高层建筑结构抗风设计浅析

龙源期刊网 https://www.360docs.net/doc/b912592971.html,

高层建筑结构抗风设计浅析

作者:朱静萌

来源:《中国新技术新产品》2012年第07期

摘要:本文简要介绍了高层建筑结构风荷载作用特点,提出基于性能的结构抗风设计理

论框架。对结构抗风概念设计与计算分析及结构抗风性能安全性评价进行简单讨论;同时提出改善抗风性能的结构设计方法,展望抗风设计的发展前景。

关键词:基于性能的结构抗风设计理论;设计风压等级;结构风振性能水准;

中图分类号:TU355 文献标识码:A

重庆平地少,山坡多的地貌特征决定了重庆盖房子只能向高空发展;另外,因人口密度大,用地紧张,为了节约土地资源,房子也越来越高。俗话说“树大招风”,高层结构正是如此。

1 高层建筑结构抗风设计理论

高层建筑高宽比大,抗侧刚度小;所承担的水平荷载除地震作用外,主要为风荷载。相比地震作用,风载作用极其频繁。因此,对高层结构而言,风荷载是一种重要的设计荷载,甚至起决定作用。

1.1 基于性能的结构抗风设计理论

基于性能的结构抗风设计理论的目的是在不同强度水平风振作用下,有效地控制建筑结构的安全、舒适度,明确的不同性能水准,从使建筑物在整个生命周期内,在遭受可能发生的风振作用下,总体费用达到最小的目标。

与传统的抗风设计不同,该理论是由业主先给出所期望的结构抗风性能水准,工程师在该要求下,采用与国家规范不相抵触的结果来完成设计。

1.2 结构风振性能水准

1.2.1 风振系数。风振系数是我国现行荷载规范的一个重要系数,该系数的值对风载值有

较大的影响。

1.2.2 人体舒适度。在侧向力作用下,高层结构发生振动,当振动达到某一限值时,人们

开始有某种不舒适的感觉。人体舒适度可分为无振感、轻微振感、中等振感、烦恼、非常烦恼和无法忍受六个等级。

浅析高层建筑结构设计的中震设计概念

浅析高层建筑结构设计的中震设计概念 发表时间:2016-06-27T14:51:54.553Z 来源:《基层建设》2016年5期作者:隆凡梅 [导读] 本文主要阐述了中中震设计的原理、设计方法及软件操作,并提出一些个人见解以供参考。 摘要:对于普通建筑物的结构抗震设计,目前我国是以小震为设计基础,中震和大震则是通过地震力的调整系数和各种抗震构造措施来保证的。但是对于较重要的、超高的、超限的建筑物则需要进行中震和大震的抗震计算。本文主要阐述了中中震设计的原理、设计方法及软件操作,并提出一些个人见解以供参考。 关键词:中震设计概念;地震影响系数;荷载 《建筑抗震设计规范》(GB50011-2001 2008年版)(下简称《抗规》)中对中震设计仅在总则中提到“小震不坏、中震可修、大震不倒”的抗震设防目标,但没有给出中震设计的设计要求和判断标准。 首先我们了解一下现行《抗规》存在几个问题: 1规范未对结构存在的薄弱构件进行分析并作出专门的设计规定,仅对框架类剪切型结构适用的薄弱层作了一些规定; 2在中震作用下,规范仅提出“中震可修”的概念设计要求,没有具体的抗震设计方法; 3“中震可修”的技术经济问题:可修的标准决定工程????造价、破坏损失、震后修复费用。 随着时代的进步,现在的建筑物体型复杂,结构新颖,超高超限越来越多,因此要求对结构进行中震的设计也越来越多。 2 中震设计 2.1 为何要进行中震设计呢? 《抗规》条文说明1.0.1条指出,对大多数结构,可只进行第一阶段设计(即小震下的弹性计算),而通过概念设计和抗震构造措施来实现“中震可修和大震不倒”的设计要求,但前提是建筑物的体型常规、合理,经验上一般能满足大中震的抗震要求。反之对于一些体型很不好的甚至超限的建筑物,在大震下的结构反应和小震完全不同,不进行相应的中震和大震计算是没法保证结构安全的。 为达到各阶段抗震要求,须对于上述体型异常、刚度变化大、超高超限等类型建筑物进行中震抗震设计,其余类型建筑物建议可按中震抗震进行验算。 2.2 中震设计的基本概念 抗震设计要达到的目标是在不同频数和强度的地震时,要求建筑物具有不同的抵抗能力。中震设计就是为了使建筑物满足该地区的基本设防烈度,即能够抵抗50年限期内可能遭遇超越概率为10%的地震烈度。 中震设计和大震设计都可称为性能设计。基于性能的抗震设计是建筑结构抗震设计的一个新的重要发展,它的特点是使抗震设计从宏观性、规范指定的目标向具体量化的多重目标过渡,业主(设计者)可选择所需的性能目标,而不仅仅是按现行规范通过分项系数、内力调整系数、抗震构造措施等粗略、定性的手段来满足中震和大震的设防要求。针对本工程的结构特点,设定本结构的抗震性能目标。对超限结构而言,利用这些指标能更合理地判断整体结构在中震、大震作用下的性能表现,给超限设计提供可靠的判断依据。 2.3 中震设计的分类 中震设计就是结构在地震影响系数按小震的2.875倍(αmax=0.23)取值下进行验算。目前工程界对于结构的中震设计有两种方法,第一种按照中震弹性设计,第二种是按照中震不屈服设计。 首先明确一点,中震弹性和中震不屈服是两个完全不同的概念,两者所采用的设计方法与设防目的均不相同。中震弹性设计,设计中取消《抗规》要求的各项地震组合内力调整系数,保留材料、荷载等分项系数,对应地保留了结构的安全度和可靠度,结构仍属于弹性阶段,属正常设计。中震不屈服设计,设计中除了地震内力不作调整,同时也取消了材料、荷载等分项系数,对应地不考虑结构的安全度和可靠度,结构已经处于弹塑性阶段,属承载力极限状态设计,是一种基于性能的设计方法。由此可见,中震弹性设计接近于平常的小震弹性设计,而中震不屈服设计则与大震设计同属于基于性能的设计。 3 基本方法及应用 根据中震设计的分类,以下分别阐述中震弹性及中震不屈服的具体设计方法,介绍如何在satwe、etabs、midas等软件中实现中震设计。 3.1 中震不屈服设计 3.3.1 不同抗震烈度下的各级屈服控制 若场地安评报告提供实际的地震影响系数,则应取用所提供的多遇地震、设防烈度地震下相应的地震影响系数,屈服判别地震作用1、2 的地震影响系数可相应插值求得。 3.3.2 SAWTE计算:地震信息中抗震等级均为四级;αmax按表3取值;总信息中风荷载不参加计算;勾选地震信息中的按中震(或大震)不屈服做结构设计选项;其它设计参数的定义均同小震设计。 3.3.3 MIDAS/Gen计算:主菜单→设计→钢筋混凝土构件设计参数→定义抗震等级:四级;主菜单→荷载→反应谱分析数据→反应谱函数:定义中震反应谱,在相应的小震反应谱基础上输入放大系数β即可,β值按表3计算所得;总信息中风荷载不参加计算;主菜单→结果→荷载组合:将各项荷载组合中的地震作用分项系数取为1.0;主菜单→设计→钢筋混凝土构件设计参数→材料分项系数:将材料分项系数取为1.0;其它同小震。 3.3.4 ETABS计算:选项→首选项→混凝土框架设计→定义抗震设计等级:四级;定义→反应谱函数→Add Chinese 2002 Spectrum→定义中震反应谱,地震影响系数最大值αmax取值,其余参数按《抗规》;静荷载工况中不定义风荷载作用;定义→荷载组合→各项荷载比例系数均取为荷载分项系数1.0x荷载组合系数φ;定义→材料属性→填写各材料的强度标准值其它同小震。 4 工程算例 4.1 示范算例 4.1.1 基本参数:二十二层框支剪力墙结构,三层楼面转换,无地下室,首、二层4.5米,标准层3.5米,总高79m。结构平面布置如图一所示。结构高宽比3.76,长宽比1.22;抗震参数,7 度,第一组,0.10g;场地II类;风荷载100年一遇为0.9kN/㎡。

