高中物理光学原子物理知识要点

高中物理光学原子物理知识要点
高中物理光学原子物理知识要点

光学

一、光的折射

1.折射定律:2.光在介质中的光速:

3.光射向界面时,并不是全部光都发生折射,一定会有一部分光发生反射。

4.真空/空气的n等于1,其它介质的n都大于1。

5.真空/空气中光速恒定,为,不受光的颜色、参考系影响。光从真空/空气中进入介质中时速度一定变小。

6.光线比较时,偏折程度大(折射前后的两条光线方向偏差大)的光折射率n大。

二、光的全反射

1.全反射条件:光由光密(n大的)介质射向光疏(n小的)介质;入射角大于或等于临界角C,其求法为。

2.全反射产生原因:由光密(n大的)介质,以临界角C射向空气时,根据折射定律,空气中的sin角将等于1,即折射角为90°;若再增大入射角,“sin空气角”将大于1,即产生全反射。

3.全反射反映的是折射性质,折射倾向越强越容易全反射。即n越大,临界角C越小,越容易发生全反射。

4.全反射有关的现象与应用:水、玻璃中明亮的气泡;水中光源照亮水面某一范围;光导纤维(n大的内芯,n小的外套,光在内外层界面上全反射)

三、光的本质与色散

1.光的本质是电磁波,其真空中的波长、频率、光速满足(频率也可能用表示),来源于机械波中的公式。

2.光从一种介质进入另一种介质时,其频率不变,光速与波长同时变大或变小。

3.将混色光分为单色光的现象成为光的色散。不同颜色的光,其本质是频率不同,或真空中的波长不同。同时,不同颜色的光,其在同一介质中的折射率也不同。

4.色散的现象有:棱镜色散、彩虹。

5.红光和紫光的不同属性汇总如下:

频率f(或ν) 真空中里的

波长λ

折射率n

同一介质中

的光速

偏折程度临界角C

红光大大大紫光大大大

原因

n越大偏折

越厉害

发生全反射光子能量发生光电效应

双缝干涉时的

条纹间距Δx

发生明显衍

红光大容易紫光容易大容易

原因临界角越小

越容易发生

全反射

波长越大越

有可能发生

明显衍射

四、光的干涉

1.只有频率相同的两个光源才能发生干涉。

2.光的干涉原理(同波的干涉原理):

真空中某点到两相干光源的距离差即光程差Δs。

当时,即光程差等于半波长的奇数倍时,由于两光源对此点的作用总是步调相反,叠加后使此点振动减弱;

当时,即光程差等于波长的整数倍,半波长的偶数倍时,由于两光源对此点的作用总是步调一致,叠加后使此点振动加强。

3.杨氏双缝干涉:单色光源经过双缝形成相干光,在屏上形成明暗相间的等间距条纹。双

缝间距离d、双缝到屏的距离L、光的波长λ、条纹间距Δx的关系为。

4.双缝干涉的条纹间距指的是两条相邻的明条纹中心的距离。其它条件相同时,光的波长越大,条纹间距越大,明、暗条纹本身也越粗。

5.若使用白光做双缝干涉实验,会得到彩色的条纹,中央明纹为白色。

6.薄膜干涉:光射向薄膜时,在膜的外、内表面各反射一次,两束反射光在外表面相遇发生干涉。若叠加后振动加强,则会使反射光增强,透射光减弱;若叠加后振动减弱,则会使反射光减弱,透射光增强。

7.薄膜干涉的现象与应用:彩色肥皂泡、彩色油膜;增透膜、增反膜、检查工件平整度。

五、光的衍射

1.光绕过障碍物传播即光的衍射。只有障碍物、孔、缝的尺寸小到可以与光的波长比拟时,才能观察到明显的衍射现象。

2.单色光的单缝衍射在屏上得到的是不等间距的条纹。其它条件相同时,光的波长越大,条纹间距越大,条纹本身也越粗(同双缝干涉)。

3.白光的单缝衍射得到的是彩色条纹,中央明纹为白色。

4.衍射相关的现象:泊松斑;影子边缘模糊不清;透过缝看日光灯管。

六、光的偏振

1.振动方向与传播方向平行的波称为纵波,如声波。

振动方向与传播方向垂直的波称为横波,如光波(电磁波)、绳子上的波。

2.偏振原理不便叙述,详见教材。现象为当旋转两个偏振片中的一个时,透过的光强度会随之变化,甚至会消失(即当两偏振片相应方向垂直时)。

3.光的偏振说明光是一种横波。偏振可应用于镜头、车灯、立体电影等。

七、激光

1.激光的特点是一致性高、平行度好、强度高(并非单个光子能量大)

电磁波

一、电磁波的发现

1.麦克斯韦建立了经典电磁场理论,预言了电磁波的存在;赫兹通过实验证实了电磁波的存在。

2.电磁场理论要点(一个字都不能错):变化的磁场产生电场;变化的电场产生磁场。将“电场”改为“电流”,或将“产生电场”改为“产生变化的电场”、“产生磁场”改为“产生变化的磁场”都是错误的。

二、无线电波的发射与接收

1.电视、广播、手机等信号都是由无线电波来传播的。利用无线电波传播声音、图像等信号时,发射电磁波前要将这些信号加载到电磁波(也叫载波)上,称为调制。调制分为调幅和调频两种,图见教材。

2.接收电磁波时,需要接收电路与空间中的相应的电磁波发生共振,叫调谐。将接收到的电信号转换回声音、图像信号的过程称为解调。

三、电磁波谱

1.电磁波按照频率从小到大、波长从大到小的顺序排列为:

无线电波红外线可见光紫外线X射线γ射线

2.各种电磁波的应用

无线电波:通信、广播

红外线:热效应、探测、遥感

紫外线:灭菌消毒、荧光防伪

X射线:安检、医学透视、工业探伤

γ射线:高能量、摧毁癌细胞、工业探伤

3.电磁波与机械波的比较

机械波传播需要介质,但电磁波传播不需要介质,而且在真空中的速度总等于光速,进入介质传播速度会降低。

机械波有纵波有横波,但电磁波都是横波。

机械波不是概率波,但电磁波是概率波。

波粒二象性

一、能量量子化

1.普朗克假设微观粒子的能量不是连续变化的,用“能量子”概念完美解释了黑体辐射实验(之前的科学家们用能量连续变化的观点都解释不通),标志着量子力学的诞生。

2.能量子公式,其中为电磁波的频率,为普朗克常量。

二、光电效应

1.光电效应:照射到金属表面的光,能使金属中的电子从表面逸出。逸出的电子称为光电子。

2.爱因斯坦推广了普朗克的理论,认为光本身就是由一个个光子组成的,并以此成功地解释了光电效应现象(之前的电磁波理论都不能完整解释光电效应)。

3.爱因斯坦光电效应方程:。其中为光子能量;为金属的逸出功,指电子从金属表面逸出时克服金属的束缚力所做的功,只与金属有关;为逸出的光电子的最大初动能。

4.发生光电效应的条件是,光子能量必须大于逸出功。对同一种金属,逸出功一定,能量越大(或频率越大)的光,越有可能产生光电效应。金属恰好产生光电效应时有,此时的光子频率称为该金属的极限频率。

5.光强表征单位时间照射的光子数。光子能量大于逸出功时,光强越大,单位时间打出的光电子就会越多,所谓的光电流就会越大。即光子能量小于逸出功时,无论怎样增大光强也不能发生光电效应。

