。 知识、心理、能力储备:学生之前已经学习了函数的图象和性质,现在基本会画简单函数的图象,也会通过图象去研究理解函数的性质,这就为学生理解函数的零点提供了帮助,初步的数形结合知识也足以让学生直观理解函数零点的存在性,因此从学生熟悉的二次函数的图象入手介绍函数的零点,从认知规律上讲,应该是容易理解的。再者一元二次方程是初中的重要内容,学生应该有较好的基础对于它根的个数以及存在性学生比较熟悉,学生理解起来没有多大问题。这也为我们归纳函数的零点与方程的根联系提供了知识基础。但是学生对其他函数的图象与性质认识不深(比如三次函数),对于高次方程还不熟悉,我们缺乏更多类型的例子,让学生从特殊到一般归纳出函数与方程的内在联系,因此理解函数的零点、函数的零点与方程根的联系应该是学生学习的难点。加之函数零点的存在性的判定方法的表示抽象难懂。因此在教学中应加强师生互动,尽多的给学生动手的机会,让学生在实践中体验二者的联系,并充分提供不同类型的二次函数和相应的一元二次方程让学生研讨,从而直观地归纳、总结、分析出二者的联系。 三、设计思想 教学理念:培养学生学习数学的兴趣,学会严密思考,并从中找到乐趣 教学原则:注重各个层面的学生 教学方法:启发诱导式 四、教学目标

函数与方程、零点

函数与方程 一、考点聚焦 1.函数零点的概念 对于函数))((D x x f y ∈=,我们把使0)(=x f 的实数x 叫做函数)(x f y =的零点,注意以下几点: (1)函数的零点是一个实数,当函数的自变量取这个实数时,其函数值等于零。 (2)函数的零点也就是函数)(x f y =的图象与x 轴的交点的横坐标。 (3)一般我们只讨论函数的实数零点。 (4)求零点就是求方程0)(=x f 的实数根。 2、函数零点的判断 如果函数)(x f y =在区间],[b a 上的图象是连续不断的曲线,并且有0)()(

方程的根与函数的零点题型及解析

方程的根与函数的零点 题型及解析 标准化管理部编码-[99968T-6889628-J68568-1689N]

方程的根与函数的零点题型及解析1.求下列函数的零点 (1)f(x)=x3+1;(2)f(x)=;(3)y=﹣x2+3x+4;(4)y=x2+4x+4. 分析:根据函数零点的定义解f(x)=0,即可得到结论. 解:(1)由f(x)=x3+1=0得x=﹣1,即函数的零点为﹣1;(2)由f(x)==0 得x2+2x+1=0得(x+1)2=0,得x=﹣1,即函数的零点为﹣1.(3)由y=﹣x2+3x+4=0,可得(x﹣4)(x+1)=0,所以函数的零点为4,﹣1;(4)y=x2+4x+4,可得(x+2)2=0,所以函数的零点为﹣2. 2.①求函数f(x)=2x+x﹣3的零点的个数;②求函数f(x)=log 2 x﹣x+2的零点的个数;③求函数的零点个数是多少? 分析:①由题意可判断f(x)是定义域上的增函数,从而求零点的个数;②由题意可 得,函数y=log 2 x 的图象和直线y=x﹣2的交点个数,数形结合可得结论.③由函数 y=lnx 的图象与函数y=的图 象只有一个交点,可得函数f(x)=lnx-(1/x)的零点个数. 解:①∵函数f(x)=2x+x﹣3单调递增,又∵f(1)=0,故函数f(x)=2x+x﹣3 有且只有一个零点 ②函数f(x)=log 2x﹣x+2的零点的个数,即函数y=log 2 x 的图象和直线y=x﹣2 的交点个数,如图所示:故函数y=log 2 x 的图象(红色部分)和直线y=x﹣2(蓝 色部分)的交点个数为2,即函数f(x)=log 2 x﹣x+2的零点的个数为2;③函数 f(x)=lnx-(1/x)的零点个数就是函数y=lnx的图象与函数y=1/x的图象 的 交点的个数,由函数y=lnx 的图象与函数y=1/x的图象只有一个交点,如图 所示, 可得函数f(x)=lnx-(1/x)的零点个数是1 3.①已知方程x2﹣3x+a=0在区间(2,3)内有一个零点,求实数a的取值范围 ②已知a是实数,函数f(x)=﹣x2+ax﹣3在区间(0,1)与(2,4)上各有一个 零点,求a的取值. ③已知函数f(x)=x2﹣2ax+4在区间(1,2)上有且只有一个零点,求a的取值范围 分析:①由已知,函数f(x)在区间(2,3)内有一个零点,它的对称轴为x=3/2,得出不等式组,解出即可; ②若函数f(x)=﹣x2+ax﹣3在区间(0,1)与(2,4)上各有一个零点,则f(0)<0,f(1)>0,f(2)>0,f(4)<0,解得答案;③若函数f(x)=x2﹣2ax+4只有一个零点,则△=0,经检验不符合条件;则函数f(x)=x2﹣2ax+4有两个零点,进而f (1)f(2)<0,解得答案 解:①若函数f(x)=﹣x2+ax﹣3在区间(0,1)与(2,4)上各有一个零点,则f (0)<0,f(1)>0,f(2)>0,f(4)<0,即-3<0,a-4>0,2a-7>0,4a-19<0,解得:a∈(4,19/4);②∵令f(x)=x2﹣3x+a,它的对称轴为x=3/2,∴函数f (x)在区间(2,3)单调递增,∵方程x2﹣3x+a=0在区间(2,3)内有一个零点,∴函数f(x)在区间(2,3)内与x轴有一个交点,根据零点存在性定理得出:f(2)<0,f(3)>0,即a-2<0,9-9+a>0,解得0<a<2;③解:若函数f(x)=x2﹣2ax+4只有