建筑结构抗风设计

建筑结构抗风设计在如今经济高速发展的同时,建筑的高度也飞速增高,而且建筑体型越来越复杂。高楼引来“风速杀手”。由于高层、超高层建筑鳞次栉比而引发峡谷效应,使城市街道风速加大,以致危及行人和行车安全。这种峡谷效应还表现在某些高楼部分外墙表面因风速过大产生巨大负压,玻璃幕墙或大墙板块会像雪崩一样脱落,高档门窗等也常常会发生突然崩塌、坠落伤人事故。所以,建筑高度的增高和复杂的体型使得建筑结构抗风设计的难度也在不断提高。我们要明白风对建筑的危害机理才能更好地进行抗风设计。风是紊乱的随机现象。风对建筑物的作用十分复杂,规范中关于风荷载值的确定适用于大多数体型较规则、高度不太大的单幢高层建筑。目前还没有有效的预测体型复杂、高柔建筑物风作用的计算方法;摩天大楼可能造成很强的地面风,对行人和商店有很大影响;当附近还有别的高层建筑时,群体效应对建筑物和建筑物之间的通道也会造成危害。风对建筑物表面的作用力大小,与建筑物体型、高度、建筑物所处位置、结构特性有关。 我国是世界上遭受台风灾害最为严重的国家之一,每年因台风灾害造成的经济 损失十分惨重。城市各类建筑物的损坏与倒塌是风灾直接损失的主要组成部分,快速预测和评估城市建筑物遭受风灾后的损伤情况,对城市防灾减灾工作至关重要,也是目前土木工程领域急待解决的一个问题。接下来让我们看一些比较成功的抗风设计的实例。 1974年美国芝加哥建成443m高(加上天线达500m)110层的西尔斯大楼成为当时世界最高的建筑,纽约的世界贸易中心大厦(412m,110层)只能让位,退居第二。大楼由9个标准方形钢筒体(22.9mx22.9m)组成。该结构由SOM设计.建筑师为FazlurKahn。建造到52层减少2个简体.到67层再减少2个简体.到92层再

浅谈高层建筑结构设计的优化

浅谈高层建筑结构设计的优化 摘要:在社会经济快速发展的背景下,城市建筑用地资源日益紧张,高层乃至 超高层建筑项目不断兴起,在城市建筑领域中占据着相当重要的地位,并带动着 建筑行业的蓬勃发展。高层建筑项目建设中,结构设计的质量水平会对高层建筑 物的整体性能产生影响,如何对高层建筑结构进行优化设计是业内人士必须关注 的一项课题。本文即探讨在高层建筑结构优化设计中存在的不足之处,并提出了 高层建筑结构优化设计的解决措施与方法,望能够促进建筑结构设计方案的进一 步优化与发展。 关键词:高层建筑;结构;设计;优化 引言:高层建筑凭借着自身众多优势而成为当前城市建设中最重要的类型。 而结构设计的科学合理性对高层建筑的安全稳定性、适用性、耐久性及经济性等 有重大影响,因此优化高层建筑结构设计意义重大。高层建筑结构优化的主要目 的是在满足人们基本居住要求的前体下,实现对有限空间及资源的更合理分配, 以提升房屋的安全、舒适及美观性。建筑工程包含的内容众多,因此结构设计优 化的内容也是多方面的,在结构优化设计中,只有从多角度进行全面的优化设计,才能从整体上促进高层建筑结构优化设计水平的提高。 1、高层建筑历史与现状发展 在很早以前就有了结构化优化的思维,是在很多建筑设计者的实践中提炼出 来的,林同炎设计大师就是首次在国内提出结构化优化的方法。之后在我国高层 建筑迅速发展,目前发展已经十分惊人,各种优化方法也层出不穷。 在早前,手工画图时代,结构设计师都是依靠先把空间问题转换成平面问题。此时通过计算力学效应,逐步分析计算和考核,强度、整体受力情况都需要一一 验算核准,强调安全性,也要满足设计的基本要求。然后凭经验初取截面,再进 行强度验算校核、整体受力验算等步骤。由于受到当时条件制约,整体上要既要 实现经济,又要完全达到优化设计是很难达到的。随着计算机的普及,在建筑设 计上的应用,利用计算机来优化建筑设计结构,研究成果虽然取得了突破性的进展,但是应用上并不如人意。那是因为科研的结果与现实的运用在很大程度上有 一定的距离,现实中会考虑更多的约束条件,工程的复杂性在现实中得到体现。 不是科研中的简单函数关系就能处理完成,需要考虑实际情况。工程的复杂和不 可复制性,就决定了结构化优化的难度。 各种计算机语言和软件的出现,为建筑结构化设计提供了精准的计算,让设 计更有迅速。即便如此,科学研究的最优解和建筑实际的最优化还是有很大的区别,理论和实践区别在于实践的变化性。这就需要以实践为基础,更深入的去研究,从结构优化,到安全、美学、功能等方面进行优化。 2、设计高层建筑结构合理性所遵守的原则 2.1 高层建筑结构基础设计方案要合理 高层建筑场地的地址因素是决定高层建筑结构基础方案如何选择的参考依据。合理、有效的高层建筑结构基础方案的设计,必须结合相应的地址勘探条件,必 须切实、全面的考虑周边原有建筑群体、施工限制条件、地基荷载分布情况与高 层建筑结构类型等相互间的关联因素。 2.2 保证高层建筑结构设计方案的合理性

