玻璃纤维土工格栅低温拉伸试验研究2

玻璃纤维土工格栅低温拉伸试验研究2
玻璃纤维土工格栅低温拉伸试验研究2

ASTMC297夹层结构平面拉伸强度标准试验方法中文版.doc

ASTM 标准:C 297/C 297M–04 夹层结构平面拉伸强度标准试验方法1 Standard Test Method for Flatwise Tensile Strength of Sandwich Constructions 本标准以固定标准号C 297/C 297M发布;标准号后面的数字表示最初采用的或最近版本的年号。带括号的数据表明最近批准的年号。上标( )表明自最近版本或批准以后进行了版本修改。 本标准已经被美国国防部批准使用。 1 范围 1.1 本试验方法适用于测量组合夹层壁板的夹芯、夹芯-面板胶接或者面板的平面拉伸强度。允许的夹芯材料形式包括连续的胶接表面(如轻质木材或泡沫)和不连续的胶接表面(如蜂窝)。 1.2 以国际单位(SI)或英制单位(inch–pound)给出的数值可以单独作为标准。正文中,英制单位在括号内给出。每一种单位制之间的数值并不严格等值,因此,每一种单位制都必须单独使用。由两种单位制组合的数据可能导致与本标准的不相符。 1.3 本标准并未打算提及,如果存在的话,与使用有关的所有安全性问题。在使用本标准之前,本标准的用户有责任建立合适的安全与健康的操作方法,以及确定规章制度的适用性。 2 引用标准 2.1 ASTM标准2 C 274 夹层结构术语 Terminology of Structural Sandwich Constructions D 792 置换法测量塑料的密度和比重(相对密度)的试验方法; Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement D 883 与塑料有关的术语; Terminology Relating to Plastics D 2584 固化增强树脂的灼烧损失试验方法; Test Method for Ignition Loss of Cured Reinforced Resins D 2734 增强塑料孔隙含量试验方法; Test Method for Void Content of Reinforced Plastics D 3039/D 3039M 聚合物基复合材料拉伸性能试验方法 Test Method for Tensile Properties of Polymer Matrix Composite Materials D 3171 复合材料的组分含量试验方法; Test Methods for Constituent Content of Composites Materials D 3878 复合材料术语; Terminology for Composite Materials D 5229/D 5229M 聚合物基复合材料的吸湿性能及平衡状态调节试验方法; 1本试验方法由ASTM的复合材料委员会D30审定,并由单层和层压板试验方法专业委员会D30.09直接负责。当前版本于2004年5月1日批准,2004年5月出版。最初出版于1952年批准,上一版本为:C 297–94(1999),于1999年批准。 2有关的ASTM标准请访问ASTM网站https://www.360docs.net/doc/b8694289.html,,或者与ASTM客户服务@https://www.360docs.net/doc/b8694289.html,联系。ASTM标准年鉴的卷标信息,参看ASTM 网站标准文件摘要页。

1高分子材料拉伸强度测定

实验1 高分子材料拉伸强度测定 一、实验目的 1、测定聚丙烯材料的屈服强度、断裂强度和断裂伸长,并画应力—应变曲线; 2、观察结晶性高聚物的拉伸特征; 3、掌握高聚物的静载拉伸实验方法。 二、实验原理 1、应力—应变曲线 本实验是在规定的实验温度、湿度及不同的拉伸速度下,在试样上沿轴向方向施加静态拉伸负荷,以测定塑料的力学性能。 拉伸实验是最常见的一种力学实验,由实验测定的应力—应变曲线,可以得出评价材料性能的屈服强度,断裂强度和断裂伸长率等表征参数,不同的高聚物,不同的测定条件,测得的应力—应变曲线是不同的。 结晶性高聚物的应力—应变曲线分三个区域,如图1所示。 (1)OA段曲线的起始部分,近似直线,属普弹性变形,是由于分子的键长、键角以及原子间的距离改变所引起的,其形变是可逆的,应力与应变之间服从胡克定律。即: σ=?ε 式中σ——应力,MPa; ε——应变,%; Ε——弹性模量,MP 。 A为屈服点,所对应力屈服应力或屈服强度。 (2)BC段到达屈服点后,试样突然在某处出现一个或几个“细颈”现象,出现细颈现象的本质是分子在该自发生取向的结晶,该处强度增大,拉伸时细颈不会变细拉断,而是向两端扩展,直至整个试样完全变细为止,此阶段应力几乎一变,而变形增加很大。 (3)CD段被均匀拉细后的试样,再长变细即分子进一步取向,应力随应变的增大而

增大,直到断裂点D,试样被拉断,D点的应力称为强度极限,即抗拉强度或断裂强度σ,是材料重要的质量指标,其计算公式为: σ=P/(b×d) (MPa) 式中P——最大破坏载荷,N; b——试样宽度,mm; d——试样厚度,mm; 断裂伸长率ε是试样断裂时的相对伸长率,ε按下式计算: ε=(F-G)/G×100% 式中 G——试样标线间的距离,mm; F——试样断裂时标线间的距离,mm。 三、实验设备、用具及试样 1、电子式万能材料试验机WDT-20KN。 2、游标卡尺一把 3、聚丙烯(PP)标准试样6条,拉伸样条的形状(双铲型)如图2所示。 L——总长度(最小),150mm; b——试样中间平行部分宽度,10±0.2mm; C——夹具间距离,115mm; d——试样厚度,2~10mm; G——试样标线间的距离,50±0.5mm; h——试样端部宽度,20±0.2mm; R——半径,60mm。 四、实验步骤 准备两组试样,每组三个样条,且用一种速度,A组25mm/min,B组5mm/min。 1、熟悉万能试验机的结构,操作规程和注意事项。 2、用游标卡尺量样条中部左、中、右三点的宽度和厚度,精确到0.02mm,取平均值。 3、实验参数设定 接通电源,启动试验机按钮,启动计算机; 双击桌面上“MCGS环境”进入系统主界面;分别点击“试验编号”、“试样设定”、“试样参数”、“测试项目”等按扭,设定参数。 设定试验编号;注意试验编号不能重复使用;