高中数学《方程的根与函数的零点》公开课优秀教学设计一

2016年全国高中青年数学教师优秀课展示与培训活动交流课案 课 题:3.1.1 方程的根与函数的零点 教 材:人教A 版高中数学·必修1 【教材分析】 本节课的内容是人教版教材必修1第三章第一节,属于概念定理课。“函数与方程”这个单元分为两节,第一节:“方程的根与函数的零点”,第二节:“用二分法求方程的近似解”。 第一节的主要内容有三个:一是通过学生已学过的一元二次方程、二次函数知识,引出零点概念;二是进一步让学生理解:“函数()y f x =零点就是方程()0f x =的实数根,即函数 ()y f x =的图象与x 轴的交点的横坐标”;三是引导学生发现连续函数在某个区间上存在零 点的判定方法:如果函数()y f x =在区间[],a b 上图象是连续不断的一条曲线,并且有 ()()0f a f b ?<,那么,函数()y f x =在区间(),a b 内有零点,即存在(),c a b ∈,使得()0f c =,这个c 也就是方程()0f x =的根。这些内容是求方程近似解的基础。本节课的 教学主要是围绕如何用函数的思想解决方程的相关问题展开,从而使之函数与方程紧密联系在一起。为后续学习二分法求方程的近似解奠定基础,本节内容起着承上启下的作用,承接以前学过的方程知识,启下为下节内容学习二分法打基础。 【教学目标】 1.理解函数零点的概念;掌握零点存在性定理,会求简单函数的零点。 2.通过体验零点概念的形成过程、探究零点存在的判定方法,提高学生善于应用所学知识研究新问题的能力。 3.通过本节课的学习,学生能从“数”“形”两个层面理解“函数零点”这一概念,进而掌握“数形结合”的方法。 【学情分析】 1.学生具备的知识与能力 (1)初中已经学过一元二次方程的根、一元二次函数的图象与x 轴的交点横坐标之间的关系。 (2)从具体到抽象,从特殊到一般的认知规律。 2. 学生欠缺的知识与能力 (1)超越函数的相关计算及其图象性质. (2)通过对具体实例的探究,归纳概括发现的结论或规律,并将其用准确的数学语言表达出

