常见离散型随机变量的分布 (1)

常见离散型随机变量的分布 (1)
常见离散型随机变量的分布 (1)

新乡医学院教案首页单位:计算机教研室

课程名称医药数理统计方法

授课题目 2.1 常见离散型随机变量的分布授课对象05级药学专业

时间分配超几何分布15分钟二项分布35分钟泊松分布30分钟

课时目标理解掌握常见离散型随机变量的分布函数

掌握两点分布、二项分布、泊松分布之间的联系与区别授课重点伯努利试验、二项分布、泊松分布

授课难点两点分布、二项分布、泊松分布之间的联系与区别

授课形式小班理论课

授课方法启发讲解

参考文献医药数理统计方法刘定远主编人民卫生出版社概率论与数理统计刘卫江主编清华大学出版社北京交通大学出版社

高等数学(第五版)同济大学编高等教育出版社

思考题二项分布和超几何分布有何联系?

教研室主任及课程负责人签字教研室主任(签字)课程负责人(签字)年月日年月日

基 本 内 容 备 注 常见离散型随机变量的分布

一、超几何分布

例1 带活动门的小盒子里有采自同一巢的20只工蜂和10只雄蜂,现随机地放出5只作实验,表示X 放出的蜂中工蜂的只数,求X 的分布列。

X

1

2

3

4

5

P 052010530C C C 142010530C C C 232010530C C C 322010530C C C 412010530C C C 502010

5

30

C C C 定义 1 若随机变量X 的概率函数为

{} 0,1,2,,k n k

M N M

n

N

C C P X k k l C --?===

其中N≥M>0,n≤N -M,l=min(M,n),则称X 服从参数为N,M,n 的超几何分布,记作X~H(N,M,n).

超几何分布的分布函数为()k n k

M N M

n

k x N

C C F x C --≤?=∑ 二、二项分布

1. Bernoulli 试验

只有两个可能结果的试验称为Bernoulli 试验。

例2 已知某药有效率为0.7,今用该药试治某病3例,X 表示治疗无效的人数,求X 的分布列。

解:X 可取0,1,2,3。 用A i

表示事件“第i 例治疗无效”,i=1,2,3.则()0.7i P A p ==

P{X=0}=33

123123()()()()(1)0.343P A A A P A P A P A p q ==-==

P{X=1}=231312123()P A A A A A A A A A ++

2231312123()()()30.441P A A A P A A A P A A A pq =++==

P{X=2}=321121323()P A A A A A A A A A ++

2321121323()()()30.189P A A A P A A A P A A A p q =++==

基 本 内 容

备 注 P{X=3}=3

123()0.027P A A A p ==

所以X 的分布列为

X 0 1 2 3 P

0.343

0.441

0.189

0.027

定义:设试验E

只有两种结果:A

与A ,且

(),()1 (01).P A p P A p p ==-<<将试验E 独立重复地进行n 次,称这样

的试验为n 重贝努利试验。

以X 表示n 重贝努利试验中事件A 发生的次数, 则X 是一个随机变量。下面来求它的分布律。为了直观起见,先考虑n=4的情况, 即求P{X=k},k=0, 1, 2, 3, 4.

23410: ,k A A A A = 41234{0}( )(1-)P X P A A A A p ===。

32341k 1: A A A A p(1-p), =?31342A A A A p(1-p),? 3312412334 A A A A p(1-p) , A A A A p(1-p)??。

1

4141p(1p)P{X }C -==-。

34122

41234

A A A A 2:A A A A k C ?

?=????

共有个,22424P{X 2}(1).C p p -==-,故 归纳44P{X k}(1), k 0, 1, 2, 3, 4.k k k

C p p -==-=可得:

n 重Bernoulli 试验的分布规律

定理1 设在一次试验中,事件A 发生的概率为p(0

()(1)0,1,

,k k

n k n n P k C p p k n -=-=

2.二项分布

定义

若随机变量X 的概

()(1)0,1,

,k k

n k n P X k C p p k n -==-=

则称X 服从参数为n,p 的二项分布,记作X~B(n.,p).

定义 如果随机变量X 的分布列为

()

011p p -,则称X 服从参数为p

新乡医学院理论课教案

基 本 内 容

备 注

的两点分布(或0-1分布)。

注:(1) 在n 重Bernoulli 试验中,X 表示事件A 发生k 次, 单次试验n=1时,X 服从两点分布;n ≥2时,X 服从二项分布. (2)若X i

(i =1,2,…,n)服从同一两点分布且独立,则1

n

i

i X X

==∑服从二项分

布。

抽检时,若总体数量有限,二项分布适用于有放回抽取的情况;而超几何分布适用于有放回抽取的情况;若总体数量充分大,超几何分布可按二项分布近似处理。

例3 据报道,有10%的人对某药有胃肠道反应。为考察某厂的产品质量,现任选5人服用此药。试求

(1)k 人有反应的概率(k=0,1,2,3,4,5);

(2)不多于2个人有反应的概率; ( 3 ) 有人有反应的概率。

解(1)用X 表示有反应的人数,则X 服从二项分布B(5,0.10).

因为 55{}(0.10)(0.90)k k k

P X k C -==,

所以X 的分布列为

()

0123450.590490.328050.072900.008100.000450.00001

(2)不多于2个人有反应的概率为{2}.P X ≤

{2}{0}{1}{2}P X P X P X P X ≤==+=+=

0.590490.328050.072900.99144=++=

(3)有人有反应的概率为{1}.P X ≥

5

1

{1}{}0.328050.07290k P X P X k =≥===+∑

0.008100.000450.000010.40951+++=

或 {1}1{0}10.590490.40951P X P X ≥=-==-=

例4. 某人进行射击, 每次命中率为0.02, 独立射击400次, 试求至少击中两次的概率。

解:将每次射击看成一次试验,设400次射击中击中的次数为X,则

X~ B(400, 0.02)。X 的分布列为

新乡医学院理论课教案

基 本 内 容

备 注

k 400400P{X k}C (0.02)(0.98)

,k 0, 1, ...,400.k k

-=== 则 {2}1-{0}-{1}P X P X P X ≥===

4003991-(0.98) -400(0.02)(0.98) .=??