土工合成材料-宽条拉伸试验

土工合成材料-宽条拉伸试验方法 单项选择题(共10 题) 1、土工合成材料宽条拉伸试验方法中湿态试样在取出()min内完成测试。 (A) ?A,3 ?B,4 ?C,5 ?D,6 答题结果: 正确答案:A 2、《土工合成材料宽条拉伸试验方法》(GB/T 15788-2017)标准实施日期 是()。 (D) ?A,43098 ?B,43101 ?C,43221 ?D,43282 答题结果: 正确答案:D 3、土工合成材料宽条拉伸试验方法中抗拉强度的单位:()。 (A) ?A,kN/m ?B,MPa ?C,N ?D,N/m 答题结果: 正确答案:A 4、测定土工织物拉伸性能的试验是()。 (A)

?A,宽条拉伸试验 ?B,窄条拉伸试验 ?C,条带拉伸试验 ?D,接头/接缝宽条拉伸 答题结果: 正确答案:A 5、对于单向土工格栅的宽条拉伸试验,每个试样的宽度不小于(),并具有 足够长度满足夹钳隔距不小于100mm。 (D) ?A,100mm ?B,150mm ?C,300mm ?D,200mm 答题结果: 正确答案:D 6、土工合成材料宽条拉伸试验要求每组有效试样()块。 (B) ?A,3 ?B,5 ?C,6 ?D,10 答题结果: 正确答案:B 7、对于伸长率超过5%的土工合成材料,设定试验机的拉伸速率,使试样的 伸长速率为隔距长度的()%/min。 (D) ?A,10±2 ?B,20±2 ?C,10±1 ?D,20±5 答题结果:

正确答案:D 8、预负荷伸长是在相当于()最大负荷的外加负荷下所测的隔距长度(mm) 的增加值。 (B) ?A,2% ?B,1% ?C,3% ?D,4% 答题结果: 正确答案:B 9、土工合成材料宽条拉伸试验用引伸计的测试精度应为显示器读数的()。 (B) ?A,±1% ?B,±2% ?C,±4% ?D,±6% 答题结果: 正确答案:B 10、土工合成材料宽条拉伸试验方法中用于进行湿态试验的样品应浸入温度为 ()的水中,浸泡时间应至少(),且足以使试样完全润湿,即在浸泡更长的时间后最大负荷或伸长率无显著差异。 (B) ?A,(20±5)℃,12h ?B,(20±2)℃,24h ?C,(20±2)℃,12h ?D,(20±5)℃,24h 答题结果: 正确答案:B 多项选择题(共4 题)

高强玻璃纤维的现状及发展趋势

高强玻璃纤维的现状及发展趋势 1 引言 1938年,美国欧文斯-科宁(OC)公司发明了无碱E玻璃纤维开创了玻璃纤维增强复合材料时代,1960年,又应美国空军的需求开发的一种比E玻纤强度和模量更高一种玻璃纤维,名为S玻纤。S-2是它的商业化生产的注册品牌,现由AGY公司生产。法国的圣戈班(SAINT-GOBINE) 集团的维托特克斯(VETROTEX)公司,日本的日东纺织株式会社,也分别宣布开发出了商标为R高强玻纤和T高强玻纤,前苏联的波洛茨克公司(现白俄罗斯POLOTSK-STEKLOVOLOKNO)生产BMⅡ (为上标)型高强玻纤,此外还有日本的板旭子公司生产U、K高强玻纤用于玻纤帘子线的生产。 中材科技股份有限公司南京玻纤院自上世纪70年代以来独立自主开发并规模化工业生产我国的HS系列高强玻纤,产品性能接近或达到国外先进水平。 将上述各公司生产的S、R、T、BMⅡ(为上标)、 HS玻纤统称为高强玻纤。 2 高强玻纤的化学成份 高强玻璃系统主要为SiO2-Al203-Mg0或SiO2-Al2O3-CaO-MgO体系(数字为下标),各种高强玻璃成份不尽相同,但其中Al2O3的含量均在25%左右。高强玻纤的化学成分见表1。 3 高强玻纤的性能 高强玻纤与常用E玻纤相比具有下列主要六大特点:拉伸强度高、弹性模量高刚性好;断裂伸长量大抗冲击性能好,化学稳定性好,耐高温,抗疲劳特性及雷达透波性能好。 3.1 高强玻纤的拉伸强度及模量 高强玻纤的拉伸强度,弹性模量分别比E玻纤提高了30%~40%和16%~20%以上。用高强玻纤制成的复合材料其强度及模量比E玻纤制成的复合材料分别高5O%以上,见图1和图2。

玻纤格栅的施工工艺

玻纤格栅的施工工艺公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

玻纤格栅的施工工艺 (一)处理旧路面 在玻纤格栅铺设前,应对旧路面进行病害处理,并用机械铣刨拉毛,旧路面接缝应进行重新封缝,在玻纤格栅铺设前24小时起,进行路面清理,并进行交通管制。 (二)浇洒粘层沥青 为了使玻纤格栅与原路面保持良好粘接,并能满足沥青混凝土机械化摊铺的要求,必须在原路面上浇洒粘层沥青。在洒布粘层沥青后,待粘层沥青已破乳或凝结时,应立即进行玻纤格栅的铺设。如果情况特殊,也可先铺设玻纤格栅,再浇洒粘层沥青,然后在玻纤格栅上适量均匀地撒一些细粒石屑,再用轻型胶辊压路机在其上作适度碾压。 (三)铺设玻璃纤维土工格栅 1、目前常用的玻纤格栅有带自粘胶和不带自粘胶两种。带自粘胶的可直接在已平整的旧路面上铺设,不带自粘胶的,通常采用钉子固定法。固定用所需材料为: (1)30×30×0.3毫米的铁皮,要求平整不翘角。 (2)2英寸钢钉或射钉(优质水泥钉) 钉子固定法铺设玻纤格栅时,先将一端用铁皮和钉子固定在已洒布粘层沥青的下层结构上,钉子可用锤击或射钉枪射入,再将格栅纵向拉紧并分段固定,每段长度为2-5米。对于水泥混凝土路面,可按缩缝间距分段,钢钉位置设于接缝处。要求格栅拉紧时玻纤格栅纵横向均处于挺直张紧状态。

