电磁感应式位置传感器研究

电磁感应式位置传感器研究
电磁感应式位置传感器研究

电磁组路径检测方法

电磁组竞赛车模 路径检测设计参考方案 (竞赛秘书处 2010-1,版本1.0) 一、 前言 第五届全国大学生智能汽车竞赛新增加了电磁组比赛。竞赛车模需要能够通过自动识别赛道中心线位置处由通有100mA交变电流的导线所产生的电磁场进行路径检测。除此之外在赛道的起跑线处还有永磁铁标志起跑线的位置。具体要求请参阅《第五届智能汽车竞赛细则》技术文档。 本文给出了一种简便的交变磁场的检测方案,目的是使得部分初次参加比赛的队伍能够尽快有一个设计方案,开始制作和调试自己的车模。本方案通过微型车模实际运行,证明了它的可行性。微型车模运行录像参见竞赛网站上视频文件。 二、设计原理 1、导线周围的电磁场 根据麦克斯韦电磁场理论,交变电流会在周围产生交变的电磁场。智能汽车竞赛使用路径导航的交流电流频率为20kHz,产生的电磁波属于甚低频(VLF)电磁波。甚低频频率范围处于工频和低频电磁破中间,为3kHz~30kHz,波长为100km~10km。如下图所示: 图1:电流周围的电磁场示意图 导线周围的电场和磁场,按照一定规律分布。通过检测相应的电磁场的强度和方向可以反过来获得距离导线的空间位置,这正是我们进行电磁导航的目的。 由于赛道导航电线和小车尺寸l远远小于电磁波的波长λ,电磁场辐射能量很小(如果天线的长度l远小于电磁波长,在施加交变电压后,电磁波辐射功率正比于天线长度的四次方),所以能够感应到电磁波的能量非常小。为此,我们将导线周围变化的磁场近似缓变的磁场,按照检测静态磁场的方法获取导线周围的磁场分布,从而进行位置检测。 由毕奥-萨伐尔定律知:通有稳恒电流I长度为L的直导线周围会产生磁场,距离导线距离为r处P点的磁感应强度为:

高精度动态扭矩传感器

动态扭矩传感器的高精度一直是行业技术人士所追求的目标。目前CFND动态扭矩传感器是一款相对精度高的传感器,具有安装使用方便、性能稳定可靠、量程范围大的特点,动态扭矩传感器采用电阻应变原理,其两端连接方式可根据现场需要分别选用法兰连接、四方键连接、键(通槽)连接。 一、CFND动态扭矩传感器实体图 二、CFND动态扭矩传感器尺寸图

三、CFND动态扭矩传感器原理 在扭矩的测量方面,采用应变片电测技术,在弹性轴上组成应变桥,向应变桥提供电源即可测得该弹性轴受扭的电信号。将该应变信号放大后,经过压/频转换,变成与扭应变成正比的频率信号。 在转速的测量方面,转速测量采用磁电码盘的方法进行测量,每一磁电码盘均有60个齿,轴带动磁电码盘每旋转一周可产生60个脉冲,转速传感器精度可达±0.1%~±0.5%(F·S),本传感器的测速方法采用内置测速,订货时用户需注明是否监测转速信号。 四、CFND动态扭矩传感器注意事项 1.安装时,不能带电操作,切莫直接敲打、碰撞传感器。 2.联轴器的紧固螺栓应拧紧,联轴器的外面应加防护罩,避免人身伤害。 3.信号线输出不得对地,对电源短路,输出电流不大于10mA屏蔽电缆线的屏蔽层必须与+15V电源的公共端(电源地)连接。

蚌埠高灵传感系统工程有限公司在自主创新的基础上开发生产出力敏系列各类传感器上百个品种,各种应用仪器仪表和系统,以及各种起重机械超载保护装置,可以广泛应用于油田、化工、汽车、起重机械、建设、建材、机械加工、热电、军工、交通等领域。公司除大规模生产各种规格的高精度、高稳定性、高可靠性常规产品外,还可根据用户具体要求设计特殊的非标传感器,以满足用户的特殊要求。如果您想进一步的了解,可以直接点击官网高灵传感进行在线了解。

飞思卡尔电磁传感器

“飞思卡尔”杯全国大学生智能汽车邀请赛 电 磁 传 感 器 设计报告 学校:天津职业技术师范大学 制作人:自动化工程学院 电气0714 连刘雷

引言 这份技术报告中,我通过自己对这个比赛了解的传感器方面,详尽的阐述了传感器制作的原理和制作方法。具体表现在电路的可行性和实验的验证结果。 目录 引言 (2) 目录 (2) 第一章、电磁传感器设计思路及实现方案简介 (3) 1.1方案设计思路 (3) 1.2 磁场检测方法 (5) 第二章、电路设计原理 (7) 2.1感应磁场线圈 (7) 2.2信号选频放大 (8) 参考文献 (10)

第一章、电磁传感器设计思路及实现方案简介 1.1方案设计思路 根据麦克斯韦电磁场理论,交变电流会在周围产生交变的电磁场。智能汽车竞赛使用路径导航的交流电流频率为20kHz,产生的电磁波属于甚低频(VLF)电磁波。甚低频频率范围处于工频和低频电磁破中间,为 3kHz~30kHz,波长为100km~10km。如下图所示: 图1.1、电流周围的电磁场示意图 导线周围的电场和磁场,按照一定规律分布。通过检测相应的电磁场的强度和方向可以反过来获得距离导线的空间位置,这正是我们进行电磁导航的目的。 由于赛道导航电线和小车尺寸l 远远小于电磁波的波长λ,电磁场辐射能量 很小(如果天线的长度l 远小于电磁波长,在施加交变电压后,电磁波辐射功率正比于天线长度的四次方),所以能够感应到电磁波的能量非常小。为此,我们将导线周围变化的磁场近似缓变的磁场,按照检测静态磁场的方法获取导线周围的磁场分布,从而进行位置检测。 由毕奥-萨伐尔定律知:通有稳恒电流I 长度为L 的直导线周围会产生磁场,距离导线距离为r 处P 点的磁感应强度为:

电阻应变式传感器

(三)、测量电路的选用: 电桥电路是一种能够实现将电阻、电感、电容等参量的变化转变为电压输出的一种信号变换电路。具有结构简单、精确度和灵敏度高的优点,在测试中应用非常广泛。电桥按供电方式分为直流电桥和交流电桥。在这次设计中采用的测量电路是直流电桥。而电桥工作状态可分为:不平衡电桥和平衡电桥,不平衡电桥在连续量的自动检测中大量采用,平衡电桥又称为零位法测量,一般用于静态测量,准确性较高。在此次传感器设计中使用了平衡电桥。 二、基本原理: 扭矩的测量:采用应变片电测技术,在弹性轴上组成应变桥,向应变桥提供电源即可测得该弹性轴受扭的电信号。将该应变信号放大后,经过压/频转换,变成与扭应变成正比的频率信号。如图1所示: 一、设计题目要求与分析 1、设计题目:设计测扭矩的传感器。 使用条件:转矩测量仪一般用在机器之间的传动轴上,所以振动大,灰尘、油雾、水污比较多,故要求传感器封装在一起,只留下两个轴端在外面;工作温度在-20~150C0。 二扭矩测量及应变片的基本原理 1、应变片式传感器的原理及结构 应变计的转换原理基于应变效应。所谓应变效应是指 属丝的电阻值随其变形而发生改变的一种物理现象。由物理 学可知,金属丝酌电阻值R与其长度L和电阻率ρ成正比,

与其截面积A成正比比,其公式表示为: R=ρL/A 从而当金属丝受力变形改变其长度与横截面积而改变电阻值,而引起电压值变化。 电阻应变计简称应变计,它主要由电阻敏感栅、基底和面胶(或覆盖层)、粘结剂、引出线五部分组成。基底是将传感器弹性体表面的应变传递到电阻敏感栅上的中间介质,并起到敏感棚和弹性体之间的绝缘作用,面胶起着保护敏感栅的作用,粘结剂是将敏感栅和基底粘接在一起,引出线是作为联接测量导线之用。电阻敏感栅可以将应变量转换成电阻变化。应变计的结构如下:

扭矩传感器的测量方法

采用应变片电测技术,在弹性轴上组成应变桥,向应变桥提供电源即可测得该弹性轴受扭的电信号。将该应变信号放大后,经过压/频转换,变成与扭应变成正比的频率信号扭矩传感器是对各种旋转或非旋转机械部件上对扭转力矩感知的检测。扭矩传感器将扭力的物理变化转换成精确的电信号。 扭矩传感器可以应用在制造粘度计,电动(气动,液力)扭力扳手,它具有精度高,频响快,可靠性好,寿命长等优点。将专用的测扭应变片用应变胶粘贴在被测弹性轴上,并组成应变桥,若向应变桥提供工作电源即可测试该弹性轴受扭的电信号。这就是基本的扭矩传感器模式。但是在旋转动力传递系统中,最棘手的问题是旋转体上的应变桥的桥压输入及检测到的应变信号输出如何可靠地在旋转部分与静止部分之间传递,通常的做法是用导电滑环来完成。 由于导电滑环属于磨擦接触,因此不可避免地存在着磨损并发热,因而限制了旋转轴的转速及导电滑环的使用寿命。及由于接触不可靠引起信号波动,因而造成测量误差大甚至测量不成功。为了克服导电滑环的缺陷,另一个办法就是采用无线电遥测的方法:将扭矩应变信号在旋转轴上放大并进行v/f转换成频率信号,通过载波调制用无线电发射的方法从旋转轴上发射至轴外,再用无线电接收的方法,就可以得到旋转轴受扭的信号。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城https://www.360docs.net/doc/b8935812.html,/

法兰式扭矩传感器ZJ-A型

法兰式扭矩传感器ZJ-A型

产品特点: 1.信号输出可任意选择波形一方波或脉冲波。 2.检测精度高、稳定性好、抗干扰性强。 3.不需反复调零即可连续测量正反扭矩。 4.即可测量静止扭矩,也可测量动态扭矩。 5.体积小、重量轻、易于安装。传感器可脱离二次仪表独立使用,只要按插座针号提供 ±15VDC(200mA)的电源,即可输出阻抗与扭矩成正比的等方波或脉冲波频率信号。 6.测量范围:0-500000Nm标准可选,特殊量程定制。 应用范围: 1.电动机、发动机、内燃机等旋转动力设备输出扭矩及功率的检测; 2.风机、水泵、齿轮箱、扭力扳手的扭矩及功率的检测; 3.铁路机车、汽车、拖拉机、飞机、船泊、矿山机械中的扭矩及功率的检测; 4.可用于污水处理系统中的扭矩及功率的检测; 5.可用于制造粘度计; 6.可用于过程工业和流程工业中; 基本原理: 转矩的测量:采用应变片电测技术,在弹性轴上组成应变桥,向应变桥提供电源即可测得 该弹性轴受扭的电信号。将该应变信号放大后,经过压/频转换,变成与扭应变成正比的频 率信号。 工作过程: 将专用的扭矩应变片用应变胶粘帖在被测弹性轴上并组成应变桥,向应变桥提供电源即可 测得该弹性轴受扭的电信号。将扭矩传感器应变信号放大后,经过压/频转换,变成与扭应 变成正比的频率信号。本系统的能源输入及信号输出是由两组带间隙的特殊环形变压器承 担的,因此实现了无接触的能源及信号传递功能。 向传感器提供±15VDC电源,激磁电路中的晶体振荡器产生400Hz的方波,经过功率放大 器即产生交流激磁功率电源,通过能源环形变压器T1从静止的初级线圈传递至旋转的次 级线圈,得到的交流电源通过轴上的整流滤波电路得到±5V的直流电源,该电源做运算放 大器的工作电源;由基准电源与双运放组成的高精度稳压电源产生±4.5V的精密直流电源,该电源及作为电桥电源,有座位放大器即V/F转换器的工作电源。 当弹性轴受扭时应变桥检测得到的mV级的应变信号通过仪表放大器放大成1.5v±1v的强 信号,再通过V/F转换器变换成频率信号,通过信号环形变压器T2从旋转的初级线圈传