注:当n 较大, p 又较小时, 二项分布的计算比较困难, 例如 0.98400,0.02400

, …, 可以用近似计算。

三、泊松(Poisson)分布

定义

若随机变量

X

的概率函数为

{}(0),0, 1, 2, ...

!

k e P X k k k λ

λλ-==

>= 则称X 服从参数为λ的Poisson 分布,记作X~π(λ)。

注:k 0

(1)

P{X k} 1.!

!k k

k k e e

e e k k λ

λ

λλλλ-∞∞

--

========∑∑

(2)泊松分布的应用很广泛。 例如, 在一个时间间隔内电话寻呼台收到的呼叫次数; 一本书的印刷错误数; 某一地区一段时间间隔内发生的交通事故数等等都服从泊松分布。(一些稀疏现象)

(3) 二项分布与泊松分布之间的关系由下面的泊松定理给出。

泊松(Poisson)定理

设0λ>是一个常数,n 是任意正整数,又设n np λ=,则对于任一固定

的非负整数k ,有lim (1)

.!

k k k n k

n

n

n n e C p p k λ

λ--→∞

-=

证明:由 /, n p n λ=得

()

(1)...(1) 11!k

n k

n k

k k n n n n n n k C p p k n n λλ----+??

??

-=- ?

???

??

121111111!n

k

k k k n n n n n λλλ-?-??

???????

??

=?-?-???--- ? ? ? ? ???????????

??

?? 对于任意固定的k ,当n →∞时,有

新乡医学院理论课教案

基 本 内 容

备 注

12111111k n n n ?-????????-?-???-→ ? ? ????????

???,1,n

e n λλ-??-→ ???11

k

n λ-??

-→ ???

, 故有

(1)

.!

lim k k k n k

n

n

n n e C

p p k λ

λ--→∞

-=

注:1.当n 很大而p 较小时,有()

k n

C 1,.!

k n k

k

e p p np k λ

λλ---≈

=其中在

实际计算时,只要20,0.05n p ≥≤时,即可用此近似计算公式。

2. 该定理说明,在适当的条件下, 二项分布的极限分布是泊松分布。 例4. 某人进行射击, 每次命中率为0.02, 独立射击400次, 试求至少击中两次的概率。

(另解)~(400,0.02), X B 知 np 4000.028,λ==?=

8400400

8{}(0.02)(0.98)

!

k k k k

e P X k C

k --==??≈

0188

88 {2}1{0}{1}10.997.0!1!

P X P X P X e e --≥=-=-=≈--≈

例5. 假如生三胞胎的概率为10-4 ,求105

次分娩中,有0,1,2次生三胞胎的概率。

解 由题意知,105次分娩中出现三胞胎次数X~B(105,10-4

).

55

441010{}(10)(110)

k k

k

P X k C ---==-

因为n 很大,p 很小,所以可用Poisson 分布作近似计算。

54101010,np λ-==?=

55

1044101010{}(10)(110)

!

k k k

k

e P X k C k ----==-≈

所以 010

510{0} 4.540100!

e P X --=≈

=?

新乡医学院理论课教案

基 本 内 容

备 注

110

410{1} 4.540101!e P X --=≈=?

210

310{2} 2.270102!

e P X --=≈=?

本次课小结:

介绍了伯努利试验和几种常见的离散型随机变量的分布,其中最主要的是二项分布。

几个重要的离散型随机变量的分布列

几个重要的离散型随机变量的分布列 井 潇(鄂尔多斯市东胜区东联现代中学017000) 随着高中新课程标准在全国各地的逐步推行,新课标教材越来越受到人们的关注,新教材加强了对学生数学能力和数学应用意识的培养,而概率知识是现代公民应该具有的最基本的数学知识,掌握几种常见的离散型随机变量的分布列是新课标教材中对理科学生的最基本的要求,也是高考必考的内容,先结合新教材,具体谈一谈几个重要的离散型随机变量分布列及其简单的应用。 下面先了解几个概念: 随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量就叫随机变量.随机变量常用希腊字母,ξη等表示. 离散型随机变量:对于随机变量可能取的值,我们可以按一定次序一一列出,这样的随机变量就叫离散型随机变量. 离散型随机变量的分布列:一般地设离散型随机变量ξ可能取得值为 123,,,...,,...,i x x x x ξ取每一个值()1,2,3,...i x i =的概率()i i P x p ξ==,则称表 为随机变量ξ的概率分布,简称ξ的分布列. 由概率的性质可知,任一离散型随机变量的分布列都有以下两个性质 (1)0,1,2,3,...i P i ≥= (2)123...1P P P +++= 离散型随机变量在某个范围内取值的概率等于它取这个范围内各个值的概率的和. 一、 几何分布 在独立重复试验中,某事件第一次发生时所做试验的次数ξ是一个取值为正整数的离散型随机变量,“k ξ=”表示第k 次独立重复试验时事件第一次发生。如果把第k 次试验时事件A 发生记为k A 、事件A 不发生记为k A ,()() ,k k P A p P A q ==,那么 ()()1231...k k P k P A A A A A ξ-==,根据相互独立事件的概率的乘法公式得 ()()()()()()1231...k k P k P A P A P A P A P A ξ-==()11,2,3,...k q p k -==。 于是得到随机变量ξ的概率分布