三、康普顿效应

康普顿用光子模型成功解释了康普顿效应。康普顿效应表明光子除了能量之外还具有动量。

光子动量为。

四、光的波粒二象性

1.对光的认识历程:

最开始光的粒子说和波动说都有拥护者,如牛顿认为光是粒子;

然后光的衍射、干涉和偏振现象的发现,使人们一致赞同光的波动说;

接下来麦克斯韦和赫兹确认了光的电磁波本质,进一步巩固了波动说;

最后光电效应、康普顿效应再次让人们认识到光的粒子性,并得到光具有波粒二象性的结论。

2.光的干涉、衍射、偏振、多普勒效应揭示光的波动性;光电效应、康普顿效应揭示光的粒子性。

五、物质波、概率波、不确定关系

1.德布罗意将光的波粒二象性推广到实物粒子,认为实物粒子也具有波粒二象性。这种实物粒子的波称为德布罗意波,或者物质波。

2.光子能量与动量的公式、被推广到实物粒子,式中能量E、动量p描述物质粒子性,频率、波长描述物质的波动性,二者由普朗克常量h联系到一起。

3.实验观察到电子束衍射现象,证实了物质波的存在。

4.光、实物粒子之所以能集粒子性、波动性于一身,是因为光波、物质波都是概率波。概率波不同于机械波;其“振动”体现的并不是质点的位置改变,而是光子/实物粒子出现的概率大小。

光的干涉、衍射等波动现象中,得到的条纹分布实际是光子的出现概率分布。干涉中的振动叠加其实是概率的叠加:振动加强点,实际是光子出现概率被增大,即到达光子多,因此形成亮条纹;振动减弱点,实际是光子出现概率被减小,即到达光子少,因此形成暗条纹。电子的衍射图样,同样是反映其到达几率的分布。

5.不确定关系:由于波粒二象性的存在,光子、实物粒子的位置和动量不可能同时测准。

原子结构

一、电子的发现

1.汤姆孙发现电子,说明原子具有复杂结构,即原子可以再分(因为电子是从原子里发出来的)。

2.密立根油滴实验测出了电子电荷量e。

二、原子核式结构模型

1.卢瑟福的α粒子散射实验(图见教材)完全否定了汤姆孙的原子枣糕模型,说明原子具有核式结构。

2.实验现象为绝大多数α粒子穿过金箔后能沿原来的方向前进,但少数粒子会发生大角度偏转。唯一的解释只能是原子的核式结构:原子内除电子外只有一个非常小的原子核,整个原子很空旷;此核集中了原子中所有的正电荷和绝大部分质量。使α粒子发生偏转的是它与原子核之间的库伦斥力(二者都带正电)。

三、氢原子光谱与能级理论

1.连续光谱、明线光谱、吸收光谱各自的产生条件。

2.波尔为了解释氢原子光谱的不连续性,将“量子化”的理论引入氢原子结构模型。即氢原子中的电子,在库仑力的作用下绕原子核作圆周运动,其轨道半径是不能连续变化的,而是量子化的,只能取某些特定的值。由此形成的氢原子的能量也是量子化的,只能取某些特定的值,这些能量值称为能级。

3.所谓氢原子的能量,包括电子绕核运动的动能,以及原子核与电子共同具有的电势能。能级越高,电子运动轨道半径越大,动能越小,电势能越大,总能量也越大。此规律与天体运动中卫星轨道半径与能量的关系相同。

4.n=1能级是最低、最稳定的能级,原子在此能级时称为处于基态,而在n=2以上的能级时称为处于激发态。

5.氢原子在被光照射时,可能吸收适当频率的光子,并向上跃迁至更高的能级,此时总能量增加,跃迁前后的能量之差ΔE即等于需要吸收的光子能量。光子能量不等于相应能量差时不会被吸收。

6.氢原子处于激发态时,会自发地向下跃迁,同时放出光子。经过一次或多次向下跃迁,最终回到基态。每次向下跃迁放出的光子能量即等于跃迁前后的能量之差ΔE。处于n=2、3、4、5能级的大量氢原子分别能放出1、3、6、10种不同频率的光子。

原子核

一、天然放射现象

1.元素自发地发出射线的现象叫天然放射现象。天然放射现象说明原子核具有复杂结构,即原子核可以再分(因为射线是从原子核里发出来的;注意与“电子的发现”区分开)。

由于是原子核层面的反应,天然放射现象完全不受温度、压强、元素化学态的影响。

2.放出的三种射线中,带正电、在磁场中偏转半径较大的称为α射线;带负电、在磁场中偏转半径较小的称为β射线;不带电的称为γ射线。三种射线的本质与性质如下:射线本质符号速度穿透能力电离能力

α氦核稍慢弱,一张纸就能挡住强

β电子流快中,可穿几毫米厚的铝板中

γ光子流最快强,可穿几厘米厚的铅板弱

3.之后的研究表明,原子核是由质子和中子构成的,质子带1个单位正电荷,中子不带电。二者质量均远大于电子。质子和中子统称核子。

4.原子核常用符号表示,X为元素符号,Z为质子数,亦即核电荷数、原子序数;A为质量数,即核子数,也就是质子数与中子数之和。中子数则等于A-Z。

5.同种元素的原子,质子数相同,但中子数/质量数可以不同。质子数相同但中子数不同的原子相互称为同位素。

6.几种重要的粒子符号:氦核;电子;质子;中子;正电子。

二、衰变

1.由于天然放射现象放射出α或β粒子导致元素种类发生了变化,称为发生了衰变。衰变可分为α衰变和β衰变。

2.α衰变可概括为:,其反应原理为:,即原子核中的两个质子和两个中子结合形成一个氦核后放射出来。

3.β衰变可概括为:,其反应原理为:,即原子核中的一个中子分裂成一个质子和一个电子,并把电子放射出来。β衰变放出的电子来自于原子核,但不能说原子核中含有电子。

4.衰变方程属于核反应方程,所有核反应前后满足电荷数守恒、质量数守恒,但质量不守恒。

5.没有所谓的γ衰变。原子核不会单独放出γ射线,但α衰变和β衰变总是伴随着γ辐射。

6.大量原子核有半数发生衰变需要的时间称为这种元素的半衰期。半衰期只对大量原子核有效,不能用于预测少量原子核的衰变。半衰期完全不受温度、压强、元素化学态的影响。

举例说明:假设A原子核衰变为B原子核的半衰期为T,且B不再衰变;现有1mol A 原子,则:

经过T时间,会变为1/2 mol A原子,1/2 mol B原子。

经过2T时间,会变为1/4 mol A原子,3/4 mol B原子。

经过3T时间,会变为1/8 mol A原子,7/8 mol B原子。

三、裂变与聚变

1.核裂变是一个很大的原子核被撞击裂成两个中等大小的原子核。反应物和生成物还可带

有中子等。如(方程不用记)。

2.核裂变有时也称为链式反应。反应过程中放出巨大能量,应用于原子弹、核电站发电。

3.核聚变是几个很小的原子核结合生成一个稍大一点的原子核。反应物通常是氢的同位素,

生成物中可以带有中子等。如(方程不用记)。

4.核聚变也成为热核反应,因为反应需要极高的温度。核聚变过程中放出巨大的能量,被应用于氢弹。另外太阳放出能量靠的也是核聚变。

四、核能

1.衰变、裂变、聚变等核反应中,生成物的总质量都小于反应物的总质量,即有质量亏损。亏损的质量变为能量,并以光子(γ射线)的形式放射出来。

2.根据爱因斯坦质能方程,核反应放出的能量为,其中为反应的质量亏损,

即反应物的总质量减去生成物的总质量。再结合光子能量公式,可求出生成光子的频率。

原子物理知识点总结

原子物理 一、波粒二象性 1、热辐射:一切物体均在向外辐射电磁波.这种辐射与温度有关。故叫热辐射. 特点:1)物体所辐射的电磁波的波长分布情况随温度的不同而不同;即同时辐射各种波长的电磁波,但某些波长的电磁波辐射强度较强,某些较弱,分布情况与温 度有关。 2)温度一定时,不同物体所辐射的光谱成分不同。 2、黑体:一切物体在热辐射同时,还会吸收并反射一部分外界的电磁波。若某种物体,在热辐射的同时能够完全吸收入射的各种波长的电磁波,而不发生反射,这种物体叫做黑体(或绝对黑体)。在自然界中,绝对黑体实际是并不存在的,但有些物体可近似看成黑体,例如,空腔壁上的小孔. 热辐射特点吸收反射特点 一般物体辐射电磁波的情况与温度,材 料种类及表面状况有关既吸收,又反射,其能力与材料的种类及入射光波长等因素有关 黑体辐射电磁波的强度按波长的 分布只与黑体温度有关完全吸收各种入射电磁波,不反射 黑体辐射的实验规律: 1)温度一定时,黑体辐射的强度,随波长分布有一个极大值。 2)温度升高时,各种波长的辐射强度均增加。 3)温度升高时,辐射强度的极大值向波长较短方向移动。 4、能量子:上述图像在用经典物理学解释时与该图像存在严重的不符(维恩、瑞利的解释)。普朗克认为能量的辐射或者吸收只能是一份一份的.这个不可再分的最小能量值ε叫做能量子.ν εh =) 10 63 .6 (34叫普朗克常量 s J h? ? =-.由量子理论得出的结果与黑体的辐射强度图像吻合的非常完美,这印证了该理论的正确性.

5光电效应:在光的照射下,金属中的电子从金属表面逸出的现象.发射出来的电子叫光电子。光电效应由赫兹首先发现。 爱因斯坦指出: ① 光的能量是不连续的,是一份一份的,每一份能量子叫做一个光子.光子的能量为 ε=h ν,其中h=6。63×10-34 J ·s 叫普朗克常量,ν是光的频率; ② 当光照射到金属表面上时,一个光子会被一个电子吸收,吸收的过程是瞬间的(不超过10-9 s ).电子在吸收光子之后,其能量变大并向金属外逃逸,从而产生光电效应现象; ③ 一个电子只能吸收一个光子,不会有一个电子连续吸收多个光子的情况,该过程需要克服金属内部原子束缚做功(逸出功W 0,其大小与金属材料有关),然后才有可能从金属表面飞出。因此在只有当一个光子能量较大时,电子才会将其吸收并从金属内部飞出,否则电子无法克服原子束缚从金属中逸出。由能量守恒可得光电效应方程: 0W h E k -=ν ④ 决定能否发生光电现象的决定因素是极限频率而不是光的强度。光的强度只会影响从金属中逸出的电子数目。能使某种金属发生光电效应的最小频率叫做该种金属的截止频率(极限频率).截止频率的大小与金属种类有关。光的强度:单位时间内垂直照射到金属表面单位面积上入射光中光子总数目. 若ν≥c ν,无论光照强度如何也会有光电效应现象产生 若ν<c ν,则无论怎样增加光照强度,也不会有光电效应产生 知识拓展之光电管的伏安特性曲线:在光照条件不变时,若正向电压升高,则电路中的光电流会随之变大,当正向电压调到某值后电路中的电流不再增加,该电流叫饱和电流。饱和电流大小反映了入射光的强度(光子数目)。在光照条件不变时,若反向电压升高,则电路中的光电流会随之变小,当反向电压达到某值后,电路中的电流变为零,这个电压叫遏止电压。遏止电压只与入射光频率有关. e W e h U c 0 -=ν0(W h E k -=ν由) 得出和00W h eU E eU c k c -=-=-ν

【整理】高中物理选修3-5原子物理高频考点必记清单

高中物理选修3-5原子物理高频考点必记清单 考点一:波粒二象性 一、物理学史: 1.普朗克能量子论观点:1900年德国物理学家普朗克提出,电磁波的发射和吸收是不连续的,而是一份一份的,每一份电磁波的能量νεh =。 2.爱因斯坦光子论:1905爱因斯坦提出,空间传播的光也是不连续的,而是一 份一份的,每一份称为一个光子,光子具有的能量与光的频 成正比。即:νεh =. 3.赫兹最早发现了光电效应现象。 4. 德布罗意指出,实物粒子也具有波动性,这种波称为德布罗意波,也叫物质波。满足下列关系:P h h ==λεν,(P 为粒子动量) 二、物理现象 1.热辐射现象(了解):任何物体在任何温度下都要发射各种波长的电 磁波,并且其辐射能量的大小及辐射能量按波长的分布都与温度有关。 这种由于物质中的分子、原子受到热激发而发射电磁波的现象称为热 辐射。 2.光电效应现象:在光(包括不可见光)的照射下,从金属中发射出电子的现象。发射出的电子称为光电子。 3.康普顿效应(了解):1923年,美国物理学家康普顿在研究x 射线通过实物物质发生散射的实验时,发现了一个新的 现象,即散射光中除了有原波长λ0的x 光外,还产生了波长λ>λ0 的x 光,其波长的增量随散射角的不同而变化。 这种现象称为康普顿效应(Compton Effect)。 三、物理规律

1.黑体辐射规律(了解):黑体具有向四周辐射能量的本领,又有吸收外界辐射来的能量的本领(在任何温度下,全部吸收任何波长的辐射)。实验规律:(1)随着温度的升高,黑体的辐射强度都有增加; (2)随着温度的升高,辐射强度的极大值向波长较短方向移动。(右图) 2光电效应规律(重点):①任何一种金属都有一个极限频率,入射光的频率必须大于这个极限频率才能发生 光电效应,低于极限频率的光不能发生光电效应。 ②光电子的最大初动能与入射光的强度无关,光电子的最大初动能随入射光频率的增大而增大。 ③饱和光电流强度(反映单位时间发射出的光电子数的多少)与入射光强度成正比。 ④光电子的发射一般不超过10-9秒(光电效应的瞬时性)。 3.爱因斯坦光电效应方程(重点):0W h E k -=ν。E k 是光电子的最大初动能,当E k =0 时,νc 为极限频率,νc =h W 0. 四、光的波粒二象性 物质波 康普顿效应和光电效应说明光具有粒子性,光的干涉和衍射等现象说明光具有波动性。因此光具有波粒二象性。 大量光子表现出的波动性强,少量光子表现出的粒子性强;频率高的光子表现出的粒子性强,频率低的光子表现出的波动性强。实物粒子也具有波动性,这种波称为德布罗意波,也叫物质波。满则下列关系:P h h ==λεν,。从光子的概念上看,光波是一种概率波。 考点二:原子结构