扭矩传感器原理与应用

扭矩传感器原理与应用 一.特点 1. 既可以测量静止扭矩,也可以测量旋转转矩; 2.既可以测量静态扭矩,也可以测量动态扭矩; 3. 检测精度高,稳定性好;抗干扰性强; 4. 体积小,重量轻,多种安装结构,易于安装使用; 5. 不需反复调零即可连续测量正反转扭矩; 6.没有导电环等磨损件,可以高转速长时间运行; 7.传感器输出高电平频率信号可直接送计算机处理; 8.测量弹性体强度大可承受100%的过载。 二测量原理 将专用的测扭应变片用应变胶粘贴在被测弹性轴上并组成应变桥,向应变桥提供电源即可测得该弹性轴受扭的电信号。将该应变信号放大后,经过压/频转换,变成与扭应变成正比的频率信号。本系统的能源输入及信号输出是由两组带间隙的特殊环型变压器承担的,因此实现了无接触的能源及信号传递功能。(虚线内为旋转部分) 三传感器原理结构(01图) 在一段特制的弹性轴上粘贴上专用的测扭应片并组成变桥,即为基础扭矩传感器;在轴上固定着:(1)能源环形变压器的次级线圈,(2)信号环形变压器初级线圈,(3)轴上印刷电路板,电路板上包含整流稳定电源、仪表放大电路、V/F变换电路及信号输出电路。在传感器的外壳上固定着: 图五数字式扭矩传感器测量原理图 (1)激磁电路,(2)能源环形变压器的初级线圈(输入),(3) 信号环形变压器次级线圈(输出),(4)信号处理电路 四工作过程 向传感器提供±15V电源,激磁电路中的晶体振荡器产生400Hz的方波,经过TDA2030功率放大器即产生交流激磁功率电源,通过能源环形变压器T1从静止的初级线圈传递至旋转的次级线圈,得到的交流电源通过轴上的整流滤波电路得到±5V的直流电源,该电源做运算放大器AD822的工作电源;由基准电源AD589与双运放AD822组成的高精度稳压电源产生±4.5V的精密直流电源,该电源既作为电桥电源,又作为放大器及V/F转换器的工作电源。当弹性轴受扭时,应变桥检测得到的mV级的应变信号通过仪表放大器AD620放大成1.5v±1v的强信号,再通过V/F转换器LM131变换成频率信号,通过信号环形变压器T2从旋转的初级线圈传递至静止次级线圈,再经过传感器外壳上的信号处理电路滤波、整形即可得到与弹性轴承受的扭矩成正比的频率信号,该信号为TTL电平,既可提供给专用二次仪表或频率计显示也可直接送计算机处理。由于该旋转变压器动- -静环之间只有零点几毫米的间隙,加之传感器轴上部分都密封在金属外壳之内,形成有效的屏蔽,因此具有很强的抗干扰能力。 本传感器输出的频率信号在零点时为10kHz.正向旋转满量程时为15KHz.反向旋转满量程时为5KHz。即满量程变量为5000个数/每秒。转速测量采用光电齿轮或者磁电齿轮的测量方法,轴每旋转一周可产生60个脉冲,高速或中速采样时可以用测频的方法,低速采样时可以用测周期的方法。本传感器精度可达±0.2%~±0.5%(F·S)。由于传感器输出为频率信号,所以无需AD转换即可直接送至计算机进行数据处理。 五应用范围 1. 检测发电机,电动机,内燃机等旋转动力设备输出扭矩及功率。

电磁感应 电磁场

一选择题 1.如图所示,光滑固定导轨水平放置,两根导体棒P和Q平行放在导轨上,形成一个闭合回路,当一条形磁铁从高处下落接近回路时() (A)P和Q将互相靠近; (B)P和Q均向左运动; (C)P和Q将互相远离; (D)P和Q均向右运动。 答:(A)。 2.如图所示,光滑固定导轨水平放置,两根导体棒P、Q平行放在导轨上,形成一个闭合回路,当一条形磁铁从高处下落接近回路时() (A)磁铁的加速度大于g; (B)磁铁的加速度小于g; (C)磁铁的加速度开始时小于g,后来大于g; (D)磁铁的加速度开始时大于g,后来小于g。

答:(B )。 3.一无限长直导体薄板宽为l ,板面与z 轴垂直,板的长度方向沿y 轴,板的 两侧与一个伏特计相接。整个系统放在磁感应强度为B 的均匀磁场中,B 的方向 沿z 正方向。如果伏特计与导体平板均以速度v 向y 正方向运动,则伏特计指示的读数值为 (A )0; (B )vBl 21; (C )vBl ; (D )2vBl 。 答:(A )。 4.长度为l 的直导线ab 在均匀磁场B 中以速度v 移动,直导线ab 中的电动势为

l b a v (A )Blv (B ) sin Blv (C ) cos Blv (D )0 答:(D )。 5.如图,挂在弹簧下端的条形磁铁在闭合线圈上端振动时,若空气阻力不计,则: (A )条形磁铁的振幅将逐渐减小; (B )条形磁铁的振幅不变; (C )线圈中将产生大小改变而方向不变的直流电; (D )线圈中无电流产生。 答:(A )。 6.如图,挂在弹簧下端的条形磁铁在闭合线圈上端振动时,若空气阻力不计,则: (A )线圈中将产生大小和方向都发生改变的交流电; (B )条形磁铁的振幅不变; (C )线圈中将产生大小改变而方向不变的直流电; (D )线圈中无电流产生。 答:(A )。 7.在磁感强度为B 的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的 法线方向单位矢量n 与B 的夹角为 ,则通过半球面S 的磁通量(取弯面向外为正)为 n B S