浅析高层建筑结构设计的难点

浅析高层建筑结构设计的难点 我国建筑行业发展至今,不管是其规模还是建筑技术在国际领域都是名列前茅。在建筑工程中,结构设计环节,是高层建筑未来施工的主要参考依据。它具有基础性、关联性、创新性等特征,在当代城市规划中,发挥着越来越重要的作用。基于此,结合国内高层结构设计的相关理论,着重对其设计难点进行分析,以达到降低高层建筑建设成本,保障结构设计质量的目的。 标签:高层建筑;结构设计;难点分析 一、高层建筑结构的特征 与普通建筑相比,高层建筑需承载垂直和水平两个方向的荷载,因此,其对结构的荷载承受能力要求更高,其中垂直荷载主要是由建筑物高度引起的,而水平荷载则是由外界风力产生的,外界风力和地震都是影响高层建筑结构稳定性的重要因素,另外,建筑层数的增高也会加快建筑物的位移速度,而过快得位移速度则会对建筑物的功能性和建筑物内住户的舒适度产生直接的影响,并且过大的侧移位还会对建筑的结构和非结构构件造成损害,因此,相关人员在进行高层建筑结构设计时,需合理控制建筑物的侧移范围,才能保证其结构功能性良好。 二、高层建筑结构的设计原则 (一)基础方案的合理性 高层建筑结构基础施工方案,是保证高层建筑施工整体性和良好性的基础保障,在实际的建筑结构方案设计当中,相关设计单位需要依照具体施工地质条件,依照具体的建筑施工要求来对结构实施设计。一方面,在建筑结构基础方案的配置上,需要和地质调查报告进行对接,保证其中各项调查数据充分符合工程施工标准。另一方面,在进行高层建筑施工过程中,还需要对建筑实施综合性进行分析,特别是对建筑整体结构的稳定程度、每一个环节的负载加以考虑,通过这种施工设计方式,充分保证工程施工的稳定性。 (二)结构措施完善 在高层建筑施工当中,除了需要对基础施工方案和施工图纸进行设计之外,其中还有一个比较重要的施工原则是相关施工单位经常忽略的问题,那就是需要保证建筑结构实施措施完善化。相关设计单位在对高层建筑结构进行设计的过程当中,需要充分地注意各部分组件相互之间的衔接程度。比如建筑体当中的钢筋锚固长度等,同时,设计单位还需要充分注意建筑体存在的一些薄弱环节,建筑体本身的温度对建筑体组件产生的影响等,对这几个方面的问题,在实际的设计工作当中,需要充分遵循“强柱弱梁、强剪弱弯、强压弱拉”的基本结构设计原则,保证高层建筑结构设计的稳定性。

高层建筑结构设计简答题及答案

.1 框架—支撑结构 在框架中设置支撑斜杆,即为支撑框架,一般用于钢结构,由框架和支撑框架共同承担竖向荷载和水平荷载的结构,称为框架—支撑结构。 2.(框筒结构的)剪力滞后现象 翼缘框架中各柱轴力分布并不均匀,角柱的轴力大于平均值,中部柱的轴力小于平均值,腹板框架各柱的轴力也不是线性分布,这种现象称为剪力滞后现象 3. 框架的剪切刚度 C框架产生单位层间剪切变形所要施加的层间剪力。 f 三.. 简述房屋建筑平面不规则与竖向不规则的类型,在设计中应如何避免上述不规则结构?平面不规则包括扭转不规则、楼板凹凸不规则和楼板局部不连续。 竖向不规则包括侧向刚度不规则、竖向抗侧力构件不连续和楼层承载力突变。 在设计中可以通过限制建筑物的长宽比,立面的外挑和内收以及限制沿向刚度的变化来避免不规则结构。 四. 剪力墙抗震设计的原则有哪些?为什么要设置剪力墙的加强部位?试说明剪力墙加强部位的范围。(10分) 强墙弱梁、强剪弱弯、限制墙肢轴压比和墙肢设置边缘构件、加强重点部位、连梁特殊措施。 因为剪力墙加强部位的弯矩和剪力均很大; 总高1/8和底部2层高度中的较大值,且不大于15m.。 五.什么是抗震设计的二阶段设计方法?为什么要采用二阶段设计方法? (10分) 第一阶段为结构设计阶段,第二阶段为验算阶段。保证小震不坏、中震可修、在震不倒的目标实现。 七. 简述框架-剪力墙结构的主要特点 (10分) 框架-剪力墙结构是由框架和剪力墙组成的结构体系,具有两种结构的优点,既能形成较大的使用空间,又具有较好的抵抗水平荷载的能力。 八.简述高层建筑结构结构设计的基本原则。(11分) 注重概念设计,注重结构选型与平、立面布置的规则性,择优选用抗震和抗风好且经济的体系,加强构造措施,在抗震设计中,应保证结构的整体性能,使整个结构具有必要的承载力、刚度和延性。结构应满足下列基本要求:1)具有必要的承载力、刚度和变形能力;2)避免因局部破坏而导致整个结构破坏;3)对可能的薄弱部位采取加强措施;4)避免局部突变和扭转效应形成的薄弱部位;5)宜具有多道抗震防线。 1. 框架结构和框筒结构的结构平面布置有什么区别? 框架是平面结构,主要由于水平力方向平行的框架抵抗层剪力及倾覆力矩。 框筒是空间结构,沿四周布置的框架参与抵抗水平力,层剪力由平行于水平力作用方向的腹板框架抵抗。倾覆力矩由腹板框架和垂直于水平力方向的翼缘框架共同抵抗。框筒结构的四榀框架位于建筑物周边,形成抗侧、抗扭刚度及承载力都很大的外筒,使建筑材料得到充分的利用。因此,框筒结构的适用高度比框架结构高得多。 2.计算水平地震作用有哪些方法? 计算等效水平地震作用是将地震作用按水平和竖直两个方法分别来进行计算的。具体计算方法又分为反应谱底部剪力法和反应谱振型分解法两种方法。 3.什么是抗震设计的二阶段设计方法?为什么要采用二阶段设计方法? 第一阶段为结构设计阶段,第二阶段为验算阶段。保证小震不坏、中震可修、在震不倒的目标实现。 9.什么是地震系数、动力系数和地震影响系数? 地震系数:地面运动最大加速度与g的比值。 动力系数:结构最大加速度反应相对于地面最大加速度的最大系数。 地震影响系数:地震系数与动力系数的积。 4.延性和延性比是什么?为什么抗震结构要具有延性?