方程的根与函数的零点练习答案

方程的根与函数零点综合练习题答案 一、选择题 1.下列函数中在区间[1,2]上有零点的是( ) A .f (x )=3x 2-4x +5 B .f (x )=x 3-5x -5 C .f (x )=ln x -3x +6 D .f (x )=e x +3x -6 2.设函数f (x )=1 3 x -lnx (x >0)则y =f (x )( ) A .在区间????1e ,1,(1,e )内均有零点 B .在区间??? ?1 e ,1, (1,e )内均无零点 C .在区间????1e ,1内有零点;在区间(1,e )内无零点D .在区间????1 e ,1内无零点,在区间(1,e )内有零点 3.函数f (x )=e x +x -2的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1) D .(1,2) 4.函数y =3 x -1x 2的一个零点是( ) A .-1 B .1 C .(-1,0) D .(1,0) 5.若函数f (x )是奇函数,且有三个零点x 1、x 2、x 3,则x 1+x 2+x 3的值为( ) A .-1 B .0 C .3 D .不确定 6.已知f (x )=-x -x 3,x ∈[a ,b ],且f (a )·f (b )<0,则f (x )=0在[a ,b ]内( ) A .至少有一实数根 B .至多有一实数根 C .没有实数根 D .有惟一实数根 7.若函数)(x f y =在区间[a ,b ]上的图象为连续不断的一条曲线,则下列说法正确的是( ) A .若0)()(>b f a f ,不存在实数),(b a c ∈使得0)(=c f ; B .若0)()(b f a f ,有可能存在实数),(b a c ∈使得0)(=c f ; D .若0)()(0,f (2)<0,则f (x )在(1,2)上零点的个数为( ) A .至多有一个 B .有一个或两个 C .有且仅有一个 D .一个也没有 9.函数f (x )=2x -log 12 x 的零点所在的区间为( ) A.??? ?0,1 4 B.????14,12 C.??? ?1 2,1 D .(1,2) 10.根据表格中的数据,可以判定方程e x -x -2=0的一个根所在的区间为( ) A.(-1,0) B 11.若函数f (x )=ax +b 的零点是2,则函数g (x )=bx 2-ax 的零点是( )

方程的根与函数的零点》说课稿

《方程的根与函数的零点》说课稿 1教材分析 1.1地位与作用 本节内容为人教版《普通高中课程标准实验教科书》A版必修1第三章《函数的应用》第一节《函数与方程》的第一课时,主要内容是函数零点概念、函数零点与相应方程根的关系、函数零点存在性定理,是一节概念课. 新课标教材新增了二分法,也因而设置了本节课.所以本节课首先是为“用二分法求方程的近似解”打基础,零点概念与零点存在性定理的是二分法的必备知识. 之前的教材虽然没有设置本节内容,但方程的根与函数的关系从来是重要且无法回避的,所以将本节课直接编入教材很有必要.本节课也就不仅为二分法的学习做准备,而且为方程与函数提供了零点这个连接点,从而揭示了两者之间的本质联系,这种联系正是“函数与方程思想”的理论基础.用函数的观点研究方程,本质上就是将局部的问题放在整体中研究,将静态的结果放在动态的过程中研究,这为今后进一步学习函数与不等式等其它知识的联系奠定了坚实的基础. 从研究方法而言,零点概念的形成和零点存在性定理的发现,符合

从特殊到一般的认识规律,有利于培养学生的概括归纳能力,也为数形结合思想提供了广阔的平台. 1.2教学重点 基于上述分析,确定本节的教学重点是:了解函数零点概念,掌握函数零点存在性定理. 2学情分析 2.1学生具备必要的知识与心理基础. 通过前面的学习,学生己经了解一些基本初等函数的模型,具备一定的看图识图能力,这为本节课利用函数图象,判断方程根的存在性提供了一定的知识基础. 方程是初中数学的重要内容,用所学的函数知识解决方程问题,扩充方程的种类,这是学生乐于接受的,故而学生具备心理与情感基础. 2.2学生缺乏函数与方程联系的观点. 高一学生在函数的学习中,常表现出不适,主要是数形结合与抽象思维尚不能胜任.具体表现为将函数孤立起来,认识不到函数在高中数学中的核心地位. 例如一元二次方程根的分布问题,学生自然会想到韦达定理,而不是看二次函数的图象.函数与方程相联系的观点的建立,函数应用的意识的初步树立,就成

方程的根与函数的零点教案(新)

