烯烃聚合催化剂和聚烯烃生产工艺

烯烃聚合催化剂和聚烯烃生产工艺
烯烃聚合催化剂和聚烯烃生产工艺

维普资讯 https://www.360docs.net/doc/b89829523.html,

聚乙烯催化剂

聚乙烯是通用合成树脂中产量最大的品种,主要包括低密度聚乙烯(LDPE)、线性低密度聚乙烯(LLDPE)、高密度聚乙烯(HDPE)以及一些具有特殊性能的产品,其特点是价格便宜,性能较好,可广泛地应用于工业、农业、包装及日常工业中,在塑料工业中占有举足轻重的地位。 烯烃聚合催化剂是聚烯烃聚合技术的核心,从烯烃聚合催化剂的发展来看,概括起来主要有两个方面:(1)开发能够制备特殊性能或更优异性能的聚烯烃树脂催化剂,如茂金属催化剂及非茂后过渡金属催化剂等;(2)对于通用聚烯烃树脂的生产而言,在进一步改善催化剂性能的基础上,简化催化剂制备工艺,降低催化剂成本开发对环境友好的技术,以提高效益,增强竞争力。20世纪80年代以前,聚乙烯催化剂研究的重点是追求催化剂效率,经过近30年的努力,聚乙烯催化剂的催化效率呈数量级提高,从而简化了聚烯烃的生产工艺,降低了能耗和物耗。目前研究开发的聚乙烯催化剂主要有铬基催化剂、齐格勒-纳塔催化剂、茂金属催化剂、非茂金属催化剂、双功能催化剂以及双峰或宽峰分子量分布聚烯烃复合催化剂等。 1 铬基催化剂 铬基催化剂是由硅胶或硅铝胶载体浸渍含铬的化合物生产的,包括氧化铬催化剂和有机铬催化剂,最初由Phillips公司开发,主要用于Phillips公司和Univation公司的聚乙烯生产工艺,可用于生产线型结构的HDPE,改进后也可用于乙烯和α-烯烃的共聚反应。用这种催化剂生产的乙烯和α-烯烃的共聚物有非常宽的分子量分布(MWD),Mw/Mn为12-25。近期,Basell公司已经工业化生产一种被称为Advent C的新型铬催化剂,用于生产HDPE。该催化剂由基于二氧化硅的专有载体负载,用铬化合物浸渍后在氧化条件下高温焙烧活化制得,铬以Cr3+盐的形式存在,含量低于10ppm,安全可靠,而且生产成本较低。该催化剂可替代钛基催化剂用于气相法和淤浆法HDEP工艺。 2 齐格勒-纳塔催化剂 齐格勒-纳塔催化剂(简称Z-N)是用化学键结合在含镁载体上的钛等过渡金属化合物。由于其催化效率高,生产的聚合物综合性能好,成本低,因此在聚乙烯的生产中占有重要的地位。近年来,聚乙烯生产公司正在通过各种方式研究开发新型Z-N催化剂。诺瓦(Nova)化学公司开发出先进的用于气相法工艺的Sclairtech Z-N 催化剂,并将其用于位于加拿大阿尔伯达焦弗雷的Unipol气相法聚乙烯装置上。与BP公司和催化剂生产公司Grace Davison达成协议,生产供应先进的Novacat T Z-N催化剂。使用该催化剂可以改进共聚单体的并入方式,形成“不发粘”的树脂,从而提供性能更好的树脂。此外,该催化剂还有更好的抗杂质性能以及更高的生产效率。 Univation公司开发的工业化UCAT-J Z-N催化剂,具有催化剂残渣少,制得的薄膜只需要较少的添加剂,薄膜的透明性提高,凝胶粒子明显减少等优点,我国扬子石化公司的20万吨/年全密度聚乙烯装置就采用了这种催化剂。 住友化学公司开发的LLDPE生产用新型SN4催化剂,可在一定程度上控制产物分子量并阻止低分子量聚合物的形成。Equistar化学公司使用Unipol气相反应器和新一代Z-N催化剂推出高性能乙烯系LLDPE吹塑薄膜用树脂,加工性能和耐撕裂强度优于mLLDPE,熔体强度和落锤冲击强度较己烯系LLDPE好得多,可替代辛烯系LLDPE和mLLDPE产品。Huntsman公司采用DSM公司的溶液过程和新一代Z-N催化剂,生产出一种增强型辛烯LLDPE薄膜树脂-Rexell;Quantum公司开发的双中心 Z-N催化剂,可在单一反应器中生产双峰HDPE;BP公司推出了高活性的LynxZ-N催化剂。 2000年,北京化工研究院和上海化工研究院分别开发出BCG和SCG-1气相法PE催化剂,