高层建筑结构的抗风设计

高层建筑结构的抗风设计 【摘要】随着高层建筑高度的增加,结构对风荷载更加敏感,在不少地区,抗风研究和设计已成为控制结构安全性能和使用性能的关键因素。根据建设规模,我国城市建设中占据比例最大的是高层建筑,而高层建筑结构的多变性和复杂性,使得结构设计工作成为建筑施工的重点和难点。面对高层建筑结构设计的相关问题,本文将对高层建筑抗风结构常见结构的问题进行分析。 【关键词】高层,建筑结构,抗风设计 一.前言 随着我国经济的快速发,在建筑方面高层建筑结构与低层建筑结构一样,需要同时承受结构自身自重(及其他荷载)产生的垂直作用和风荷载产生的水平作用,相对于低层建筑结构水平荷载对整个结构受力影响通常较小的状况,在高层建筑结构中水平风荷载会成为高层(超高层)建筑结构设计的受力控制因素。针对我国高层建筑结构的抗风设计进行深入的研究和探讨。 二.高层建筑结构抗风设计中存在的问题 1.设计风压等级的确立 设计风压等级的建立需要考虑多种因素的影响。目前,我国还没有对结构设计风压等级给出明确定义,具体的划分原则和范围界定还需进一步的研究探讨。 2.风振系数的确定 我国目前确定结构风震系数时采用的阻尼比是按已建建筑在微振下所获取的阻尼比实测值确定的,而抗风设计所取的风载是30-100年一遇的大风荷载。此时,结构的振动将不是微小振动,而是有较大位移的振动,而大位移振动与微振的结构阻尼比是不同的,一般前者比后者大;而阻尼比增大,将使风振系数减小。因此目前我国进行高层建筑钢结构抗风设计所取的风振系数可能偏大。 3.风振舒适度的考虑 《高规》中规定重现期为10年的最大加速度限值为:公共建筑0.28m/s2;公寓建筑0.20m/s2。本文认为存在如下有待完善之处:首先,重现期取为10年已不能满足要求。《建筑荷载设计规范》中对一般结构基本风压重现期已规定为50年,且对特殊结构还要进行重现期为100年的舒适度验算;其次,该规定只将民用建筑分为公共建筑和公寓建筑两类,不够具体;再次,将峰值加速度限值仅定为0.28m/s2和0.20m/s2,不够精确。 三.高层建筑的抗风设计

高层建筑结构设计分析论文

关于高层建筑结构设计分析 摘要:随着社会经济的迅速发展,人民物质生活水平的不断提高,居住条件的不断改善,高层住宅如雨后春笋一座座拔地而起。一个优秀的建筑结构设计往往是适用、安全、经济、美观便于施工的最佳结合。 关键词:建筑结构结构设计 abstract: with the rapid development of social economy, the people’s material life level unceasing enhancement, the constant improvement of the living conditions, high-rise residential have mushroomed place have sprung up. a good structure design is often apply, safety, economy, beautiful is advantageous for the construction of the best combination. keywords: building structure design 中图分类号: tu3文献标识码:a 文章编号: 一、高层建筑各专业设计的协调 高层建筑设计是个多专业、多程序的复杂系统工程,涉及“建筑、结构、设备”三个基本环节,参与高层建筑设计的工程师都深深体会到,对于每个专业单独而言是最完美的设计,但结合在一起却不是优秀的设计。各专业之间的矛盾如不妥善处理!高层建筑就无法施工,建成后也无法使用。“建筑、结构、设备”是互相制约的三个有机组成部分,高层建筑设计既是各个专业自我完善的过

高层建筑结构抗震与设计考试重点复习题(含答案)

1.从结构的体系上来分,常用的高层建筑结构的抗侧力体系主要有:_框架结构,剪力墙结构,_框架-剪力墙_结构,_筒体_结构,悬挂结构和巨型框架结构。 2.一般高层建筑的基本风压取_50_年一遇的基本风压。对于特别重要或对风荷载比较敏感的高层建筑,采用_100_年一遇的风压值;在没有_100_年一遇的风压资料时,可近视用取_50_年一遇的基本风压乘以1.1的增大系数采用。 3.震级――地震的级别,说明某次地震本身产生的能量大小 地震烈度――指某一地区地面及建筑物受到一次地震影响的强烈程度 基本烈度――指某一地区今后一定时期内,在一般场地条件下可能遭受的最大烈度设防烈度――一般按基本烈度采用,对重要建筑物,报批后,提高一度采用 4.《建筑抗震设计规范》中规定,设防烈度为_6_度及_6_度以上的地区,建筑物必须进行抗震设计。 5.详细说明三水准抗震设计目标。 小震不坏:小震作用下应维持在弹性状态,一般不损坏或不需修理仍可继续使用 中震可修:中震作用下,局部进入塑性状态,可能有一定损坏,修复后可继续使用大震不倒:强震作用下,不应倒塌或发生危及生命的严重破坏 6.设防烈度相当于_B_ A、小震 B 、中震C、中震 7.用《高层建筑结构》中介绍的框架结构、剪力墙结构、框架-剪力墙结构的内力和位移的近似计算方法,一般计算的是这些结构在__下的内力和位移。 A 小震 B 中震C大震 8.在建筑结构抗震设计过程中,根据建筑物使用功能的重要性不同,采取不同的抗震设防 标准。请问建筑物分为哪几个抗震设防类别? 甲:高于本地区设防烈度,属于重大建筑工程和地震时可能发生严重次生灾害的建筑乙:按本地区设防烈度,属于地震时使用功能不能中断或需尽快恢复的建筑 丙:除甲乙丁外的一般建筑 丁:属抗震次要建筑,一般仍按本地区的设防烈度 9.下列高层建筑需要考虑竖向地震作用。(D) A 8°抗震设计时 B 跨度较大时 C 有长悬臂构件时 D 9°抗震设计

高层建筑结构设计特点.