《方程的根与函数的零点》教案 一、课题:方程的根与函数的零点 二、课型:新授课 三、课时安排:1课时 四、教学目标:以一元二次函数的图象与对应的一元二次方程的 关系为突破口, 探究方程的根与函数的零点的关系式.发现并掌握在某区间上图象连续的函数存在零点的判定方法,探究过程中体验发现乐趣,体会数形结合的数学思想,从特殊到一般的归纳思想,培养学生分析问题、解决问题的能力. 五、教学重点:函数零点的概念与函数零点存在性. 六、教学难点:探究函数零点存在性. 七、教学内容分析: 函数与方程是中学数学的重要内容,既是 初等数学的 基础,又是初等数学与高等数学的连接纽带,也是中学数学四大数学思想之一,因此函数与方程便自然地成为了高考考查的焦点,在整个高中数学中占有非常重要的地位. 八、教学方法:启发诱导式. 九、教学工具:黑板与多媒体. 十、教学步骤: 1.导入新课 解方程比赛: (学生口答) (逐层加深) (无法解) 2.引入课题 以下一元二次方程的实数根与相应的二次函数的图像有什么关系? (1) (2) (3) 通过一元二次方程的实数根与相应的二次函数的图像可得出结论:一元二次方程的实数根就是与之相应的一元二次函数的图像与X 轴的交点的横坐标. 从而引出函数零点的概念:对于函数y=f(x), 使f(x)=0的实数x 叫做函数 y=f(x)的零点. 注意:(1)“零点”不是一个点; (2)函数零点的意义:就是一元二次方程的实数根,亦是一元二 (3)等价关系:方程y=f(x)的图象与x 函数y=f(x)有零点. 通过上面的关系式的探讨,求函数零点主要方法有:(1)定义法(求方程的实数根);(2)图象法(利用函数图象确定). ()1320 x +=求下列方程的根: 032)2(2 =--x x 0 2)3(3=-+x x (4)ln 260 x x +-=0 322=--x x 322--=x x y 0122=+-x x 122+-=x x y 0322=+-x x 322+-=x x y

函数与方程的含参零点问题

函数与方程的含参零点问题 ?方法导读 函数与方程问题常以基本初等函数或分段函数为载体,考查函数零点的存在区间、确定零点的个数、参数的取值范围、方程的根或函数图象的交点等问题.函数与方程不仅考查考生计算、画图等方面的能力,还考查考生函数与方程、数形结合及转化化归等数学思想的综合应用.在解决函数零点问题时,既要注意利用函数的图象,也要注意根据函数的零点存在性定理、函数的性质等进行相关的计算,把数与形紧密结合起来. ?高考真题 【·天津卷理·】已知,函数,若关于的方程 恰有个互异的实数解,则的取值范围是______. ?解题策略 本题属于分段函数的零点问题,所以需要分类讨论: 当时,由,推出, 当时,由,推出, 再分别画出它们的图象,由图象可知, 当直线和的图象有两个不同的交点,而直线和 的图象无交点时满足条件. ?解题过程 当时,由,得, 当时,由,得,

令,作出直线,函数的图象如图所示, 的最大值为,由图象可知,若恰有个互异的实数解,则 ,得. ?解题分析 1.求函数零点问题,是高考试卷中的热点问题,这类问题要通过学生的直观想 象能力,画出函数图象求解比较直观、易理解; 2.本题由求解问题,通过变形转化为求和 的问题,然后通过图象可以顺利求解; 3.分类讨论思想贯穿整个高中阶段的数学学习中,在每年的高考试卷做题中都 会出现,尤其是解决综合题型时,很多学生不知道该如何分类讨论,所以学生在 平时的训练中要有意识的加以培养和应用. ?拓展推广 1.判断函数零点个数的常见方法 (1)直接法:解方程,方程有几个解,函数就有几个零点;

