高分子材料概论-工程塑料

高分子材料概论-工程塑料
高分子材料概论-工程塑料

第二章:高分子材料概论

2.3工程塑料

主要内容:2.3.1 工程塑料概述

2.3.2 工程塑料的分类

2.3.3 工程塑料的主要特征

2.3.4 重要的工程塑料及其应用

2.3.5 思考题

2.3.1 工程塑料概述

工程塑料,顾名思义就是工程上应用的塑料或可作工程材料的塑料。较为科学的定义是:工程塑料一般是指可作为结构材料使用,具有优异的力学性能、热性能、尺寸稳定性或能满足特殊要求的某些塑料。一般上,工程塑料的拉伸强度大于49MPa,抗拉和弯曲模量超过

2GPa,在一定载荷作用下能于100oC以上长期使用。工程塑料是随着汽车工业、电子电气工业、信息技术、航空航天以及主要是国防军工的特殊要求在20世纪50年代以后新兴的高分子塑料材料。现代工程塑料不仅仅是代替金属,而且更加看重它具有金属所没有的特殊性能,是一种独立的而且是金属无法取代的高分子材料。比如它的密度小,质轻,比强度高,耐化学腐蚀,耐磨,尺

的。所以工程塑料与金属材料或其它非金属材料不是谁替代谁的问题,而是人类使用的一类特种材料,是材料的一个进步。

2.3.2 工程塑料的分类

工程塑料的分类方法主要有如下两种:

一、按照聚合物的结构单元和重复单元特征分类,以便于命名:

二、按长期连续使用温度划分。

这种分类为大多数人采用,一般长期使用温度在100-150℃范围内的,称为“通用工程塑料”,人们将聚酰胺(PA)、聚甲醛(POM)、聚碳酸酯(PC)、聚酯(PET和PBT)、聚苯醚(PPO)五大类为通用工程塑料;把长期使用温度在150℃以上的叫特种工程塑料或超级工程塑料。

2.3.3 工程塑料的主要特征

工程塑料同其它高分子材料一样,其物理机械性能和其它性能,主要与高分子的结构有关,与加工过程有关。无论通用工程塑料还是特种工程塑料,它们具有一些共同的特性,如下:

(1)质量轻、相对密度小。相对于金属而言,工程塑料的相对密度一般在1.0-2.0之间,相当于钢铁的1/4—1/8,相当于铝的1/2左右。对于使用工程蛆料替代一些传统的金属材料作结构部件时,可以减轻自重,用于航空飞行器、车辆、船舶、运动器材等,在减少损耗,降低能耗等方面有着特殊的意义。

(2)较高的比强度。以拉伸强度为例,强度与相对密度的比值,一般可达1500-1700以上,更有甚者,可达4000,相对于合金钢1600和铝的1500来说,增强的工程塑料足以与之抗衡。

突出的耐磨和自润滑性能。用工程塑料作摩擦零件,可以在干摩擦和各种液体、边界摩擦的条件下,正常工作,与耐磨金屑合金相比,磨耗量低于1:5。氟塑料尤佳。

(4)优良的机械性能。在较宽的温度范围内,许多工程塑料,尤其是增强的工程塑料,有优异的抗冲击和耐疲劳性能。

(5)优良的电绝缘性能。几乎所有的工程塑料都有优良的电绝缘性能和耐电弧的特性,可以跻身优良绝缘材料行列。

(6)化学稳定性能。这些塑料对酸、碱和一般有机溶剂都有很好的抗腐蚀性。

(7)优良的吸震、消声和对异物的埋没性能。工程塑料作为运动零部件使用时,没有像金属撞击的噪声,有优良的吸震消声性能。而对于有磨粒或杂质存在的条件下,作为摩擦零件,可以埋没异物,而不像金属之间可能会咬死或刮伤。

(8)较好的尺寸稳定性。

(9)有较高的耐热性。与通用塑料或其它高分子材料相比,工程塑料特点在于其耐热性能优异。

(10)良好的加工性能。工程塑料可以在较低的温度下(通常400oC以下),采用注塑、挤出、吹塑等方法进行加工。

重要的工程塑料及其应用

一、聚酰胺(PA)

聚酰胺又叫尼龙,是高分子主链上含有酰胺键结构的高聚物,一般可由内酰胺开环聚合或者氨基酸或者对应二酸二胺缩聚而得,属于逐步聚合反应。其命名原则是以单体中所含胺基的碳数目和羧基的碳数目来表示的。若是氨基酸或内酰胺则以单体中总的碳数来表示。如尼龙12表示是12个碳的氨基酸聚合而成,尼龙610表示由6个碳的二胺和10个碳的二酸缩合成的。在整个工程塑料中,尼龙的产量和消费居于首位,大约占30%左右。聚酰胺总产量的15%-20%左右用作工程塑料,而在聚酰胺工程塑料中,80%-90%是尼龙6和尼龙66。

1)聚酰胺的主要种类

除了尼龙6和尼龙66外。其它的聚酰胺类则有PA9、PA12、PA11、PA1010、PA86、PA610、PA612、PA46、PA1212、PA1313,还有半芳香族尼龙,尼龙MXD6,尼龙6T、尼龙9T,全芳香族尼龙PPTA和共聚尼龙等。

注:半芳香族尼龙指二酸或二胺中有一个是芳香族的;全芳香族尼龙指二酸和二胺都是芳香族的。

2)聚酰胺的主要特性

(1)聚酰胺树脂是高结晶性的,力学性能优良,韧性好,蠕变变形小,具有耐寒、耐汽油的特性,可在-40—100oC内长期使用,使它成为能够满足汽车发动机部件要求的材料。(2)质轻耐磨,易于加工,使得尼龙有30%-45%左右消费在汽车和其它车辆的电气和车体部件上,其摩

1/3,是酚醛树脂的1/4。(3)尼龙具有一定的阻燃性,能够自熄,又有良好的电绝缘性能,有1/3—1/4的消费用于电气和电力工业上。(4)尼龙制品运转时吸震、减噪,广泛应用于轴承、齿乾、轴瓦等滑动或啮合的部件。(5)尼龙的挤出膜耐油隔氧、耐刺穿、耐低温冲击,是优良的冷冻制品包装材料。(6)但是,聚酰胺具有吸水率高、制品尺寸稳定性较差、热变形温度低、不耐酸等不足。

3)聚酰胺的主要应用领域

(1)汽车工业利用尼龙的高强度、耐温和耐环境变化的特性,能经受汽车上使用的汽油、机油、制动油、润滑油、蓄电池液、冷却液的侵蚀,是汽车发动机传动件和受力件的理想材料。一般用PA6、PA66及其玻璃纤维增强的材料,用于汽车的发动机部件,如汽缸盖、进气管、散热器、空气过滤器、燃油过滤器、加油器盖、沉淀器、贮油缸、冷却风扇、电机电刷、操纵套杆等。以PA6为主体的阻燃尼龙,可用于汽车的电气部件,如接插件、配线、保险盒、熔断器、接线柱接钮、开关、电线包覆、卡套等等。

(2)铁路运输业铁路用的材料,如铁轨枕垫,要求耐受环境和气候的变化,耐冲击,一般使用增韧PA66。铁轨槽板、轨端绝缘板,要求良好的刚性,常用P66合金。此外尼龙还用于铁路电气讯号装臵、机车转向器和电路接线柱等。

(3)电子电气工业随着电子通讯设备的小型化、轻型化,对工程塑料的需求越来越大。空调、彩电、程控交换机、复印机、计算机的各种部件以及电话、电

龙。家用电器如电饭煲、微波炉、干燥机、电熨斗、电吹风、VCD、摄像机,要求尺寸稳定、外形美观、耐冲击,一般使用PA6、PA05及其合金。

(4)机械工业在矿山机械、造纸、纺织、橡塑加工、食品加工等工业用机械中,为实现机械设备的小型化,低噪声、抗腐蚀和抗恶劣环境以及使用寿命长等技术进步,必须使用高强度、耐冲击、耐磨损、低摩擦系数、低噪声的材料,这些正是尼龙的优点所在。

(5)电动工具行业电动工具的外壳材料,要求耐热、绝缘、高强度,有一定刚性、尺寸稳定,用增强的PA6或PA6的合金,可以胜任。电动工具的工具箱可用尼龙,制造结构较为复杂的箱体。

(6)包装工业尼龙薄膜能很好隔氧,有耐穿刺、透明、耐低温、可印刷等特性,用于食品冷藏、保鲜贮运是非常适合的。此外,利用其耐汽油、柴油、农药和溶剂的特性,可作相关的容器。

(7)运动器材和其它增强尼龙制造运动器具,经久耐用,质轻,可有各种色彩,美观大方,如各种健身器的扶手、盖罩板、齿轮、滑雪板、鞋底。现在还出现了全塑自行车。尼龙还可制成膨胀螺丝,各种螺丝钉不生锈,广泛用于包装箱和家具上等等。

二、聚碳酸酯(PC)