高中物理基础知识和基本公式总结

高中物理基础知识和基本公式总结 力学部分 一、高中阶段常见的几种力 1.重力 : G = mg (g 随高度、纬度而变化) 方向:竖直向下 2.弹力: 产生条件:两个物体接触并发生形变 常见的几种弹力: (1)压力、支持力:方向与支持面垂直 (2)细线的拉力:方向沿着绳 (3)弹簧力:F = kx (k-弹簧的劲度系数、x —弹簧的形变量) ——胡克定律 (4)杆的弹力:大小和方向需结合物体的运动状态由力的平衡条件或牛顿第二定律确定。 3.摩擦力: 滑: f =μ N 方向:与物体相对运动方向相反 静:大小: 0< f ≤ f m 方向:与物体相对运动趋势方向相反 大小、方向一般需由力的平衡条件或牛顿第二定律计算确定。 最大静摩擦力f m :一方面指明了静摩擦力变化的范围,另一方面也指明了使静止的物体运动起来所需的最小作用力。 说明: a 、摩擦力可以与运动方向相同,也可以与运动方向相反,还可以与运动方向成一定夹角。 b 、摩擦力可以作正功,也可以作负功,还可以不作功。 c 、静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。 4.万有引力: F = G m 1 m 2 r 2 ——万有引力定律(适用于两个质点或均匀球体) 5.库仑力: F = k q 1q 2 r 2 (库仑定律——真空中两个点电荷之间的相互作用力) 6.电场力: F = q E 方向:+q 的受力方向与电场方向相同 -q 的受力方向与电场方向相反 7.安培力 : I ∥B 时 F = 0 I ⊥B 时 F = BIL 方向:F 与B 、I 垂直,由左手定则判断 8.洛仑兹力: v = 0或v ∥B 时 f = 0 v ⊥B 时 f = Bqv 方向;f 与B 、v 垂直,+q 所受f 的方向由左手定则判断,-q 所受f 的方向与+q 相反。 注意:洛仑兹力对带电粒子不做功。 二、基本的运动模型 1. 匀速直线运动: v 不变 s = vt a=0 2. 匀变速直线运动:v 均匀变化 a 不变 (1)基本公式: v = v 0 + at

原子物理知识点汇总

高考考点:原子物理考 点分析一、历史人物及相关成就 1、汤姆生:发现电子,并提出原子枣糕模型——说明原子可再分 2、卢瑟福: 粒子散射实验— —说明原子的核式结构模型 发现质子 3、查德威克:发现中子 4、约里奥.居里夫妇:发现正电子 5、贝克勒尔:发现天然放射

现象——说明原子核可再分6、爱因斯坦:质能方程2mc E=, 2 mc E? = ? 7、玻尔:提出玻尔原子模型,解释氢原子线状光谱8、密立根:油滴实验——测 量出电子的电 荷量 二、核反应的 四种类型 类型可 控 性 核反应 例 衰 变 α衰 变 自 发 β衰 变 自 发

人工转变人 工 控 制 H o He N1 1 17 8 4 2 14 7 + → +卢 瑟福 发现质子 n C He Be1 12 6 4 2 9 4 + → +查 德威 克发现中子 n P He l1 30 15 4 2 27 13 A+ → +约里 奥.居里夫妇 e Si P0 1 30 14 30 15 + →发

重核裂变比较容易进行人工控制 轻核聚除 变氢 弹 外 无 法 控 制 提醒: 1、核反应过程一般都是不可逆的,所以核反

应方程只能用单箭头表示反应方向,不能用等号连接。2、核反应的生成物一定要以实验事实为基础,不能凭空只依据两个守恒定律杜撰出生成物来写出核 反应方程 3、核反应遵循质量数守恒而不是质量守恒,遵循电荷数守恒 三、三种射线比较 种 类

速 度 0.1c 0.99c C 在电磁场中偏转与a射 线反向 偏转 不偏转 贯穿本领最弱, 用纸能 挡住 较强, 穿透几 毫米的 铝板 最强, 穿透几 厘米的 铅板 对 空 气 的 电 离 作 用 很强较弱

高中原子物理教程

一原子物理 自1897年发现电子并确认电子是原子的组成粒子以后,物理学的中心问题就是探索原子内部的奥秘,经过众多科学家的努力,逐步弄清了原子结构及其运动变化的规律并建立了描述分子、原子等微观系统运动规律的理论体系——量子力学。本章简单介绍一些关于原子和原子核的基本知识。 §1.1 原子 1.1.1、原子的核式结构 1897年,汤姆生通过对阴极射线的分析研究发现了电子,由此认识到原子也应该具有内部结构,而不是不可分的。1909年,卢瑟福和他的同事以α粒子轰击重金属箔,即α粒子的散射实验,发现绝大多数α粒子穿过金箔后仍沿原来的方向前进,但有少数发生偏转,并且有极少数偏转角超过了90°,有的甚至被弹回,偏转几乎达到180°。 1911年,卢瑟福为解释上述实验结果而提出了原子的核式结构学说,这个学说的内容是:在原子的中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外的空间里软核旋转,根据α粒子散射的实验数据可估计出原子核的大小应在10-14nm以下。 1、1. 2、氢原子的玻尔理论 1、核式结论模型的局限性 通过实验建立起来的卢瑟福原子模型无疑是正确的,但它与经典论发生了严重的分歧。电子与核运动会产生与轨道旋转频率相同的电磁辐射,运动不停,辐射不止,原子能量单调减少,轨道半径缩短,旋转频率加快。由此可得两点结论: ①电子最终将落入核内,这表明原子是一个不稳定的系统;

②电子落入核内辐射频率连续变化的电磁波。原子是一个不稳定的系统显然与事实不符,实验所得原子光谱又为波长不连续分布的离散光谱。如此尖锐的矛盾,揭示着原子的运动不服从经典理论所表述的规律。 为解释原子的稳定性和原子光谱的离经叛道的离散性,玻尔于1913年以氢原子为研究对象提出了他的原子理论,虽然这是一个过渡性的理论,但为建立近代量子理论迈出了意义重大的一步。 2、玻尔理论的内容: 一、原子只能处于一条列不连续的能量状态中,在这些状态中原子是稳定的,电子虽做加速运动,但并不向外辐射能量,这些状态叫定态。 二、原子从一种定态(设能量为E 2)跃迁到另一种定态(设能量为E 1)时,它辐射或吸收一定频率的光子,光子的能量由这种定态的能量差决定,即 γh =E 2-E 1 三、氢原子中电子轨道量子优化条件:氢原子中,电子运动轨道的圆半径r 和运动初速率v 需满足下述关系: π2h n rmv =,n=1、2…… 其中m 为电子质量,h 为普朗克常量,这一条件表明,电子绕核的轨道半径是不连续的,或者说轨道是量子化的,每一可取的轨道对应一个能级。 定态假设意味着原子是稳定的系统,跃迁假设解释了原子光谱的离散性,最后由氢原子中电子轨道量子化条件,可导出氢原子能级和氢原子的光谱结构。 氢原子的轨道能量即原子能量,为r e k mv E 2 221-= 因圆运动而有 2 2 2r e k r v m =

(完整版)高中物理知识点清单(非常详细)