离散型随机变量及其分布律

5.离散型随机变量及其分布律 【教学内容】:高等教育出版社浙江大学盛骤,谢式千,潘承毅编的《概率论与数理统计》第二章第§2离散型随机变量及其分布律 【教材分析】:概率论考察的是与各种随机现象有关的问题,并通过随机试验从数量的侧面来研究随机现象的统计规律性,由此,就把随机试验的每一个可能的结果与一个实数联系起来。随机变量正是为了适应这种需要而引进的,随机变量的引入有助于我们应用微积分等数学工具,把研究深入,一维离散型随机变量是随机变量中最简单最基本的一种。 【学情分析】: 1、知识经验分析 学生已经学习了概率的意义及概率的公理化定义,学习了事件的关系及运算,掌握了概率的基本计算方法。 2、学习能力分析 学生虽然具备一定的基础的知识和理论基础,但概念理解不透彻,解决问题的能力不高,方法应用不熟练,知识没有融会贯通。 【教学目标】: 1、知识与技能: 了解离散型随机变量的分布律,会求某些简单的离散型随机变量的分布律列;掌握伯努利试验及两点分布, 2、过程与方法 由本节内容的特点,教学中采用启发式教学法,通过教学渗透由特殊到一般的数学思想,发展学生的抽象、概括能力。 3、情感态度与价值观 通过引导学生对解决问题的过程的参与,使学生进一步感受到生活与数学“零距离”,从而激发学生学习数学的热情。 【教学重点、难点】: 重点:掌握离散型随机变量的概念及其分布律、性质,理解伯努利试验,两点分布。 难点:伯努利试验,两点分布。 【教学方法】:讲授法启发式教学法 【教学课时】:1个课时 【教学过程】:

一、问题引入(离散型随机变量的概念) 例1:观察掷一个骰子出现的点数。 随机变量 X 的可能值是 : 1, 2, 3, 4, 5, 6。 例2若随机变量 X 记为 “连续射击, 直至命中时的射击次数”, 则 X 的可能值是: 1,2,3,. 例3 设某射手每次射击打中目标的概率是0.8,现该射手射了30次,则随 机变量 X 记为“击中目标的次数”, 则 X 的所有可能取值为: 0,1,2,3,,30. 定义 有些随机变量的取值是有有限个或可列无限多个,称此随机变量为离散型随机变量。 【设计意图】:让学生感受到数学与生活“零距离”,从而激发学生学习数学的兴趣,使学生获得良好的价值观和情感态度。 二、离散型随机变量的分布律 定义 设离散型随机变量X 的所有可能取值为),2,1( =k x k , X 取各个可能值得概率,即事件称}{k x X =的概率,为 ,2,1,}{===k p x X P k k 由概率的定义,k p 满足如下两个条件: 1))21(0 ,,=≥k p k ; 2) ∑∞ ==1 1k k p (分布列的性质) 称(2.1)式为离散型随机变量为X 的概率分布或分布律, 也称概率函数。 常用表格形式来表示X 的概率分布: n i n p p p p x x x X 2121 【设计意图】:给出分布律的概念和性质,体现具体到抽象、从特殊到一般的数学思想,同时让学生感受数学化归思想的优越性和这一做法的合理性。 例1:()()1,2,,C k P X k k N X N ?=== 若为随机变量的分布律,是确 定常数C 。 解:由分布律特征性质 1 知 C ≥ 0 , 由其特征性质 2 知 1 ()1N k P X k == =∑ 1 N k C k N =?=∑ )(12C N N ++=+ ()12 C N += 21C N ∴= + 【设计意图】:通过这个例子,让学生掌握离散型随机变量的分布律的性质。

离散型随机变量及其分布列教案

离散型随机变量及其分布列第一课时 2.1.1离散型随机变量 教学目标:1、引导学生通过实例初步了解随机变量的作用,理解随机变量、离散型随机变量的概念.初步学会在实际问题中如何恰当地定义随机变量. 2、让学生体会用函数的观点研究随机现象的问题,体会用离散型随机变量思想 描述和分析某些随机现象的方法,树立用随机观念观察、分析问题的意识. 3、发展数学应用意识,提高数学学习的兴趣,树立学好数学的信心,逐步认识 数学的科学价值和应用价值. 教学重点:随机变量、离散型随机变量的概念,以及在实际问题中如何恰当的定义随机变量.教学难点:对引入随机变量目的的认识,了解什么样的随机变量便于研究. 教学方法:启发讲授式与问题探究式. 教学手段:多媒体 教学过程: 一、创设情境,引出随机变量 提出思考问题1:掷一枚骰子,出现的点数可以用数字1,2,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示? 启发学生:掷一枚硬币,可能出现正面向上、反面向上两种结果.虽然这个随机试验的结果不具有数量性质,但可以将结果于数字建立对应关系. 在让学生体会到掷骰子的结果与出现的点数有对应关系后,也能创造性地提出用数字表示掷一枚硬币的结果.比如可以用1表示正面向上的结果,用0表示反面向上的结果.也可以分别用1、2表示正面向上与反面向上的结果. 再提出思考问题2:一位篮球运动员3次罚球的得分结果可以用数字表示吗? 让学生思考得出结论:投进零个球——— 0分 投进一个球——— 1分 投进两个球——— 2分 投进三个球——— 3分 得分结果可以用数字0、1、2、3表示. 二、探究发现 1、随机变量 问题1.1:任何随机试验的所有结果都可以用数字表示吗? 引导学生从前面的例子归纳出:如果将实验结果与实数建立了对应关系,那么随机试验的结果就可以用数字表示.由于这个数字随着随机试验的不同结果而取不同的值,因此是个变量. 问题1.2:如果我们将上述变量称之为随机变量,你能否归纳出随机变量的概念? 引导学生归纳随机变量的定义:在随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.像这种随着试验结果变化而变化的变量称为随机变量. 随机变量常用字母X、Y、ξ、η来表示. 问题1.3:随机变量与函数有类似的地方吗? 引导学生回顾函数的理解: 函数 实数实数 在引导学生类比函数的概念,提出对随机变量的理解:

高考数学-随机变量及其分布-1-离散型随机变量及其分布

专项-离散型随机变量及其分布列 知识点 1.随机变量的有关概念 (1)随机变量:随着试验结果变化而变化的变量,常用字母X ,Y ,ξ,η,…表示. (2)离散型随机变量:所有取值可以一一列出的随机变量. 2.离散型随机变量分布列的概念及性质 (1)概念:若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,以表格的形式表示如下: 此表称为离散型随机变量P ( X =x i )=p i ,i =1,2,…,n 表示X 的分布列. (2)分布列的性质:① p i ≥0,i =1,2,3,…,n ;① 11 =∑=n i i p 3.常见的离散型随机变量的分布列 (1)两点分布 若随机变量X 的分布列具有上表的形式,则称X 服从两点分布,并称p =P (X =1)为成功概率. (2)超几何分布 在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n - k N -M C n N ,k =0,1,2,…,m , 其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ①N *. 如果随机变量X 的分布列具有上表的形式,则称随机变量X 服从超几何分布.