(2)图象法:画出函数的图象,函数的图象与轴的交点个数即为函数的零点个数; (3)将函数拆成两个常见函数和的差,从而 ,则函数的零点个数即为函数与函数 的图象的交点个数; (4)二次函数的零点问题,通过相应的二次方程的判别式来判断. 2.判断函数在某个区间上是否存在零点的方法 (1)解方程,当对应方程易解时,可通过解方程,看方程是否有根落在给定区间 上; (2)利用零点存在性定理进行判断; (3)画出函数图象,通过观察图象与轴在给定区间上是否有交点来判断. 3.已知函数有零点(方程有根)求参数值(取值范围)常用的方法 (1)把函数零点问题转化为方程根的问题 利用函数的零点方程的根,把求函数零点的相关问题转化为求方程根的问题,通过方程的根所满足的条件建立不等式来解决问题. (2)把函数零点问题转化为函数图象与坐标轴的交点问题 利用函数的零点函数的图象与轴的交点,把函数零点的相关问题转化为图象与坐标轴的交点问题,再利用数形结合的思想方法来解决问题. (3)把零点问题分离变量后转化为函数值域问题 将函数零点问题先转化为方程根的问题,然后进行变量分离,将参数分离出来转化为求函数值域问题,这种方法思路简洁,学生容易想到. (4)把函数零点问题转化为两个函数图象的交点问题

《方程的根与函数的零点》测试题

《3.1.1 方程的根与函数的零点》测试题 一、选择题 1.(2012天津)函数在区间(0,1)内的零点个数是( ). A.0 B.1 C.2 D.3 考查目的:考查函数零点的概念与零点存在性定理的应用. 答案:B. 解析:∵函数在区间(0,1)上连续且单调递增,又∵,,∴根据零点存在性定理可知,在区间内函数零点的个数有1个,答案选B. 2.(2010浙江)已知是函数的一个零点.若,,则( ). A. B. C. D. 考查目的:考查函数零点的概念、函数的性质和数形结合思想. 答案:B. 解析:(方法1)由得,∴.在同一直角坐标系中,作出函数,的图象,观察图象可知,当时,;当时,,∴,. (方法2)∵函数、在上均为增函数,∴函数在上为增函数,∴由,得,由,得. 3.若是方程的解,则属于区间( ).

A. B. C. D. 考查目的:考查函数零点的存在性定理. 答案:D. 解析:构造函数,由,知,属于区间(1.75,2). 二、填空题 4.若函数的零点位于区间内,则 . 考查目的:考查函数零点的存在性定理. 答案:2. 解析:∵函数在定义域上是增函数,∴函数在区间上只有一个零点. ∵,,,∴函数的零点位于区间内,∴. 5.若函数在区间(-2,0)与(1,2)内各有一个零点,则实数的取值范围. 考查目的:考查函数零点的概念,函数零点的存在性定理和数形结合思想. 答案:. 解析:由题意画出函数的草图,易得,即,解得. 6.已知函数,设函数有两个不同的零点,则实数 的取值范围是. 考查目的:考查函数零点的概念、函数与方程的关系和数形结合思想. 答案:.

解析:函数有两个不同的零点,即方程有两个不同的实数根,画出函数图象与直线,观察图象可得满足题意的实数的取值范围是. 三、解答题 7.利用函数图象判断下列方程有没有根,有几个根? ⑴; ⑵. 考查目的:考查方程有实数根等价于函数的图象与轴交点的情况. 解析:⑴方程可化为,作出函数的图象,与轴有两个交点,故原方程有两个实数根; ⑵方程可化为,作出函数的图象,开口向上,顶点坐标为,与轴没有交点,故原方程没有实数根. 8.求出下列函数零点所在的区间. ⑴;⑵. 考查目的:考查函数零点的存在性定理. 解析:⑴∵函数的定义域为,且在定义域上单调递增,在 上最多只有一个零点.又∵,, ,∴函数的零点所在的区间为. ⑵∵函数的定义域为R,且在定义域上单调递减,∴函数在R上最多只有一个零点,又∵,,,∴函数零点所在的区间为.