高中物理知识点清单 第一章 运动的描述 第一节 描述运动的基本概念 一、质点、参考系 1.质点:用来代替物体的有质量的点.它是一种理想化模型. 2.参考系:为了研究物体的运动而选定用来作为参考的物体.参考系可以任意选取.通常以地面或相对于地面不动的物体为参考系来研究物体的运动. 二、位移和速度 1.位移和路程 (1)位移:描述物体位置的变化,用从初位置指向末位置的有向线段表示,是矢量. (2)路程是物体运动路径的长度,是标量. 2.速度 (1)平均速度:在变速运动中,物体在某段时间内的位移与发生这段位移所用时间的比值,即v =x t ,是矢量. (2)瞬时速度:运动物体在某一时刻(或某一位置)的速度,是矢量. 3.速率和平均速率 (1)速率:瞬时速度的大小,是标量. (2)平均速率:路程与时间的比值,不一定等于平均速度的大小. 三、加速度 1.定义式:a =Δv Δt ;单位是m/s 2 . 2.物理意义:描述速度变化的快慢. 3.方向:与速度变化的方向相同. 考点一 对质点模型的理解 1.质点是一种理想化的物理模型,实际并不存在. 2.物体能否被看做质点是由所研究问题的性质决定的,并非依据物体自身大小来判断. 3.物体可被看做质点主要有三种情况: (1)多数情况下,平动的物体可看做质点. (2)当问题所涉及的空间位移远大于物体本身的大小时,可以看做质点. (3)有转动但转动可以忽略时,可把物体看做质点. 考点二 平均速度和瞬时速度 1.平均速度与瞬时速度的区别 平均速度与位移和时间有关,表示物体在某段位移或某段时间内的平均快慢程度;瞬时速度与位置或时刻有关,表示物体在某一位置或某一时刻的快慢程度. 2.平均速度与瞬时速度的联系 (1)瞬时速度是运动时间Δt →0时的平均速度. (2)对于匀速直线运动,瞬时速度与平均速度相等. 考点三 速度、速度变化量和加速度的关系

高中物理光学原子物理知识要点精编WORD版

高中物理光学原子物理知识要点精编W O R D 版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

光学 一、光的折射 2.光在介质中的光速:n=n/n 1.折射定律:n=nnn大角 nnn小角 3.光射向界面时,并不是全部光都发生折射,一定会有一部分光发生反射。 4.真空/空气的n等于1,其它介质的n都大于1。 5.真空/空气中光速恒定,为n=3×108m/s,不受光的颜色、参考系影响。光从真空/空气中进入介质中时速度一定变小。 6.光线比较时,偏折程度大(折射前后的两条光线方向偏差大)的光折射率n大。 二、光的全反射 1.全反射条件:光由光密(n大的)介质射向光疏(n小的)介质;入射角大于或等于临界角C,其求法为nnn n=n 。 n 2.全反射产生原因:由光密(n大的)介质,以临界角C射向空气时,根据折射定律,空气中的sin角将等于1,即折射角为90°;若再增大入射角,“sin空气角”将大于1,即产生全反射。 3.全反射反映的是折射性质,折射倾向越强越容易全反射。即n越大,临界角C越小,越容易发生全反射。 4.全反射有关的现象与应用:水、玻璃中明亮的气泡;水中光源照亮水面某一范围;光导纤维(n大的内芯,n小的外套,光在内外层界面上全反射)

三、光的本质与色散 1.光的本质是电磁波,其真空中的波长、频率、光速满足n=nn(频率也可能用n表示),来源于机械波中的公式n=n/n。 2.光从一种介质进入另一种介质时,其频率不变,光速与波长同时变大或变小。 3.将混色光分为单色光的现象成为光的色散。不同颜色的光,其本质是频率不同,或真空中的波长不同。同时,不同颜色的光,其在同一介质中的折射率也不同。 4.色散的现象有:棱镜色散、彩虹。 5.红光和紫光的不同属性汇总如下:

原子物理知识点总结全

原子物理知识点总结全 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

原 子 物 理 一、卢瑟福的原子模型——核式结构 1.1897年,_________发现了电子.他还提出了原子的______________模型. 2.物理学家________用___粒子轰击金箔的实验叫__________________。 3.实验结果: 绝大部分α粒子穿过金箔后________;少数α粒子发生了较大的偏转; 极少数的α粒子甚至被____. 4.实验的启示:绝大多数α粒子直线穿过,说明原子内部存在很大的空隙; 少数α粒子较大偏转,说明原子内部集中存在着对α粒子有斥力的正电荷; 极个别α粒子反弹,说明个别粒子正对着质量比α粒子大很多的物体运动时,受到该物体很大的斥力作用. 5.原子的核式结构: 卢瑟福依据α粒子散射实验的结果,提出了原子的核式结构:在原子中心有一个很小的核,叫________, 原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间绕核旋转. 例1:在α粒子散射实验中,卢瑟福用α粒子轰击金箔,下列四个选项中哪一项属于实验得到的正确结果: A.α粒子穿过金箔时都不改变运动方向 B.极少数α粒子穿过金箔时有较大的偏转,有的甚至被反弹 C.绝大多数α粒子穿过金箔时有较大的偏转 D.α粒子穿过金箔时都有较大的偏转. 例2:根据α粒子散射实验,卢瑟福提出了原子的核式结构模型。如图1-1所示表示了原子核式结构模型的α粒子散射图景。图中实线表示α粒子的运动轨迹。其中一个α粒子在从a 运动到b 、再运动到c 的过程中(α 粒子在b 点时距原子核最近),下列判断正确的是( ) A .α粒子的动能先增大后减小 B .α粒子的电势能先增大后减小 C .α粒子的加速度先变小后变大 D .电场力对α粒子先做正功后做负功 二 玻尔的原子模型 能级 1.玻尔提出假说的背景——原子的核式结构学说与经典物理学的矛盾: ⑴按经典物理学理论,核外电子绕核运动时,要不断地辐射电磁波,电子能量减小,其轨道半径将不断减小,最终落于原子核上,即核式结构将是不稳定的,而事实上是稳定的. ⑵电子绕核运动时辐射出的电磁波的频率应等于电子绕核运动的频率,由于电子轨道半径不断减小,发射出的电磁波的频率应是连续变化的,而事实上,原子辐射的电磁波的频率只是某些特定值。 为解决原子的核式结构模型与经典电磁理论之间的矛盾,玻尔提出了三点假设,后人称之为玻尔模型. 2.玻尔模型的主要内容: ⑴定态假说:原子只能处于一系列__________的能量状态中,在这些状态中原子是_______的,电子虽然绕核运动,但不向外辐射能量.这些状态叫做________. ⑵ 跃迁假说:原子从一种定态跃迁到另一种定态时,它辐射(或吸收)一定频率的光子,光子的能量由这两定态的能量差决定,即________________. ⑶轨道假说:原子的不同能量状态对应于______子的不同轨道.原子的定态是不连续的,因此电子的可能轨道也是不连续的. 3.氢原子的能级公式和轨道公式 原子各定态的能量值叫做原子的能级,对于氢原子,其能级公式为:______________; 对应的轨道公式为:12r n r n 。其中n 称为量子数,只能取正整数.E 1=-13.6eV ,r 1=0.53×10-10m . 原子的最低能量状态称为_______,对应电子在离核最近的轨道上运动; 图1-1 a b c 原子核 α粒子