后过渡金属催化剂综述

后过渡金属催化剂综述 1催化剂的意义 催化剂是可以加速化学反应的物质。化学反应若要发生,则反应物分子之间必须有足够能量的发生碰撞以形成活性复合物或过渡态复合物,这个能量就是活化能。而催化剂能够提供一个较低的活化能,因此加速了化学反应的发生。和未添加催化剂的反应的一步实现原理相比,催化反应包含了许多种化合物与过渡态复合物[1]。 催化技术对于目前乃至未来的能源、化学反应、环境工业、石化工业都是至关重要的。原油、煤和天然气向燃料和化学原料的转化,大量石油化工和化学产品的生产,以及CO、NO、碳氢化合物排放物的控制,全都依赖于催化技术。此外,催化剂还是燃料电池电极的必要组分——无论电极使用的是固体氧化物离子还是聚合物质子电解液[2]。催化技术的发展、催化剂的改进和新催化剂的成功开发, 往往会带动已有工艺的改进和新工艺的诞生。据统计,85%以上的化学反应都与催化反应有关。目前工业上采用的催化剂大多为金属、金属盐和金属氧化物等多相催化剂, 其优点是催化性能较稳定, 使用温度广, 容易回收重复使用, 但催化活性较低, 反应常常需要高温、高压条件, 而且副反应较多。最近几十年, 发展了以有机金属络合物为主的均相催化剂, 为化学工业带来革命性进步。这种催化剂分散度高, 活性中心均一, 结构明确, 催化剂活性和选择性都较高, 反应可以在很温和的条件下进行[3]。 2后过渡金属催化剂的性质 聚烯烃工业的发展是一个国家石化工业发展的重要标志。Ziegler - Natta催化剂、茂金属催化剂和后过渡金属催化剂仍然是烯烃聚合催化剂研发的3个主要方向[4]。 90年代,美国北卡罗来纳大学的Brookhart等人[5]报道了利用适当的配体, 可使元素周期表中的第Ⅷ族中Ni和Pd的配合物用来引发烯烃聚合, 从而由单一烯烃可获得高分子量的、有各种支化度的聚合物, 并能实现与极性单体的共聚。他们将这一类催化剂称为烯烃聚合后过渡金属催化剂。后过渡金属催化剂中金属元素的种类涉及到第Ⅷ族中的元素, 目前研究得比较多的为Fe、Co、Ni、Pd4种金属元素[6]。 这类金属配合物的亲氧性相对较弱,对空气和水分不太敏感,特别是催化烯烃以及环烯烃聚合的活性很高[7],而且对比茂金属催化剂, 后过渡金属催化剂具有稳定性好、生产费用低、能生产新品种聚烯烃以及能合成带有官能团的新型聚合物等优点。再加上后过渡金属催化剂合成相对简单, 产率较高,因而其成本远低于茂金属催化剂, 而且聚合时助催化剂用量比较低, 一般与负载的茂金属催化剂相当, 因此成为烯烃聚合用催化剂的新的研究热点[8]。 3 后过渡金属催化剂的种类 后过渡金属烯烃聚合催化剂是指以镍( Ⅱ) 、钯( Ⅱ) 、铁( Ⅱ) 、钴( Ⅱ) 、钌( Ⅱ)等后过渡金属原子为活性中心的一类金属配合物烯烃聚合催化剂。 3.1 镍系 镍系包括双亚胺类、P - O类和N - O类等。双亚胺类镍系烯烃聚合催化剂是指以双亚胺为配体的一类平面型镍(Ⅱ)阳离子配合物。当采用甲基铝氧烷(MAO)作助催化剂时,二溴化双亚胺合镍的衍生物具有很高的催化活性。这类催化剂在Lewis酸如MAO 的作用下形成阳