题型一离散型随机变量的理解 【例1】下列随机变量中,不是离散型随机变量的是( ) A .某个路口一天中经过的车辆数X B .把一杯开水置于空气中,让它自然冷却,每一时刻它的温度X C .某超市一天中来购物的顾客数X D .小马登录QQ 找小胡聊天,设X =? ???? 1,小胡在线 0,小胡不在线 【例2】写出下列各随机变量的可能取值,并说明随机变量所取的值表示的随机试验的结果. (1)抛掷甲、乙两枚骰子,所得点数之和X ; (2)某汽车在开往目的地的道路上需经过5盏信号灯,Y 表示汽车首次停下时已通过的信号灯的盏数. 【例3】袋中装有10个红球、5个黑球.每次随机抽取1个球,若取得黑球则另换1个红球放回袋中,直到取到红球为止.若抽取的次数为ξ,则表示事件“放回5个红球”的是( ) A .ξ=4 B .ξ=5 C .ξ=6 D .ξ≤5 【例4】袋中装有大小相同的5个球,分别标有1,2,3,4,5五个号码,在有放回取出的条件下依次取出两个球,设两个球号码之和为随机变量ξ,则ξ所有可能取值的个数是 ( ) A .5 B .9 C .10 D .25 【过关练习】 1.指出下列变量中,哪些是随机变量,哪些不是随机变量,并说明理由. ①掷一枚质地均匀的硬币5次,出现正面向上的次数; ②掷一枚质地均匀的骰子,向上一面出现的点数; ③某个人的属相随年龄的变化; ④在标准状态下,水结冰的温度. 2.某人射击的命中率为p (0

常用离散型和连续型随机变量

常用离散型随机变量的分布函数 (1) 离散型随机变量 [1] 概念:设X 是一个随机变量,如果X 的取值是有限个或者 无穷可列个,则称X 为离散型随机变量。其相应的概 率()i i P X x p ==(12)i =、……称为X 的概率分 布或分布律,表格表示形式如下: [2] 性质: ? 0i p ≥ ?11n i i p ==∑ ?分布函数()i i x x F x p == ∑ ?1{}()()i i i P X x F x F x -==- (2) 连续型随机变量 [1] 概念:如果对于随机变量的分布函数()F x ,存在非 负的函数 ()f x ,使得对于任意实数x ,均有: ()()x F x f x dx -∞= ? 则称X 为连续型随机变量,()f x 称为概率密度函 数或者密度函数。

[2] 连续型随机变量的密度函数的性质 ?()0f x ≥ ? ()1f x dx +∞ -∞=? ?{}()()()P a X b F b F a f x dx +∞ -∞<≤=-= ? ?若()f x 在x 点连续,则()()F x f x '= (3) 连续型随机变量和离散型随机变量的区别: [1] 由连续型随机变量的定义,连续型随机变量的定义域是 (),-∞+∞,对于任何x ,000 {}()()0P X x F x F x ==--=;而对于离散型随机变量的分布函数有有限个或可列个间 断点,其图形呈阶梯形。 [2] 概率密度()f x 一定非负,但是可以大于1,而离散型随 机变量的概率分布i p 不仅非负,而且一定不大于1. [3] 连续型随机变量的分布函数是连续函数,因此X 取任何 给定值的概率都为0. [4] 对任意两个实数a b <,连续型随机变量X 在a 与b 之间 取值的概率与区间端点无关,即:

随机变量及其分布-离散型随机变量及其分布

离散型随机变量及其分布列 知识点 1随机变量的有关概念 (1) 随机变量:随着试验结果变化而变化的变量,常用字母 X , Y , E, n …表示. (2) 离散型随机变量:所有取值可以一- 变量. 2. 离散型随机变量分布列的概念及性质 (1)概念:若离散型随机变量 X 可能取的不同值为 X 1, X 2,…,X i ,…,x n , X 取每一个值X i (i = 1,2,…,n) 的概率P(X = X i )= P i ,以表格的形式表示如下: 此表称为离散型随机变量 P(X = X i )= p i , = 1,2,…, n 表示X 的分布列. (2)分布列的性质: n ① p i >0 i = 1,2,3,…,n ;① P i 1 i 1 3. 常见的离散型随机变量的分布列 (1)两点分布 若随机变量X 的分布列具有上表的形式,则称 X 服从两点分布,并称 p = P(X = 1)为成功概率. (2)超几何分布 其中 m = min{ M , n},且 n 汆, M 哥,n , M , N ①N *. 如果随机变量X 的分布列具有上表的形式,则称随机变量 X 服从超几何分布. 题型一离散型随机变量的理解 【例 1】 下列随机变量中,不是离散型随机变量的是 ( ) A .某个路口一天中经过的车辆数 X B .把一杯开水置于空气中,让它自然冷却,每一时刻它的温度 X C .某超市一天中来购物的顾客数 X 在含有M 件次品的N 件产品中,任取 n 件,其中恰有X 件次品,则 P(X = k)= c M c N —M c N ,k = 0,1,2, m ,

离散型随机变量的分布列综合题精选(附答案)

离散型随机变量的分布列综合题精选(附答案) 1.某单位举办2010年上海世博会知识宣传活动,进行现场抽奖,盒中装有9张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案;抽奖规则是:参加者从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖,否则,均为不获奖。卡片用后入回盒子,下一位参加者继续重复进行。 (Ⅰ)活动开始后,一位参加者问:盒中有几张“海宝”卡?主持人答:我只知道,从 盒中抽取两张都是“世博会会徽”卡的概率是 18 5 ,求抽奖者获奖的概率; (Ⅱ)现有甲乙丙丁四人依次抽奖,用ξ表示获奖的人数,求ξ的分布列及ξξ,D E 的值。 解:(I )设“世博会会徽”卡有n 张, 由,18 5292 =C C n 得n=5, 故“海宝”卡有4张,抽奖者获奖的概率为6 1 2924=C C …………5分 (II )) 1 ,4(~B ξ的分布列为)4,3,2,1,0()5()1()(44===-k C k P k k k ξ 0.9 )61(4,364=-?==? =∴ξξD E …………12分 2.某运动项目设置了难度不同的甲、乙两个系列,每个系列都有K 和D 两个动作。比赛时每位运动员自选一个系列完成,两个动作得分之和为该运动员的成绩。 假设每个运动员完成每个系列中的K 和D 两个动作的得分是相互独立的。根据赛前训练的统计数据,某运动员完成甲系列和乙系列中的K 和D 两个动作的情况如下表: 表1:甲系列 表2:乙系列 动作 K 动作 D 动作 得分 90 50 20 0 概率 10 910 110910 1 动作 K 动作 D 动作 得分 100 80 40 10 概率 4 3 4 1 4 341