应变式扭矩传感器简单设计报告

基于电阻应变式扭矩传感器与MSP430的扭 矩测量系统设计

2.应变式扭矩传感器 2.1 金属应变计工作原理 电阻应变片的工作原理是基于金属的应变效应[4]。金属丝的电阻随着它所受的机械变形的大小而发生相应的变化的现象称为金属的电阻应变效应。 例如,一段金属丝的电阻R 与丝的长度L ,横截面A 有如下关系: L R A ρ = (2-1) 若金属丝受到拉力F 作用伸长,伸长量设为l ?,横截面积相应减少A ?,电阻率的变 化设为ρ?,则电阻的相对变化量为: R l A R l A ρρ????=-+ (2-2) 又因为对金属丝来说2 22,2, 2A r r r A r A rdr A r r ππππ???=?===于是有: 2R l r R l r ρ ρ????=-+ (2-3) 由材料力学知,弹性限度内材料的泊松系数为//r r l l μ?=-?,则有 0(12)R l l K R l l ρμρ????=++= (2-4) 式中0/12/K l l ρρ μ?=++ ?为金属丝的灵敏度系数,它越大表明单位应变引起的电阻相对变化越大。若令l l ε?=为金属丝的轴向相对应变,则 (12)R R ρρμεε ??=++ (2-5) 从上式可知,灵敏度系数受两个因素影响:一个是受力后材料的几何尺寸的 变化,即12μ+;另一个是受力后材料晶格畸变引起电阻率发生的变化及 ρ ρε ?。对金属材料电阻丝来说,灵敏度系数表达式中12μ+的值要比 ρ ρ ε ?大得多。因此

在相当的范围内,电阻的相对变化与金属丝的纵向应变ε成正比,也及金属丝有着不错的线性度。 2.2 扭矩测量原理 弹性体是扭矩传感器的关键部件,它直接与被测对象接触(例如电机转轴)并引起应变片产生形变。 弹性轴在受到扭转时发生形变(如图),轴上会有应力和应变产生。其横截面会受到一个剪应力,该剪应力按照直线规律变化,在轴的中心处为零,轴的表面达到最大[4]。 (1)弹性轴横截面剪应力 (2)弹性走表面法向张力 图2.1 弹性轴横截面与表面手里分析 现在从弹性轴的径向表面上取一个单元进行研究,如图,在其与杆轴成45度与135度的斜面上,受到法向应力,此法向应力为主应力,其数值等于横截面上的剪应力τ[4]。图中,此应力在一个方向上受拉伸,另一个方向上受压缩。

扭矩传感器设计说明书

扭矩测量仪设计说明书

目录 一、设计背景 (3) 二、设计题目与设计要求 (3) 三、扭矩测量及应变片的原理 (3) 1、扭矩测量的原理 (4) 2、应变片的原理 (4) 四、总体方案确定 (5) 五、具体方案设计 (5) 1、扭矩传感器的设计 (6) 2、信号的中间变换与传输 (7) 3、试验数据采集系统设计 (10) 六、测量误差分析及数据处理 (11) 七、参考文献 (12) 八、附件 1、CAD图 2、感想

一、设计背景 不久前,市场研究机构Darnell Group在一份报告中指出,2010年扭矩测量仪价格预计将与现有模拟产品持平。扭矩测量仪的平均价格已经从几年前的6美元降到了目前的3美元以下,预计2010年将跌破2美元。Darnell表示,随着数字与模拟控制器解决方案价格趋同,更多、更符合具体应用的第二代扭矩测量仪推出,软件开发环境持续改善,以及市场更加了解扭矩测量技术等因素的推动,扭矩测量产品生命周期的“引入”阶段接近结束,扭矩测量仪市场将迎来加速增长。 现在,中国已成为全球最大的数字式控制产品应用市场。汽车电子和工业电子成为维持中国数字是控制器市场增长的关键推动因素。此外,监控、马达控制和测量仪器市场的增长也对中国市场有较大贡献,特别是安全系统、马达控制、电力机车、安全与控制以及车载娱乐系统将成为扭矩测量仪的新驱动力。 扭矩传感器,分为动态和静态两大类,其中动态扭矩传感器又可叫做转矩传感器、转矩转速传感器、非接触扭矩传感器、旋转扭矩传感器等。扭矩传感器是对各种旋转或非旋转机械部件上对扭转力矩感知的检测。扭矩传感器将扭力的物理变化转换成精确的电信号。扭矩传感器可以应用在制造粘度计,电动(气动,液力)扭力扳手,它具有精度高,频响快,可靠性好,寿命长等优点。 二、设计题目与设计要求 1、设计题目:设计一款扭矩仪及扭矩传感器。 2、设计要求: 1)精度高,频响快,可靠性好,寿命长; 2)体积小、质量轻,便于安装使用; 4)没有导电环等磨损件,可以高速长时间运行; 3、使用条件: 由于扭矩测量仪一般用在机器之间的传动轴上,振动大,灰尘、油雾、水污比较多,故要求传感器封闭,只留下两个轴端在外面,工作温度在0~60度。 三、扭矩测量及应变片的原理 1、扭矩测量的基本原理 根据第九章相关内容。(P145~146) 扭矩测量的基本原理如下: 电阻应变式转矩仪是根据应变原理来测量扭矩的。处于动力机械和负荷之间