2、土工格栅搭接距离为:纵向接头搭接距离不小于20厘米,横向搭接距离不小于15厘米。纵向搭接应根据沥青摊铺方向将前一幅置于后一幅之上。 3、固定玻纤格栅时,不能将钉子钉于玻纤上,也不能用锤子直接敲击玻纤。固定后如发现钉子断裂或铁皮松动,则应予以重新固定。 4、玻纤格栅铺设固定完毕后,需用轻型胶辊压路机适度碾压稳定,使格栅与原路面粘结牢固。并严格控制车辆在其上行驶,严禁车辆在格栅层上急转向、急刹车和倾倒混合脚料,以防止对玻纤格栅造成损伤或破坏。 (四)铺筑沥青罩面层并碾压成型 1、沥青混合料的摊铺必须在确认玻纤格栅铺设良好并能满足沥青混合料摊铺进度后方可进行。 2、在玻纤格栅上铺设沥青混合料时,沥青层最小厚度为4cm。沥青混合料的拌制、运输、摊铺和压实均应符合现行《公路沥青路面施工技术规范》和《公路发生沥青路面施工技术规范》的规定和要求。 3、沥青混合料摊铺时,应防止摊铺机的找平小车等金属构件损坏已铺设的玻纤格栅。

玻璃纤维棉

玻璃纤维 目录 玻璃纤维 (1) 1、材料简介 (2) 基本介绍 (2) 特点介绍 (3) 主要成分 (4) 2、材料分类 (5) E-玻璃 (6) C-玻璃 (6) 高强玻璃纤维 (7) AR玻璃纤维 (7) A玻璃 (7) E-CR玻璃 (8) D玻璃 (8) 3、强伸性能测试 (8) 4、品种用途 (9) 无捻粗纱 (9) 无捻粗纱织物(方格布) (11) 玻璃纤维毡片 (11) 短切原丝和磨碎纤维 (13) 玻璃纤维织物 (14) 组合玻璃纤维增强材料 (16) 玻璃纤维湿法毡 (17) 玻璃纤维布 (17) 5、现状前景 (18)

玻璃纤维短切丝 玻璃纤维(英文原名为:glass fiber或fiberglass )是一种性能优异的无机非金属材料,种类繁多,优点是绝缘性好、耐热性强、抗腐蚀性好,机械强度高,但缺点是性脆,耐磨性较差。它是以玻璃球或废旧玻璃为原料经高温熔制、拉丝、络纱、织布等工艺制造成的,其单丝的直径为几个微米到二十几米个微米,相当于一根头发丝的 1/20-1/5 ,每束纤维原丝都由数百根甚至上千根单丝组成。玻璃纤维通常用作复合材料中的增强材料,电绝缘材料和绝热保温材料,电路基板等国民经济各个领域。 1、材料简介 基本介绍 玻璃一般人之观念为质硬易碎物体,并不适于作为结构用材,但如其抽成丝后,则其强度大为增加且具

玻璃纤维 有柔软性,故配合树脂赋予形状以后终于可以成为优良之结构用材。玻璃纤维随其直径变小其强度增高。 CAS NO:14808-60-7 分子结构 [1] 特点介绍 原料及其应用玻璃纤维比有机纤维耐温高,不燃,抗腐,隔热、隔音性好(特别是玻璃棉),抗拉强度高,电绝缘性好(如无碱玻璃纤维)。但性脆,耐磨性较差。玻璃纤维主要用作电绝缘

抗拉强度实验

抗拉强度试验 [试验目的] 测试橡胶材料的抗张强度与延伸率; [试验原理] 运用马达传动螺杆而使下夹具向下移动,从而拉伸试样;结果运用LOAD CELL 力量感应器连接显示器自动显示力量值. [参考标准] 本机符合ASTM-D412 及ISO GB JIS EN等测试方法之需求。 [设备装置]拉力试验机标准斩刀 1/100mm的厚度计尺子 [操作步骤] A. 取大底割下适当试片,两面磨平到厚度为2-3mm;目前是204X153X2MM and 145X145X 4MM B. 用正确刀模斩好试片,量好试片厚度S(mm)(三点为最小值)及平行部位的宽度S0(mm); C. 用尺子在哑铃状试片中间平行部分中心位置量出规定的长度(CNS JIS 2号取2MM,如ASTM C#取2.5MM),并画好延伸长L0距离处的平行线作为延伸率之标线; D. 打开电源,依可户要求设定好测试速度; E. 夹紧试片,按显示器归“0”,按下启动开关,开始测试; F. 测试时,用身长量测指针准确量取试片断裂时延伸长标线之间距离L(mm); G. 试片断裂时,自动停机,荧光幕显示最大的拉力值F(Kg或N); H. 记下延伸长及最大的拉力值; I. 关闭电源,取下试片,依公式计算抗拉强度及延长率: 抗拉强度=F/(S*S0)*100(Kg/cm2)--------(1)延伸率=(L-L0)/L0*100% -----------(2)[注意事项] 1. 本机需放于牢固平坦之地面,保重稳固; 2. 经常检查上下限设定钮位置是否通畅,是否栓紧,避免夹具互撞损及荷重元(100Kgf); 3. 伸长量测指针不用时应推开,使指针尖端靠于左侧,以防给下夹具撞弯; 4. 刀模规格及测试速度需符合客户要求,不可乱用; a: G.R一般采用2#哑铃形刀模:长100mm x 宽25mm x 平行部分长20mm x 宽10MM b:实伦物性采用3#哑铃形刀模: 长 115MM x 宽25MM x 平行部分长33MM x 宽6MM c:W.W物性采用6#哑铃裁刀长 76MM x 宽13MM x 平行部分长 20MM x 宽4MM 5.对于同种胶料开出的试片,试片的裁取必须按胶料流动的方向及在规定统一的位置; 6.试片的宽度原则上为哑铃状试片刀模平行部分的宽度S0,但有时也需根据具体情况量取刃口内缘的实际宽度; 7:拉力计算方法:最大值*0.5+第二大*0.3+三大*0.1+最小值*0.1=拉力值 如果四个片有一个fail 拉力值取三片的平均值.[撕裂:(F拉力/B厚度)X10 KG/CM] 8:试样标准状态:测试前将试样静置于温度23±2℃相对湿度65±5﹪空气中24小时以上方可测试