新型后过渡金属烯烃聚合催化剂—镍系烯烃聚合催化剂

新一代聚烯烃催化剂 ———后过渡金属催化剂 苏 宇 杨海滨(中山大学高分子研究所,广州 510275) 摘 要 本文综述了以α2二亚胺为配体的Ni(Ⅱ)基和Pd(Ⅱ)基、以三吡啶二亚胺为配体的Fe(Ⅱ)基和Co(Ⅱ)基后过渡金属催化剂,包括催化剂的组成、对烯烃聚合及共聚合的性能和聚合机理。 关键词 后过渡金属,镍,钯,烯烃,聚合,催化剂 NOVE L OL EFIN POLYMERIZATION CATALYSTS Su Yu Yang Haibin (Institute of Polymer Science,Zhongshan University,Guangzhou510275) Abstract This paper introduces about Ni(Ⅱ)、Pd(Ⅱ)、Fe(Ⅱ)、Co(Ⅱ)2based novel late transi2 tion metal catalysts,and the composition of catalysts,properties of olefin homopolymerization and copolymerization and mechanism of polymerization reaction are given. K ey w ords late transition metal,Palladium,Nickel,olefin,polymerization,catalyst 全球对聚烯烃的市场需求日益增大。据美国Chem System公司预测[1],到2003年,世界对乙烯的需求量为10500万t,年均增长率为515%;而对丙烯的需求量为6700万t,比1998年增加1600万t。这惊人的数字说明了聚烯烃的生产及改良是市场客观要求的必然。而聚烯烃树脂性能的改进与聚合催化剂密切相关。Ziegler催化剂的开发和改进大大提高了线型聚乙烯的性能,茂金属催化剂的出现使聚烯烃发生了革命性的变革。与此同时,新型非茂金属———后过渡金属催化剂(又称Brookhart催化剂)的开发研究更引人注目,它为制备更宽范围的聚烯烃树脂提供了可能。1995年,Brookhart等人[2]用大体积α2二亚胺配体形成的Ni(Ⅱ)和Pd (Ⅱ)基络合物,成功地实现了促进链增长的目标,成为第一个能够生产高分子量的后过渡金属催化体系。最近2年,伦敦Imperial大学的G ibson研究小组[3]和美国Brookhart研究小组[4]独立发现了Fe (Ⅱ)基和Co(Ⅱ)基催化体系,这种新催化体系不仅在活性和聚合物性能控制方面具有茂金属催化剂的很多优点,而且具有成本低、可生产更宽范围聚合材料的潜力。本文即对后过渡金属催化剂作一综述。 1 后过渡金属催化剂的特点 与传统Ziegler-Natta催化剂及茂金属作比较,后过渡金属催化剂的主要特点是: (1)它选择了Ni、Pd、Fe、Co等后过渡金属,而不是通常茂金属所采用的Ti、Zr等前过渡金属,所制备的催化剂也是单活性中心均相催化剂,因此可按预定目的精确控制聚合物的链结构; (2)聚合能力强,可用于烯烃和极性单体共聚。根据共聚单体特点和反应条件及催化剂种类,极性树脂中共聚单体含量约为013%~12%; (3)用于烯烃均聚(乙烯、丙烯、己烯等)。Ni (Ⅱ)和Pd(Ⅱ)基催化剂可用于生产带支链的聚合 后过渡金属催化剂之前的催化剂的特点

烯烃聚合茂金属催化剂的研究进展

烯烃聚合茂金属催化剂的研究进展 摘要:介绍了茂金属催化剂与Zieglar-Nata催化剂相比的特点及催化烯烃聚合的原理,简介了近年来茂金属催化剂的研究进展,最后,提出了烯烃聚合催化剂的发展趋势。 关键词:茂金属催化剂、催化活性、分子模拟、负载化 20世纪50年代初,Zieglar-Nata催化剂的出现,既为金属有机化学、催化科学和高分子化学的理论研究开辟了新的领域,也大大促进了高分子工业的迅速发展,开创了烯烃聚合工业的新纪元.现在,世界上聚烯烃的年产量已高达数千万吨,经济效益十分可观.近些年来,烯烃的活性聚合反应越来越引起人们的广泛关注,因为烯烃活性聚合反应不仅时间短、收率高,产物的分子量高、分子量分布窄、立构规整度高,而且可产生最终功能化的聚合物和嵌段共聚物.而聚合反应的关键问题是催化剂,近年来可以引发烯烃活性聚合反应的结构新颖、催化活性高的茂类金属有机配合物催化剂相继问世,对聚合反应的发展有非常重要的作用. 茂金属(也叫金属茂)催化剂,即环戊二烯基金属配合物催化剂,是当前国际上的研究热点.这类单中心催化剂具有极高的催化活性,克服了传统多相催化剂所产生的聚烯烃产物分子量分布宽和结构难以调控的缺点,所得到的高分子产物分子量分布狭窄,组成分布均匀,并能有效地进行立体控制聚合;还可以实现一些用多相催化剂难以实现的聚合反应,在高效催化聚合和共聚合以及光学活性聚合方面表现出优异的特性.这主要是因为茂金属催化剂中心金属、配体可在很大的范围内调控,从而影响中心金属周围的电荷密度和配位空间环境,使形形色色的聚合反应的活性和选择性得到控制.以聚丙烯为例,可以立体选择性地分别制出无规、等规、半等规、问规、嵌段等一系列品种.因此,茂金属催化剂的研究,不仅在发展聚合理论方面具有重要的科学意义,而且有可能使高分子工业面临一场新的革命. 1.茂金属催化剂的特点 茂金属催化剂与传统的Zieglar-Nata催化剂比较具有如下特点: 1.极高的催化活性 含l克锆的均相茂金属催化剂能够催化得到100吨聚乙烯。由于有如此高的活性,催化剂允许保留在聚烯烃产品中。烯烃的插入时间约为10-5秒,与生物酶催化反应相当。此外,茂金属催化剂对丙烯聚合的催化活性也可高达107g.(molZr.h)-1。 2.活性中心单一,聚合产品具有很好的均一性 茂金属催化剂催化烯烃聚合所得聚合物分子量分布相对较窄,共聚单体在聚合物主链中分布均匀。均匀性无疑使人们可以开发出性能更加优异的聚烯烃产品,但是,较窄的分子量分布使聚烯烃树脂的加工性变差。 3.具有优异的催化共聚能力 茂金属催化剂能使大多数共聚单体与乙烯共聚合,可以获得许多新型聚烯烃材料,除常见的a-烯烃单体外,一些空间位阻较大的单体和一些双环或多环烯烃单体也有实例报道,如苯乙烯和降冰片烯。 4.均相茂金属催化剂工业化成本高 均相茂金属催化剂催化烯烃聚合要达到较高的催化活性需要使用大量昂贵