第12章 电磁感应 电磁场

第十二章 电磁感应 电磁场 问题 12-1 如图,在一长直导线L 中通有电流I ,ABCD 为一矩形线圈,试确定在下列情况下,ABCD 上的感应电动势的方向:(1)矩形线圈在纸面内向右移动;(2)矩形线圈绕AD 轴旋转;(3)矩形线圈以直导线为轴旋转. 解 导线在右边区域激发的磁场方向垂直于纸面向 里,并且由2I B r μ0=π可知,离导线越远的区域磁感强度越小,即磁感线密度越小.当线圈运动时通过线圈的磁通量会发生变化,从而产生感应电动势.感应电动势的方向由楞次定律确定. (1)线圈向右移动,通过矩形线圈的磁通量减少,由楞次定律可知,线圈中感应电动势的方向为顺时针方向. (2)线圈绕AD 轴旋转,当从0到90时,通过线圈的磁通量减小,感应电动势的方向为顺时针方向.从90到180时,通过线圈的磁通量增大,感应电动势的方向为逆时针. 从180到270时,通过线圈的磁通量减少,感应电动势的方向为顺时针.从270到360时,通过线圈的磁通量增大,感应电动势的方向为逆时针方向. (2)由于直导线在空间激发的磁场具有轴对称性,所以当矩形线圈以直导线为轴旋转时,通过线圈的磁通量并没有发生变化,所以,感应电动势为零. 12-2 当我们把条形磁铁沿铜质圆环的轴线插入铜环中时,铜环内有感应电流和感应电场吗? 如用塑料圆环替代铜质圆环,环中仍有感应电流和感应电场吗? 解 当把条形磁铁沿铜质圆环的轴线插入铜环过程中,穿过铜环的磁通量增加,铜环中有感应电流和感应电场产生;当用塑料圆环替代铜质圆环,由于塑料圆环中的没有可以移动的自由电荷,所以环中无感应电流和感应电场产生. 12-3 如图所示铜棒在均匀磁场中作下列各种运动,试问在哪种运动中的铜棒上会有感应电动势?其方向怎样?设磁感强度的方向铅直向下.(1)铜棒向右平移[图(a)];(2)铜棒绕通过其中心的轴在垂直于B 的平面内转动[图(b)];(3)铜棒绕通过中心的轴在竖直平面内转动[图(c)]. C I

扭矩传感器

扭矩传感器 1.概述 扭矩又叫转矩,是反映转动设备输出力的大小的重要参数。扭矩在物理学中用下面的公式计算。 其中:P表示转动设备的输出功率,单位千瓦(k W);M表示转动设备的输出扭矩,单位牛米(N·m);N表示转动设备的转速,单位转/分钟(r/min)。从公式可以看出,扭矩是一个与功率和转速相关的物理量,它反映了转动设备输出功率和转速的比值关系。如果知道了转动设备的输出功率和转动速度,就可以利用公式计算出转动设备的扭矩。但实际生产中,功率的测量是不容易的,而扭矩可以利用较简单的装置把扭矩转化为力和磁的测量,对于力和磁这两个物理量的检测,我们有许多成熟工具,这样扭矩的测量就变得相对简单了。 2.常见的扭矩传感器分类 常见的扭矩传感器包括电阻应变式、磁电相位差式、光电式、磁弹性式、振 3.几种常见的扭矩传感器原理 (1)电磁齿栅式转矩传感器

电磁齿(栅)式转矩传感器的基本原理是通过磁电转换,把被测转矩转换成具有相位差的两路电信号,而这两路电信号的相位差的变化量与被测转矩的大小成正比。经定标并显示,即可得到转矩值。齿(栅)式传感器的工作原理如图1所示。 图 1电磁式转矩传感器原理图 电磁式转矩传感器在弹性轴两端安装有两只齿轮,在齿轮上方分别有两条磁钢,磁钢上各绕有一组信号线圈。当弹性轴转动时,由于磁钢与齿轮间气隙磁导的变化,信号线圈中分别感应出两个电势。再外加转矩为零时,这两个电势有一个恒定的初始相位差,这个初始相位差只与两只齿轮在轴上安装的相对位置有关。在外加转矩时,弹性轴产生扭转变形,在弹性变形范围内,其扭角与外加转矩成正比。在扭角变化的同时,两个电势的相位差发生相应的变化,这一相位差变化的绝对值与外加转矩的大小成正比。由于这一个电势的频率与转速及齿数的乘积成正比,因为齿数为固定值,所以这个电势的频率与转速成正比。在时间域内,感应信号S1,S2是准正弦信号,每一交变周期的时间历程随转速而变化,测出他们之间的相差Φ即可得到扭矩值。由材料力学可知: Φ 式中Φ——弹性轴的扭转角; ——转矩; ——弹性轴材料的剪切弹性模量; ——弹性轴直径; ——弹性轴工作长度。 其中,、、都是常数,令 则有 Φ 因此,扭矩的测量就转换成相位差的测量。而S1、S2是准正弦信号,其相位的测量需要用高频脉冲插补法,即用一组高频脉冲来内插进被测信号,然后对高频脉冲计数。

电磁感应_电磁场-答案

电磁感应 电磁场 一、 选择题 1.在赤道平面上空沿东西方向水平放置一根直导线,如果让它保持水平位置自由下落,那么导线两端的电势差( B ) (A )为零 (B )不为零 (C )恒定不变 (D )以上说法均不对 2.如图所示,边长为h 的矩形线框从初始位置由静止开始下落,进入一水平的匀强磁场,且磁场方向与线框平面垂直。H>h ,已知线框刚进入磁场时恰好是匀速下落,则当线框出磁场时将做( B ) (A )向下匀速运动 (B )向下减速运动 (C )向下加速运动 (D )向上运动 3.如图所示,a 、b 圆形导线环处于同一平面,当a 环上的电键S 闭合的瞬时,b 环中的感应电流方向及b 环受到的安培力方向:( A ) (A )顺时针,沿半径向外 (B ) 顺时针,沿半径向里 (C )逆时针,垂直纸面向外 (D )逆时针,垂直纸面向里 4.如图所示,两个闭合铝环A 、B 与一个螺线管套在同一铁芯上,A 、B 可以左右摆动,则( A ) (A )在S 闭合的瞬间,A 、B 相吸 (B )在S 闭合的瞬间,A 、B 相斥 (C )在S 断开的瞬间,A 、B 不动 (D )在S 断开的瞬间,A 、B 相斥 5.如图所示,水平放置的两平行导轨左侧连接电阻,其它电阻不计.导体MN 放在导轨上,在水平恒力F 的作用下,沿导轨向右运动,并将穿过方向竖直向下的有界匀强磁场,磁场边界PQ 与MN 平行,从MN 进入磁场开始计时,通过MN 的感应电流i 随时间t 的变化不可能是下图中的( B ) 6.将形状完全相同的铜环和木环静止放置,并使通过两环面的磁通量随时间的 变化率相等,则不计自感时( D ) (A) 铜环中有感应电动势,木环中无感应电动势. (B) 铜环中感应电动势大,木环中感应电动势小. (C) 铜环中感应电动势小,木环中感应电动势大. (D) 两环中感应电动势相等. 7.如图,长度为l 的直导线ab 在均匀磁场B 中以速度v 移动,直导线ab 中的电动势为( D ) t i A t i B t i D t i C h H ×××××× ×××××× a b S N R M P Q F