高中物理光、原子物理公式

光学、原子物理 三、光学 (一)几何光学 1、概念:光源、光线、光束、光速、实像、虚像、本影、半影。 2、规律:(1)光的直线传播规律:光在同一均匀介质中是沿直线传播的。 (2)光的独立传播规律:光在传播时,虽屡屡相交,但互不干扰,保持各自的规 律传播。 (3)光在两种介质交界面上的传播规律 ①光的反射定律:反射光线、入射光线和法线共面;反射光线和入射光线分居法线两 侧;反射角等于入射角。 ②光的析射定律: a 、折射光线、入射光线和法线共面;入射光线和折射光线分别位于法线的两侧; 入射角的正弦跟折射角的正弦之比是常数。即常数 =r i sin sin b 、r i n sin sin = 介质的折射率n :光由真空(或空气)射入某中介质时,有,只 决定于介质的性质,叫介质的折射率。 c 、v c n = : 设光在介质中的速度为 v ,则可见,任何介质的折射率大于1。 d 、两种介质比较,折射率大的叫光密介质,折射率小的叫光疏介质。 ③全反射:a 、光由光密介质射向光疏介质的交界面时,入射光线全部反射回光密介质中 的现象。 b 、发生全反射的条件:?光从光密介质射向光疏介质;?入射角等于临界角。

n C 1sin = 临界角C ④光路可逆原理:光线逆着反射光线或折射光线方向入射,将沿着原来的入射光线方向 反射或折射。 r i n sin sin ==v c =C sin 1=介 真λλ1≥ 折射率 5、常见的光学器件:(1)平面镜 (2)棱镜 (3)平行透明板 (二)光的本性 人类对光的本性的认识发展过程 (1)微粒说(牛顿) (2)波动说(惠更斯) ①λd L x =? : 光的干涉双缝干涉条纹宽度 (波长越长,条纹间隔越大) 应用:薄膜干涉——由薄膜前后表面反射的两列光波叠加而成,劈形薄膜干涉可产生平 行相间干涉条纹,检查平面,测量厚度,光学镜头上的镀膜。 ②光的衍射——单缝(或圆孔)衍射。 泊松亮斑 (波长越长,衍射越明显) (1) 电磁说(麦克斯韦)

(完整版)高中物理知识点总结和知识网络图(大全)

力学知识结构图

匀变速直线运动 基本公式:V t =V 0+at S=V 0t+21 at 2 as V V t 22 02 += 2 0t V V V += 运动的合成与分解 已知分运动求合运动叫运动的合成,已知合运动求分运动叫运动的分解。运动的合成与分解遵守平行四边形定则 平抛物体的运动 特点:初速度水平,只受重力。 分析:水平匀速直线运动与竖直方向自由落体的合运动。 规律:水平方向 Vx = V 0,X=V 0t 竖直方向 Vy = gt ,y = 22 1gt 合 速 度 V t = ,2 2y x V V +与x 正向夹角tg θ= x y V v 匀速率圆周运动 特点:合外力总指向圆心(又称向心力)。 描述量:线速度V ,角速度ω,向心加速度α,圆轨道半径r ,圆运动周期T 。 规律:F= m r V 2=m ω2r = m r T 2 2 4π 物 体 的 运 动 A 0 t/s X/cm T λx/cm y/cm A 0 V 天体运动问题分析 1、行星与卫星的运动近似看作匀速圆周运动 遵循万有引力提供向心力,即 =m =m ω2R=m( )R 2、在不考虑天体自转的情况下,在天体表面附近的物体所受万有引力近似等于物体的重力,F 引=mg,即?=mg,整理得GM=gR 2。 3、考虑天体自传时:(1)两极 (2)赤道 平均位移:02 t v v s vt t +== 模 型题 2.非弹性碰撞:碰撞过程中所产生的形变不能够完全恢复的碰撞;碰撞过程中有机械能损失. 非弹性碰撞遵守动量守恒,能量关系为: 12m 1v 21+12m 2v 22>12m 1v 1′2+1 2 m 2v 2′2 3.完全非弹性碰撞:碰撞过程中所产生的形变完全不能够恢复的碰撞;碰撞过程中机械能损失最多.此种情况m 1与m 2碰后速 度相同,设为v ,则:m 1v 1+m 2v 2=(m 1+m 2)v 系统损失的动能最多,损失动能为 ΔE km =12m 1v 21+12m 2v 22-12 (m 1+m 2)v 2 1 .弹性碰撞:碰撞过程中所产生的形变能够完全恢复的碰撞;碰撞过程中没有机械能损失.弹性碰撞除了遵从动量守恒定律外,还具备:碰前、碰后系统的总动能相等,即 12m 1v 21+12m 2v 22=12m 1v 1′2+1 2 m 2v 2′2 特殊情况:质量m 1的小球以速度v 1与质量m 2的静止小球发生弹性正碰,根据动量守恒和动能守恒有m 1v 1=m 1v 1′+m 2v 2′,1 2m 1v 21= 12m 1v 1′2+1 2m 2v 2′2.碰后两个小球的速度分别为: v 1′=m 1-m 2m 1+m 2v 1,v 2′=2m 1 m 1+m 2v 1 动 量碰撞 如图所示,在水平光滑直导轨上,静止着三个质量为m =1 kg 的相同的小球A 、B 、C 。现让A 球以v 0=2 m/s 的速 度向B 球运动, A 、 B 两球碰撞后粘在一起继续向右运动并与 C 球碰撞,C 球的最终速度v C =1 m/s 。问: om (1)A 、B 两球与C 球相碰前的共同速度多大? (2)两次碰撞过程中一共损失了多少动能? 【答案】(1)1 m/s (2)1.25 J .线球模型与杆球模型:前面是没有支撑的小球,后两幅图是 有支撑的小球 过最高点的临界条件 由mg=mv 2/r 得v 临=? 由小球恰能做圆周运动即可 得 v 临=0 .车过拱桥问题分析 对甲分析,因为汽车对桥面的压力F N'=mg-?,所以(1)当v=?时,汽车对桥面的压力F N'=0; (2)当0≤v?时,汽车将脱离桥面危险。 对乙分析则:F N-mg=m , 甲 1.做平抛(或类平抛)运动的物体 任意时刻的瞬时速度的反向延长线一定通过此时水平位移的中点 2. 自由落体

原子物理知识点讲解

一、光电效应现象 1、光电效应: 光电效应:物体在光(包括不可见光)的照射下发射电子的现象称为光电效应。 2、光电效应的研究结论: ①任何一种金属,都有一个极限频率,入射光的频率必须大于这个极限频...............率.,才能产生光电效应;低于这个频率的光不能产生光电效应。②光电子的最.....大初动能与入射光的强度无关.............,只随着入射光频率的增大..而增大..。注意:从金属出来的电子速度会有差异,这里说的是从金属表面直接飞出来的光电子。③ 入射光照到金属上时,光电子的发射几乎是瞬时的............,一般不超过10-9 s ;④当入射光的频率大于极限频率时,光电流的强度与入射光的强度成正比。 3、 光电效应的应用: 光电管:光电管的阴极表面敷有碱金属,对电子的束缚能力比较弱,在光的照射下容易发射电子,阴极发出的电子被阳极收集,在回路中形成电流,称为光电流。 注意:①光电管两极加上正向电压,可以增强光电流。②光电流的大小跟入射光的强度和正向电压有关,与入射光的频率无关。入射光的强度越大,光电流越大。③遏止电压U 0。回路中的光电流随着反向电压的增加而减小,当反 向电压U 0满足:02 max 2 1eU mv =,光电流将会减小到零,所以遏止电压与入射光的频率有关。 4、波动理论无法解释的现象: ①不论入射光的频率多少,只要光强足够大,总可以使电子获得足够多的能量,从而产生光电效应,实际上如果光的频率小于金属的极限频率,无论光强多大,都不能产生光电效应。 ②光强越大,电子可获得更多的能量,光电子的最大初始动能应该由入射光的强度来决定,实际上光电子的最大初始动能与光强无关,与频率有关。 ③光强大时,电子能量积累的时间就短,光强小时,能量积累的时间就长,实际上无论光入射的强度怎样微弱,几乎在开始照射的一瞬间就产生了光电子. 二、光子说 1、普朗克常量 普郎克在研究电磁波辐射时,提出能量量子假说:物体热辐射所发出的电磁波的能量是不连续的,只能是hv 的整数倍,hv 称为一个能量量子。即能量是一份一份的。其中v 辐射频率,h 是一个常量,称为普朗克常量。 2、光子说 在空间中传播的光的能量不是连续的,而是一份一份的,每一份叫做一个光子,光子的能量ε跟光的频率ν成正比。hv =ε,其中:h 是普朗克常量,v 是光的频率。