土工格栅

二秦高速公路康保至沽源段(K27+800-K62+200) 首件土工格栅施工技术方案 编制:_____________ 复核:_____________ 审批:_____________ 龙建路桥股份有限公司二秦L3项目部 二〇一五年八月

一、编制依据 1、二连浩特至秦皇岛高速公路康保(冀蒙界)至沽源(张承高速)段第L3标段两阶段施工图设计; 2、《公路工程质量检验评定标准》(JTGF80/1-2004); 3、《公路路基施工技术规范》(JTGF10—2006); 二、工程概况 1、工程简介 本项目位于河北省康保县境内,利用已建成的二十顷村至张油坊段作为本路段的左半幅,旧路右侧新建13m宽作为高速公路右幅并与旧路衔接成为整体,全长34.4KM。二秦高速公路采用设计速度100km/h,双向四车道高速公路标准。共设置桥梁10座,涵洞51座,通道24座,路基填方171万方,挖方28万方。 段为右侧拼宽路基,填方最大填筑深度10米,根据设计图纸,对该段路基路床范围内设置双层双向拉伸土工格栅。 2、段落选择 根据设计图纸要求,铺设段落K0+570-K0+610,全长40米。该段路基为右侧拼宽路基,填方为石方填筑,填方近期将填至设计铺设高程。该段路基设计格栅铺设长度40m,宽度8m,能在短期内完成施工,对后续施工有较好的指导作用。 3、施工进度计划 该铺设路段准备安排路基队施工,计划开工时间为2014年4月22日,完成时间为2014年4月42日。。 三、施工工艺及方法 1、施工准备 1.1技术准备 开工之前,测量人员已仔细复核施工段落的施工放样数据,为施工奠定基础。在项目部总工程师的组织下,集中项目部有关技术人员已仔细审阅图纸。项目总工向技术人员和施工班组交底,组织技术人员熟悉施工技术规范,质量检验评定标准和有关安全、环保、文明施工等文件。

玻璃纤维的成分及性能

◆玻璃纤维的成分及性能 生产玻璃纤维用的玻璃不同于其它玻璃制品的玻璃。目前国际上已经商品化的纤维用的玻璃成分如下: 1、E-玻璃亦称无碱玻璃,系一种硼硅酸盐玻璃。目前是应用最广泛的一种玻璃纤维用玻璃成分,具有良好的电气绝缘性及机械性能,广泛用于生产电绝缘用玻璃纤维,也大量用于生产玻璃钢用玻璃纤维,它的缺点是易被无机酸侵蚀,故不适于用在酸性环境。 2、C-玻璃亦称中碱玻璃,其特点是耐化学性特别是耐酸性优于无碱玻璃,但电气性能差,机械强度低于无碱玻璃纤维10%~20%,通常国外的中碱玻璃纤维含一定数量的三氧化二硼,而我国的中碱玻璃纤维则完全不含硼。在国外,中碱玻璃纤维只是用于生产耐腐蚀的玻璃纤维产品,如用于生产玻璃纤维表面毡等,也用于增强沥青屋面材料,但在我国中碱玻璃纤维占据玻璃纤维产量的一大半(60%),广泛用于玻璃钢的增强以及过滤织物,包扎织物等的生产,因为其人格低于无碱玻璃纤维而有较强的竞争力。 3、高强玻璃纤维其特点是高强度、高模量,它的单纤维抗拉强度为2800MPa,比无碱玻纤抗拉强度高25%左右,弹性模量86000MPa,比E-玻璃纤维的强度高。用它们生产的玻璃钢制品多用于军工、空间、防弹盔甲及运动器械。但是由于价格昂贵,目前在民用方面还不能得到推广,全世界产量也就几千吨左右。 4、AR玻璃纤维亦称耐碱玻璃纤维,主要是为了增强水泥而研制的。 耐碱玻璃纤维,又称AR玻璃纤维,英文:alKali -resistant glass fibre,主要用于玻璃纤维增强(水泥)混凝土(简称GRC)的肋筋材料,是100%无机纤维,在非承重的水泥构件中是钢材和石棉的理想替代品。它的特点是耐碱性好,能有效抵抗水泥中高碱物质的侵蚀,握裹力强,弹性模量、抗冲击、抗拉、抗弯强度极高,不燃、抗冻、耐温度、湿度变化能力强,抗裂、抗渗性能卓越,具有可设计性强,易成型等特点,是广泛应用在高性能增强(水泥)混凝土中的一种新型的绿色环保型增强材料。 5、A玻璃亦称高碱玻璃,是一种典型的钠硅酸盐玻璃,因耐水性很差,很少用于生产玻璃纤维。 6、E-CR玻璃是一种改进的无硼无碱玻璃,用于生产耐酸耐水性好的玻璃纤维,其耐水性比无碱玻纤改善7~8倍,耐酸性比中碱玻纤也优越不少,是专为地下管道、贮罐等开发的新品种。 7、D玻璃亦称低介电玻璃,用于生产介电强度好的低介电玻璃纤维。 除了以上的玻璃纤维成分以外,近年来还出现一种新的无碱玻璃纤维,它完全不含硼,从而减轻环境污染,但其电绝缘性能及机械性能都与传统的E玻璃相似。另外还有一种双玻璃成分的玻