飞思卡尔智能车比赛电磁组路径检测设计方案

飞思卡尔智能车比赛电磁组路径检测设计方案电磁组竞赛车模 路径检测设计参考方案 (竞赛秘书处 2010-1,版本 1.0) 一、前言 第五届全国大学生智能汽车竞赛新增加了电磁组比赛。竞赛车模需要能够通 过自动识别赛道中心线位置处由通有 100mA 交变电流的导线所产生的电磁场进行路径检测。除此之外在赛道的起跑线处还有永磁铁标志起跑线的位置。具体要求请参阅《第五届智能汽车竞赛细则》技术文档。 本文给出了一种简便的交变磁场的检测方案,目的是使得部分初次参加比赛 的队伍能够尽快有一个设计方案,开始制作和调试自己的车模。本方案通过微型车模实际运行,证明了它的可行性。微型车模运行录像参见竞赛网站上视频文件。 二、设计原理 1、导线周围的电磁场 根据麦克斯韦电磁场理论,交变电流会在周围产生交变的电磁场。智能汽车 竞赛使用路径导航的交流电流频率为 20kHz,产生的电磁波属于甚低频(VLF) 电磁波。甚低频频率范围处于工频和低频电磁破中间,为 3kHz,30kHz,波长为 100km,10km。如下图所示: 图 1:电流周围的电磁场示意图

导线周围的电场和磁场,按照一定规律分布。通过检测相应的电磁场的强度 和方向可以反过来获得距离导线的空间位置,这正是我们进行电磁导航的目的。 由于赛道导航电线和小车尺寸 l 远远小于电磁波的波长,,电磁场辐射能量很小(如果天线的长度 l 远小于电磁波长,在施加交变电压后,电磁波辐射功率正比于天线长度的四次方),所以能够感应到电磁波的能量非常小。为此,我们将导线周围变化的磁场近似缓变的磁场,按照检测静态磁场的方法获取导线周围的磁场分布,从而进行位置检测。 由毕奥-萨伐尔定律知:通有稳恒电流 I 长度为 L 的直导线周围会产生磁场,距离导线距离为 r 处 P 点的磁感应强度为: 图 2 sin直线电流的磁场 , d, ,(0 , 4 10, 7 TmA 1 ) B , ,, cos,1 2 ,。 (1) ,1 4 r 由此得: B , cos, 4 r 4 r

扭矩传感器样本

工作原理: 传感器扭矩测量采用应变电测技术。在弹性轴上粘贴应变计组成测量电桥,当弹性轴受扭矩产生微小变形后引起电桥电阻值变化,应变电桥电阻的变化转变为电信号的变化从而实现扭矩测量。下面为扭矩测量的主要工作原理框图,由于采用了能源与信号的无接触传输,完美的解决了旋转状态下的扭矩测量。 电源 当测速码盘连续旋转时,通过光电开关输出脉冲信号,根据码盘的齿数和输出信号的频率,即可计算出对应的转速。 技术指标: 1.测量范围:0.5N·m--5万N·m(分若干档) 2.非线性度:±0.1%--±0.3%(F·S) 3.重复性:±0.1%--±0.2%(F·S) 4.精度:±0.2%--±0.5%(F·S) 5.环境温度:-40℃--70℃ 6.过载能力:150% 7.频率响应:100 μs 8.输出信号: 频率方波 (标准产品),也可以为4-20毫安电流或电压信号 零扭矩: 10 KHz 正向满量程: 15 KHz 反向满量程: 5 KHz 9.输出电平:5V (可以根据客户的要求作出调整),负载电流<10mA 10.信号插座: (1)0. (2)+12V. (3)-12V. (4)转速. (5)扭矩信号. 11.绝缘电阻:大于200MΩ 12.相对湿度:≤90%RH 量程选择: 转矩转速传感器的量程选择应以实际测量的最大转矩来确定,通常情况下应留有一定余量,防止出现过载以至于损坏传感器。 计算公式:M=9550*P/N 1

M:转矩单位(牛.米)P:电机功率单位(千瓦)N:转速单位(转/分钟) 如您使用的电机为三相感应电机,转矩量程应选择为额定扭矩的2-3倍,这是由于电动机的启动转矩较大的缘故。 型号选择 C系列转速转矩传感器 代号类型 4 常规动态测试 5 静态(适用于非旋转场合) 6 小量程(10牛米以下) 4A 为4型换代产品 6A 为6型换代产品 7 可以同时测量轴向力 量程测量范围(NM) 0.5 0—0.5 1 0—1 2 0—2 5 0—5 10 1—10 20 2—20 50 5—50 100 10—100 200 20—200 300 30—300 500 50—500 700 70—700 1000 100—1000 2000 200—2000 5000 500—5000 10000 1000—10000 20000 2000—20000 50000 5000—50000 代号输出形式 1 频率输出 2 4-20mA 3 电压输出 代号精度等级 A 0.2 B 0.5 2

扭矩传感器在工作中的应用!