O

—O—R—O—C —结构,这一类材料统称为聚碳酸酯。随重复单元中R 基团的不同,可分为脂肪族、脂环族、芳香族等几个类型,目前只有芳香族聚碳酸酯具有工业价值,其中尤以双酚A型聚碳酸酯为主,是无定形热塑性塑料。一般情况下,不作特殊说明,凡说道“聚碳酸酯”指双酚A型聚碳酸酯,其重复单元为:

1)聚碳酸酯的合成工艺

实验室报道合成Pc的工艺很多,现在许多人正致力于不用光气的“绿色化工工艺”开发。有实际意义的工艺可按原料划分为:

按照反应工艺过程原理可分为:

法现在是研究开发的热点,目前工业化生产仍然采用传统酯交换法和光气界面缩聚法。

2)聚碳酸酯的重要性能

(1)聚碳酸酯具有良好机械性能,PC的耐蠕变性相当优良,在工程塑料中吸水率几乎是最低的,因此其制品的尺寸稳定性十分好;PC的冲击强度在工程塑料中是很突出的,耐磨性较差,但仍比金属的耐磨性要好得多。

(2)热性能,PC可在-60-120o C下长期使用。

(3)电性能。PC的电绝缘性能优良,体积电阻率为(2-4)×1016Ω?cm,介电强度为20~22kV/mm,介电常数为2.8-3.1,介电损失角正切为5×10-4。

(4)耐油耐溶剂性较好,但是芳烃、氯化烃、酚类、丙酮、吡啶、四氢呋哺、环己酮、乙酸乙酯、DMF等可使PC溶解或溶胀。

(5)耐燃、耐老化性。PC能燃,但可自熄;PC抗气候能力和抗热老化能力好。

(6)光学性能PC具有良好的透过可见光的能力。对波长400nm以下紫外光透过能力很弱,吸收305nm紫外光,有选择地吸收特定波长的红外线而透过其它波长的谱线。

)聚碳酸酯的主要应用领域

PC主要用于透明材料和高抗冲领域。

(1)光盘材料是PC的重要用途,在光盘材料中,PC 占50%,目前是CD光盘的主要材料,并开始用于DVD。约占PC产量的10%以上,用于光盘产业。

(2)汽车工业用作各种车灯、透镜、车窗玻璃、内外装饰件、仪表板和彩色保险杠、各种零部件等。

(3)电子电气行业国外有将近50%的PC用于电气行业,它是优良的E级(120?C)绝缘材料。用作低压电柜的绝缘零件、接线板垫片、套管接插件、线圈架壳体材料、机床电机的保护开关、电视机和摄像机的部件等。

(4)机械行业制作高刚性、耐冲击的制件,制造传递中小负荷的零部件如齿轮、蜗轮、蜗杆、卤条、泵的叶轮、阀门、管件,各种器材的外壳和机械零件螺丝、螺帽、手柄、按钮、铭牌等。

(5)代替玻璃和金属作透明材料和结构材料可用作矿灯、防爆灯罩,大型玻璃,飞机、船只、车辆的风挡玻璃,温室的顶棚,地下室的窗户,交通道路灯罩,潜望镜,各种玻璃瓶,保温水瓶,经改性还可作激光传真、激光复印的精密透镜,可作红黄绿色透镜等。

(6)其它利用PC的高抗性能,可制作安全帽。此外由于PC可在蒸汽下消毒,因此,用作医疗器械、手术器械杯筒、容器等。

POM)

聚甲醛是以甲醛为主要单体、聚合物主链中结构单元以—CH2—O—为主构成的聚合物,分为均聚甲醛和共聚甲醛两类:均聚甲醛的端基一般为乙酰基;共聚甲醛除结构单元—CH2—O—之外,还夹有—CH2—CH2—O—或C4H8—O单元,端基一般是丁氧基醚或羟基乙基醚,如

聚甲醛的聚合反应属于离子聚合反应机理,工业上常采用负离子引发,聚合速率快,聚合热较大。

从聚甲醛的分子结构可见,高分子的主链由-C-O-组成,没有侧链,化学结构既规整又对称,分子间作用力大,密度高,易结晶,使分子运动和链的内旋变得困难。因此,聚甲醛是一种结构紧密,没有侧链,高密度、高结晶的线性聚合物,其分子量可达数万到十余万。聚甲醛不透明、易着色、易燃烧,其制品有光泽且光滑、致密,薄壁部分呈现半透明,其燃烧熔融滴液有强烈的甲醛味和鱼腥味。聚甲醛树脂是一种重要的工程塑料,具有优良的综合性能,是继尼龙后发展最迅速的优良树脂品种之一。

1)聚甲醛的主要特性

(1)机械性能优良。聚甲醛的拉伸强度达70MPa,可在-40—100℃的范围内长期使用。其抗蠕变性能优于尼

(PC),能在众多领域中取代钢、铜、锌、铝等金属材料。

(2)聚甲醛树脂有优良的化学稳定性,在70℃以下尚无有效的溶剂。在强烈的紫外光照下表面易粉化,抗拉、抗冲强度会下降,但在掺混改性剂如炭黑、紫外线吸收剂后,制品的耐候性会得到很好的改善。

(3)聚甲醛树脂没有污染性,在通常性情况下使用其制品没有引起过中毒和刺激皮肤的危害。制品的废弃物在连续5次100%回收再加工成型的制品仍能保持原有的机械强度。

(4)聚甲醛树脂在成型加工的温度下,易受热降解释放出甲醛气味。

(5)但是,聚甲醛树脂的粘合性差,耐候性不好,易受强酸侵蚀;聚甲醛的氧指数为塑料中最小,易燃烧;热分解温度与软化温度接近,熔融加工比较困难。

2)聚甲醛的主要应用

(1)汽车工业这是POM的主要用途,制造汽化器部件,输油管、泵、动力阀、轴承、万向节轴承、齿轮、曲柄、手柄、把手、仪表板、轴套、护罩、汽车升降窗装臵和汽车上的电器开关、安全装臵等等。

(2)机械制造业适合于作齿轮、链条、驱动轴、轴承、阀杆螺母、叶轮、滚乾、凸轮以及各种机械结构件,电动工具外壳手柄、开关等。不漏电,强度高,而且抗震。

电子电气和仪表行业用于制造各种接头,接插元件、开关、按钮、继电器、洗衣机的蜗轮、动力轮,家用电器、电话、收录机、VCD、录像机、微波炉的各种零部件,外壳,转动杆,滑动部件,精密仪器的支撑架、罩体、摩擦垫板,钟表、照相机、传真机等的机芯和精密零部件,打印机、激光复印机的齿轮分离爪等关键部件。

(4)兵器和军工制作追击炮的弹带,步枪的击发机,坦克和装甲车的各种机械部件、仪表部件和转动、往复耐磨密封件等等。

(5)其它行业用POM制造传送链带,磨损小,噪声低。广泛用于食品、医药、轻工行业。聚甲醛耐化学品性能好,可制造各种耐腐蚀部件容器,如农药喷雾器械,医药器械,液下泵部件等。

四、聚苯醚(PPO)和改性聚苯醚(m-PPO)

聚苯醚的结构式如右图:

虽然PPO具有优良的机械性能、电性能和其它性能,但其熔融流动性差,加工困难。为此,美国GE公司开发了与聚苯乙烯共混改性技术,现在的商品PPO通常都是改性聚苯醚,多为高抗冲聚苯乙烯(HIPS)与聚苯醚共混。

1)聚苯醚的合成工艺

聚苯醚的制备分为两步:先通过苯酚和甲醇制备单体2,6-二甲酚,然后在催化剂存在下聚合成聚苯醚。

—胺络合物,通入氧气和二甲酚聚合,聚合机理说法众多,有人认为是在O2参与下,二甲酚氧化产生自由基,偶合为二聚体,再产生自由基,偶合为三聚体,如此聚合为高聚物。也有入主张是逐步聚合反应的机理,先偶合为二聚体、三聚体,低聚物再偶合,聚合度逐步增大。

1)聚苯醚的性能特点

(1)机械性能。其拉伸强度超过POM,部件在200℃下不变形,蠕变小(比其他通用工程材料都低),长期重载下制件尺寸基本不变。

(2)热性能。聚苯醚的热变形温度为185-194℃,玻璃化温度211℃,熔点280℃以上,因此,耐高温性良好。

(3)电性能。聚苯醚介电性能几乎是工程塑料中最好的,而且几乎不受温度和湿度的影响,广泛应用于高压电气装臵。

(4)耐介质特性。PPO有优异的耐水性,吸水率0.14%,是工程塑料中吸水率最低的品种,m-PPO制品

在热水中长期浸泡,其性能几乎不变。PPO和MPPO耐酸碱洗涤剂,但在受力条件下不耐矿物油、酮类和酯类,不耐有机溶剂。

(5)加工性能。PPO热变形温度高,熔体粘度大,在剪切速率增加时,粘度不会下降。其熔体流动性差,必须用很高的加工温度(315℃),加工困难,且能耗大。在氧存在下,高于105℃会逐渐交联,长期曝露,会慢慢呈现热固性塑料的特点。PPO耐光性差。