土工格栅施工工艺

土工格栅施工工艺 1、为了减少填挖交界处的差异沉降,对纵横向填挖交界处的地基进行处理。对填挖交界处挖方路床(80cm)进行超挖回填碾压,并在上路堤顶面和底面设置土工格栅,填方部分路 堤除严格按照《路基填料设计图》中的技术要求处理外,其基底上下路堤压实度相应提高1%,即清表处理后地基为91%,下路堤为94%,上路堤为95%,交界面开挖不小于2米宽 台阶,并设置向内2%横坡。纵向填挖交界处填方一端进行强夯处理,处理范围为2倍填 土高度,对挖方一端10米范围进行超挖回填夯实,并在超挖回填的顶部和底部设置土工格栅,界面两侧不小于5米,对填方部分基底采用换填80厘米8%灰土垫层进行处治。2、 填挖交界处理施工方法及要点 ⑴清除表土:将填方、挖方路段表层不小于30㎝种植土、草皮土、树根和含有腐圬物质 的土清出,集中堆放于弃土场。 ⑵测量放样:按批复的导线点、水准点恢复线路中线,钉出中、边桩,并将边桩外引至用 地红线桩处加以固定,用水准仪测量并计算放出纵、横向下路堤顶、上路堤顶填挖交界线(下层,上层土工格栅中心线),钉桩撒线标记,边线外设桩固定。 ⑶挖台阶:填前碾压前半填半挖沿路线纵向,填方段与挖方段交界沿横向用推土机或挖掘 机开挖宽度不小于2m的台阶,台阶设2%-4%向内倾斜的横坡。 ⑷填前碾压:用≥18T的振动压路机进行碾压,碾压时对交界面(包括台阶)多压两遍, 压实度检测不低于91%。 ⑸80厘米厚8%灰土垫层施工:施工要点同高路堤8%灰土垫层相同。只是压实度检测不 得低于94%。 ⑹填方路基施工:填方路基施工填料与施工方法与3%掺灰路基施工相同。只是压实度检 测不得低于95%。⑺土工格栅铺设 ①底层土工格栅铺设:路基填筑至下路堤顶后,开挖填挖交界挖方段台阶时,开挖宽度不 小于7m,台阶面碾压压实度不小于91%,交界面碾压成型后,人工对土工格栅铺设面进行 清理干净,土工格栅以钉桩标记的交界线为轴线,纵、横向全断面铺设,铺设土工格栅应 均匀、平整,不使其出现扭曲、折皱、重叠,并要注意避免过量拉伸从而避免超过其强度 和变形的极限而产生破坏或撕裂、局部顶破等。 ②上层土工格栅铺设:上层土工格栅铺设位置为上路堤顶面。3%灰土填方路基填筑至上 路堤顶后,与路床处理底标高平齐,人工整理格栅铺设面,铺设方法与底层格栅铺设相同。 ③中间层土工格栅铺设:中间层土工格栅铺设于上路堤填筑层中,上路堤填筑分三层施工,下层填筑层填筑完成后,整理碾压土工格栅铺设面,其摊铺宽度伸入挖方段5m,土工格栅铺设方法底层铺设相同。八土工格栅铺设质量控制要点 ①路基纵向填挖交界处的土工格栅沿路基横向铺设,铺设长度为沿路基横断面方向铺至填 方边坡外30㎝处,待边坡修整时将露出部分剪去。路基横向填挖交界处的土工格栅沿路基纵向铺设,铺设长度为超出半填半挖路基断面30㎝处。②土工格栅,其性能参数均符合 国标的相应要求。 ③两幅土工格栅之间的搭接宽度为30cm,搭接部分采用聚乙烯绳呈“之”字形穿绑。并 采用U型钉将土工格栅固在土中并张紧,间距为1.5m*1.5m。 ④在铺设完成的土工格栅上继续填筑路基时,将拌合好的填料推摊时,应先提铲高推将土 工格栅全部覆盖后再按松铺厚度推摊,辅以人工检清硬质块料,以防土工格栅扭曲、移位。 土工格栅施工工艺 土工格栅施工工艺流程:检测、清理下承层→人工铺设土工格栅→搭接、绑扎、固定→摊

影响玻璃纤维强度的因素

影响玻璃纤维强度的因素 1、纤维直径和长度对拉伸强度的影响 一般情况,玻璃纤维的直径愈细,抗拉强度越高,但在不同的拉丝温度下拉制的同一直径的纤维强度,也可能有区别。玻璃纤维的拉伸强度和长度有关,随着纤维长度的增加,拉伸强度显著下降直径和长度对玻璃纤维拉伸强度的影响,可以用微裂纹假说来解释。因为随着纤维直径和长度的减小,纤维中微裂纹会相应减少,从而提高了纤维强度。 2、化学组成对强度的影响 一般是含碱量越高、强度越低。无碱纤维比有碱纤维的拉伸强度高20%研究证明,高强和无碱纤维,由于成型温度高,硬化速度快,结构链能大等原因,因此具有很高的抗拉强度。含K2O和PbO 成分多的玻璃纤维强度较低。 3、玻璃液质量对玻璃纤维强度的影响 A)结晶杂质的影响:当玻璃成分波动或漏板温度波动或降低时,可能导致纤维中结晶的出现。实践证明,有结晶的纤维比无结晶的纤维强度要低。 B)玻璃液中的小气泡也会降低纤维的强度。曾试验用含小气泡的玻璃液拉直径为5.7um,的玻璃纤维其强度比 用纯净玻璃液拉制的纤维强度降低20%。 4、成型条件对玻璃纤维的影响

实践证明,用漏板拉制的玻璃纤维强度高于用玻璃棒法拉制的纤维。在玻璃棒法中,用煤气加热生产的纤维又比用电热丝加热生产的纤维强度为高。如用漏板法拉制10um,玻璃纤维的强度为1700MPa,而用棒法拉制相同直径的玻璃纤维强度仅为1100MPa。这是因为玻璃棒只加热到软化,粘度仍然很大,拉丝时纤维受到很大的应力;此外玻璃棒法是在较低温度下拉丝成型,其冷却速度要比漏板法为低。用各种不同成型方法生产的玻璃纤维的强度各不相同。用漏板法拉制的纤维强度最高,气流吹拉长棉次之,玻璃棒法再次之。然后是蒸汽立吹短棉,强度最低是蒸汽喷吹矿棉。在采用漏板拉丝的方法中,采用较高的成型温度,较小的漏孔直径,可以提高纤维强度。 5、表面处理对强度的影响 在连续拉丝时,必须在单根纤维或纤维束上敷以浸润剂,它在纤维表面上形成一层保护膜,防止在纺织加工过程中,纤维间发生相互摩擦,而损伤纤维降低强度。玻璃布经热处理除去浸润剂后,强度下降很多,但在用中间粘结剂处理后,强度一般都可回升,这是因为中间粘结剂涂层一方面对纤维起到保护作用,另一方面对纤维表面缺陷有所弥补。 6、存放时间对强度的影响 玻璃纤维存放一段时间后其强度会降低,这种现象称为纤维的老化。主要是空气中的水分对纤维侵蚀的结果。此,化学稳定性高的纤维强度降低小,如同样存放233年的有碱

新型高强度玻璃纤维制备及其增强环氧树脂性能.