烯烃聚合

Ethylene-Norbornene Copolymer Microstructure.Assessment and Advances Based on Assignments of13C NMR Spectra? Incoronata Tritto,*Catherine Marestin,?Laura Boggioni,Lucia Zetta, Augusto Provasoli,and Dino R.Ferro Istituto di Chimica delle Macromolecole del CNR,Via E.Bassini,15-I-20133Milano,Italy Received May8,2000;Revised Manuscript Received September14,2000 ABSTRACT:A best-fitting procedure for the quantitative determination of the molar fractions of the stereosequences that define the microstructure of an ethylene-norbornene(E-N)copolymer from13C NMR spectra has been set up.The quantitative determination of copolymer microstructure will allow one to clarify the E-N copolymerization mechanism.This method utilizes the observed peak areas of the 13C signals and takes into account the consistency between peak areas and the stoichiometry of the copolymer chain.Thus,a further extension of signal assignments is made possible by guessing assignments of unknown signals and by discarding inconsistent hypotheses.This procedure has been applied to the analysis of the13C NMR spectra of a large number of E-N copolymers,prepared with catalyst precursors rac-Et(indenyl)2ZrCl2(1),rac-Me2Si(2-Me-benz[e]indenyl)2ZrCl2(2),Me2Si(Me4Cp)(N t Bu)TiCl2(3),and Me2C(Flu)(Cp)ZrCl2(4).An estimate of the molar fractions of the various stereosequences with a standard deviation on the order of1-2%has been obtained.The comparison between controversial assignments existing in the literature for a number of ethylene signals has confirmed our previous assignments.New signals such as those of the C2/C3carbons of EENNEE meso sequences(M)and of the external carbons C5of MM and MR triads in ENNNE sequences have been assigned. Introduction The discovery of metallocene-methylaluminoxane-based catalysts has caused an upsurge of academic and industrial research in the field of transition-metal-catalyzed olefin polymerization.1The exploitation of changes in metallocene symmetry and ligands yielded catalysts with increased selectivity,stability,or pro-ductivity with respect to the first racemic ansa-bridged metallocene obtained by Brintzinger.2Among the ad-vances produced by these catalysts are the syntheses of new classes of polymers such as ethylene-norbornene (E-N)copolymers.3-5The resulting amorphous E-N copolymers are of great interest because of their trans-parency,high glass transition temperatures,and good heat resistance.They can be used in optical applications such as coatings for compact disks.Although their first synthesis was already reported in1991,3the structure of these copolymers has not yet been thoroughly inves-tigated. 13C NMR spectroscopy is surely the most powerful method for polymer microstructural investigations. However,E-N copolymer spectra are quite complex for the presence in the polymer chain of two stereogenic carbons per norbornene unit and for the fact that the chemical shifts of these copolymers do not obey straight-forward additive rules,owing to the bicyclic nature of the norbornene structural units.Thus,until recently analyses of13C NMR spectra were scarce,and only in the past few years have a number of groups accepted the challenge of assigning the13C NMR spectra of E-N copolymers.6-15 Our group has devoted a significant effort to clarifying some of the shifts in the13C NMR spectra of E-N copolymers,especially taking into account meso/racemic relationships between norbornene units in alternating NEN and in ENNE sequences,i.e.,accounting for the configuration,as well as for the composition,of the copolymer chain.10,12-15 At the onset of our studies,no mention of isotactic or syndiotactic types of regularity for alternating NENEN or of meso/racemic norbornene diads(ENNE sequences) had been found in the literature.Our investigations were based on the comparison of13C NMR spectra of E-N copolymers of various compositions prepared with different metallocenes.Substantial progress has come from the elucidation of the conformational structure of the chain of E-N copolymers on the basis of molecular mechanics calculations and from the correlation be-tween conformation and13C NMR chemical shifts.15,16 A comparison of conformer populations for stereoregular and stereoirregular alternating E-N copolymer chains predicted stereochemical shifts in these copolymers and allowed us to recognize and distinguish isotactic and syndiotactic N-E-N sequences.Conformer modeling evidenced strong deformations of the norbornene rings in N-N diads or triads and allowed us to understand the splitting of C5/C6signals,such distortions being much stronger in meso diads.INADEQUATE13C-13C correlated NMR spectra were also of great help in correcting previous assignments of ethylene and nor-bornene methylenes.9,13 Quantitative analysis of copolymer sequences is needed for determining the sequence distribution at the triad level or higher,which allows one to understand the copolymerization mechanism.In the present work we have examined the complete13C NMR spectra of a great number of E-N copolymers,prepared with different catalysts and having various norbornene contents. Starting from the available certain assignments and taking into account the consistency between peak areas and the stoichiometric requirements of the copolymer chain,we have set up a procedure for the determination ?Dedicated to Prof.Umberto Giannini on his70th birthday. ?Present address:Laboratoire de Mate′riaux Organiques a` Proprie′te′s Spe′cifiques(CNRS)F-69390Vernaison,France.8931 Macromolecules2000,33,8931-8944 10.1021/ma000795u CCC:$19.00?2000American Chemical Society Published on Web11/28/2000