离散型随机变量及其分布范文

离散型随机变量及其分布 知识点一:离散型随机变量的相关概念; 随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量。若ξ是随机变量,a b ηξ=+,其中a 、b 是常数,则η也是随机变量 连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量 离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出 离散型随机变量的分布列:设离散型随机变量ξ可能取的值为12i x x x ??????、ξ取每一个值()1,2,i x i =???的概率为()i i P x p ξ==,则称表 为随机变量ξ的概率分布,简称ξ的分布列 知识点二:离散型随机变量分布列的两个性质; 任何随机事件发生的概率都满足:0()1P A ≤≤,并且不可能事件的概率为0,必然事件的概率为1.由此你可以得出离散型随机变量的分布列都具有下面两个性质: (1) 01,2,i p i ≥=???,;12(2) 1P P ++ = 特别提醒:对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的 概率的和即1()()()k k k P x P x P x ξξξ+≥==+=+ 知识点二:两点分布: 若随机变量X 的分布列: 则称 X 的分布列为两点分布列. 特别提醒:(1)若随机变量X 的分布列为两点分布, 则称X 服从两点分布,而称P(X=1) 为成功率. (2)两点分布又称为0-1分布或伯努利分布 (3)两点分布列的应用十分广泛,如抽取的彩票是否中奖;买回的一件产品是 否为正品;新生婴儿的性别;投篮是否命中等等;都可以用两点分布列来研究. 知识点三:超几何分布: 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则

选修2-3离散型随机变量及其分布知识点

离散型随机变量及其分布 知识点一:离散型随机变量的相关概念; 随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机 变量随机变量常用希腊字母、等表示 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随 机变量叫做离散型随机变量。若 是随机变量, a b ,其中a 、b 是常数,则 也 是随机变量 连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的 变量就叫做连续型随机变量 离散型随机变量与连续型随机变量的区别与联系:离散型随机变量与连续型随机变 量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列 出,而连续性随机变量的结果不可以 --------------------- 列出 离散型随机变量的分布列:设离散型随机变量可能取的值为X i 、X 2 X i 取每一 个值X i i 1,2, 的概率为P( X ) p ,贝U 称表 为随机变量的概率分布,简称的分布列 知识点二:离散型随机变量分布列的两个性质; 任何随机事件发生的概率都满足:0 P(A) 1,并且不可能事件的概率为0,必然事 件的概率为 1.由此你可以得出离散型随机变量的分布列都具有下面两个性质: (1) P i 0, i 1,2, ; (2) RP.L 1 特别提醒:对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的 概率的和即P( 知识点二:两点分布: 若随机变量X 的分布列: 特别提醒:(1) 若随机变量X 的分布列为两点分布,则称X 服从两点分布,而称P(X=1为成 功 率? (2) 两点分布又称为0-1分布或伯努利分布 ⑶两点分布列的应用十分广泛,如抽取的彩票是否中奖;买回的一件产品是 否为正 品;新生婴儿的性别;投篮是否命中等等;都可以用两点分布列 来研究? 知识点三:超几何分布: 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则 C k C n k X k ) P( X k ) P( X k 1) L 则称X 的分布列为两点分布列

2.1.2 离散型随机变量的分布列

2.1.2 离散型随机变量的分布列 1.离散型随机变量的分布列 (1)定义:一般地,若离散型随机变量X 可能取的不同值为x 1、x 2、…、x i 、…、x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,以表格的形式表示如下: (2)表示:离散型随机变量可以用表格法、解析法、图象法表示. (3)性质:离散型随机变量的分布列具有如下性质: ①p i ≥0,i =1,2,…,n ; ② 11 =∑=n i i p 2.两个特殊分布列 (1)两点分布列 如果随机变量X 的分布列是 P (X =1)为成功概率. (2)超几何分布列 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{X =k }发生的概率为 P (X =k )=n N k n M N k M C C C --,k =0,1,2,…,m ,其中m =min{M ,n },且n ≤N ,M ≤N ,n 、M 、N ∈N *,称分布 列 如果随机变量X 的分布列为超几何分布列,则称随机变量X 服从超几何分布. (3)公式P (X =k )=C k M C n - k N -M C n N 的推导 由于事件{X =k }表示从含有M 件次品的N 件产品中,任取n 件,其中恰有k 件次品这一随机事件,因此它的基本事件为从N 件产品中任取n 件.由于任一个基本事件是等可能出现的,并且它有n N C 个基本事件,而其中恰有k 件次品,则必有(n -k )件正品,因此事件{X =k }中含有k n M N k M C C --个基本事件,由古典概 型的概率公式可知P (X =k )=C k M C n - k N -M C n N . [知识点拨]1.离散型随机变量分布列表格形式的结构特征 分布列的结构为两行,第一行为随机变量的所有可能取得的值;第二行为对应于随机变量取值的事件发生的概率.看每一列,实际上是:上为“事件”,下为事件发生的概率. 2.两点分布的特点 (1)两点分布中只有两个对应结果,且两个结果是对立的. (2)由对立事件的概率求法可知:P(X =0)+P(X =1)=1.