2)PPO和MPPO的应用领域

PPO具有优异的耐高低温性能,可以在-127℃至

+121℃之间长期使用;无负载时,可以用到204℃,最适宜应用在潮湿、有水、有负载而且还要具有良好绝缘性能和尺寸稳定的场所。

(1)PPO用于制造在较高温度下工作的齿轮,凸轮泵的叶轮,风机叶片,水泵的零部件,轴承。这些制件无噪声,用于化工管道、阀门、上水管道、管件、容器、设备等。(2)由于PPO抗蠕变,可用作紧固件、螺丝钉、连接件等。(3)利用其电绝缘性能优异的特点,可作电机线芯、转于、机壳、高频印刷电路板、超高频零件、电视机、微波绝缘、变压器屏蔽套、线圈架和电视偏转系统元件等。(4)PPO可用蒸汽消毒,用于医疗器械有得天独厚的优越性。(5)在航天航空和军工领域有重要应用前景。

五、聚酰亚胺(PI)

右图通式结构的聚合物。式中Ar和AR'多是芳香族取代基,由于取代及种类不同可以得到很多种品种,现约有20多个品种。聚酰亚胺按照种类不同,其合成方法也不尽相同,有些方法尚未公布,以聚均苯四酰二苯醚亚胺为例,如下:

聚酰亚胺是耐热性最高的聚合物(聚酰亚胺是目前使用温度最高的工程塑料中),同时具有很高的机械性能、电性能和耐辐射性能。聚酰亚胺的耐高温性,对于其在喷气机、火箭、导弹等场所应用具有特殊意义。

六、聚砜(PSF,Polysulfone)

聚砜是主链分子中含有二苯

砜单元(如右图)的一类高分子,

按其结构可分为聚砜、聚醚砜和

聚芳砜三类:

1)聚砜或老聚砜,合成方法如下:

)聚醚砜(PES),合成方法如下:

3)聚芳砜(PAS),分子主链上不带醚键,其结构如下:

电子电气工业上用聚砜制作集成线路板、印刷线路板、线圈管架、接触器。在家用电器方面,用作各类设备的外壳、部件。还可以制造钟表外壳,电装饰材料,复印机、照相机、精密零部件。聚砜耐蒸汽、耐水解、耐高压蒸汽、无毒、透明、长期抗蠕变、尺寸稳定性好,在医学、医疗工业、食品工业中应用于特别的场合,如外科手术盘、医疗器械、心脏阀、起搏器、防毒面具、

宇航员的面罩、宇航服等均由聚砜制造,因为它们抗辐射、耐离子辐射。

七、聚醚酮

大分子主链的重复单元中,有醚键又有酮基的聚合物统称聚醚酮类高分子。其中主要是聚醚醚酮,这种高分子的重复单元,有两个醚键一个酮基,称聚醚醚酮,简写PEEK;以此类推,有两个酮基一个醚键的则叫聚醚酮酮,简写PEKK;含有一个醚键和酮基的则叫聚醚酮,简写PEK。结构是如下:

聚醚酮类分解温度一般都在500℃以上,大多为结晶高分子。耐热水性是主要特征之一,即使在260℃热水中也相当稳定。PEEK几乎不溶于所有的有机溶剂,对无机酸碱除了浓硫酸和硝酸外,几乎都能耐受。PEEK经得起109Rad剂量的β和γ射线辐射。聚醚醚酮类有很高的耐疲劳和耐磨能力,具有优良的电绝缘性能,电学性能随温度、湿度变化很小,阻燃性好,是制作电子电气机械零部件和用于航天、原子能和宇航领域的良好的工程材料。

思考题

1、什么是工程塑料,常说的五大工程塑料指什么?

2、工程塑料的分类方法有哪些,如何分类?

3、工程塑料的主要特征有哪些?

4、请总结五大工程塑料的突出特征。

高分子材料工程专业英语翻译(最新修正稿)

UNIT 1 What Are Polymers? 第一单元什么是高聚物? 什么是高聚物?首先,他们是络合物和大分子,而且不同于低分子化合物,譬如说普通的盐。与低分子化合物不同的是,普通盐的分子量仅仅是58.5,而高聚物的分子量高于105,甚至大于106。这些大分子或“高分子”由许多小分子组成。小分子相互结合形成大分子,大分子能够是一种或多种化合物。举例说明,想象一组大小相同并由相同的材料制成的环。当这些环相互连接起来,可以把形成的链看成是具有同种(分子量)化合物组成的高聚物。另一方面,独立的环可以大小不同、材料不同,相连接后形成具有不同(分子量)化合物组成的聚合物。 许多单元相连接给予了聚合物一个名称,poly意味着“多、聚、重复”,mer意味着“链节、基体”(希腊语中)。例如:称为丁二烯的气态化合物,分子量为54,化合将近4000次,得到分子量大约为200000被称作聚丁二烯(合成橡胶)的高聚物。形成高聚物的低分子化合物称为单体。下面简单地描述一下形成过程: 丁二烯+丁二烯+…+丁二烯——→聚丁二烯 (4000次) 因而能够看到分子量仅为54的小分子物质(单体)如何逐渐形成分子量为200000的大分子(高聚物)。实质上,正是由于聚合物的巨大的分子尺寸才使其性能不同于像苯这样的一般化合物(的性能)。1例如,固态苯,在5.5℃熔融成液态苯,进一步加热,煮沸成气态苯。与这类简单化合物明确的行为相比,像聚乙烯这样的聚合物不能在某一特定的温度快速地熔融成纯净的液体。而聚合物变得越来越软,最终,变成十分粘稠的聚合物熔融体。将这种热而粘稠的聚合物熔融体进一步加热,不会转变成各种气体,但它不再是聚乙烯(如图1.1)。 固态苯——→液态苯——→气态苯 加热,5.5℃加热,80℃ 固体聚乙烯——→熔化的聚乙烯——→各种分解产物-但不是聚乙烯 加热加热 图1.1 低分子量化合物(苯)和聚合物(聚乙烯)受热后的不同行为发现另一种不同的聚合物行为和低分子量化合物行为是关于溶解过程。例如,让我们研究一下,将氯化钠慢慢地添加到固定量的水中。盐,代表一种低分子量化合物,在水中达到点(叫饱和点)溶解,但,此后,进一步添加盐不进入溶液中却沉到底部而保持原有的固体状态。饱和盐溶液的粘度与水的粘度不是十分不同,但是,如果我们用聚合物替代,譬如说,将聚乙烯醇添加到固定量的水中,聚合物不是马上进入到溶液中。聚乙烯醇颗粒首先吸水溶胀,发生形变,经过很长的时间以后,(聚乙烯醇分子)进入到溶液中。2同样地,我们可以将大量的聚合物加入到同样量的水中,不存在饱和点。将越来越多的聚合物加入水中,认为聚合物溶解的时间明显地增加,最终呈现柔软像面团一样粘稠的混合物。另一个特点是,在水中聚乙烯醇不会像过量的氯化钠在饱和盐溶液中那样能保持其初始的粉末状态。3总之,我们可以讲(1)聚乙烯醇的溶解需要很长时间,(2)不存在饱和点,(3)粘度的增加是典 型聚合物溶于溶液中的特性,这些特性主要归因于聚合物大分子的尺寸。 如图1.2说明了低分子量化合物和聚合物的溶解行为。 氯化钠晶体加入到水中→晶体进入到溶液中.溶液的粘度不是十分不同于充分搅拌 水的粘度→形成饱和溶液.剩余的晶体维持不溶解状态.加入更多的晶体并搅拌氯化钠的溶 解 聚乙烯醇碎片加入到水中→碎片开始溶胀→碎片慢慢地进入到溶液中允许维持现状 充分搅拌→形成粘稠的聚合物溶液.溶液粘度十分高于水的粘度继续搅拌聚合物的溶解