函数与方程(零点问题)

§2.8 函数与方程 函数零点问题 学习目标;(1)理解函数零点定义,会应用函数零点存在性定理 (2)体会函数与方程的转化思想 一 知识导练 1. (必修1 P43练习3改编) 函数32()2f x x x x =-+的零点是____________. 解析:解方程x3-2x2+x =0得x =0或x =1,所以函数的零点是0或1. 导航:函数零点的求解 2.(必修1 P111复习13改编)已知函数()23x f x x =-,则函数f(x)的零点个数是____. 解析:解法1:令f(x)=0,则2x =3x ,在同一坐标系中分别作出y =2x 和y =3x 的图象,由图知函数y =2x 和y =3x 的图象有2个交点,所以函数f(x)的零点个数为2. 解法2:由f(0)>0,f(1)<0,f(3)<0,f(4)>0,…,所以有2个零点,分别在区间(0,1)和(3,4)内. 导航:函数零点个数的判定 3.给出以下三个结论:(1)0一定是奇函数的一个零点; (2)单调函数有且仅有一个零点; (3)周期函数一定有无穷多个零点. 其中正确的结论共有_____个。 4.(必修1 P97习题8)若关于x 的方程27(13)20x m x m -+--=的一个根在区间(0,1)上,另一个在区间(1,2)上,则实数m 的取值范围为_____________. 解析:设f(x)=7x2-(m +13)x -m -2,则???? ?f (0)>0,f (1)<0,f (2)>0,解得-41. 要点回顾:

方程的根与函数的零点说课稿

《方程的根与函数的零点》说课稿 1 教材分析 1.1 地位与作用 本节内容为人教版《普通高中课程标准实验教科书》A版必修1第三章《函数的应用》第一节《函数与方程》的第一课时,主要内容是函数零点概念、函数零点与相应方程根的关系、函数零点存在性定理,是一节概念课. 新课标教材新增了二分法,也因而设置了本节课.所以本节课首先是为“用二分法求方程的近似解”打基础,零点概念与零点存在性定理的是二分法的必备知识.之前的教材虽然没有设置本节内容,但方程的根与函数的关系从来是重要且无法回避的,所以将本节课直接编入教材很有必要.本节课也就不仅为二分法的学习做准备,而且为方程与函数提供了零点这个连接点,从而揭示了两者之间的本质联系,这种联系正是“函数与方程思想”的理论基础.用函数的观点研究方程,本质上就是将局部的问题放在整体中研究,将静态的结果放在动态的过程中研究,这为今后进一步学习函数与不等式等其它知识的联系奠定了坚实的基础. 从研究方法而言,零点概念的形成和零点存在性定理的发现,符合从特殊到一般的认识规律,有利于培养学生的概括归纳能力,也为数形结合思想提供了广阔的平台. 1.2 教学重点 基于上述分析,确定本节的教学重点是:了解函数零点概念,掌握函数零点存在性定理. 2 学情分析 2.1 学生具备必要的知识与心理基础. 通过前面的学习,学生已经了解一些基本初等函数的模型,具备一定的看图识图能力,这为本节课利用函数图象,判断方程根的存在性提供了一定的知识基础.方程是初中数学的重要内容,用所学的函数知识解决方程问题,扩充方程的种类,这是学生乐于接受的,故而学生具备心理与情感基础. 2.2学生缺乏函数与方程联系的观点. 高一学生在函数的学习中,常表现出不适,主要是数形结合与抽象思维尚不能胜任.具体表现为将函数孤立起来,认识不到函数在高中数学中的核心地位. 例如一元二次方程根的分布问题,学生自然会想到韦达定理,而不是看二次函数的图象.函数与方程相联系的观点的建立,函数应用的意识的初步树立,就成了本节课必须承载的任务. 2.3直观体验与准确理解定理的矛盾. 从方程根的角度理解函数零点,学生并不会觉得困难.而用函数来确定方程根的个数和大致范围,则需要适应.换言之,零点存在性定理的获得与应用,必须让学生从一定量的具体案例中操作感知,通过更多的举例来验证.

函数与方程(零点)

§1-10 函数的应用---根与零点及二分法 【课前预习】阅读教材P86-90完成下面填空 1.方程()0=x f 有实根 ? ? 7.若()y f x =的最小值为1,则()1y f x =-的零点个数为 ( ) A .0 B .1 C .0或l D .不确定