新型烯烃聚合催化剂研究进展

新型烯烃聚合催化剂研究进展 黄增芳,张玲,伍青* (中山大学高分子研究所,广州510275) 摘要:由于过渡金属催化剂在烯烃聚合方面具有高活性和良好的分子剪裁性,通过调节催化剂的微结构或温度、压力等聚合环境的变化,可以在分子层次上实现烯烃聚合物的分子设计与组装, 实现聚合物物理性质的调控,最近引起了人们的广泛关注。本文介绍了过渡金属催化剂的合成及 其负载化,水相烯烃聚合及活性聚合等方面的研究进展。 关键词:过渡金属催化剂;烯烃聚合;水相聚合;活性聚合;负载化 目前,全世界每年聚乙烯和聚丙烯的产量已超过70Mt,这些聚合物在很大程度上改善了人们的日常生活,而高活性烯烃聚合催化剂的发现对合成新的聚合物起了关键性的作用[1]。1995年,Brookhart课题组对阳离子Ni和Pd二亚胺独特的催化特性的发现对烯烃聚合的发展产生了巨大的推动作用[2]。由于后过渡金属具有低的亲氧性,能够催化具有某种官能团的极性单体聚合[3],而且它们还能制得具有某种支链结构的聚合物,最近引起了人们的广泛研究兴趣[4~8]。 对于后过渡金属催化剂的合成,目前研究最多的主要是对水杨醛亚胺、A-二亚胺及吡啶二亚胺为配体的研究,而且大部分工作集中于在这些催化剂的基体上引入不同的取代基(包括吸电子、供电子基团)对其催化性能的影响(包括催化活性、热稳定性、聚合产物的分子量和规整度等)。Grubbs等认为,在水杨醛亚胺型催化剂上引入大的取代基,可以明显提高其催化活性[9]。Zuideveld等通过简便的方法在催化剂1上引入具有不同吸电性的大取代基合成了水杨醛亚胺型催化剂2,在催化乙烯聚合时,其活性都比催化剂1的催化活性要高,且2a、2d、2e在60e下几小时内都保持高活性,而2b、2c在20min后就基本没有了活性[10]。 对于A-二亚胺型催化剂,Johnson等认为在苯胺上引入大的取代基,其空间效应以及它们对正方平面络合物实际顶点的空间定位对单体的聚合反应是非常关键的[11]。Schmid等合成出了1,4-二杂氮-2,3-二甲基丁二烯配体(Ar-N=C(CH3)-(C H3)C=NAr)的Pd和Ni配合物3。单晶X射线分析表明,由于3c上大的取代基-t butyl之间的空间排斥作用使得Ni的正方络合平面发生弯曲,导致其具有手性,这种手性排列使聚合单体能有效到达活性中心Ni的理想配位点。而支链聚合物的形成需要在2,1-重新插入之前,由B-H消去后所得到的末端烯烃链能够进行旋转,配体中取代基体积的增加能够减小这种旋转,从而抑制了B-H消去后的2,1-重新插入。与3a、3b和3d相比,在催化乙烯聚合时,手性Ni化合物3c表现高的催化活性(2@104kgPE#(mol#Ni#h)-1,以MAO为助催化剂时催化乙烯聚合得到的是线形聚乙烯[12]。聚合物的特性是由其组分、结构、立体化学、分子量等所决定的,因此能够预计控制这些特性的方法引起了人们的极大兴趣。Cherian合成了新一代的立体选择性的手性Ni配位化合物4,希望能够利用取代基的立体位阻来抑制聚合时的链行走以得到规整度较高的聚烯烃。催化2-丁烯反向加成聚合时,通过13CNMR (19193ppm[rr],20108ppm[mr]+[rm],20123ppm[mm])测试表明,在-36e下聚合24h后所得反式聚丁烯的[mm]=0164,催化剂的对映面选择系数A=0186[13]。 目前,过渡金属烯烃配位聚合不仅在新催化剂的制备,而且在催化剂的负载化,提高催化剂的热稳定 基金项目:国家自然科学基金-中石化联合资助项目(20334030)和广东省自然科学基金项目(039184)资助; 作者简介:黄增芳(1976-),男,中山大学博士生,主要研究方向为后过渡金属催化烯烃聚合。 *通讯联系人,T el:(020)84113250,E-mail:ces wuq@https://www.360docs.net/doc/b89829523.html,