《高分子材料与工程概论》课程教学大纲

《高分子材料与工程概论》课程教学大纲 课程代码:050331028 课程英文名称:High Polymer Materials Engineering Introduction 课程总学时:24 讲课:24 实验:0 上机:0 适用专业:高分子材料与工程 大纲编写(修订)时间:2017. 06 一、大纲使用说明 (一)课程的地位及教学目标 高分子材料与工程概论是高等工科院校高分子材料与工程专业必修的一门获得高分子材料与工程概框和专业基础知识的专业基础课。它主要简要介绍高分子材料的基本概念、应用、加工成型方法及工艺,是该专业学生学习高分子材料工程知识的入门课程,使其明了高分子材料工程的内容和学习本专业的意义。 通过本课程的学习,学生将达到以下要求: 1.了解高分子材料工程所涉及的范围和领域; 2.了解高分子材料的种类及其特性; 3.熟悉各类高分子材料的选用、成型加工等基础知识; 4.了解高分子材料学科的新知识、新技术、新进展。 (二)知识、能力及技能方面的基本要求 1.基本知识:了解高分子材料的基本性能、选用,及加工基本方法和工艺。 2.基本能力:具有能根据应用要求选择高分子材料类型和根据结构要求选择高分子材料制加工方法和工艺的基本能力。 3.基本技能:高分子材料鉴别的基本技能。 (三)实施说明 1.教学方法:课堂讲授中要重点对基本概念、基本知识的讲解;采用启发式教学,培养学生思考问题、分析问题和解决问题的能力;引导和鼓励学生通过实践和自学获取知识,培养学生的自学能力。讲课要联系实际并注重培养学生的创新能力。有条件可采用高分子材料加工仿真模拟课件,增强学生的感性认知,也可现场参观高分子材料的生产加工过程或聘请企业工程技术人员讲授。 2.教学手段:本课程以理论为主,在教学中采用电子教案、CAI课件及多媒体教学系统等先进教学手段,以确保在有限的学时内,全面、高质量地完成课程教学任务。 (四)对先修课的要求 无先修课要求。 (五)对习题课、实验环节的要求 1.本课程对习题课和实践环节无要求。 2.作业题内容以基本概念、基本知识为主,作业要能起到巩固知识,提高分析问题、解决问题能力。学生必须独立、按时完成课外习题和作业,作业的完成情况应作为评定课程成绩的一部分。 (六)课程考核方式

(整理)高分子材料与工程专业职业规划书

高分子11-1班梁元佐 前言 在今天这个人才竞争的时代,职业生涯规划开始成为就业争夺战中的另一重要利器。对于每一个人而言,职业生命是有限的,如果不进行有效的规划,势必会造成时间和精力的浪费。作为当代的大学生,若是一脸茫然踏入这个竞争激烈的社会,怎能使自己占有一席之地?因此,我为自己拟定一份职业生涯规划。有目标才有动力和方向。所谓“知己知彼,百战不殆”,在认清自己的现状的基础上,认真规划一下自己的职业生涯。 一个有效的职业生涯设计必须是在充分且正确认识自身条件与相关环境的基础上进行的。要审视自己、认识自己、了解自己,做好自我评估,包括自己的兴趣、特长、性格、学识、技能、智商、情商、思维方式等。即要弄清我想干什么、我能干什么、我应该干什么、在众多的职位面前我会选择什么等问题。所以要想成功就要正确评价自己。 目录 一、自我分析 (4) 性格方面 (4) 兴趣方面 (4) 价值观 (4) 个人志向 (4) 二、职业分析 (5) 家庭环境分析 (5) 个人环境分析 (5) 社会环境分析 (5) 对专业的认识 (5) 职业分析小结 (6) 三、职业生涯规划设计 (7) 职业定位 (7)

计划实施方案 (8) 评估调整 (8) 四、结束语 (9) 一、自我分析 性格方面:一直以来,我都自认为我是一个性子比较直的人,有时确实难以 控制好情趣,但其实我都在尽量做好并且管好我自己。我是比较开朗和喜欢和别 人交谈的,在交谈中发现自身不足我习惯会想方设法针对提高自我,而我也知道 这是一个需要长期积累的过程。但有时,我感觉我又是一个比较内向的人,其实 很多时候在别人面前讲话,我会觉得很不习惯,表达不自在,其实原因很多,其 实这些都是可以锻炼一个人的进步过程,只要把握好。 1.兴趣方面:就个人而言,在体育运动方面,我比较喜欢篮球也是最热衷的一 项体育运动,我也比较喜欢跑步,晚自习后都会习惯的去运动场跑上好几圈, 平常也比较热爱听音乐,放松自我就是最大的享受了。 2.能力方面:在班级里,担任体育委员一职,负责班级里边有关体育的一些项 目,在任职期间,也让我自身不断成长。但说真的,我发现我自身的能力有 待长远的提高,不论是学习能力还是沟通待人处事,所以在认识自身之后, 我也明白需要付诸行动。 3.价值观:说实在的这个社会错综复杂,好人坏人都有。我是比较推崇正义的, 但其实也确实是说的容易,我也知道一个人的为人处世将会深远的影响到他的生活、学习、工作乃至心理。在面对彷徨、犹豫时我们还是应该积极向上地生活着,每日迎接新的阳光,乐观向上的面对生活和生活中的困难。 4. 个人志向:我想成为一名成功的商人。 二、职业分析 1.家庭环境分析:家里是经商的,虽说也不是什么大的生意,但自我感觉,或 多或少的我深受到环境的影响,自小起我接触过形形色色的人,其实我一直 也不明白,自己喜欢做什么,可以胜任什么,但慢慢的我越发觉,我还真的 比较喜欢有关商业的,我希望在明确自己所想后可以为之而奋斗,希望我也 可以有自己的一片天地。 2.个人环境分析:身处大学,可以在这边学知识、学做人。这本身就是一种良 好的环境氛围,而我们需要做的就是好好学习,强化自我,通过实践来提高

材料科学与工程专业概论

材料是物 质, 但不是所有物质都可以称为材料。如燃料和化学原料、工业化学品、食物和药物, 一般都不算是材料。材料是人类赖以生存和发展的物质基础。 二. 材料的分类 然后我们看材料的分类。材料可按其成分及物理化学性质可分为: a 金属材料(铸铁、碳钢、铝合金 卜 b 无机非金属材料(水泥、玻璃、陶瓷卜 c 有机高分子材料(塑料、合成橡胶、合成纤维 ) d 复合材料(由两种或两种以上物理、化学、力学性能不同的物质,经人工组合而成的 多相固体材料,如石墨/铝复合材料、碳/陶瓷基复合材料、碳/碳复合材料)。按使用用途材 料可分为结构材料(主要利用材料的强度、韧性、 弹性等力学性能,用于制造在不同环境下 工作时承受载荷的各种结构件和零部件的一类材料, 即机械结构材料和建筑结构材料) 和功 能材料(由两种或两种以上物理、化学、 力学性能不同的物质,经人工组合而成的多相固体 材料)。 按照应用领域来分材料可以分为电子材料、航空航天材料、核材料、建筑材料、能源材 料、生物材料等。按来源可分为人工材料和天然材料。 三、 材料的地位和作用 1. 材料是人类文明的里程碑 我们中学阶段学过经济发展史,纵观人类利用材料的历史,材料起着举足轻重的作用, 是一切生产和生活的物质基础,是生产力的标志,是人类进步的里程碑。 石器时代:早在一百万年以前, 人类开始进入旧石器时代,可以使用石头作为工具。一 万年以前,人类开始进入新石器时代, 将石头加工成器具和工具如左下角图, 在8000年前, 开始人工烧制成陶器,用于器皿和装饰品如彩陶双耳罐。 青铜器时代:五千年以前,人类开始进入青铜器时代,青铜烧注成型, 用金 属,越王勾践曾使用的青铜剑,中国商代司母戊鼎。 铁器时代:3000年以前人类开始进入铁器时代,生铁冶炼及处理技术推动了农业、水 利、和军事的发展和人类社会进步,直至 18世纪进入了近代工业快速发展时代。 材料是人类进化和文明的标志。石器、青铜器、铁器这些具体的材料被历史学家作为划 分时代的重要标志。材料的发展创新是各个高新技术领域发展的突破口, 新型材料是当代社 会发展进步的促进剂,是现代社会经济的先导,是现代工业和现代农业发展的基础, 也是国 防现代化的保证。材料的发展深刻地影响着世界经济、 军事和社会的发展,同时也改变着人 们在社会活动中的实践方式和思维方式,由此极大地推动了社会进步。 2. 材料是经济和社会发展的先导 第一次工业革命,钢铁工业的发展为蒸汽机的发明和利用奠定了基础。 的发明促进了机械制造和铁路运输等行业发展 . 第二次工业革命,合金钢、铝合金及其他非金属材料的发展是此次工业革命的支撑, 电动机的发明奠定基础.使制造业大力迈入电气化时代 同学们大家好,祝贺同学们考入辽宁工程技术大学材料学院。 相信在座同学除了对大学 生活怎么进行规划感到迷茫, 也会对自己所学专业仍然存在疑虑: 材料学是研究什么的?我 们可以在材料学里学到什么呢?学了这个学科有什么用处呢?因此我们开设这门材料科学 与工程专业概论以解答同学们的这些问题,让咱们对材料学从一个感性认识上升到理性认 识。 一、材料的定义 首先第一节我们介绍一下材料的定义。 材料是人类用于制造物品、器件、构件、机器或其他产品的那些物质。 人类开始大量使 转炉和平炉炼钢