2010 年第 17 期·航空制造技术 75 新型高强度玻璃纤维制备及其 增强环氧树脂性能 * 中材科技股份有限公司刘建勋祖群朱建勋 高强度玻璃纤维与普通无碱玻璃纤维相比具有拉伸强度高、弹性模量高、抗冲击性能好、化学稳定性好、抗疲劳性好、耐高温等优良性能, 广泛应用于航空、航天、兵器、舰船、化工等领域。 目前, 主要高强度玻璃纤维有:美国的“S -2” 、日本的“T” 纤维、俄罗斯的“ВМЛ” 纤维、法国的“R” 纤维和中国的“H S” 系列纤维 [3-6]。表 1是不同牌号高强度玻璃纤维的性能比较, 同时与 E-glass 纤维作对比。 从表 1可以看出, 目前我国性能较高的“H S-4” 玻璃纤维, 其力学性能和法国“R”玻璃纤维、俄罗斯 刘建勋 毕业于南京理工大学国家特种超细粉体研究中心, 获工学博士学位。2008~2010年, 南京玻璃纤维研究设计院博士后、高级工程师, 江苏省颗粒学会理事。主持国防军品配套、江苏省自然科学基金等国家和省科技项目, 现在主要从事特种玻璃纤维成分与性能研究。发表 SCI、 EI 文章 10余篇。 Preparation of New High-Strength Glass Fiber and Performance of Reinforced Epoxy Resin

* 国家高技术研究发展计划 (863计划资助项目 (2007AA03Z549 ; 江苏省自然科学基金资助项目 (BK2009488 。 高强度玻璃纤维与普通无碱玻 璃纤维相比具有拉伸强度高、弹性模量高、抗冲击性能好、化学稳定性好、抗疲劳性好、耐高温等优良性能, 广泛应用于航空、航天、兵器、舰船、化工等领域, 如导弹发动机壳体、宇航飞机内衬、枪托、发射炮筒、防弹装甲、高压容器等。随着科技的发展, 高强度玻璃纤维在各工业领域的需求量也在不断扩大[1-2]。 76 航空制造技术·2010 年第 17 期 及浸胶纱强度及层间剪切强度。 (2 玻璃纤维新生态强度的检测。 根据标准 A S T M D -2102, 取熔制好的玻璃约 60g, 放入单孔铂铑坩埚内, 在1440℃ ~1450℃下再熔融, 通过控制常规的玻璃纤维成型工艺参数 (液面高度、热点温度、拉丝机转速等 , 拉制成直径为7~8μm 的连续玻璃纤维, 采用强力测试机测试其新生态强度, 测试环境湿度必须控制在规定范围内。 (3 玻璃纤维耐温性的检测。玻璃纤维的耐温性采用软化点来判定, 软化点温度越高, 耐温性越好, 反之则耐温性差。软化点的测试方法与其他玻璃纤维软化点测试方法相同, 采用吊丝法(按 A S T M C -338 测试, 匀速升温, 激光位移感应器记录玻璃伸长速率, 当伸长率

土工格栅施工方法

土工格栅施工方法 一、玻璃纤维土工格栅的层位 (1)路面面层 a.对新建沥青混凝土道路路面,玻纤格栅可置于半刚性基层与下封层之间,也可置于下封层与沥青面之间。 b.对新建水泥混凝土道路路面,玻纤格栅应置于半刚性基层与刚性水泥混凝土封层之间。 c. 对旧沥青路面维修,可采用喷油法,锚固法,自粘法,在原路面上铺设玻纤格栅。也可在原路面上做20mm-30mm细粒式沥青混凝土找平层,再铺设玻纤格栅,然后加铺沥青混凝土面层,厚度宜为60-100mm。 d.对旧水泥路面维修,可采用自粘法与喷油法,在原路面上铺设玻纤格栅,也可在原路面上做20mm-30mm 细粒式沥青混凝土找平层,再铺设玻纤格栅,然后加铺沥青混凝土面层,厚度宜为60-100mm。 e.新建路面面层均可采用锚固法,自粘法进行施工。 玻纤土工格栅 路面施工示意图

(2)基础层 基础层采用玻纤格栅,铺设位置宜放在基础层的底部,采用锚固法施工。 (3)下层路基层 a.玻纤格栅必须放在下层基础层较低的1/3处。 b.亦可放在下层路基层底部,玻纤格栅下面至少放20mm厚的砂垫层或铺设土工布。 c. 采用锚固法施工.

(玻纤土工格栅路基施工示意图)

2)对加筋路面的要求 玻璃纤维土工格栅加筋混凝土路面。其路面应符合下列要求: (1)纵向平整度,横向路拱的坡度与平顺性均应符合设计标准,若达不到标准,应在加铺之前作处理。