浅论高层建筑结构特点及其体系 [摘要]文章分析高层建筑结构的六个特点,并介绍目前国内高层建筑的四大结构体系:框架结构、剪力墙结构、框架剪力墙结构和筒体结构。 [关键词]高层建筑;结构特点;结构体系 我国改革开放以来,建筑业有了突飞猛进的发展,近十几年我国已建成高层建筑万栋,建筑面积达到2亿平方米,其中具有代表性的建筑如深圳地王大厦81层,高325米;广州中天广场80层,高322米;上海金茂大厦88层,高420.5米。另外在南宁市也建起第一高楼:地王国际商会中心即地王大厦共54层,高206.3米。随着城市化进程加速发展,全国各地的高层建筑不断涌现,作为土建工作设计人员,必须充分了解高层建筑结构设计特点及其结构体系,只有这样才能使设计达到技术先进、经济合理、安全适用、确保质量的基本原则。 一、高层建筑结构设计的特点 高层建筑结构设计与低层、多层建筑结构相比较,结构专业在各专业中占有更重要的位置,不同结构体系的选择,直接关系到建筑平面的布置、立面体形、楼层高度、机电管道的设置、施工技术的要求、施工工期长短和投资造价的高低等。其主要特点有: (一水平力是设计主要因素 在低层和多层房屋结构中,往往是以重力为代表的竖向荷载控制着结构设计。而在高层建筑中,尽管竖向荷载仍对结构设计产生重要影响,但水平荷载却起着决定性作用。因为建筑自重和楼面使用荷载在竖向构件中所引起的轴力和弯矩的数值,仅与建筑高度的一次方成正比;而水平荷载对结构产生的倾覆力矩、以及由此在竖向构件中所引起的轴力,是与建筑高度的两次方成正比。另一方面,对一定高度建筑来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随着结构动力性的不同而有较大的变化。

浅谈高层建筑结构设计_0

浅谈高层建筑结构设计 上世纪末以来,城市化进程加速,城市人口激增,社会经济蓬勃发展,高层建筑在城市中越来越多。如今,城市中的高层建筑已经成为当地经济繁荣的重要标志。 标签结构设计;高层建筑;控制参数;载荷;抗震 1 高层建筑的特点 《高层建筑混凝土结构技术规程》规定,10层及10层以上和高度超过28 m 的钢筋混凝土民用建筑属于高层建筑。相比多层建筑而言,高层是向空中发展,容积率一定的情况下,建造高层建筑可以节省规划用地面积,提高城市绿化率,还可以缓解城市用地紧张的局面。 高层建筑基础需要计算确定深度,独立的高层建筑单体而言,基础埋深比较容易确定,但现今住宅多为数十栋高层建筑群,地下车库相互连接,这时,既要充分考虑地下车库应的侧向刚度作为高层建筑的侧限。 高层建筑比多层建筑多出较多的设备用房,如电梯、管道井等,这样就会增加建筑物的造价,增加公共面积;从建筑防火的角度看,高层筑的防火要求要高于中低层建筑,也会增加高层建筑的工程造价和运行成本。 2 高层结构设计体系特点 地震作用和风荷载的影响下高度的增加,水平作用对高层建筑结构安全的控制作用更加显著。高层建筑的抗震性能、抗侧刚度、承载能力、造价高低,与所采用的结构系统密切相连。不同的层数、高度应采用不同的结构体系。 2.1 筒体结构 单个筒体可分为实腹筒、框筒和桁筒。平面剪力墙组成空间薄壁筒体,即为实腹筒;框架通过减小肢距,形成空间密柱框筒,即框筒;筒壁若用空间桁架组成,则形成桁筒。实际结构中除烟囱等构筑物外不可能存在单筒结构,而常常以框架—筒体结构、筒中筒结构、多筒体结构和成束筒结构形式出现。在层数很多或设防烈度要求很高时,可用筒体结构。 2.2 剪力墙结构体系 利用建筑物墙体作为承受竖向荷载、抵抗水平荷载的结构,称为剪力墙结构体系。剪力墙结构体系于钢筋混凝土结构中,由墙体承受全部水平作用和竖向荷载。现浇钢筋混凝土剪力墙结构的整体性好,刚度大,在水平荷载作用下侧向变形小,承载力要求也容易满足。但剪力墙结构体系平面布置不灵活,结构自重往