要用高分子材料学练习题及答案

一、名词解释 1.药用高分子材料:主要指在药物制剂中应用的高分子辅料及高分子包装材料。 2.药用高分子材料学:主要介绍一般高分子材料的基础理论知识及药剂学中常用的高分子材料的结构、制备、物理化学性质及其功能与应用。 3.药用辅料:在药物制剂中经过合理的安全评价的不包括生理有效成分或前体的组分。广义上指将药理活性物质制备成药物制剂的各种添加剂,若为高分子则称为药用高分子辅料。 4.高分子化合物(高分子):分子量很高并由多个重复单元以共价键连接所形成的一类化合物。 5.单体:必须含有能使链增长活性中心稳定化的吸电子基团 6.聚合度:大分子重复单元的个数 7.重复单元:重复组成高分子的最小的结构单元。 7.结构单元:聚合物分子结构中出现的以单体结构为基础的原子团 8.均聚物:在合成高分子时,由一种单体成分反应生成的聚合物。 9.共聚物:由两种或多种不同的单体或聚合物反应得到的高分子。 10.高分子链结构:单个高分子链中原子或基团间的几何排列 11.近程结构:单个大分子链结构单元的化学结构和立体化学结构,又叫一次结构或化学结构 12.远程结构:单个分子在整个分子链范围内的空间形态和构象,又叫二次结构 13.聚集态结构:单位体积内许多大分子链之间的排列、堆砌方式,也称三次结构 14.键接顺序:是指高分子链各结构单元相互连接的方式. 15.功能高分子:具有特殊功能与用途但用量不大的精细高分子材料。 16.线型高分子:每个重复单元仅与另外两个单元相连接,形成线性长链分子。 17.支化高分子:当分子内重复单元并不都是线性排列时,在分子链上带有一些长短不一的分枝,这类高分子称为支化高分子 18.支链:支化高分子链上带有的长短不一的分枝称为支链。 19.体型高分子或网状高分子:线型高分子或支化高分子上若干点彼此通过支链或化学键相键接可形成一个三维网状结构的大分子,称为体型高分子或网状高分子。 20.交联:由线型或支链高分子转变成网状高分子的过程叫做交联。 21.端基:高分子链终端的化学基团 22.单键内旋转:高分子主链中的单键可以绕键轴旋转,这种现象称为单键内旋转. 25.玻璃化温度Tg: 27.取向态结构:聚合物在外力作用下,分子链沿外力方向平行排列形成的结构。 31.织态结构:不同聚合物之间或聚合物与其他成分之间的堆砌排列。 32.聚合反应:由低分子单体合成聚合物的反应称为聚合反应。 33.加聚反应:单体经过加成聚合起来的反应称为加聚反应,反应产物称为加聚物。 34.自由基引发剂:是在一定条件下能够分解生成自由基,并能引发单体聚合的化合物。 39.自由基共聚合:共聚物若使用自由基作为聚合的引发剂时,称为自由基共聚合。 40.离子型聚合:链增长活性中心为离子的聚合反应称为离子型聚合。 41.活性链:链活性中心直到单体消耗完仍保持活性称为活性链 开环聚合:环状单体在引发剂或催化剂作用下开环,形成线性聚合物的反应。 42.缩聚反应:是由含有两个或两个以上官能度的单体分子间逐步缩合聚合形成聚合物,同时析出低分子副产物的化学反应。 45.本体聚合:不加其它介质,只有单体本身,在引发剂、热、光等作用下进行的聚合反应。 46.溶液聚合:把单体和引发剂溶在适当溶剂中进行聚合。 47.悬浮聚合:是将不溶于水的单体以小液滴状悬浮在水中进行的聚合。 48.乳液聚合:单体在水介质中,由乳化剂分散成乳液状态进行的聚合。

高分子材料与工程专业排名一览表

一、工科:偏合成的:浙江大学(国内高分子鼻祖,尤其在合成方面)、华东理工、北京化工大学、清华大学;偏加工和应用的:四川大学、华南理工、东华大学(原中国纺织大学)、上海交通大学 理科:偏合成的:北京大学(好像北大遥遥领先,其他象南开、南京大学明显差一些);偏性能形态研究的:南京大学、复旦大学、北京大学 5-10年这个行业发展都会不错。 二、高分子材料与工程就业前景分析高分子材料与工程专业排名一览表 【北京市】清华大学、北京理工大学、北京航空航天大学、北京化工大学、北京服装学院、北京石油化工学院、北京工商大学 【天津市】天津大学、天津科技大学 【河北省】河北工业大学、河北科技大学、河北大学、燕山大学 【山西省】太原理工大学、华北工学院 【辽宁省】大连轻工业学院、沈阳化工学院、大连理工大学、大连轻工业学院、沈阳工业大学、沈阳工业学院 【吉林省】吉林大学、长春工业大学、吉林建筑工程学院 【黑龙江省】哈尔滨工业大学、哈尔滨理工大学、齐齐哈尔大学、东北林业大学 【上海市】复旦大学、华东理工大学、东华大学、上海大学 【江苏省】江苏大学、南京理工大学、江南大学、扬州大学、南京工业大学、江苏工业学院、江苏大学、南京林业大学、华东船舶工业学院 【浙江省】浙江大学、浙江工业大学 【安徽省】中国科学技术大学、合肥工业大学、安徽大学、安徽建筑工业学院、安徽工业大学、安徽理工大学 【福建省】福建师范大学 【江西省】南昌大学、华东交通大学 【山东省】山东大学、青岛大学、青岛科技大学、济南大学、烟台大学六 【河南省】郑州大学、河南科技大学、郑州轻工业学院 【湖北省】湖北大学、武汉理工大学、湖北工学院、武汉化工学院、武汉科技学院、湖北科技大学

高分子材料导论

《高分子材料导论》思考题 1、三大材料:(1)金属材料富于展性和延性,有良好的导电及导热性、较高的强度及耐冲击性。 (2)无机材料一般硬度大、性脆、强度高、抗化学腐蚀、对电和热的绝缘性好。 (3)高分子材料的一般特点是质轻、耐腐蚀、绝缘性好、易于成型加工,但强度、耐磨性及使用寿命较差 2、原子之间或分子之间的结合键一般有哪些形式?试论述各种结合键的特点。 离子键:无方向性,键能较大。由离子键构成的材料具有结构稳定、熔点高、硬度大、膨胀系数小的特点。共价键:具有方向性和饱和性两个基本特点。键能较大,由共价结合而形成的材料一般都是绝缘体。金属键:无饱和性和方向性。具有良好的延展性,并且由于自由电子的存在,金属一般都具有良好的导电、导热性能。氢键具有饱和性。氢键在高分子材料中特别重要,它是使尼龙这样的聚合物具有较大的分子间力的主要因素。 3、原子排列可分为三个等级:无序排列、短程有序,长程无序、长程有序 材料一般是以固体状态使用的。按固体中原子排列的有序程度,固体有非晶态结构、结晶态结构两种基本类型。 4、非晶态结构:原子排列近程有序而远程无序的结构称为非晶态结构或无定形结构,非晶态结构又称玻璃态结构。共同特点是:结构长程无序,物理性质一般是各向同性的;没有固定的熔点,而是一个依冷却速度而改变的转变温度范围;塑性形变一般较大,导热率和热膨胀性都比较小。 5、—(CH2-CH)n— Cl结构单元:又叫链节,是高分子中重复出现的那部分。聚合度:聚合物分子中,结构单元的数目叫聚合度,用n表示。由一种单体聚合而成的聚合物称为均聚物,由两种或两种以上单体共聚而成的聚合物称为共聚物 6、聚合物(按大分子主链)的分类:(1) 碳链聚合物,是指大分子主链完全由碳原子构成。(2) 杂链聚合物,是指大分子主链中除碳原子外,还有氧、氮、硫等杂原子。(3) 元素有机聚合物,是指大分子主链中没有碳原子,主要由硅、硼、铝、氧、氮、硫、磷等原子组成,但侧基却由有机基团如甲基、乙基、乙烯基、芳基等组成。 按性能和用途分类:根据以聚合物为基础组分的高分子材料的性能和用途分类,可将聚合物分成橡胶、纤维、塑料、粘合剂、涂料、功能高分子等不同类别。 7、塑料的成型加工:挤出、压延、注射、压制、吹塑。 8、聚合物的结构常指哪些方面?大分子链的组成和构造包括哪些方面?试加以论述。 聚合物结构:大分子本身的结构、大分子之间的排列大分子链的组成和构造:大分子链的化学组成:碳链大分子、杂链大分子、元素有机大分子等。大分子链的化学组成不同,聚合物的性能也不相同。结构单元的连接方式:大分子链是由许多结构单元通过共价键连接起来的链状分子。在缩聚过程中,结构单元的连接方式比较固定。但在加聚过程中,单体构成大分子的连接方式比较复杂,存在许多可能的连接方式,如头-尾、头-头或尾-尾