8.已知)(x f 唯一的零点在区间(1,3)、(1,4)、(1,5)内,那么下面命题错误的( ) A .函数)(x f 在(1,2)或[)2,3内有零点 B .函数)(x f 在(3,5)内无零点 C .函数)(x f 在(2,5)内有零点 D .函数)(x f 在(2,4)内不一定有零点 9.若函数()f x 在[],a b 上连续,且有()()0f a f b >.则函数()f x 在[],a b 上 ( ) A .一定没有零点 B .至少有一个零点C .只有一个零点 D .零点情况不确定 10.如果二次函数)3(2 +++=m mx x y 有两个不同的零点,则m 的取值范围是( ) A .()6,2- B .[]6,2- C .{}6,2- D .()(),26,-∞-+∞ 11.方程22lg x x -=的实数根的个数是 ( ) A .1 B .2 C .3 D .无数个 12.二次函数()f x =ax 2 +bx+c 中,ac<0则函数的零点个数是 13.若()f x 的图像关于y 轴对称,且()f x =0有三个零点,则这三个零点之和等于 14.若()f x =???--≤≥--2 1,11 2,12 x x x x x 或则函数g(x)= ()f x -x 的零点为 15.已知()f x 是R 上最小正周期为2的周期函数,且当0≤x<2时,()f x =x 3 -x,则函数y=()f x 的图像在区间[0,6]上与x 轴的交点的个数为 16.已知函数()f x =4x +m.2x +1仅有一个零点,求m 的取值范围,并求出零点 17.若函数()f x =(m-2)x 2 +mx+(2m+1)的两个零点分别在区间(-1,0)和区间(1,2)内,则的取值范围是( ) A .(-21,41) B.(- 41,21) C.( 41,21) D.[ 41,2 1] 18.数()f x =ax+b(a ≠0)有一个零点是2,那么函数g(x)=bx 2 -ax 的零点是 19.数()f x =x 3 -3x+a 有3个不同的零点,则实数a 的取值范围是( ) A .(-2,2) B. [-2,2] C.(-∞,1) D. (1,+∞) 20.=cosx 在(-∞,+∞)内 ( ) A .没有根 B.有且仅有一个根 C. 有且仅有两个根 D. 有无穷多个根 21.()ln 2f x x x =-+的零点个数为 。 [学后反思]____________________________________________________

3.1.1方程的根与函数的零点教案(优秀教案)

《方程的根与函数的零点》的助学案 高一(8)班 授课教师 学习目标:1.掌握函数零点的概念;了解函数零点与方程根的关系; 2零点的概念及零点存在性的判定 学习难点:探究判断函数的零点个数和所在区间的方法. 预习案:先来画出几个具体的一元二次方程对应的二次函数的图象,并观察二次函数与x 轴交点个数?○ 1方程0322=--x x 与函数322 --=x x y ;○2方程0122=+-x x 与函数122+-=x x y ;○3方程0322=+-x x 与函数322+-=x x y 填下表? 函数 322--=x x y 122+-=x x y 322+-=x x y 函数图象 函数与x 轴交点 f(x)=0的根 探究案: 探究1:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。 注意:①函数零点不是一个点,而是具体的自变量的取值;②存在性一致:方程f(x)=0有实数根?函数y =f(x)的图象与x 轴有交点?函数y =f(x)有零点. 零点是针对函数而言的,根是针对方程而言的。 练习:求函数x x y 43 -=的零点

是不是所有的二次函数)0(2 ≠++=a c bx ax y 都有零点? ac b 42-=? 02=++c bx ax 的实根 )0(2≠++=a c bx ax y 图像与x 轴交点 0 (2≠++=a c bx ax y 有几个零点 ?>0 ?=0 ?<0 探究2:观察二次函数32)(2--=x x x f 的图象: ○1在区间()1,2-上有零点吗?______;=-)2(f _______, =)1(f _______,)2(-f ?)1(f _____0 (<或>). ○2 在区间()4,2上有零点______;)2(f ?)4(f ____0 (<或>). 观察下面函数)(x f y =的图象 ○1 在区间()b a ,上______(有/无)零点;)(a f ?)(b f _____0(<或>). ○2 在区间()c b ,上______(有/无)零点;)(b f ?)(c f _____0(<或>). ○3 在区间()d c ,上______(有/无)零点;)(c f ?)(d f _____0(<或>). ○4()a f ?()c f _____0(<或>).在区间()c a ,上______(有/无)零点? ○5()()d f a f ? 0(<或>)。 思考:若函数)(x f y =满足()()0?n f m f ,在区间],[n m 上一定有零点吗? 由以上两步探索,你可以得出什么样的结论? 训练案