结构工程师必知的100个设计要点

方案阶段 1.建设场地不能选在危险地段。 由于结构设计在建设场地的选择中一般是被动的接受方,因此,在结构方案及初步设计阶段, 应特别注重对建设场地的再判别。对不利地段,应根据不利程度采取相应的技术措施。 2.山地建筑尤其需要注意总平布置。 山区建筑场地应根据地质、地形条件和使用要求, 因地制宜设置符合抗震设防要求的边坡工程; 边坡附近的建筑基础应进行抗震稳定性设计。建筑基础与土质、强风化岩质边坡应留有足够的 距离, 其值应根据抗震设防烈度的高低确定, 并采取措施避免地震时地基基础破坏。当需要在 条状突出的山嘴、高耸孤立的山丘、非岩石的陡坡、河岸和边坡边缘等不利地段建造丙类及丙 类以上建筑时,除保证其在地震作用下的稳定性外, 尚应估计不利地段对设计地震动参数可能 产生的放大作用, 其地震影响系数最大值应乘以增大系数。其值可根据不利地段的具体情况确定, 在1.1~1.6 范围内采用。 此条为强条; 台地边缘建筑地震力放大系数也意味着单体建筑成本的增加。实际上, 有时边坡 支护的费用可能远远大于边坡上单体的费用。曾经有的方案设计单位布置总平时将 18~33层的高层布置在悬崖边缘或跨越十多米高的边坡, 这些都是对结构及地质不了解才会产生的错误。3.是否有地下室。 高层建筑宜设地下室;对无地下室的高层建筑,应满足规范对埋置深度的要求。 4.高度问题 室内外高差是多少,房屋高度是多少,房屋高度有没有超限。 5.结构高宽比问题 设计规定,6、7度抗震设防烈度时,框架- 剪力墙结构、剪力墙结构高宽比不宜超过 6。高 宽比控制的目的在于对高层建筑结构刚度、整体稳定、承载能力和经济合理性(主要影响结构 设计的经济性,对超高层建筑,当高宽比大于7时,结构设计难度大,费用高)的宏观控制。6.结构设计应与建筑师密切合作优化建筑设计和结构布置。 采取必要的结构和施工措施尽量避免设置各类结构缝(伸缩缝、沉降缝、防震缝)。当必须设 置时,应符合现行规范有关缝的要求,并根据建筑使用要求、结构平面和竖向布置的情况、地 基情况、基础类型、结构刚度以及荷载、作用的差异、抗震要求等条件、综合考虑后确定。 各缝宜合并布置,并应按规范的规定采取可靠的构造措施和保证必要的缝宽,防止地震时发生 碰撞导致破坏。结构长度大于规范时, 应设置伸缩缝, 高层建筑结构伸缩缝的最大间距: 框架 结构为 55m, 剪力墙结构为 45m。 7.结构平面布置不规则问题

高层建筑结构设计特点及体系分析

高层建筑结构设计特点及体系分析 发表时间:2016-07-08T16:27:19.500Z 来源:《基层建设》2016年6期作者:李晓瑞 [导读] 近年来,我国高层建筑设计及施工又有很大的发展,各种结构型式得到充分应用。 广西南都建筑设计有限公司 530021 摘要:近年来,我国高层建筑设计及施工又有很大的发展,各种结构型式得到充分应用,高层建筑的体型和功能更加多样化,结构复杂程度增加。基于此本文着重对高层建筑结构设计特点及体系进行了分析,旨在为提高高层建设工程质量提供参考。 关键词:高层建筑;结构设计;体系 前言 高层建筑结构的最主要特点是水平荷载为设计的主要因素,侧移限值为确定各抗侧力构件数量和截面尺寸的控制指标。有些构件除必须考虑弯曲变形外,尚需考虑轴向变形和剪切变形的影响,地震区的高层建筑结构还需要控制结构和构件的延性指标。目前国内高层建筑类型不断增多,发展较快,由此需要结合钢结构和混凝土结构的优点,承载力高、延性好、变形能力强等理论基础,对建筑结构设计进行研究。 1高层建筑结构设计特点分析 1.1重视侧向荷载对结构的影响 随着建筑高度的增大,侧向荷载对结构影响的增长速率大于竖向荷载的增长速率,到某一高度时,侧向荷载对结构的影响将超过竖向荷载。从这开始,侧向荷载将成为确定高层建筑结构方案和影响土建造价的决定性因素。为此,对侧向荷载的作用,该倍加关注。 1.2结构设计除需满足承载力以外,还需满足侧移要求 (1)侧移的限值 结构受侧向荷载后,结构将发生水平变位——侧移。按侧移对结构的影响,可分为绝对侧移和层间侧移这两项。这里,绝对侧移是指建筑结构相对于地面原点的水平变位大小;而层间侧移则是指两相邻楼层绝对侧移值之差(见图1)。绝对侧移量过大,将会使结构产生P-效应,增大结构内力;有时甚至还会引起电梯运行困难,增加结构倾覆和失稳的危险性;同样,层间侧移过大,将会导致装修和非承重墙体的损伤[1]。 图1绝对侧移和层间侧移 (2)减少侧移的途径 一是减少风荷载或地震作用。对不考虑地震作用的高层建筑,风荷载是侧向荷载中的主要荷载。减少风荷载,就可减少侧移量。圆形平面时的风荷载最小,约只为矩形平面时的60%;即使将房屋的已定平面形状略加修饰,使之更近于流线形时,则同样也可起到减少风压的效果。 二是选用合适的结构方案。根据房屋的高度、高宽比、平面形状和它的体型,在选择结构方案时,将一并考虑控制侧移的这一因素。因一旦选定了结构方案,实际上,这时结构的侧移也就确定了。 三是设置刚性层。如我国某高层建筑 (地上37层、地下2层、高140m),钢筋混凝土框架一核芯筒结构,平面呈单轴对称的六边形,高宽比达5.2。但由于在第20层和第35层处各设了一道刚性层,使结构的顶点侧移量、由原先的284mm降至250mm,减少了10%。 1.3注意减轻楼面自重,减少楼面的结构高度 楼面(包括楼板及楼面梁)自重将占结构竖向荷载的大部分,由于高层建筑的层数多,虽每层的竖向荷载减少有限,但积累后的值对下层的柱、墙和基础都会产生不小的影响。 在确保楼层净高不变的条件下,减少楼面的结构高度,就可减少每层的层高。积累后,有时使房屋总高不变而增加楼层层数达1层或2层;或也可在楼层层数不变的条件下,减少房屋的总高。这些都将产生十分可观的经济效益。 2高层建筑结构设计体系分析 2.1框架结构体系 对于水平荷载作用,常用的方法有以下几种: 1)反弯点法。反弯点法的基本假设是把框架巾的横粱简化为刚性梁,因而框架节点不发生转角,只有侧移,同层各柱剪力与柱的移