离散型随机变量及其分布列练习题和答案

高二理科数学测试题(9-28) 1.每次试验的成功率为(01)p p <<,重复进行10次试验,其中前7次都未成功后3次都成功的概率为( ) ()A 33710(1)C p p - ()B 33 310(1)C p p - ()C 37(1)p p - ()D 73(1)p p - 2.投篮测试中,每人投3次,至少投中2次才能通过测试,已知某同学每次投篮投中的概 率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) (A )0.648 (B )0.432 (C )0.36 (D )0.312 3.甲、乙两队参加乒乓球团体比赛,甲队与乙队实力之比为3:2,比赛时均能正常发挥技术水平,则在5局3胜制中,甲打完4局才胜的概率为( ) ()A 23332()55C ? ()B 22332()()53C ()C 33432()()55C ()D 33421()()33C 4.某地区气象台统计,该地区下雨的概率是 15 4,刮三级以上风的概率为152,既 刮风又下雨的概率为10 1,则在下雨天里,刮风的概率为( ) A. 225 8 B.2 1 C.8 3 D.4 3 5.从4名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生的人数,则P (ξ≤1)等于( ). A.15 B.25 C.35 D.45 6.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了ξ次球,则==)12(ξP ( ) A.2101012)85()83(?C B.83)85()83(29911?C C.29911)83()85(?C D. 29911)85()83(?C

图解常用离散型随机变量

第 22卷第1期2019年1月 高等数学研究 STUDIES IN COLLEGE MATHEMATICS Vol.22,No. 1Jan. , 2019 doi : 10. 3969/j. issn. 1008-1399. 2019. 01. 033 图解常用离散型随机变量 杨夜茜 (同济大学数学科学学院,上海200092) 摘要在 概 率论的学习中,一个重要章节就是常用的离散型随机变量的学习.离 散 型随机变量包括伯努利分布, 二项分布,泊松分布,几何分布,超几何分布和负二项 分布等等.在本文中,首先借 助时间流的图形表达,从伯努利 试验次数和成功次数角度 区分其中的一些常用变量;其次通过一个流程图的方式柢理这些常用的离散型随 机 变量 的定义.本文的目的在于,基于常规的离散型随机变量的分布律等介绍之余,首次尝试从不同的比较汇总角度,借 助图表方法对常用的离散型 随 机 变量进行梳理和总结 ,起 到 区 分 变 量 的 差 异 ,加 强对常用离散型随机变量概念 的 理 解 . 关键词 常 用 离 散 型 随 机 变 量 ;伯 努 利 试 验 次 数 ;成 功 次 数 ;时 间 流 ;流 程 图 中图分类号 0211 文献标识码 A 文章编号 1008-1399(2019)01 -0118-03 Explanation of Discrete Random Variable by Diagrams Y A N G Xiaohan (School of Mathematics Science, Tongji University, Shanghai 200092, China) Abstract This paper uses time flows and flow charts to describe discrete random variables , such as Ber - n o u lli , Binom ial , Poisson , Geometric , and Negative Binomial variables , based on two key points : number of tria ls , and number of successes . Keywords discrete random variable,num ber of tria ls , number of successes,time flo w , flo w chart i 引言 关于常用的离散型随机变量,它们的定义、分 布律、概率、期望和方差等,在教科书或者是文献 中,已经有非常明确的定义[1_3].在笔者多年的教学 中发现,学生在学习这些随机变量的时候,通常会 出现计算题准确率很高,但涉及定义的问题回答模 糊.因此在本文中,不重复介绍离散型随机变量的 分布律等,尝试从不同的比较和汇总的角度借助图 表方法对这些常用的离散型随机变量进行梳理.在 文献[4]中,George C asella 给出了随机变量间的关 系图,描述了大部分的离散型和连续型随机变量两 两变量之间的联系.与他的关系图侧重点不同,在 本文中,首次设计了两种图形表述方式:时间流和 收稿日期: 2017-12-19 修改日期=2018 -03 -13 作者简介:杨筱菡(1977 —),女,江苏,博士,副教授,概率统计, Email :xiaohyang @tongji . edu . cn 流程图.时间流的图形很具象,简单明了切中随机 变量定义的关键点.而在自上而下的流程图中,通 过回答每一个是与否的简单问题而找到变量的归 属.这两种图形方式,能快速理清每个常用的离散 型随机变量的定义,区分不同变量概念上的差异, 加强对概念的理解. 注这里要特别说明的是,本文中提及的常用的 随机变量仅是在本科公共基础课程“概率论与数理 统计”中提及的常用离散型随机变量,它们只是常 用离散型随机变量中的一部分,并非全部,例如二 项分布的推广一多项分布等就不在此文讨论的范 围内. 2时间流区分法 通常常用的离散型随机变量总是从讲述伯努 利试验开始,伯努利试验是一类可重复、独立的试 验,且一次试验的样本空间只有两个样本点,6卩{成 功,失败},有时把样本点“成功”描述为“事件A 发

常见离散型随机变量的分布列

4.常见离散型随机变量的分布列 (1>两点分布像 这样的分布列叫做两点分布列. 如果随机变量X的分布列为两点分布列,就称X服从分布,而称p=P(X=1> 为成功概率. (2>超几何分布列 一般地,在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则事件{X=k}发生的概率为 P(X=k>=错误!,k=0,1,2,…,m, 其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*.称分布列为超几何分布列.如果随机变量X的分布列为超几何分布列,则称随机变量X服从超几何分布. 1设离散型随机变量X 求:(1>2X+1的分布列; (2>|X-1|的分布列. 【思路启迪】利用p i≥0,且所有概率之和为1,求m;求2X+1的值及其分布列;求|X-1|的值及其分布列. 【解】由分布列的性质知: 0.2+0.1+0.1+0.3+m=1,∴m=0.3. 首先列表为: 4 9 3 则常数c=________,P(X=1>=________.X的所有可能取值x i(i=1,2,…,>; (2>求出取各值x i的概率P(X=x i>;(3>列表,求出分布列后要注意应用性质检验所求的结果是否准确.常用类型有:(1>由统计数据求离散型随机变量的分布列,关键是由统计数据利用事件发生的频率近似表示该事件的概率,由统计数据得到的分布列可以帮助我们更好地理解分布列的作用和意义.(2>由古典概型来求随机变量的分布列,这时需利用排列、组合求概率.(3>由相互独立事件同时发生的概率求分布列无