导数函数与零点及交点和方程的根问题

导数函数与零点及交点和方程的根问题 21.[2014·新课标全国卷Ⅱ] 已知函数f(x)=x 3-3x 2+ax +2,曲线y =f(x)在点(0,2)处的切线与x 轴交点的横坐标为-2. (1)求a ; (2)证明:当k <1时,曲线y =f(x)与直线y =kx -2只有一个交点. 2015年出题动向:利用导数作为解题工具,解决函数的零点问题。同时掌握函数与方程、数形结合、化归的数学思想方法. 练习:1.设a 为实数,函数32()f x x x x a =--+. (Ⅰ)求()f x 的极值; (Ⅱ)当a 在什么范围内取值时,曲线()y f x = 与x 轴仅有一个交点 变式一、(引入参数) 讨论函数()()R a a x x x x f ∈--+-=109623零点的个数? 变式二、(方程问题)若方程[]31109623,在a x x x =-+-上有实数解,求a 的取值范围.

2已知函数2()8,()6ln .f x x x g x x m =-+=+ (I )求()f x 在区间[],1t t +上的最大值();h t (II )是否存在实数,m 使得()y f x =的图象与()y g x =的图象有且只有三个不同的交点?若存在,求出m 的取值范围;若不存在,说明理由。 3.(本小题满分12分)已知函数3()31,0f x x ax a =--≠ ()I 求()f x 的单调区间; ()II 若()f x 在1x =-处取得极值, 直线y=m 与()y f x =的图象有三个不同的交点,求m 的取值范围。 4、设函数 321()223 f x x ax ax =-+--(a 为常数),且()f x 在[1,2]上单调递减。 (1)求实数a 的取值范围; (2)当a 取得最大值时,关于x 的方程2()7f x x x m =--有3个 不同的根,求实数m 的取值范围。

函数与方程(零点)

§1-10 函数的应用---根与零点及二分法 【课前预习】阅读教材P86-90完成下面填空 1.方程()0=x f 有实根 ? ? 2.零点定理:如果函数()x f y =在区间 上的图象是 的一条曲线,并且 有 ,那么,函数()x f y =在区间 内有零点,即存在()b a c ,∈,使得 ,这个c 也就是方程()0=x f 的根. 3.二分法求函数()x f y =零点近似值的步骤: ⑴确定区间 ,验证 ,给定 。 ⑵求 ; ⑶计算 ;①若 ,则 ; ②若 ,则令 ; ③若 ,则令 。 ⑷判断 【课初5分钟】课前完成下列练习,课前5分钟回答下列问题 1.下列函数中有2个零点的是 ( ) A .lg y x = B .2x y = C .2y x = D .1y x =- 2.若函数()f x 在区间[],a b 上为减函数,则()f x 在[],a b 上 ( ) A .至少有一个零点 B .只有一个零点 C .没有零点 D .至多有一个零点 3.函数)(x f =-x 2+5x-6的零点是 4. 函数)(x f =x 21-( 21)x 的零点个数 5.函数)(x f =x 3-x 2-x+1在[0,2]上 零点 6.下列函数图像与x 轴均有交点,但不宜用二分法求函数零点的是( ) A B C D 7.若()y f x =的最小值为1,则()1y f x =-的零点个数为 ( ) A .0 B .1 C .0或l D .不确定 8.已知)(x f 唯一的零点在区间(1,3)、(1,4)、(1,5)内,那么下面命题错误的( ) A .函数)(x f 在(1,2)或[)2,3内有零点 B .函数)(x f 在(3,5)内无零点 C .函数)(x f 在(2,5)内有零点 D .函数)(x f 在(2,4)内不一定有零点 9.若函数()f x 在[],a b 上连续,且有()()0f a f b >.则函数()f x 在[],a b 上 ( )

必修1《函数的零点与方程的根》(有答案)

《函数的零点与方程的根》专题复习 知识点梳理 函数的零点:对于函数)(x f y =,把使0)(=x f 的实数x 叫做函数)(x f y =的零点。 零点存在性定理:如果函数 )(x f y =在区间],[b a 上的图象是连续不断的一条曲线,并且有0)()(

相关文档
最新文档