浅谈钢结构在某高层建筑结构设计中的实际应用

浅谈钢结构在某高层建筑结构设计中的实际应用 摘要:在高层建筑结构设计中,钢结构设计是一项复杂且艰巨的工作,科学、合理应用钢结构,可优化和完善高层建筑结构,提高建筑的整体质量。本文结合高层建筑的实际情况,对钢结构在高层建筑结构设计中的应用进行分析与探讨,以推动城市高层建筑的发展。 关键词:高层建筑;结构设计;钢结构;应用 随着社会经济的迅速发展,高层建筑日益驱多,其在城市发展过程中发挥着重要的作用,是城市发展的缩影。由于高层建筑自重大,结构构件的截面尺寸也相应较大,在高层建筑结构设计中,钢结构的应用越来越广泛。钢结构设计是高层建筑整体结构设计中不可忽视的重要环节,关系到高层建筑整体的施工质量,因此需给予高度重视。本文着重阐述某高层建筑结构设计中钢结构的应用情况。 1 工程概况及结构选型 某高层建筑工程共43层,其中地上40层,地下3层,总建筑面积13万m2,建筑物总高度167m。抗震设防烈度为6度。 高层建筑钢结构的类型,按材料区分有全钢结构、钢-混凝土组合结构和钢-混凝土混合结构3种类型,根据工程条件和特点,结合建筑使用功能、荷载情况、材料供应等因素,本工程采用了钢-混凝土组合结构,其结构型式如下:地下3层至地上3层均采用框架-筒体结构,第4层为梁式转换层,层高3.5m,梁截面尺寸最大为1200mm×3500mm,板厚190mm,5层以上采用剪力墙-核芯筒结构。基础方案为预应力管桩,采用型钢混凝土柱,±0.000楼面采用钢筋混凝土楼板及型钢混凝土梁。 2 钢结构的设计 根据结构受力情况,型钢混凝土梁柱中的型钢均采用Q345B级钢材。高强度螺栓采用10.9级扭剪型高强螺栓,表面喷砂处理,摩擦面抗滑移动系数取0.45。 采用实腹式┼字形为型钢混凝土柱中型钢的截面形式,型钢混凝土柱中的型钢含钢率控制在5%左右,而型钢混凝土梁中的型钢则采用H型钢,采用中国建筑科学研究院编制的PKPM系列程序中多、高层建筑结构空间有限元分析与设计软件SATWE进行整体计算,并根据计算结果合理调整梁柱截面钢筋及钢骨大小。本工程若采用钢筋混凝土柱,则底层柱的截面需要1600mm×1600mm,而采用钢骨混凝土柱,底层柱的截面仅需要1100mm×1100mm。 钢板的厚度均不小于6mm,一般为翼缘厚度≥20mm,腹板厚度≥16mm;由于在轧制过程中,较厚的钢板存在各向异性,常在焊缝附近形成约束,焊接时易引致层状撕裂,很难保证焊接质量,因此当钢板厚度大于36mm时,必须按《厚

高层建筑结构的抗风设计 刘桐良

高层建筑结构的抗风设计刘桐良 发表时间:2019-07-19T16:03:20.703Z 来源:《基层建设》2019年第12期作者:刘桐良 [导读] 摘要:随着高层建筑高度的增加,结构对风荷载更加敏感,在不少地区,抗风研究和设计已成为控制结构安全性能和使用性能的关键因素。 身份证号码:41048219900729XXXX 河南汝州 467599 摘要:随着高层建筑高度的增加,结构对风荷载更加敏感,在不少地区,抗风研究和设计已成为控制结构安全性能和使用性能的关键因素。根据建设规模,我国城市建设中占据比例最大的是高层建筑,而高层建筑结构的多变性和复杂性,使得结构设计工作成为建筑施工的重点和难点。面对高层建筑结构设计的相关问题,本文将对高层建筑抗风结构常见结构的问题进行分析。 关键词:高层;建筑结构;抗风设计 1 前言 随着我国经济的快速发,在建筑方面高层建筑结构与低层建筑结构一样,需要同时承受结构自身自重(及其他荷载)产生的垂直作用和风荷载产生的水平作用,相对于低层建筑结构水平荷载对整个结构受力影响通常较小的状况,在高层建筑结构中水平风荷载会成为高层(超高层)建筑结构设计的受力控制因素。针对我国高层建筑结构的抗风设计进行深入的研究和探讨。 2 高层建筑结构抗风设计中存在的问题 2.1 设计风压等级的确立 设计风压等级的建立需要考虑多种因素的影响。目前,我国还没有对结构设计风压等级给出明确定义,具体的划分原则和范围界定还需进一步的研究探讨。 2.2 风振系数的确定 我国目前确定结构风震系数时采用的阻尼比是按已建建筑在微振下所获取的阻尼比实测值确定的,而抗风设计所取的风载是30-100年一遇的大风荷载。此时,结构的振动将不是微小振动,而是有较大位移的振动,而大位移振动与微振的结构阻尼比是不同的,一般前者比后者大;而阻尼比增大,将使风振系数减小。因此目前我国进行高层建筑钢结构抗风设计所取的风振系数可能偏大。 2.3 风振舒适度的考虑 《高规》中规定重现期为10年的最大加速度限值为:公共建筑0.28m/s2;公寓建筑0.20m/s2。本文认为存在如下有待完善之处:首先,重现期取为10年已不能满足要求。《建筑荷载设计规范》中对一般结构基本风压重现期已规定为50年,且对特殊结构还要进行重现期为100年的舒适度验算;其次,该规定只将民用建筑分为公共建筑和公寓建筑两类,不够具体;再次,将峰值加速度限值仅定为0.28m/s2和 0.20m/s2,不够精确。 3 高层建筑的抗风设计 3.1 高层建筑结构在风荷载作用下的破坏形式 主体结构开裂或损坏,如位移过大引起框架、剪力墙、承重墙裂缝或结构主筋屈服;层间位移引起非承重隔墙开裂;局部风压过大引起玻璃、装饰物、围护结构破坏;建筑物的频繁、大幅度摆动使居住者感到不适;长期的风致振动引起结构疲劳,导致破坏。 3.2 高层建筑结构抗风的一搬设计原则 保证结构具有足够的强度,能可靠地承受风荷载作用下的内力;结构必须具有足够的刚度,控制高层建筑在水平荷载作用下的位移,保证良好的居住和工作条件;选择合理的结构体系和建筑外形。采用较大的刚度可以减少风振的影响;圆形、正多边形平面可以减少风压的数值;尽量采用对称平面形状和对称结构布置,减少风力偏心产生的扭转影响;外墙、玻璃、女儿墙及其它围护构件必须有足够的强度并与主体结构可靠地连接,防止局部破坏。 3.3 风荷载的计算 我国规范GB50068-2001《建筑结构可靠度设计统一标准》对荷载统计采用50年设计基准期,并且用平稳二项随机过程来描述荷载的随机过程。气流遇到建筑物时,在建筑物表面上产生压力或吸力,即形成风荷载,其大小主要与近地风的性质、风速、风向有关,也与建筑的高度、形状和地表面状况有关。根据新规范进行主体结构计算时,垂直于建筑物表面的风荷载标准值按下式计算,风荷载作用面积应取垂直于风向的最大投影面积。 3.4 风荷载作用下高层建筑的振幅、震动速度和加速度控制 根据现行的建筑结构设计规范,对于高层建筑结构在风荷载作用下的变形响应主要作以下两方面的限制: (一)限制结构的顶端水平位移u与总高度H的比值(u/H),目的是控制结构的总变形量。 (二)限制相邻两层楼盖间的相对水平位移Δh与层高h的比值(Δu/h),一般Δu /h在结构的各层中具有不同的比值,且往往最大的Δu/h 要超过u/H的限值。限制最大的Δu/h目的是防止填充墙、装饰部件的损坏,避免电梯轨道和管道等设施产生过大的变形。 高层建筑结构的变形控制对于控制风振侧移是非常重要的,结构侧移特别是层间侧移是决定建筑物破坏程度的因素,因此能否将侧移控制在允许限度内,是检验抗侧力体系有效性的重要指标。 3.5 高层建筑结构抗风加固的方法 (一)增大截面法。增大构件的截面面积,提高承载能力及截面刚度,改变自振频率,减小结构的动力风荷载效应。多用于加固结构中的梁、板、柱和钢结构中的柱及屋架以及砖墙、砖柱等。此法会减小使用空间,增加结构自重。 (二)外包钢加固法。在结构构件四周包以型钢进行加固,分干式外包钢和湿式外包钢两种形式。在保持原构件截面尺寸的同时提高构件承载力、延性和刚度,适用于混凝土柱、梁、屋架和砖窗间墙以及烟囱等结构构件的加固。但用钢量较大、维修费用较高。 (三)预应力加固法。外加预应力钢拉杆对结构进行加固。在几乎不改变使用空间的条件下,提高构件的承载力。广泛用于受弯构件以及混凝土柱、钢梁及钢屋架的加固。加固效果好而且经济,很有发展前景;不足的是增加了施加预应力的工序和设备。 (四)改变受力体系加固法。增设支点或采用托梁拔柱的办法改变结构的受力体系。大幅度提高结构构件的承载力,减小挠度、裂缝宽度。多用于大跨度结构。 (五)外部粘钢加固法。用胶粘剂在构件外部粘贴钢板。施工简易周期短,加固后几乎不改变构件的外形和使用空间,大大提高构件