论是何种类型,都需要深刻理解随机变量的含义及概率分布.3.(2018年福建>受轿车在保修期内维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关.某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年.现从该厂已售出的两种品牌轿车中各随机抽取50辆,统计数据如下: (1>从该厂生产的甲品牌轿车中随机抽取一辆,求其首次出现故障发生在保修期内的概率; (2>若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为X 1,生产一辆乙品牌轿车的利润为X 2,分别求X 1,X 2的分布列;(3>该厂预计今后这两种品牌轿车销量相当,因为资金限制,只能生产其中一种品牌的轿车.若从经济效益的角度考虑,你认为应生产哪种品牌的轿车?说明理由.【解】(1>设“甲品牌轿车首次出现故障发生在保修期内”为事件A ,则P (A >=错误!=错误!.(2>依题意得,X 1的分布列为 X 2的分布列为 (3>由(2>得,E (X 1>=1×错误!+2× 错误!+3×错误!=2.86(万元>, E (X 2>=1.8×错误!+2.9×错误!=2.79(万元>.因为E (X 1>>E (X 2>,所以应生产甲品牌轿车. 4.(2018年湖南>某商店试销某种商品20天,获得如下数据: 试销结束后(2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1>求当天商店不进货的概率; (2>记X 为第二天开始营业时该商品的件数,求X 的分布列和数学期望. 解:(1>P (“当天商店不进货”>=P (“当天商品销售量为0件”>+P (“当天商品销售量为1件”> =错误!+错误!=错误!. (2>由题意知,X 的可能取值为2,3. P (X =2>=P (“当天商品销售量为1件”>=错误!=错误!;P (X =3>=P (“当天商品销售量为0件”>+P (“当天商品销售量为2件”>+P (“当天商品销售量为3件”>=错误!+错误!+错误!=错误!.故X 的分布列为

数学百大经典例题——离散型随机变量分布列(新课标)

耗用子弹数的分布列 例 某射手有5发子弹,射击一次命中概率为0.9,如果命中就停止射击,否则一直到子弹用尽,求耗用子弹数ξ的分布列. 分析:确定ξ取哪些值以及各值所代表的随机事件概率,分布列即获得. 解:本题要求我们给出耗用子弹数ξ的概率分布列.我们知道只有5发子弹,所以ξ的取值只有1,2,3,4,5.当1=ξ时,即9.0)1(==ξP ;当2=ξ时,要求第一次没射中,第二次射中,故09.09.01.0)2(=?==ξP ;同理,3=ξ时,要求前两次没有射中,第三次射中,009.09.01.0)3(2=?==ξP ;类似地,0009.09.01.0)4(3=?==ξP ;第5次射击不同,只要前四次射不中,都要射第5发子弹,也不考虑是否射中,所以41.0)5(==ξP ,所以耗用子弹数ξ的分布列为: 说明:搞清5=ξ的含义,防止这步出错.5=ξ时,可分两种情况:一是前4发都没射中,恰第5发射中,概率为0.14×0.9;二是这5发都没射中,概率为0.15,所以, 5 41.09.01.0)5(+?==ξP .当然, 5 =ξ还有一种算法:即 0001.0)0009.0009.009.09.0(1)5(=+++-==ξP . 独立重复试验某事件发生偶数次的概率 例 如果在一次试验中,某事件A 发生的概率为p ,那么在n 次独立重复试验中,这件事A 发生偶数次的概率为________. 分 析 : 发 生 事 件 A 的 次 数 () p n B ,~ξ,所以, ),,2,1,0,1(,)(n k p q q p C k p k n k k n =-===-ξ其中的k 取偶数0,2,4,…时,为二项式 n q p )(+ 展开式的奇数项的和,由此入手,可获结论. 解:由题,因为 ()p n B ,~ξ且ξ取不同值时事件互斥,所以,

常见离散型随机变量分布列示例

常见随机事件的概率与分布列示例 1、耗用子弹数的分布列 例 某射手有5发子弹,射击一次命中概率为0.9,如果命中就停止射击,否则一直到子弹用尽,求耗用子弹数ξ的分布列. 分析:确定ξ取哪些值以及各值所代表的随机事件概率,分布列即获得. 解:本题要求我们给出耗用子弹数ξ的概率分布列.我们知道只有5发子弹,所以ξ的取值只有1,2,3,4,5.当1=ξ时,即9.0)1(==ξP ;当2=ξ时,要求第一次没射中,第二次射中,故09.09.01.0)2(=?==ξP ;同理,3=ξ时,要求前两次没有射中,第三次射中,009.09.01.0)3(2=?==ξP ;类似地,0009.09.01.0)4(3=?==ξP ;第5次射击不同,只要前四次射不中,都要射第5发子弹,也不考虑是否射中,所以41.0)5(==ξP ,所以耗用子弹数ξ的分布列为: 说明:搞清5=ξ的含义,防止这步出错.5=ξ时,可分两种情况:一是前4发都没射中,恰第5发射中,概率为0.14×0.9;二是这5发都没射中,概率为0.15,所以, 5 41.09.01.0)5(+?==ξP .当然, 5 =ξ还有一种算法:即 0001.0)0009.0009.009.09.0(1)5(=+++-==ξP . 2、独立重复试验某事件发生偶数次的概率 例 如果在一次试验中,某事件A 发生的概率为p ,那么在n 次独立重复试验中,这件事A 发生偶数次的概率为________. 分 析 : 发 生 事 件 A 的 次 数 () p n B ,~ξ,所以, ),,2,1,0,1(,)(n k p q q p C k p k n k k n =-===-ξ其中的k 取偶数0,2,4,…时,为二项式 n q p )(+ 展开式的奇数项的和,由此入手,可获结论.