原子物理学 历年高考题

高中物理学习材料 (灿若寒星**整理制作) 原子物理学 历年高考题 (99年)2.天然放射现象的发现揭示了( C ) (A )原子不可再分,(B )原子的核式结构, (C )原子核还可再分,(D )原子核由质子和中子组成。 (00年)关于α、β、γ 三种射线,下列说法中正确的是 ( C ) (A )α 射线是原子核自发放射出的氦核,它的穿透能力最强, (B )β 射线是原子核外电子电离形成的电子流,它具有中等的穿透能力, (C )γ 射线一般伴随着α 或β 射线产生,它的穿透能力最强, (D )γ 射线是电磁波,它的穿透能力最弱。 (01年)卢瑟福原子核式结构理论的主要内容有 ( A 、C 、D ) (A )原子的中心有个核,叫做原子核, (B )原子的正电荷均匀分布在整个原子中, (C )原子的全部正电荷和几乎全部质量都集中在原子核里, (D )带负电的电子在核外绕着核旋转。 (02年) 图中P 为放在匀强电场中的天然放射源,其放出的射线在电场的作 用下分成a 、b 、c 三束,以下判断正确的是( BC ) (A )a 为α射线、b 为β射线, (B )a 为β射线、b 为γ射线, (C )b 为β射线、c 为γ射线, (D )b 为α射线、c 为γ射线。 (03 年)在核反应方程42 He +14 7 N →17 8 O +(X )的括弧中,X 所代表的粒子是( A ) (A )11 H , (B )2 1 H , (C ) 0-1 e , (D )1 n 。 (03 年)卢瑟福通过___α粒子散射________实验,发现了原子中间有一个很小的核,并由此提出了原子的核式结构模型,右面平面示意图中的四条线表示α粒子运动的可能轨迹,在图中完成中间两条α粒子的运动轨迹。 (04年)下列说法中正确的是C 、D (A )玛丽·居里首先提出原子的核式结构学说. (B )卢瑟福在α粒子散射实验中发现了电子. (C )查德威克在原子核人工转变的实验中发现了中子. (D )爱因斯坦为解释光电效应的实验规律提出了光子说. (04年)利用扫描隧道显微镜(STM )可以得到物质表面原子排列的图象,从而可以研究物质的构成 规律. 下面的照片是一些晶体材料表面的STM 图象,通过观察、比较,可以看到这些材料都是由 原子在空间排列而 +原子核 + b - c a P

高中物理知识点汇总

高考物理基本知识点汇总 一. 教学内容: 知识点总结 1. 摩擦力方向:与相对运动方向相反,或与相对运动趋势方向相反 静摩擦力:0gR 注意:若到最高点速度从零开始增加,杆对球的作用力先减小后变大。 3. 传动装置中,特点是:同轴上各点ω相同,A ω=C ω,轮上边缘各点v 相同,v A =v B 4. 同步地球卫星特点是:①_______________,②______________ ①卫星的运行周期与地球的自转周期相同,角速度也相同; ②卫星轨道平面必定与地球赤道平面重合,卫星定点在赤道上空36000km 处,运行速度3.1km/s 。 5. 万有引力定律:万有引力常量首先由什么实验测出:F =G 2 2 1r m m ,卡文迪许扭秤实验。 6. 重力加速度随高度变化关系: 'g =GM/r 2

说明:为某位置到星体中心的距离。某星体表面的重力加速度。 r g G M R 02 = g g R R h R h ' () = +2 2 ——某星体半径为某位置到星体表面的距离 7. 地球表面物体受重力加速度随纬度变化关系:在赤道上重力加速度较小,在两极,重力加速度较大。 8. 人造地球卫星环绕运动的环绕速度、周期、向心加速度'g =2 r GM 、r mv r GMm 2 2 = 、v = r GM 、 r mv r GMm 2 2 = =m ω2R =m (2π/T )2R 当r 增大,v 变小;当r =R ,为第一宇宙速度v 1=r GM =gR gR 2 =GM 应用:地球同步通讯卫星、知道宇宙速度的概念 9. 平抛运动特点: ①水平方向______________ ②竖直方向____________________ ③合运动______________________ ④应用:闪光照 ⑤建立空间关系即两个矢量三角形的分解:速度分解、位移分解 相位,求?y t x y t gT v S T v x v t v v y gt v gt S v t g t v v g t tg gt v tg gt v tg tg == =====+=+== =2 0002 02 2 24 0222 00 1214 21 2αθα θ ⑥在任何两个时刻的速度变化量为△v =g △t ,△p =mgt ⑦v 的反向延长线交于x 轴上的x 2处,在电场中也有应用 10. 从倾角为α的斜面上A 点以速度v 0平抛的小球,落到了斜面上的B 点,求:S AB

高中物理原子物理试题

高中物理原子物理试题 1、下列四幅图涉及到不同得物理知识,其中说法不正确得就是 A.图甲:普朗克通过研究黑体辐射提出能量子得概念,成为量子力学得奠基人之一 B.图乙:玻尔理论指出氢原子能级就是分立得,所以原子发射光子得频率就是不连续得 C.图丙:卢瑟福通过分析α粒子散射实验结果,提出了原子得核式结构模型 D.图丁:根据电子束通过铝箔后得衍射图样,可以说明电子具有粒子性 2、下列说法正确得就是 A.黑体辐射电磁波得情况不仅与温度有关,还与材料得种类及表面状况有关 B.在α、β、γ这三种射线中,γ射线得穿透能力最强,α射线得电离能力最强 C.得半衰期约为7亿年,随地球环境得变化,半衰期可能变短 D.原子核内部某个质子转变为中子时,放出β射线 3、仔细观察氢原子得光谱,发现它只有几条不连续得亮线,其原因就是 A、氢原子只有几个能级 B、氢原子只能发出平行光 C、氢原子有时发光,有时不发光 D、氢原子辐射得光子得能量就是不连续得,所以对应得光得频率也就是不连续得 4、下列叙述中不正确得就是 A、麦克斯韦提出了光得电磁说 B、玻尔建立了量子理论,成功解释了各种原子发光现象 C.在光得干涉现象中,干涉亮条纹部分就是光子到达几率大得地方 D.宏观物体得物质波波长非常小,不易观察到它得波动性 5、下列叙述中符合物理学史得有 A.汤姆孙通过研究阴极射线实验,发现了电子与质子得存在 B.卢瑟福通过对粒子散射实验现象得分析,证实了原子就是可以再分得 C.巴尔末根据氢原子光谱分析,总结出了氢原子光谱可见光区波长公式 D.玻尔提出得原子模型,彻底否定了卢瑟福得原子核式结构学说 6、实验观察到,静止在匀强磁场中A点得原子核发生β衰变,衰变产生得新核与电子恰在纸面内做匀速圆周运动,运动方向与轨迹示意如图.则 A.轨迹1就是电子得,磁场方向垂直纸面向外 B.轨迹2就是电子得,磁场方向垂直纸面向外 C.轨迹1就是新核得,磁场方向垂直纸面向里 D.轨迹2就是新核得,磁场方向垂直纸面向里 7、下列说法正确得就是 A.太阳辐射得能量主要来自太阳内部得核裂变反应 B.汤姆生发现电子,表明原子具有核式结构 C.一束光照射到某种金属上不能发生光电效应,就是因为该束光得波长太短 D.按照玻尔理论,氢原子核外电子从半径较小得轨道跃迁到半径较大得轨道时,电子得动能减小,原子总能量增大 8、下列说法正确得就是 A.增大压强不能改变原子核衰变得半衰期 B.某原子核经过一次a衰变后,核内质子数减少4个 C.β射线就是原子得核外电子电离后形成得电子流 D.a射线得贯穿作用很强,可用来进行金属探伤 9、下列说法正确得就是 A.汤姆孙发现电子,提出原子得核式结构模型 B.金属得逸出功随入射光得频率增大而增大 C.核力存在于原子核内所有核子之间 D.核电站就是利用重核裂变反应所释放得核能转化为电能 10、用X粒子轰击铝27(Al),产生钠24(Na)与α粒子.钠24具有放射性,可以进行人体血液循环得示踪实验, 达到医学诊断得目得,它衰变后变成镁24(Mg).则下列正确得就是 A. X粒子就是质子 B. 钠24发生得就是α衰变 C. X粒子就是中子 D. 钠24发生得衰变对人没有一点害处 11、A、B两种放射性元素,原来都静止在同一匀强磁场,磁场方向如图所示,其中 一个放出α粒子,另一个放出β粒子,α与β粒子得运动方向跟磁场方向垂直,图 中a、B、c、d分别表示α粒子,β粒子以及两个剩余核得运动轨迹 A.a为α粒子轨迹,c为β粒子轨迹 B.B为α粒子轨迹,d为β粒子轨迹 C.B为α粒子轨迹,c为β粒子轨迹 D.a为α粒子轨迹,d为β粒子轨迹