高分子材料与工程专业就业前景

高分子材料与工程专业就业前景 - - - - 高分子材料与工程专业就业前景 目前的形式看来高分子很好就业,我们班想找工作的都找到了不错的工作,如果是女孩子的话我觉得还是别学理工科了,不管是理工科什么专业找工作女孩子总体上是比不过男孩子的,我们就业的去向很多,就我们03级高分子的给你举一下例子吧,我在LG化学,从事ABS树脂的生产技术,我室友去了广本研究汽车上的高分子了,还有去海尔生产电器高分子研究,有去比亚迪做电池的,还有去其它一些大型汽车公司的,还有在大连膜研究分司的,去日本NOK公司研究密封设备的,总是高分子是塑料,橡胶,纤维,涂料(油漆,颜料等)几大领域,应用非常广泛,跟日常生活关每次极大,就业面非常广,当然化工类的在刚工作时是不会得到IT业那么高的工资的,但经验多了,工资就不是问题了,IT正好相反,当老了就没有人要了(大连理工) 关于这个专业在开始找工作时的情况:我在2006年11月份,已经找到了三个公司美的、格力漆包线、金川公司等。我自己感觉这个专业最近几年找到工作不是问题,关键是待遇好坏,我同学他们刚签工作时的薪水最高3000,可能和其他专业差了很多。工作中:我只能拿我在金川公司工作的情况和你说说,在这个公司我干的是电线电缆生产的行业,现在在各个车间实习,最后从技术到管理。这个专业污染方面可能和我们主公司的重工业没法相提并论,但也存在着污染。如果在将来能够将技术和管理做好的话待遇方面也应该是可观的。考研方面:可能在社会上各种企业最终看中的都是个人的能力,但在我们企业中可以明显地看出区别。本科生2500/月,四人两室两厅,半年后助理工程师;硕士生3500/月,两人两室两厅,三个月后工程师;博士生10万以上/年,配车,一人三室两厅,处级待遇。看到这些应该可想而知了吧。有时候会想毕业后想工作几年然后再考研,但是在工作中一方面是时间问题,公司不会因你要考研而施舍给你时间让你有充裕的时间复习,另一方面人在企业中可能受环境的影响不自主地产生一种惰性,有了这种惰性考研的理想就更远了一步. (哈理工) 高分子简单来说分三类:塑料、橡胶、纤维。我们这一届就业形势还不错的,汽车公司啊,化工的都可以。当然了,如果是女生,我还是建议不要学这个,学学经济、会计、英语就可以了,男生嘛,计算机学的好的话工资会很高,自动化比较好就业(南昌大学) 高分子材料还是有很多应用方向的单单是在我们学校的这些兄弟们,就遍布了祖国各地,而且从事的行业也都不尽相同高分子材料的主要方向有塑料、橡胶、合成纤维、粘合剂以及涂料,在交叉领域中还有复合材料。 高分子材料科学主要就是研究这些,当然,这些都是相对比较泛泛的因为想学好一个都是很深入的,何况是5个方向不过学的再深入,到了工作单位,也依然要从新学起,因为方向太多,生产工艺太多,尽管产品可能一样,但是生产过程却

高分子材料与工程专业-北京化工大学教务处

高分子材料与工程专业 高分子材料科学与工程是研究高分子材料的设计、合成、制备以及结构、性能和加工应用的材料类学科。本专业面向传统和新兴的诸如塑料、橡胶、纤维、涂料、石油化工、纺织、新能源、海洋、国防等各类行业,培养具有高分子材料与工程专业的基础知识和专业知识,了解材料科学与工程领域的相关专业知识,能在高分子材料的设计、合成、表征、改性、加工成型及应用等领域从事科学研究、技术开发、工艺设计、生产及经营管理等方面工作的高级科学和工程技术人才。高分子材料正在向高性能化、高功能化、智能化、低污染、低成本方向发展,逐渐渗透到航天航空、现代通讯、电子工程、生物工程、医疗卫生和环境保护等各个新兴高技术领域,在未来发展中具有广阔的应用前景。 高分子材料科学与工程专业基础课程有高等数学、外语、普通物理、计算机文化基础、化工机械基础、基础化学、有机化学、物理化学、基础课实验、化工原理,专业核心课程包括高分子化学、高分子物理、高分子科学实验、聚合物加工工程、聚合物制备工程、聚合物表征,专业方向分为塑料加工工程、弹性体加工工程、高分子材料制备工程、复合材料四个模块课程群,学生可在四年级选择其中一个方向学习。专业开设有二十余门研究性前沿课程和多门国际化课程,学生在校内就能接受到国内外学术大师的培养和熏陶。本专业非常注重实践能力和工程能力的培养,开设的实践课程有金工实习、社会实践、电工电子实习、认识实习、高分子专业实验、毕业环节、素质拓展与创新、应用软件实践、生产实习、军事训练,开设的工程设计类课程有工程制图、机械设计基础、材料力学、自动化仪表、化工原理以及四个专业方向的工艺课、设计课以及实践课。此外,专业课程学习还涵盖了英语、计算机、通识教育、素质拓展、技术经济与企业管理等,使学生在语言能力、计算机能力、个人素养、管理能力等方面均衡发展,培养具有良好专业素质和创新精神的综合型高级科学和工程技术人才。 材料科学与工程专业 材料是人类用于制造物品、器件、构件、机器或其他产品的那些物质,是人类赖以生存和发展的物质基础。按物理化学属性,材料可分为金属材料、无机非金属材料、有机高分子材料和不同类型材料所组成的复合材料。本专业旨在培养能够在金属材料、无机非金属材料和复合材料等领域从事科学研究、技术开发、工程设计、技术和经济管理等方面的工作的高级专业人才。 信息、材料和能源被誉为当代文明的三大支柱。以高技术群为代表的新技术革命,又把新材料、信息技术和生物技术并列为新技术革命的重要标志。这主要是因为材料与国民经济建设、国防建设和人民生活密切相关。材料又是信息、能源的重要物质基础,例如磁记录、芯片等信息技术的硬件要有材料作为物质保证;太阳能、燃料电池等能源技术要依靠材料提供的催化等功能。 未来人们对材料的结构可以进行更为精细的分析,从原子层次深入到电子层次,从而对材料性能有更深入的理解,进而根据性能需求制备出特殊结构的材料,如纳米复合结构,满足不同场合对材料性能的特殊需要,如智能材料、催化材料、能源材料、信息记录材料、生态环境材料等。 这个专业的专业基础课程和专业方向课程包括: 基础化学、大学化学实验、有机化学、物理化学、工程制图、计算机绘图、机械设计基础、应用电工学、化工原理、材料导论、C语言程序设计、VB语言程序设计、微机原理、文献查阅与科技写作、技术经济与企业管理、计算机在材料科学中的应用、科技报告与演讲、材料概论、材料物理、材料化学、材料合成制备

有机高分子材料概述

有机高分子材料概述和发展趋势 陈彪 2011327120112 材料科学与工程11(1)班 摘要:有机高分子材料包括木材、棉花、皮革等天然高分子材料和朔料、合成纤维及合成橡胶等有机聚合物合成材料。它们质地轻、原料丰富、性能良好、用途广泛,因而发展速度很快。塑料、橡胶和合成纤维是有机高分子材料的典型的代表,此外,还有涂料和粘合剂等。 关键词:有机高分子材料;发展趋势 高分子材料是由可称为单体的原料小分子通过聚合反应而合成的。绝大部分原料单体为有机化合物。在有机高分子化合物中,除碳原子外,其他主要元素为氢、氧、氮等。在碳原子与碳原子之间、碳原子与其他元素的原子之间能够形成稳定的共价键组成高分子化合物。 人们使用高分子材料的历史很早,由于它们质地轻、原料丰富、性能良好、用途广泛,因而发展速度很快,自20世纪20年代以来,就已经发展了人工合成的各种高分子材料。 高分子材料有各种不同的分类方法。例如,按来源可以分为天然高分子材料和合成高分子材料。按大分子主连接结构可分为碳链高分子材料、杂链高分子材料及元素有机高分子材料等。最常用的是根据高分子材料的性能和用途进行分类。 根据性能和用途,高分子材料可分为橡胶、塑料、纤维、粘合剂、涂料、功能高分子材料以及复合材料等不同的类别。 下面以介绍这几大类高分子材料为主。 1橡胶 橡胶是有机高分子弹性化合物。在很宽的温度范围内具有优异的弹性,所以又称为高弹体。按其来源可分为天然橡胶和合成橡胶两大类。天然橡胶是从自然界含胶植物制取的一种高弹物质。合成橡胶是用人工合成的方法制得的高分子弹性材料。 橡胶具有独特的高弹性,还具有良好的疲劳强度、点绝缘性、耐化学腐蚀以及耐磨性等使它成为国民经济中不可缺少和难以代替的重要材料。 2塑料 塑料是以聚合物为主要成分,在一定条件下可塑成一定形状并且在常温下保持其形状不变的材料,习惯上包括塑料的半成品,如压塑粉等。 作为塑料基础组分的聚合物,不仅决定塑料的类型而且决定塑料的主要性能。一般而言,塑料用聚合物的内聚能介于纤维与橡胶之间,使用温度范围在其脆化温度和玻璃化温度之间。应当注意,同一种聚合物,由于制备方法、条件及加工方法的不同,常常既可作塑料用,也可做纤维用。 塑料是一类重要的高分子材料,具有质地轻、电绝缘、耐化学腐蚀、容易加工成型等特点,其性能可调范围宽,具有广泛的应用领域。 3纤维 纤维是指长度比直径大很多倍,并具有一定韧性的纤细物质。纤维的特点是分子间次价力大、形变能力小、模量高,一般为结晶聚合物。 纤维可分为两大类:一类是天然纤维,如棉花、羊毛、蚕丝和麻等,另一类是化学纤维,即用天然或合成高分子化合物经化学加工而制得的纤维。