常用离散型和连续型随机变量

常用离散型随机变量的分布函数 一、离散型随机变量: (1)概念:设X 是一个随机变量,如果X 的取值是有限个或者无穷可列个,则称X 为离散型随机变量。 其相应的概率()i i P X x p ==(12)i =、……称为X 的概率分布或分布列,表格表示形式如下: (2)性质:?0i p ≥ ?1 1n i i p ==∑ ?分布函数()i i x x F x p == ∑ ?1{}()()i i i P X x F x F x -==- 二、连续型随机变量: (1)概念:如果对于随机变量的分布函数()F x ,存在非负的函数()f x ,使得对于任意实数x ,均有: ()()x F x f x dx -∞ = ? 则称X 为连续型随机变量,()f x 称为概率密度函数或者密度函数。 (2)连续型随机变量的密度函数的性质:?()0f x ≥ ? ()1f x dx +∞ -∞ =? ?{}()()()P a X b F b F a f x dx +∞ -∞ <≤=-= ? ?若()f x 在x 点连续,则()()F x f x '= 三、连续型随机变量和离散型随机变量的区别: (1)由连续型随机变量的定义,连续型随机变量的定义域是(),-∞+∞,对于任何x ,000{}()()0P X x F x F x ==--=; 而对于离散型随机变量的分布函数有有限个或可列个间断点,其图形呈阶梯形。 (2)概率密度()f x 一定非负,但是可以大于1,而离散型随机变量的概率分布i p 不仅非负,而且一定不大于1. (3)连续型随机变量的分布函数是连续函数,因此X 取任何给定值的概率都为0. (4)对任意两个实数a b <,连续型随机变量X 在a 与b 之间取值的概率与区间端点无关,即: {}{}{}{}()() ()b a P a X b P a X b P a X b P a X b F b F a f x dx <<=≤≤=<≤=≤<=-= ? 即:{}{}()P X b P X b F x <=≤= 四、常用的离散型随机变量的分布函数: (1)0-1分布:如果离散型随机变量X 的概率分布为:

常见离散型随机变量的分布 (1)

新乡医学院教案首页单位:计算机教研室 课程名称医药数理统计方法 授课题目 2.1 常见离散型随机变量的分布授课对象05级药学专业 时间分配超几何分布15分钟二项分布35分钟泊松分布30分钟 课时目标理解掌握常见离散型随机变量的分布函数 掌握两点分布、二项分布、泊松分布之间的联系与区别授课重点伯努利试验、二项分布、泊松分布 授课难点两点分布、二项分布、泊松分布之间的联系与区别 授课形式小班理论课 授课方法启发讲解 参考文献医药数理统计方法刘定远主编人民卫生出版社概率论与数理统计刘卫江主编清华大学出版社北京交通大学出版社 高等数学(第五版)同济大学编高等教育出版社 思考题二项分布和超几何分布有何联系? 教研室主任及课程负责人签字教研室主任(签字)课程负责人(签字)年月日年月日

基 本 内 容 备 注 常见离散型随机变量的分布 一、超几何分布 例1 带活动门的小盒子里有采自同一巢的20只工蜂和10只雄蜂,现随机地放出5只作实验,表示X 放出的蜂中工蜂的只数,求X 的分布列。 解 X 1 2 3 4 5 P 052010530C C C 142010530C C C 232010530C C C 322010530C C C 412010530C C C 502010 5 30 C C C 定义 1 若随机变量X 的概率函数为 {} 0,1,2,,k n k M N M n N C C P X k k l C --?=== 其中N≥M>0,n≤N -M,l=min(M,n),则称X 服从参数为N,M,n 的超几何分布,记作X~H(N,M,n). 超几何分布的分布函数为()k n k M N M n k x N C C F x C --≤?=∑ 二、二项分布 1. Bernoulli 试验 只有两个可能结果的试验称为Bernoulli 试验。 例2 已知某药有效率为0.7,今用该药试治某病3例,X 表示治疗无效的人数,求X 的分布列。 解:X 可取0,1,2,3。 用A i 表示事件“第i 例治疗无效”,i=1,2,3.则()0.7i P A p == P{X=0}=33 123123()()()()(1)0.343P A A A P A P A P A p q ==-== P{X=1}=231312123()P A A A A A A A A A ++ 2231312123()()()30.441P A A A P A A A P A A A pq =++== P{X=2}=321121323()P A A A A A A A A A ++ 2321121323()()()30.189P A A A P A A A P A A A p q =++==

第7讲离散型随机变量及其分布列

第7讲 离散型随机变量及其分布列 一、选择题 1.某射手射击所得环数X 的分布列为 X 4 5 6 7 8 9 10 P 0.02 0.04 0.06 0.09 0.28 0.29 0.22 解析 P (X >7)=P (X =8)+P (X =9)+P (X =10) =0.28+0.29+0.22=0.79. 答案 C 2.设X 是一个离散型随机变量,其分布列为: X -1 0 1 P 2-3q q 2 则q 的值为( ) A.1 B.32±336 C.32-336 D.32+336 解析 由分布列的性质知?????2-3q ≥0,q 2 ≥0, 13+2-3q +q 2 =1, 解得q =32-33 6. 答案 C 3.设某项试验的成功率是失败率的2倍,用随机变量X 去描述1次试验的成功次数,则P (X =0)等于( ) A.0 B.12 C.13 D.23 解析 由已知得X 的所有可能取值为0,1, 且P (X =1)=2P (X =0),由P (X =1)+P (X =0)=1,

得P(X=0)=1 3. 答案 C 4.袋中装有10个红球、5个黑球.每次随机抽取1个球后,若取得黑球则另换1个红球放回袋中,直到取到红球为止.若抽取的次数为ξ,则表示“放回5个红球”事件的是() A.ξ=4 B.ξ=5 C.ξ=6 D.ξ≤5 解析“放回五个红球”表示前五次摸到黑球,第六次摸到红球,故ξ=6. 答案 C 5.从装有3个白球、4个红球的箱子中,随机取出了3个球,恰好是2个白球、1个红球的概率是() A.4 35 B. 6 35 C. 12 35 D. 36 343 解析如果将白球视为合格品,红球视为不合格品,则这是一个超几何分布问 题,故所求概率为P=C23C14 C37=12 35. 答案 C 二、填空题 6.设离散型随机变量X的分布列为 X 0123 4 P 0.20.10.10.3M 若随机变量Y=|X 解析由分布列的性质,知 0.2+0.1+0.1+0.3+m=1,∴m=0.3. 由Y=2,即|X-2|=2,得X=4或X=0, ∴P(Y=2)=P(X=4或X=0) =P(X=4)+P(X=0) =0.3+0.2=0.5.

相关文档
最新文档