聚烯烃催化剂的发展现状与趋势

聚烯烃催化剂的发展现状与趋势 摘要:本文评述了自二十世纪五十年代初至今的近五十年时间里聚烯烃催化剂的几个重要发展阶段,讨论了Ziegler-Natta催化剂、无烷基金属化合物催化剂、茂金属催化剂及非茂有机金属催化剂的组成及特性,提出了我国在聚烯烃催化剂开发方面的对策。 关键词:Ziegler-Natta催化剂;茂金属催化剂;非茂催化剂;聚烯烃;对策 聚烯烃工业的发展是一个国家石化工业发展的重要标志,九十年代以来,世界聚烯烃生产能力大幅度增长,世界市场面临着供大于求的形势,在这种情况下,只有加大技术开发力度,掌握和采用先进技术,才能降低成本,提高产品附加值和市场竞争力。众所周知,聚烯烃技术的关键在于催化剂,聚烯烃树脂性能的改进与聚烯烃催化剂的开发有着极为密切的关系。所以研究和总结聚烯烃催化剂的发展历程对制定我国在聚烯烃工业中的中、长期战略目标具有十分重要的意义。 在各种聚烯烃催化剂中,目前使用最广泛的仍是齐格勒-纳塔(Ziegler-Natta)催化剂,它自五十年代问世以来,经过各国共同开发研究,经历了由第一代至第四代的发展,催化性能不断提高,推动了聚烯烃工业的迅猛发展,生产规模的不断扩大及高性能聚烯烃树脂(如高等规聚丙烯)的合成均可归因于齐格勒-纳塔催化剂的成熟与发展。目前对这类催化剂的研究和开发工作主要集中在高活性和高度立体定向催化剂的研制上。 1976年德国汉堡大学的Kaminsky教授偶然发现向Cp2ZrCl2 /三甲基铝(TMA)体系中加入少量水,催化剂活性会明显增大,后来对产生这一现象的原因进行了深入研究,结果发现,少量水的引入使TMA变成了甲基铝氧烷(MAO),由此揭开了烯烃聚合催化剂又一个新的篇章。茂金属催化剂由于具有理想的单活性中心,通过变换其配位基团又可以改变活性中心的电负性和空间环境,从而能精密地控制分子量、分子量分布、共聚单体含量和在主链上的分布及结晶构造。因而茂金属催化剂在聚合物品种的开发上显示出了明显的优势,用齐格勒-纳塔催化剂很难实现的聚烯烃树脂的功能化在茂金属催化剂作用下则很快得到了解决。正是由于茂金属聚烯烃所具备的优异性能,才使得茂金属催化剂自八十年代中期逐步成

聚烯烃催化剂的发展现状与趋势(DOC 29页)

聚烯烃催化剂的发展现状与趋势(DOC 29页)