扭矩传感器在工作中的应用! 扭矩--- 发动机扭矩的概括: 扭矩是使物体发生转动的力。发动机的扭矩就是指发动机从曲轴端输出的力矩。在功率固定的条件下它与发动机转速成反比关系,转速越快扭矩越小,反之越大,它反映了汽车在一定范围内的负载能力。在某些场合能真正反映出汽车的“本色”,例如启动时或在山区行驶时,扭矩越高汽车运行的反应便越好。以同类型发动机轿车做比较,扭矩输出愈大承载量愈大,加速性能愈好,爬坡力愈强,换挡次数愈少,对汽车的磨损也会相对减少。尤其在轿车零速启动时,更显示出扭矩高者提升速度快的优越性。 表示方法 发动机的扭矩的表示方法是牛米(N.m)。同功率一样,一般在说明发动机最大输出扭矩的同时也标出每分钟转速(r/min)。最大扭矩一般出现在发动机的中、低转速的范围,随着转速的提高,扭矩反而会下降。 扭矩传感器在工作过程中需注意哪些? 将专用的测扭应变片用应变胶粘贴在被测弹性轴上并组成应变桥,向应变桥提供电源即可测得该弹性轴受扭的电信号。将该应变信号放大后,经过压/频转换,变成与扭应变成正比的频率信号。本系统的能源输入及信号输出是由两组带间隙的特殊环型变压器承担的。因此实现了无接触的能源及信号传递功能。 向传感器提供±15V电源,激磁电路中的晶体振荡器产生

400Hz的方波,经过TDA2030功率放大器即产生交流激磁功率电源,通过能源环形变压器T1从静止的初级线圈传递至旋转的次级线圈,得到的交流电源通过轴上的整流滤波电路得到±5 V的直流电源,该电源做运算放大器AD822的工作电源;由基准电源AD589与双运放AD822组成的高精度稳压电源产生±4.5V的精密直流电源,该电源既作为电桥电源,又作为放大器及V/F转换器的工作电源。当弹性轴受扭时,应变桥检测得到的mV级的应变信号通过仪表放大器AD620放大成1.5v ±1v的强信号,再通过V/F转换器LM131变换成频率信号,通过信号环形变压器T2从旋转的初级线圈传递至静止次级线圈,再经过传感器外壳上的信号处理电路滤波、整形即可得到与弹性轴承受的扭矩成正比的频率信号,该信号为TTL电平,既可提供给专用二次仪表或频率计显示也可直接送计算机处理。由于该旋转变压器动--静环之间只有零点几毫米的间隙,加之传感器轴上部分都密封在金属外壳之内,形成有效的屏蔽,因此具有很强的抗干扰能力。 传感器输出的频率信号在零点时为10kHz.正向旋转满量程时为15KHz.反向旋转满量程时为5KHz。即满量程变量为5000个数/每秒。转速测量采用光电齿轮或者磁电齿轮的测量方法,轴每旋转一周可产生60个脉冲,高速或中速采样时可以用测频的方法,低速采样时可以用测周期的方法。本传感器精度可达±0.2%~±0.5%(F ·S)。由于传感器输出为频率信号,所以无需AD转换即可直接送至计算机进行数据处理。 本文来自:https://www.360docs.net/doc/b8935812.html,

力矩传感器

自行车力矩传感器 自行车力矩传感器的诞生 自行车是传统产业,具有100多年的历史。从原始的以脚踏力驱动的普通车发展到公路车、山地车、技术车、竞赛车、折叠车等几十种不同用途的车种,直到现在主流的电动自行车,还有再发展中的智能助力自行车。从助力方式上基本经历了,从脚踏力到电动助力再到混合动力的过程。 随着人类文明的进步和自行车的发展,一些骑行爱好者,不仅仅关注自行车带来的骑行体验和健身体验,他们会更关注自行车所带来的人车互动体验,如何能让自行车感知人的踏力,感知人体的疲劳程度,实时反馈自行车本身的部件安全稳定状态,让自行车和人更紧密的结合起来,达到人车合一的境界,成为自行车发展史上的另一个高度追求。 现阶段随着传感器技术的发展,近几年出现了,利用传感器技术采集人骑行时的踏力变化,通过电磁感应采集信号反馈给控制系统,再由控制系统条件电池放电从而控制电机,达到智能助力的结果。给骑行爱好者提供更佳的驱动效率和骑行体验,在人车交互历史上卖出了重要的一步。如何采集人骑行的踏力变化,自行车研究者给出了多种方案,但其方案系统中关键部件力矩传感器一直是技术的核心焦点。由此,自行车力矩传感器诞生了。 目前自行车力矩传感器的种类: 1中轴力矩传感器又分为中轴双边力矩传感器和中轴单边力矩传感器。当然,双边要比单边更有技术优势。而且中轴双边力矩传感器是未来的发展趋势。实物如下图:

下面主要阐述中轴双边力矩传感器的特点: (1)通过非接触技术精确测量左右脚踏力矩 (2)通过非接触技术测量速度,每转6个脉冲信号 (3)通过非接触技术测量脉冲信号的宽度来判断脚踏转向 (4)防水/防锈设计 (5)并大幅减少磨损和信号误差,使得信号更加稳定可靠 目前国外成熟生产厂家有Tranz、Thun、Fag、台湾有中华机车。国内厂家有SEMPU森浦驱动、苏州竭诚。根据了解国内具有专利优势和成熟市场产品测试经验的是SEMPU森浦。 2齿轮力矩传感器一般是安装在自行车牙盘上,目前已有部门骑行爱好者自己经常了组装测试。实物如下图: 齿轮力矩传感器启动时,根据人脚踩启动力的大小即时启动而且根据人力的大小,加力大小呈线性比例输出。磁盘旋转一周采集90余次信号,数据量大,人脚踩加力与输出之间的响应及时,停止踩踏及时断电,总时间均在250mS完成。采取防水设计,结构简洁,零件数少。缺点:信号随着骑行环境因素误差偏大,信号采集不够精准。而且产品需要定制更换。 3 JDMM右链传感器安装在自行车右链护盘位置。实物如下图:

扭矩传感器安装

一、应用范围: KR系列扭矩传感器是一种测量各种扭矩、转速及机械功率的精密测量仪器。应用范围十分 广泛,主要用于: 1、电动机、发动机、内燃机等旋转动力设备输出扭矩及功率的检测; 2、风机、水泵、齿轮箱、扭力板手的扭矩及功率的检测; 3、铁路机车、汽车、拖拉机、飞机、船舶、矿山机械中的扭矩及功率的检测; 4、可用于污水处理系统中的扭矩及功率的检测; 5、可用于制造粘度计; 6、可用于过程工业和流程工业中。 二、基本原理: 扭矩的测量:采用应变片电测技术 ,在弹性轴上组成应变桥,向应变桥提供电源即可测得该 弹性轴受扭的电信号。将该应变信号放大后,经过压/频转换,变成与扭应变成正比的频率信号。如图1所示: 三、产品特点: 1.信号输出可任意选择波形─方波或脉冲波。 2.检测精度高、稳定性好、抗干扰性强。 3.不需反复调零即可;连续测量正反扭矩。 4.即可测量静止扭矩,也可测量动态扭矩。 5.体积小、重传感器可脱离二次仪表独立使用,只要按插座针号提供 +15V,-15V(200mA)的电源,即可输出阻抗与扭矩成正比的等方波或脉冲波频率信号。量轻、易于安装。 6.测量范围:0—10000Nm标准可选, 非标准2万Nm、3万Nm、5万Nm、8万Nm、10万Nm、15万Nm、20万Nm可定制,特殊量程定制。 1.根据轴的连接形式和扭矩传感器的长度,确定原动机和负载之间的距离,调节原动机和负载 的轴线相对于基准面的距离,使它们的轴线的同轴度小于Φ 0.03mm,固定原动机和负载在基准 面上。 2.将联轴器分别装入各自轴上。 3.调节扭矩传感器与基准面的距离,使它的轴线与原动机和负载的轴线的同轴度小于Φ

扭矩和张力传感器在生产及工业控制领域应用

扭矩和张力传感器在生产及工业控制领域应用 扭矩传感器 扭矩传感器,(又称力矩传感器、扭力传感器、转矩传感器、扭矩仪)分为动态和静态两大类,其中动态扭矩传感器又可叫做转矩传感器、转矩转速传感器、非接触扭矩传感器、旋转扭矩传感器等。扭矩传感器是对各种旋转或非旋转机械部件上对扭转力矩感知的检测。扭矩传感器将扭力的物理变化转换成精确的电信号。扭矩传感器可以应用在制造粘度计,电动(气动,液力)扭力扳手,它具有精度高,频响快,可靠性好,寿命长等优点。 应用范围 ?电动机、发动机、内燃机等旋转动力设备输出扭矩及功率的检测; ?风机、水泵、齿轮箱、扭力板手的扭矩及功率的检测; ?铁路机车、汽车、拖拉机、飞机、船舶、矿山机械中的扭矩及功率的检测; ?可用于污水处理系统中的扭矩及功率的检测; ?可用于制造粘度计; ?可用于过程工业控制自动化项目中 应变式扭矩传感器基本原理 ?扭矩的测量:采用应变片电测技术,在弹性轴上组成应变桥,向应变桥提供电源即可测得该弹性轴受扭的电信号。将该应变信号放大后,经过压/频转换,变成与扭应变成正比的频率信号。 特点 ?信号输出可任意选择波形─方波或脉冲波。 ?检测精度高、稳定性好、抗干扰性强。 ?不需反复调零即可;连续测量正反扭矩。 ?即可测量静止扭矩,也可测量动态扭矩。 ?体积小、重传感器可脱离二次仪表独立使用,只要按插座针号提供+15V,-15V (200mA)的电源,即可输出阻抗与扭矩成正比的等方波或脉冲波频率信号。量轻、易于安装。 ?测量范围:0—10000Nm标准可选, 非标准2万Nm、3万Nm、5万Nm、8万Nm、10万Nm,特殊量程可定制。

主要功能及性能指标 ?扭矩示值误差:<±0.5 % F · S 灵敏度:1±0.2 mv / V ?非线性:<±0.25 % F· S 重复性:<±0.2% F2S ?回差:<0.2 % F· S 零飘(24小时):<0.5 % F2S ?零点温飘:<0.5 % F· S /10℃输出阻抗:1KΩ±3Ω ?绝缘阻抗:>500MΩ静态超载:120 % ?断裂负载:200 % 使用温度:0 ~60℃ ?储存温度:-20 ~70℃电源电压:+15V±5%,-15V±5% ?总消耗电流:<130mA 频率信号输出:5KHz—15KHz ?负额定扭矩:5KHz±10Hz 零扭矩:10KHz±10Hz ?正额定扭矩:15KHz±10Hz 信号占空比:(50±10)% 工作过程 ?将专用的测扭应变片用应变胶粘贴在被测弹性轴上并组成应变桥,向应变桥提供电源即可测得该弹性轴受扭的电信号。将该应变信号放大后,经过压/频转换,变成与扭应变成正比的频率信号。本系统的能源输入及信号输出是由两组带间隙的特殊环型变压器承担的。因此实现了无接触的能源及信号传递功能。 信号输出与信号采集 ?1、扭矩信号输出基本形式: ?(1)方波信号、脉冲信号。 ?(2)扭矩传感器的标准信号输出是频率信号,即5-15KHz;为了适应客户需求,无需外置模块,与原始输出电路整合设计直接输出4-20mA、0-20mA、1-5V、0-5V 模拟信号,方便客户采。 ?2、扭矩信号处理形式: ?(1)扭矩传感器输出的频率信号送到频率计或数字表,直接读取与扭矩成正比的频率信号或电压、电流信号。 ?(2)扭矩传感器的扭矩与频率信号送给单片机二次仪表,直接显示实时扭矩值、转速及输出功率值及RS232通讯信号。 ?(3)直接将扭矩与转速的频率信号送给计算机或PLD进行处理。 几种安装方式 1水平安装:

相关文档
最新文档