(2)加铺前对路面承载能力进行平定,若承载能力不足,达不到标准,或水泥混凝土路面有板底脱空现象,均应作增强处理。水泥混凝土路面的接逢与裂缝应事先清理,填充。 (3)原有路面及基层表面有局部松散,抗洞及扩散型裂缝,应事先修补,填充,以保持表面完好。 (4)原有路面表面应冲洗干净,清除尘土。松散颗料及杂物。 (二)玻璃纤维土工格栅沥青路面层施工方法 (1)锚固法 不带自粘胶的玻璃纤维土工格栅增强沥青混凝土路面和防止路面与路面反射裂缝,可采用锚固法施工,但宜先铺设玻纤土工格栅,再洒布热沥青作粘曾油,施工人员必须戴手套,施工方法如下: a.粘层油选用AH-70或AH-90重油热沥青,粘层油的规格及质量应符合《公路沥青路面施工技术规范》JTJ032-94,采用专用车辆喷洒。粘层油每平方米用量约0.4kg-0.6kg。 b.铺设玻璃纤维土工格栅时,应保持铺设平顺,拉紧,横向搭接长度宜为50-100mm,纵向搭接长度宜为150-200mm,并根据摊铺方向,将后一端压在前一端之下。 c.用胶轮压路机碾压。 d. 50×50×0.3mm的固定铁皮,要求平整不翘角,周边宜倒角处理,2英寸钢钉(优质水泥钉) e 钉子固定法铺设玻纤土工格栅时,先将一端用固定铁皮和钉子固定在已洒布粘层沥青的下层结构上,钉子可用锤击或射枪射入。再将格栅纵向拉紧时玻纤横向均处于挺直张紧状态。 f.钉子固定时,格栅搭接距离为:纵向接头搭接距离不小于15cm,横向搭接距离不小于5cm。纵向搭接应根据沥青摊铺方向将前一幅置于后一幅之上。 . g.固定时不能将钉子钉玻纤上,也不能用锤子直接敲击玻纤。固定后如发现钉子断裂或铁皮松动,则需予重新固定。 h.为防止施工车辆的轮胎将玻纤格栅和粘油粘起来。和沥青混凝土摊铺机机轮打滑的现象,应在粘层油表面撒石屑,石屑用量为3m3/1000m2-5m3/1000m2。 i.大气温度低于10摄氏度或路面潮湿时不得施工。 j.沥青面层施工方法与普通沥青路面面层施工方法一致,但应注意施工车辆不得在玻纤格栅表面表面急转弯,急刹车。 (2)自粘式玻璃纤维土工格栅直铺法 自粘式玻璃纤维土工格栅是我集团的专利产品,其施工方法便捷,质量稳定。施工方法如下: a.对旧沥青混凝路面和旧水泥混凝路面,做20mm-30mm厚的调平层,使用真空车或洒水车保证路表面清洁干净。 b.喷洒AH-70或AH-90重油热沥青,用量宜为0.3kg-0.4kg/m2。 c.采用我集团提供的专用摊铺车,铺设自粘式玻纤格栅,铺设应平顺,拉紧。 d.横向搭接长度宜为50mm-100mm,纵向搭接长度宜为150mm-200mm,搭接重叠方向与沥青混凝土摊铺机运行的方向一致。 e.使用胶轮压路机碾压(胶轮压路机需有洒水装置)。 f.罩面。 (三)玻璃纤维土工格栅增强基础及下层路基层施工方法 玻璃纤维土工格栅增强基础层及下层路基层均采用锚固法施工具体条款同路面层锚固法施工方法 基本相同,但不需喷洒粘层油,铺设要求压实,平整,符合相关设计规范。

拉伸性能测试

拉伸性能测试(静态) 拉伸性能测试主要确定材料的拉伸强度,为研究、开发、工程设计以及质量控制和标准规范提供数据。在拉伸测试中,薄的薄膜会遇到一定困难。拉伸试样的切边必须没有划痕或裂缝,避免薄膜从这些地方开始过早破裂。 对于更薄的薄膜,夹头表面是个问题。必须避免夹头发滑、夹头处试样破裂。任何防止夹头处试样发滑和破裂,而且不干扰试样测试部分的技术如在表面上使用薄的橡胶涂层或使用纱布等都可以接受。 从拉伸性能测试中可以得到拉伸模量、断裂伸长率、屈服应力和应变、拉伸强度和拉伸断裂能等材料性能。ASTM D 638 (通用)[4]和ASTM D 882 [5](薄膜)中给出了塑料的拉伸性能(静态)。 拉伸强度 拉伸强度是用最大载荷除以试样的初始截面面积得到的,表示为单位面积上的力(通常用MPa为单位)。 屈服强度 屈服强度是屈服点处的载荷除以试样的初始截面面积得到的.用单位面积上的力(单位MPa)表示,通常有三位有效数字。 拉伸弹性模量 拉伸弹性模量(简称为弹性模量,E)是刚性指数,而拉伸断裂能(TEB,或韧性)是断裂点处试样单位体积所吸收的总能量。拉伸弹性模量计算如下:在载荷-拉伸曲线上初始线性部分画一条切线,在切线上任选一点,用拉伸力除以相应的应变即得(单位为MPa),实验报告通常有三位有效数字。正割模量(应力-应变间没有初始线性比值时)定义为指定应变处的值。将应力-应变曲线下单位体积能积分得到TEB,或者将吸收的总能量除以试样原有厚度处的体积积分。TEB表示为单位体积的能量(单位为MJ/m3),实验报告通常有两位有效数字。 拉伸断裂强度 拉伸断裂强度的计算与拉伸强度一样,但要用断裂载荷,而不是最大载荷。应该注意的是,在大多数情况中,拉伸强度和拉伸断裂强度值相等。 断裂伸长率 断裂伸长率是断裂点的拉伸除以初始长度值。实验报告通常有两位有效数字。 屈服伸长率 屈服伸长率是屈服点处的拉伸除以试样的初始长度值,实验报告通常有两位有效数字。 塑料薄膜的包装产率 有一种专门的ASTM测试方法(ASTMD 4321[6])测定塑料薄膜的“包装产率”,以试样单位质量上的面积表示。在这种测试中,定义并得到标称产率(用户和供应商之间达成的目标产率值)、包装产率(按标准计算的产率)、标称厚度(用户和供应商之间达成的薄膜厚度目标值)、标称密度和测量密度等值。对于加工厂商来说包装产率值很重要,因为它决定了某种应用中一定质量的薄膜可以得到的实际包装数量。