高分子材料发展史

高分子材料发展史随着生产和科学技术的发展,人们不断对材料提出各种各样的新要求。而高分子材料的出现逐渐满足了人们的需要。并对人类的生产生活产生了巨大的影响。 高分子材料是以高分子化合物为基础的材料。高分子材料是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料,高分子是生命存在的形式。所有的生命体都可以看作是高分子的集合。 高分子材料按来源分为天然、半合成(改性天然高分子材料)和合成高分子材料。天然高分子是生命起源和进化的基础。人类社会一开始就利用天然高分子材料作为生活资料和生产资料,并掌握了其加工技术。如利用蚕丝、棉、毛织成织物,用木材、棉、麻造纸等。19世纪30年代末期,进入天然高分子化学改性阶段,出现半合成高分子材料。1870年,美国人Hyatt用硝化纤维素和樟脑制得的赛璐珞塑料,是有划时代意义的一种人造高分子材料。1907年出现合成高分子酚醛树脂,真正标志着人类应用合成方法有目的的合成高分子材料的开始。1953年,德国科学家Zieglar和意大利科学家Natta,发明了配位聚合催化剂,大幅度地扩大了合成高分子材料的原料来源,得到了一大批新的合成高分子材料,使聚乙烯和聚丙烯这类通用合成高分子材料走人了千家万户,确立了合成高分子材料作为当代人类社会文明发展阶段的标志。现代,高分子材料已与金属材料、无机非金属材料相同,成为科学技术、经济建设中的重要材料。并且高分子材料资源丰富、原料广,轻质、高强度,成形工艺简易。很容易为人所用。 高分子材料包括塑料、橡胶、纤维、薄膜、胶粘剂和涂料等。其中,被称为现代高分子三大合成材料的塑料、合成纤维和合成橡胶已经成为国民经济建设与人民日常生活所必不可少的重要材料。尽管高分子材料因普遍具有许多金属和无机材料所无法取代的优点而获得迅

高分子材料工程技术专业

高分子材料工程技术专业(中德技术学院)人才培养方案 一、专业代码、名称 530602,高分子材料工程技术(专科) 二、培养目标 培养具有良好的思想道德品质和强烈的社会责任感,具备国际视野、科学素养和人文素养,掌握高分子材料工程技术专业的基础知识和专业知识、橡塑材料加工与测试的基本技能,能在橡胶工业、塑料工业及高分子复合材料、功能智能高分子材料等各部门从事橡塑制品及复合材料等结构设计、配方设计、加工成型、模具设计及产品制造、工艺管理的工程技术人才。 三、培养要求 本专业要求学生掌握自然科学、工程基础知识和专业知识,掌握高分子材料领域的基本理论与基本技能,提高学生分析和解决工程实践问题的能力。 本专业的毕业生应达到以下知识与能力的培养要求: 1.具有科学素养、社会责任感和工程职业道德; 2.掌握高分子化学、高分子物理和橡塑加工的基本原理和基本理论; 3.掌握橡塑原材料、加工工艺、成型模具及设备等方面的基本知识; 4.掌握橡塑制品结构以及模具的设计方法及计算机辅助设计技能; 5.具有对新产品、新工艺和新技术进行实验研究和应用开发的初步能力; 6.掌握高分子功能材料和智能材料等领域前沿发展趋势,具有终身学习能力。 四、主干学科 材料科学与工程、化学 五、核心知识领域 高分子化学、高分子材料合成原理、橡塑材料的结构与性能、橡塑材料的加工工艺、橡塑制品的结构设计、橡塑制品的加工设备与成型模具等。 六、核心课程 材料科学基础、高分子化学、高分子物理、高分子材料分析测试方法、橡胶工艺学、塑料成型工艺学、橡塑制品设计等。 七、主要实践性环节 认识实习、橡塑制品课程设计、毕业实习与毕业设计(论文)。 八、修业年限及最低学分要求 基本修业年限3年。毕业最低学分要求105学分。其中,必修课76学分,专业选修课6学分,通识选修课4学分,实践教学环节19学分。实践教学(含实验、上机及独立实践教学环节)学分占总学分数比例为30.2%。 九、教学计划进程及课程学分(学时)分配表

高分子材料与工程专业排名

高分子材料与工程专业排名 【北京市】清华大学、北京理工大学、北京航空航天大学、北京化工大学、北京服装学院、北京石油化工学院、北京工商大学【天津市】天津大学、天津科技大学 【河北省】河北工业大学、河北科技大学、河北大学、燕山大学 【山西省】太原理工大学、华北工学院 【辽宁省】大连轻工业学院、沈阳化工学院、大连理工大学、大连轻工业学院、沈阳工业大学、沈阳工业学院 【吉林省】吉林大学、长春工业大学、吉林建筑工程学院 【黑龙江省】哈尔滨工业大学、哈尔滨理工大学、齐齐哈尔大学、东北林业大学 【上海市】复旦大学、华东理工大学、东华大学、上海大学 【江苏省】江苏大学、南京理工大学、江南大学、扬州大学、南京工业大学、江苏工业学院、江苏大学、南京林业大学、华东船舶工业学院 【浙江省】浙江大学、浙江工业大学 【安徽省】中国科学技术大学、合肥工业大学、安徽大学、安徽建筑工业学院、安徽工业大学、安徽理工大学 【福建省】福建师范大学 【江西省】南昌大学、华东交通大学

【山东省】山东大学、青岛大学、青岛科技大学、济南大学、烟台大学 【河南省】郑州大学、河南科技大学、郑州轻工业学院 【湖北省】湖北大学、武汉理工大学、湖北工学院、武汉化工学院、武汉科技学院、湖北科技大学 【湖南省】中南林学院 【广东省】华南理工大学、广东工业大学、南华大学、株洲工学院、茂名学院、中山大学 【广西壮族自治区】桂林工学院 【海南省】华南热带农业大学 【四川省】四川大学、西南石油学院 【陕西省】西北工业大学、西安工程科技学院、陕西理工学院、陕西科技大学 【甘肃省】兰州理工大学 【新疆维吾尔自治区】新疆大学 学科发展与高分子材料与工程专业人才的培养模式 就学科内涵而言,材料的成分与结构、制备与加工、性能和应用,是材料科学与工程的四大基本要素,是相互有机联系的统一体。 xx年热门大学,专业排行,志愿填报延伸阅读-------------- 一.填志愿,学校为先还是专业为先?一本院校里有名校、一般重点大学,学校之间的层次和配置,还是有较大差异的。在一本院校中,选学校可能更重要一些。学校的品牌对学生未来就业会产生一定

高分子材料学

高分子发展浅谈 摘要:本文介绍了高分子材料的历史以及在当今社会的重要作用,并简单介绍了高分子材料和材料性能的发展趋势。 关键字:高分子材料、性能、发展趋势。 一、高分子科学 材料、能源、信息是21世纪科学技术的三大支柱,其中材料科学是当今世界的带头学科。材料是一切技术发展的物质基础,人类的生活和社会的发展总是离不开材料,而新材料的出现是推动生活和社会的发展动力。人们使用及制造材料虽已有几千年的历史,但材料成为一门科学——材料科学,仅有30多年的时间,此为一门新兴学科,是一门集众多基础学科与工程应用学科相互交叉、渗透、融合的综合学科,因而对于材料科学的研究,具有深远的意义[9]。 其中,高分子科学作为材料科学发展的带头学科之一,它的发展具有蓬勃的生命力。高分子科学是研究高分子材料化合物的合成、改性,及其聚集态的结构、性能,聚合物的成型加工等内容的一门综合性学科,其主要研究目标是为人类获取高分子新材料提供理论依据和制备工艺。高分子科学具有广阔的开发新材料的背景,二十世纪三十年代首先由有机化学派生出高分子化学,当时恰好处在世界经济飞跃发展的氛围中,对新材料的需求日益迫切,因此高分子化学进而又融合了物理化学、物理学、数学、工程学、医学等有关学科的内容,逐渐形成了高分子科学这门独立的综合性学科,现在的高分子科学已经形成了高分子化学、高分子物理、高分子工程三个分支领域相互交融、相互促进的整体学科。 二、高分子材料的历史 高分子材料是材料领域中的新秀,它的出现带来了材料领域中的重大变革。目前高分子材料在航空航天、国防建设和国民经济等各个领域得到广泛应用,已成为现代社会生活中衣、食、住、行、用各个方面所不可缺少的材料。高分子材料由于原料来源丰富、制造方便、品种繁多、用途广泛、性价比高,因此在材料领域中的地位日益突出,增长最快,产量与于金属、木材和水泥的用量总和持平。高分子材料不仅为工农业生产及人们的日常生活提供不可缺少的材料,而且为发展高新技术提供更多更有效的高性能结构材料、高功能材料以及满足各种特殊用途的专用材料。 高分子材料的发展大致经历了三个时期,即:天然高分子的利用与加工,天然高分子的改性和合成,高分子的工业生产(高分子科学的建立)。