浅谈高层建筑结构设计的重点和难点

林业科技情报2014Vol.46No.1 浅谈高层建筑结构设计的重点和难点 梅雅莉 (黑龙江省林业设计研究院) [摘要]由于我国人口数量的增多,为解决住房等问题需要发展建筑行业,尤其是要发展高层建筑行业。随着建筑高度的不断增加,建筑的形式和结构功能也变得复杂多样,因此,高层建筑的结构设计工作便成为建筑工程师在设计过程中的重点和难点。本文着重对高层建筑结构设计过程中应注意的问题进行分析。 [关键词]高层建筑;结构设计;重点问题 Discussion On The Emphasis And Difficulty Of The Structure Design For High-Rise Building Mei Yali (Forest Designing AndResearch Institute Of Heilongjiang Province) Abstract:With the increasing for the population in our country,it is necessary to develop architecture industry,es-pecially the high-rise buildings,to solve the housing problem.Associated with the increasing number for the high -rise building,the type of the architecture and the structure function has got much more complex.As a result,the design for high-rise building becomes the emphasis and difficulty for the architecture engineering worker.The par-ticle mainly analyzes the problem emerging from the high-rise building design process. Key words:high-rise building;structure design;emphasis problem 1高层建筑结构设计的概况及意义 随着我国城市化进程不断加快,城市人口显著增多,高层建筑在城市建设中发挥着越来越重要的作用。即使在建筑设计理念和方法日益先进的今天,仍会因为高层建筑复杂的结构,较广的学术知识涉及和较大的工程量而出现设计失误的现象。高层建筑结构设计的意义有:首先,如果建筑所使用的面积一定,设计和建造高层建筑可以获得相对多一些的使用面积,可以解决城市用地紧张、房价高涨等问题。另一方面,精美的高层建筑设计还可以改善城市的外观,或者说成为城市的一道风景。比如马来西亚的石油大厦和上海的金茂大厦等等。而如果设计的建筑高层密度、结构不合理,就会给城市带来热岛效应,影响城市居民的生活环境,甚至由于高层的玻璃因反光而发生光污染的现象。其次,如果是在建筑面积与建设场地面积的比值一定,那么建造高层建筑就会有效地节约城市土地面积,得到更多的空闲地面,用这些空闲出来的地面来进行城市绿化或者供人们休息娱乐。与此同时,建筑高层的土地结构设计会为城市带来更充足的日照、更良好的采光和通风效果。在新加坡新建的居住区中,由于建造了很多的高层建筑群,得到了许多空闲的地面,使人们的休闲活动空间也得到了拓展。最后,一般情况下,高层建筑也可以使人们的内心得到舒展,所以说高层建筑对于城市人们的生活非常重要。因此,高层建筑的结构设计也非常重要,良好的建筑结构可以使人们生活得更加安全,更加舒心。也会使城市更加美观,拥有良好的生态环境。高层建筑结构设计师们要发挥自己的所学所能,设计出美观、经济、实用的高层建筑。 2高层建筑结构设计中应注意的问题 在高层建筑结构的设计中,我们需要注意一些问题,主要有以下几方面。 2.1剪力墙的设计 在高层建筑中,剪力墙对建筑有着重要的影响,所以,在剪力墙的设计过程中,要充分考虑剪力墙的结构体系。也就是以建筑物墙体作为承受水平、竖向荷载的结构,要求混凝土剪力墙具有较好的结构,较强的刚度,以满足其承载力的要求。在对剪力墙进行计算配筋时,切记要为墙肢一端配筋。在短肢剪力墙相对较多的结构中,将较短的墙段划为约束边缘的构件是不妥的,这会使墙肢中和轴附近的钢筋无法发挥作用。另外,剪力墙间距也不能过大,因为这会使得平面的布置显得死板,无法满足公共建筑功能需求。此外,一旦剪力墙自身的结构过大,高度超过标准就会引起悬臂墙变形, · 03 ·

相关文档
最新文档