【CN109929132A】一种高强度的玻璃纤维复合材料及其加工工艺【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910254078.9 (22)申请日 2019.03.30 (71)申请人 裴广华 地址 215000 江苏省苏州市工业园区万盛 街8号圆融大厦1003 (72)发明人 裴广华  (51)Int.Cl. C08J 7/04(2006.01) C09D 129/04(2006.01) C09D 7/62(2018.01) C09D 7/63(2018.01) C08L 23/12(2006.01) C08L 71/02(2006.01) C08L 51/06(2006.01) C08K 13/06(2006.01) C08K 9/04(2006.01) C08K 3/04(2006.01)C08K 7/06(2006.01)C08K 7/14(2006.01)C08K 3/32(2006.01)C08K 5/3492(2006.01) (54)发明名称 一种高强度的玻璃纤维复合材料及其加工 工艺 (57)摘要 本发明公开了一种高强度的玻璃纤维复合 材料及其加工工艺,现如今的导热聚合物复合材 料多用采用聚酰胺、聚苯硫醚等作为树脂基体, 这些树脂基体的加工成本高,性能较差,不易成 型,相对而言,以聚丙烯作为树脂基体的导热复 合材料,它的成本更低,性能更加优越,同时易加 工成型,因此聚丙烯树脂成为研究导热复合材料 的重点。聚丙烯树脂的导热系数较低,无法广泛 应用,因此现如今都通过添加石墨烯来提高聚丙 烯树脂的导热系数。本发明配方设计合理,工艺 参数优化,不仅实现了高强度玻璃纤维复合材料 的制备,同时抑制了复合材料的阻燃现象,提高 了复合材料的导热性能,应用范围更广,具有较 高的实用性。权利要求书2页 说明书9页CN 109929132 A 2019.06.25 C N 109929132 A

钢塑玻纤土工格栅施工工艺

7、钢塑玻纤土工格栅施工工艺 土工格栅是用聚丙烯、聚氯乙烯等高分子聚合物经热塑或模压而成的二维网格状或具有一定高度的三维立体网格 屏栅,被广泛使用在各种路基路面以及高强度要求的土木工程中。 首先精确放出路基边坡线,为了保证路基宽度,每侧各加宽0.5m,把晾晒好的基底土进行整平后用25T振动压路机静压两遍,再用50T震压四遍,不平整的地方人工配合整平。铺垫0.3m厚的中(粗)砂,人工配合机械整平后,25T的振动压路机静压两遍。 然后铺设土工格栅。土工格栅铺设时底面应平整、密实,一般应平铺,拉直、不得重叠,不得卷曲、扭结,相邻的两幅土工格栅需搭接0.2m,并沿路基横向对土工格栅搭接部分每隔1米用8号铁丝进行穿插连接,并在铺设的格栅上,每隔1.5-2m用U型钉固定于地面。 第一层土工格栅铺好后,开始填设第二层0.2m厚的中(粗)砂,其方法:汽车运砂到工地卸于路基一侧,而后用推土机向前赶推,先把路基两侧2米范围内填筑0.1m后,把第一层土工格栅折翻上来再填上0.1米的中(粗)砂,禁止两侧向中间填筑和推进,禁止各种机械在没有填筑中(粗)砂的土工格栅上通行作业,这样能保证土工格栅平整,不起鼓,不起皱,待第二层中(粗)砂平整后,要进行水平测量,防止

填筑厚度不均匀,待抄平无误后用25T振动压路机静压两遍。 第二层土工格栅施工方法同第一层方法一样,最后再填筑0.3m的中(粗)砂,填筑方法同第一层一样,用25T压路机静压两遍后,这样路基基底加固就处理完毕。 在第三层中(粗)砂碾压好后,沿线路纵向在边坡两侧各铺设土工格栅两幅,搭接0.16m,并用同样方法连接好,然后开始土方施工作业。铺设土工格栅进行边坡防护,必须每层测量出铺设的边线,每侧要保证边坡整修后土工格栅埋于边坡内0.10m。 边坡土工格栅每填筑两层土,即厚度0.8m时就需两侧同时铺设一层土工格栅,然后以此类推,直至铺到路肩表面土下。 路基填筑好后,及时进行边坡整修,并进行坡脚的干砌片石防护,对该段路基除每侧加宽0.3m外,并预留1.5%的沉落量。在这些工作都做好了以后,就需要对周围进行加固,然后对铺设完的土工格栅进行检查。

岩石的抗拉强度试验

岩石的抗拉强度试验 一、实验目的与要求 岩石在单轴拉伸载荷作用下达到破坏时所能承受的最大拉应力 称为岩石的单轴抗拉强度。通常所说的抗拉试验是指直接拉伸破坏实验。由于进行直接拉伸实验在准备试件方面要花费大量的人力、物力和时间,因此采用间接拉伸实验方法来测试岩石的抗拉强度。劈裂法是最基本的方法。 通过本实验要了解标准试件的加工机械、加工过程及检测程序,实验所用夹具的具体要求,掌握岩石单向抗拉强度的测试过程及计算方法。二、实验仪器 1.钻石机或车床,锯石机,磨石机或磨床。 2.劈裂法实验夹具,或直径2.0mm钢丝数根。 3.游标卡尺(精度0.02mm),直角尺,水平检测台,百分表架和百分表。 4.材料实验机

三、试件规格、加工精度、数量 1.试件规格 标准试件采用圆盘形5+0.6直径,厚2.5±0.2cm,也可采用5cm ×5cm×2.5cm(公?0.2cm, 差±0.2cm)的长方形试件。 2.试件加工精度、数量应符合mt44-87《煤和岩石单向抗压强度及软化系数测定方 法》中的规定 四、实验原理 图1显示的是在压应力作用下,沿圆盘直径y-y的应力分布图。在圆盘边缘处,沿y-y方向(σy)和垂直y-y(σx)方向均为压应力,而离开边缘后,沿y-y方向仍为压应力,但应力值比边缘处显著减少,并趋于平均化;垂直y-y方向变成拉应力。并在沿y-y的很长一段距离上呈均匀分布状态。虽然拉应力的值比压应力值低很多,但由于岩石的抗拉强度很低,所以试件还是由于x方向的拉应力而导致

试件沿直径的劈裂破坏,破坏是从直径中心开始,然后向两端发展,反映了岩石的抗拉强度比抗压强度要低得多的事实。 χ r/r0.5σ y y σ x x 40拉伸 160压缩 1208040图1劈裂实验应力分布示意图 五、实验内容 1.了解试件的加工机具、检测机具,规程对精度的要求及检测方法; 2.学会材料实验机的操作方法及拉压夹具的使用方法; 3.学会间

相关文档
最新文档