聚烯烃催化剂的发展现状与趋势 摘要:本文评述了自二十世纪五十年代初至今的近五十年时间里聚烯烃催化剂的几个重要发展阶段,讨论了Ziegler-Natta催化剂、无烷基金属化合物催化剂、茂金属催化剂及非茂有机金属催化剂的组成及特性,提出了我国在聚烯烃催化剂开发方面的对策。 关键词:Ziegler-Natta催化剂;茂金属催化剂;非茂催化剂;聚烯烃;对策 聚烯烃工业的发展是一个国家石化工业发展的重要标志,九十年代以来,世界聚烯烃生产能力大幅度增长,世界市场面临着供大于求的形势,在这种情况下,只有加大技术开发力度,掌握和采用先进技术,才能降低成本,提高产品附加值和市场竞争力。众所周知,聚烯烃技术的关键在于催化剂,聚烯烃树脂性能的改进与聚烯烃催化剂的开发有着极为密切的关系。所以研究和总结聚烯烃催化剂的发展历程对制定我国在聚烯烃工业中的中、长期战略目标具有十分重要的意义。 在各种聚烯烃催化剂中,目前使用最广泛的仍是齐格勒-纳塔(Ziegler-Natta)催化剂,它自五十年代问世以来,经过各国共同开发研究,经历了由第一代至第四代的发展,催化性能不断提高,推动了聚烯烃工业的迅猛发展,生产规模的不断扩大及高性能聚烯烃树脂(如高等规聚丙烯)的合成均可归因于齐格勒-纳塔催化剂的成熟与发展。目前对这类催化剂的研究和开发工作主要集中在高活性和高度立体定向催化剂的研制上。 1976年德国汉堡大学的Kaminsky教授偶然发现向Cp 2ZrCl 2 /三甲基铝(TMA) 体系中加入少量水,催化剂活性会明显增大,后来对产生这一现象的原因进行了深入研究,结果发现,少量水的引入使TMA变成了甲基铝氧烷(MAO),由此揭开 了烯烃聚合催化剂又一个新的篇章。茂金属催化剂由于具有理想的单活性中心,通过变换其配位基团又可以改变活性中心的电负性和空间环境,从而能精密地控制分子量、分子量分布、共聚单体含量和在主链上的分布及结晶构造。因而茂金属催化剂在聚合物品种的开发上显示出了明显的优势,用齐格勒-纳塔催化

聚乙烯催化剂

聚乙烯催化剂 牌号:BCE 技术供应商:北京化工研究院 产品性能和技术特点简介: BCE催化剂是一种聚乙烯高效催化剂,属于钛系载体型高效Ziegler-Natta催化剂,适用于淤浆法高密度聚乙烯装置。用于生产各种用途的高密度聚乙烯树脂,尤其适合生产PE80、PE100等高附加值产品。综合性能已达到国际领先水平。 其主要特点是: 1、活性高, ≥30,000g PE/g Cat 2、氢调敏感性高 3、共聚性能好 4、聚合物堆积密度高、低聚物少 5、聚合物颗粒形态好、分布窄 6、聚合物性能优良 淤浆聚合,80℃, 2小时 包装及储运 粉状BCE催化剂储存于氮气保护下的镀锌钢桶,每桶催化剂净重50kg。包装桶内氮气压力小于0.04MPa,运输中避免碰撞、避免与水、空气接触。储存于干燥、洁净的地方,避免阳光直射。 牌号:BCS01 技术供应商:北京化工研究院 产品性能和技术特点简介: BCS01催化剂是气相法乙烯聚合浆液催化剂。在聚乙烯工艺装置上可生产注塑、挤塑、吹塑等牌号的全密度PE产品,广泛应用于针对聚乙烯Unipol工艺和BP工艺的反应器中。其主要特点是: 1、催化剂活性高:>8000gPE/gCAT(Unipol工业装置);