高分子材料概论-有机硅

_| II 章:高分子材料概论 2.8有机硅材料 |[ 2.8.2主要有机硅的合成单体 2.8.3 _主要有机硅聚合物性能和应用简 IT 2.8.4思考题 2.8.1有机硅材料概述’ II 一、医用高分子的定义 “有机硅就是指一种元素有机化合物,凡是硅原子上- I I I r —接有传统的有机基团的(烃及其衍生物1)都叫有机硅,这实际上是一个最广义的定义。19世纪人们对以碳为骨架的有机化合物认 识比较多了,因此对碳的同族元素硅有了 I L I I 主要内容: 2.8.1有机硅材料概述 |[

极大的兴趣,想发现像碳族物质一样的奇迹,从研究甲 硅烷(SiH4或叫硅甲烷)到研究硅烯(Si = Si化合物),投入 I I I r _|

了不少力量,收效甚微,但人们却发现了许多甲硅烷的 衍生物并不难获得,先后合成了卤代硅烷、烃代硅烷、 烃氧基硅烷等等,并制定了相应的命名原则。 II 20世纪20年代之后,高分子学科形成并迅速发展, 许多科学家致力于研究硅 烷的水解缩合反应,希望制得 像玻璃一样的耐热性有机(半有机)聚合物。到三十年代, 研究取得长足进展,先后合成厂有机硅树脂和线性聚合 二物,其主要骨架是一 Si — 0 — Si —O — Si ,通称为聚硅氧= 烷,后来简称为“有机硅”, 起来的聚硅氧烷类化合物,尤其是高分子聚合物,称为 “有机硅”,后来又把合成 地称为“有机硅”。“ 再后来又把一些可作单体,也可作其它用途的一些 I 低分子(如现在常说的硅烷偶联剂)也归入“有机硅”。现 在合成了一些不是一 Si — 0— Si —O 骨架,而是一Si —Si —Si 骨架的聚合物,还叫有机硅。不过我们 通常讲的“有 II 机硅”,仍然是SilicOne 的含义,即指聚硅氧烷高分子物 质,并略微扩大到合成它们的单体,因为现在许多单体 己商品化了,统称它们为“有机硅单体”,也可简称“有 II 机硅”。 按照中国习惯,根据聚硅氧烷的结构特征,把那些 含有体型结构或者具有可交 联基团,以利于形成网状立 体结构的预聚物称为有机硅树脂,简称硅树脂 。把线性 聚合物中分子量较小的,叫有机硅抽,常称为硅油 其中分子量较大的、可以适当硫化的则叫有机硅橡胶, 常简称硅橡胶二。根据单体或主链上侧基的种类,又在硅 II 'I Il 中国的习惯是把那些聚合 “有机硅”--的单体,也笼统 - II 。而

高分子材料与工程专业考研学校选择

高分子材料与工程专业考研学校选择 作者:admin 更新时间:2009-3-9 20:25:14 在全国高校中在高分子领域领先: 工科: 偏合成的:浙江大学(国内高分子鼻祖,尤其在合成方面)、华东理工、北京化工大学、清华大学; 偏加工和应用的:四川大学、华南理工大学、东华大学(原中国纺织大学)、上海交通大学 理科:偏合成的:北京大学(好像北大遥遥领先,其他象南开、南京大学明显差一些);偏性能形态研究的:中科院北化所(明显领先)、南京大学、复旦大学、北京大学 (上述为网上摘录,不一定全面) 简单评述下 浙江大学是出高分子院士最多的学校。 北京大学合成做的好,特别是高分子液晶。 复旦大学的研究偏向理论研究,有杨玉良和江明两位院士,实力不凡。 上海交通大学也有新评上一个高分子方面的院士:颜德岳, 华南理工和北京化工大学研究领域较广,在橡胶、塑料、纤维方面做的都不错。华南理工大学有3位中科院院士程镕时、姜中宏生、曹镛、长江学者特聘教授2人、珠江学者特聘教授2人、博士生导师43人),副教授、副研究员和高级工程师67人;高分子加工实力很强的。在全国排前3名。 四川大学有高分子材料工程国家重点实验室,主要是做塑料的加工改性,实力虽有下滑,但仍然很强,毕竟其根基很厚。 东华大学的研究重点在纤维方面,建有纤维素改性国家重点实验室。 中科院长春应化所和中科院北京化学研究所共同建有高分子化学与物理国家重点实验室。长春应化所在一直是在做合成方面比较强。化学所在前两年还有个工程塑料国家重点实验室,不过现在降格为中科院的重点实验室了。所以化学所的合成和加工做的都还不错。 青岛科技大学在高分子方面主要的特色是其橡胶,2003年建成了教育部橡塑工程重点实验室,也是多年来对青岛科技大学研究工作的肯定。 研究生的方向很多,大的方面大概一下几个:树脂合成(环氧,丙烯酸,聚苯,聚酯等每个方向都很多);塑料/纤维加工(加工工艺川大最强的,模具和机械华南理工及北化都不错);生物医用高分子(华东理工等);高分子理论及表征(中科院化学所及南京大学最强);液晶高分子(吉大,北大,北科大等);导电高分子(化学所等);纳米高分子(化学所);碳纤维/碳纳米(北化,清华);有机硅(化学所)等等 而在珠三角这一带,华南理工中山大学都是不错选择,有志在高分子领域深入了解的同学可以报读。 下面附有2009年华南理工大学科学与工程学院硕士招生目录及初复试科目材料

高分子材料学

第一章高分子材料学 1、影响高分子材料性能的化学因素有哪些? 答:高分子材料的化学结构,即构成元素的种类及其连接方式(重复结构单元的特性)、端基、支化与交联、结构缺陷、基团的空间位置等是决定其性能的主要化学因素。 2、按高分子材料的主链构成元素可将其分成哪几类?试举例。答:(1)碳链高分子主链以碳-碳共价键相联结而成,大多由加聚反应制得,分子间主要以次价力(范德华力)或氢键相吸引而显示一定强度,耐热性较低,不易水解。如PE、PP、PVC、PS、PMMA 等。 (2)杂链高分子由碳-氧、碳-氮、碳-硫等以共价键相联结而成,主要是由缩聚反应或开环聚合制得。特点是链刚性较大,耐热性和力学性能较高,但一般易水解、醇解或酸解。如PET、PA、PF、POM、PSF、PEEK等。 (3)元素有机高分子主链中常含硅、磷、硼等,常见的为有机硅高分子化合物,热稳定性好,具有较好的弹性和塑性,高耐热性是其特征。 3、影响高分子材料性能的物理因素有哪些? 答:一、相对分子质量及其分布;二、结晶性;三、粒径与粒度分布; 四、成型过程中的取向;五、熔体粘度与成形性 4、相对分子质量对高分子材料制品的哪些性能影响较大,哪些性 能影响较小?

答:受相对分子量影响大的性能有:拉伸强度、弯曲强度、弹性模量、冲击强度、玻璃化转变温度、熔点、热变形温度、熔融粘度、溶液粘度、溶解性、溶解速度等。 受相对分子量影响较小的性能有:比热、热传导率、折射率、透光性、吸水性、透气性、耐化学药品性、热稳定性、耐候性、燃烧性等。5、高分子材料相对分子质量分布与其成型性及制品性能的关系任 何?为兼顾成型性和制品的性能,可采取什么措施? 答:对于塑料制品,一般要求相对分子量分布较窄,这样成型加工性和制品性能都较均一。相对分子量分布过宽说明其中存在相对分子量偏低和过高部分。当相对分子量偏低部分所占比例过高时,有利于改善加工性能,但力学性能、耐热性、热稳定性、电气绝缘性能和耐老化性能均有下降;而当相对分子量过高的部分比例过高时,则塑化困难,影响制品的内在质量,降低外观质量,甚至出现象“鱼眼”一样的未塑化颗粒。对于塑料的成型加工来说,相对分子量分布可适当宽些。往往采用双峰分布的树脂,其相对分子量高的部分赋予制品优良的机械性能,而相对分子量低的部分则提供足够的成型加工流动性。对于合成纤维,则希望相对分子量分布尽可能窄些。 6、高分子化合物的哪些链结构因素有利于其结晶? 答:有利于结晶性的因素有: 1)链结构简单,重复结构单元较小,相对分子量适中; 2)主链上不带或只带极少的支链; 3)主链化学对称性好,取代基不大且对称;

相关文档
最新文档