原子物理知识点讲解

一、光电效应现象 1、光电效应: 光电效应:物体在光(包括不可见光)的照射下发射电子的现象称为光电效应。 2、光电效应的研究结论: ①任何一种金属,都有一个极限频率,入射光的频率必须大于这个极限频率,才能产生光电效应;低于这个频率的光不能产生光电效应。②光电子的最大初动能与入射光的强度无关,只随着入射光频率的增大而增大。注意:从金属出来的电子速度会有差异,这里说的是从金属表面直接飞出来的光电子。③入射光照到金属上时,光电子的发射几乎是瞬时的,一般不超过10-9s;④当入射光的频率大于极限频率时,光电流的强度与入射光的强度成正比。 3、光电效应的应用: 光电管:光电管的阴极表面敷有碱金属,对电子的束缚能力比较弱,在光的照射下容易发射电子,阴极发出的电子被阳极收集,在回路中形成电流,称为光电流。 注意:①光电管两极加上正向电压,可以增强光电流。②光电流的大小跟入射光的强度和正向电压有关,与入射光的频率无关。入射光的强度越大,光电流越大。③遏止电压U0。回路中的光电流随着反向电压的增加而减小,当反向电压 1 U0满足:-mv max =eU o,光电流将会减小到零,所以遏止电压与入射光的频率有2 关。 4、波动理论无法解释的现象: ①不论入射光的频率多少,只要光强足够大,总可以使电子获得足够多的能量,从而产生光电效应,实际上如果光的频率小于金属的极限频率, 无论光强多大,都不能产生光电效应。 ②光强越大,电子可获得更多的能量,光电子的最大初始动能应该由入射光的强度来决定,实际上光电子的最大初始动能与光强无关,与频率有关。 ③光强大时,电子能量积累的时间就短,光强小时,能量积累的时间就长, 实际上无论光入射的强度怎样微弱,几乎在开始照射的一瞬间就产生了光电子? 二、光子说 1、普朗克常量 普郎克在研究电磁波辐射时,提出能量量子假说:物体热辐射所发出的电磁波的能量是不连续的,只能是hv的整数倍,hv称为一个能量量子。即能量是一份一份的。其中v辐射频率,h是一个常量,称为普朗克常量。 2、光子说 在空间中传播的光的能量不是连续的,而是一份一份的,每一份叫做一个光子,光子的能量&跟光的频率v成正比。;=hv,其中:h是普朗克常量,v是光的频率。 三、光电效应方程 1、逸出功VW.电子脱离金属离子束缚,逸出金属表面克服离子引力做的功。

原子物理知识点总结全

原 子 物 理 一、卢瑟福的原子模型——核式结构 1.1897年,_________发现了电子.他还提出了原子的 ______________模型. 2.物理学家________用___粒子轰击金箔的实验叫 __________________。 3. 实验结果:绝大部分α粒子穿过金箔后________;少数α粒子发生了较大的偏转;极少数的α粒子甚至被____. 4. 实验的启示:绝大多数α粒子直线穿过,说明原子内部存在很大的空隙; 少数α粒子较大偏转,说明原子内部集中存 在着对 α粒子有斥力的正电荷; 极个别α粒子反弹,说明个别粒子正对着质量比 α粒子大很多的物体运动时,受到该物体很大的斥 力作用. 5.原子的核式结构: 卢瑟福依据α粒子散射实验的结果,提出了原子的核式结构:在原子中心有一个很小 的核,叫 ________, 原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间绕核旋 转. 例1:在α粒子散射实验中,卢瑟福用α粒子轰击金箔,下列四个选项中哪一项属于实验得到的正确结果: A.α粒子穿过金箔时都不改变运动方向 B . 极少数α粒子穿过金箔时有较大的偏转 ,有的甚至被反 弹 C.绝大多数α粒子穿过金箔时有较大的 偏转 D. α粒子穿过金箔时都有较大的偏转. 例2:根据α粒子散射实验,卢瑟福提出了原子的核式结构模 型。如图 1-1所示表示了 原子核式结构模型的 α粒子散射图景。图中实 线表示 α粒子的运动轨迹。其中一个 c α粒子在从a 运动到b 、再运动到c 的过程中(α粒子在b 点时距原子核最近),下 列判断正确的是 ( ) a b A .α粒子的动能先增大后减小 原子核 B .α粒子的电势能先增大后减小 C .α粒子的加速度先变小后变大 α粒子 D .电场力对α粒子先做正功后做负功 图1-1 二玻尔的原子模型 能级 1.玻尔提出假说的背景——原子的核式结构学说与经典物理学的矛盾:⑴按经典物理学理论,核外电子绕核运动时,要不断地辐射电磁波,电子能量减小,其轨道半径将不断减小,最终落于原子核上,即核式结构将是不稳定的,而事实上是稳定的.⑵电子绕核运动时辐射出的电磁波的频率应等于电子绕核运动的频率,由于电子轨道半径不断减小,发射出的电磁波的频率应是连续变化的,而事实上,原子辐射的电磁波的频率只是某些特定值。 为解决原子的核式结构模型与经典电磁理论之间的矛盾,玻尔提出了三点假设,后人称之为玻尔模型. 2.玻尔模型的主要内容: ⑴定态假说:原子只能处于一系列 __________的能量状态中,在 这些状态中原子是 _______的,电子虽然绕核运动, 但不向外辐射能量.这些状态叫做 ________. ⑵跃迁假说:原子从一种定态跃迁到另一种定态时,它辐射(或吸收)一定频率的光子,光子的能量由这两定态的能量差决定,即________________. ⑶轨道假说:原子的不同能量状态对应于 ______子的不同轨道 .原子的定态是不连续的,因此电子的可能轨道也是不 连续的. 3.氢原子的能级公式和轨道 公式 原子各定态的能量值叫做原子的能级,对于氢原子,其能级 公式为 :______________; 对应的轨道公式为: r n n 2 r 1。其中n 称为量子数,只能取正.E1=-13.6eV ,r1=0.53×10-10m .

相关文档
最新文档