2、聚合物表观密度高:>0.32g/cm3(Unipol工业装置) 3、聚合物颗粒形态好,粒径分布窄,细粉少; 4、催化剂氢调敏感; 5、催化剂共聚性能好。 牌号:BCG系列 技术供应商:北京化工研究院 产品性能和技术特点简介: BCG系列(BCG-I、 BCG-II)催化剂是一种高效聚乙烯催化剂,适用于气相流化床工艺的乙烯聚合或共聚合,尤其适用于Unipol工艺的聚乙烯生产装置。其主要技术特点: 1、催化剂活性高:≥5000gPE/gCat(Unipol工业装置); 2、聚合物表观密度高:≥0.35 g/cm3(Unipol工业装置) 3、聚合物颗粒形态好,粒径分布窄,细粉少; 4、催化剂流动性好; 5、催化剂氢调敏感性好; 6、催化剂共聚性能优良。 牌号:SCG-1系列 技术供应商:上海化工研究院 产品性能和技术特点简介: SCG-1系列催化剂是Mg-Ti催化剂,能够应用于UNIPOL工艺,可生产窄分子量分布密度由低到高的各种牌号的聚乙烯产品。 牌号:SCG-3/4/5系列 技术供应商:上海化工研究院 产品性能和技术特点简介: SCG-3/4/5是铬系催化剂,应用于UNIPOL工艺,可生产中等分子量分布和宽分子量分布的LLDPE及HDPE。该铬系催化剂是目前国内唯一的可工业化生产的铬系催化剂产品,产品质量稳定,性能可靠,不仅完全可以取代进口催化剂,而且在某些性能方面优于进口催化剂,从而满足客户的各种生产需要。目前,该系列产品已出口销售。 牌号:SLC-G 技术供应商:上海化工研究院 产品性能和技术特点简介: SLC-G催化剂适用于气相流化床工艺的乙烯共聚和均聚。SLC-G催化剂的最主要的特点是活性更高,产品灰份更低。 牌号: SLC-S 技术供应商:上海化工研究院 产品性能和技术特点简介: SLC-S催化剂(中国专利号:ZL98110609.9),是含25-30%固体于特殊矿物油之中的淤浆催化剂,是不需要用无定型硅胶做载体的Mg-Ti催化剂,可用来代替传统固体催化剂,在气相流化床聚乙烯工艺中生产窄分子量分布的LLDPE/MDPE及HDPE。其主要的技术特点是具有很高的活性,是传统固体催化剂的4倍。 牌号:SLC-B 技术供应商:上海化工研究院 产品性能和技术特点简介:

聚烯烃催化剂技术进展

聚烯烃催化剂技术进展 文章摘要:聚烯烃工业技术进展很大程度上得益于催化剂的进步,世界大约3/4的线性聚乙烯是用钛基齐格勒-纳塔催化剂生产的,其余的份额主要是铬基催化剂。20世纪90年代初推出的茂金属催化剂将带来聚合工业的重大变革。文章概述了齐格勒-纳塔催化剂、铬基催化剂和茂等单中心催化剂的应用现状和发展趋势,概述了国产化聚乙烯和聚丙烯催化剂的研发和应用现状,指出聚烯烃催化剂仍将是今后我国石油化工的研发重点。关键词聚烯烃催化剂聚乙...... 1 前言 几十年来聚烯烃工业技术进展很大程度上得益于催化剂的进步,催化剂的活性明显提高,活性中心的控制手段明显改进,催化剂对于聚烯烃树脂的微观和宏观结构都有重要影响,这些结构又决定了在目标应用中的产品性能。目前用于生产线性聚乙烯(HDPE和LLDPE)的催化剂主要有3种类型;即铬基催化剂、齐格勒-纳塔催化剂(主要是钛基催化剂)和茂金属等单中心催化剂。世界上大约3/4的线性聚乙烯是用钛基齐格勒-纳塔催化剂生产的,其余的份额主要是Phillips 公司的铬基催化剂(主要用于HDPE)。20世纪90年代初推出的茂金属催化剂预计会像20世纪50年代发现齐格勒-纳塔催化剂一样,带来聚合物工业的重大变革。2002年世界聚乙烯和聚丙烯的产量大约为8850×104 t/a,相应需要催化剂约6000t左右。催化剂只占制造成本很小的一部分,一般只占聚合物销售额的1%~2%,但对聚合物的市场价值却有重大的影响。 2 占世界HDPE产量1/2以上的Phillips环管工艺采用铬基催化剂 铬基催化剂主要用于Phillips环管工艺和Dow化学的Unipol工艺,最初用于生产HDPE,后来被改进,也可用于乙烯和α烯烃的共聚反应,用这种催化剂生产的乙烯和α烯烃的共聚物有非常宽的分子量分布(MWD),重均分子量和数均分子量之比(Mw/Mn)为12~35。现在Phillips公司正在开发十几种不同的铬基催化剂,有些已实现工业化,用来生产高性能的吹塑制品、管材和薄膜。Basell 公司近来工业化了一种生产HDPE用的新系列高孔体积的铬基催化剂———Avant C。这些催化剂既可用于淤浆环管工艺,也可用于气相工艺,可生产要求抗冲击性和抗环境应力开裂性好的大型吹塑制品用树脂。用这种催化剂也可生产范围很宽的产品,用一种Avant C催化剂可以替代2~3种不同的催化剂,从而可以简化操作,减少不合格产品。 3 Z-N催化剂当前占有最重要地位 齐格勒-纳塔(Z-N)催化剂是20世纪50年代由德国化学家齐格勒发明,用于常压下乙烯聚合的催化剂,他当时使用的是TiCl4和烷基铝的混合物。意大利化学家纳塔将该催化剂扩展到其它烯烃的聚合,并在聚合反应机理研究的基础上,

相关文档
最新文档