数学分析第一章实数集与函数

数学分析第一章实数集与函数
数学分析第一章实数集与函数

第一章实数集与函数

导言数学分析课程简介( 2 学时 )

一、数学分析(mathematical analysis)简介:

1.背景: 从切线、面积、计算

sin、实数定义等问题引入.

32

2.极限 ( limit ) ——变量数学的基本运算:

3.数学分析的基本内容:数学分析以极限为基本思想和基本运算研究变实值

函数.主要研究微分(differential)和积分(integration)两种特殊的极限运算,

利用这两种运算从微观和宏观两个方面研究函数, 并依据这些运算引进并研究

一些非初等函数. 数学分析基本上是连续函数的微积分理论.

微积运算是高等数学的基本运算.

数学分析与微积分(calculus)的区别.

二、数学分析的形成过程:

1.孕育于古希腊时期:在我国,很早就有极限思想. 纪元前三世纪,

Archimedes就有了积分思想.

2.十七世纪以前是一个漫长的酝酿时期,是微积分思想的发展、成果的积累

时期.

3.十七世纪下半叶到十九世纪上半叶——微积分的创建时期.

4.十九世纪上半叶到二十世纪上半叶——分析学理论的完善和重建时

期:

三、数学分析课的特点:

逻辑性很强, 很细致, 很深刻; 先难后易, 是说开头四章有一定的难度, 倘能努力学懂前四章(或前四章的

), 后面的学习就会容易一些; 只要

在课堂上专心听讲, 一般是可以听得懂的, 但即便能听懂, 习题还是难以顺利完成. 这是因为数学分析技巧性很强, 只了解基本的理论和方法, 不辅以相应的技巧, 是很难顺利应用理论和方法的. 论证训练是数学分析课基本的,也是重要的内容之一, 也是最难的内容之一. 一般懂得了证明后, 能把证明准确、严密、简练地用数学的语言和符号书写出来,似乎是更难的一件事. 因此, 理解证明的思维方式, 学习基本的证明方法, 掌握叙述和书写证明的一般语言和格式, 是数学分析教学贯穿始终的一项任务.

有鉴于此, 建议的学习方法是: 预习, 课堂上认真听讲, 必须记笔记,

但要注意以听为主, 力争在课堂上能听懂七、八成. 课后不要急于完成作业, 先认真整理笔记, 补充课堂讲授中太简或跳过的推导, 阅读教科书, 学习证明或推导的叙述和书写. 基本掌握了课堂教学内容后, 再去做作业. 在学习中, 要养成多想问题的习惯.

四、课堂讲授方法:

1.关于教材及参考书:这是大学与中学教学不同的地方, 本课程主要从以下教科书中取材:

[1]华东师范大学数学系编,数学分析,高等教育出版社,2001;

[2]刘玉琏傅沛仁编,数学分析讲义,高等教育出版社,1992;

[3]谢惠民,恽自求等数学分析习题课讲义,高等教育出版社,2003;

[4]马振民,数学分析的方法与技巧选讲,兰州大学出版社,1999;

[5]林源渠,方企勤数学分析解题指南,北京大学出版社,2003.

2.本课程按[1]的逻辑顺序并在其中取材.本课程为适应教学改革的要求,只介绍数学分析最基本的内容,并加强实践环节,注重学生的创新能力的培养。带

星号的内容略讲或删去,相应的内容作为选修课将在数学分析选讲课开设.

3.内容多,课时紧: 大学课堂教学与中学不同的是, 这里每次课介绍的内容很多, 因此, 内容重复的次数少, 讲课只注重思想性与基本思路, 具体内容或推导, 特别是同类型或较简的推理论证及推导计算, 可能讲得很简, 留给课后的学习任务一般很重.

4.讲解的重点: 概念的意义与理解,几何直观,理论的体系,定理的意义、条件、结论.定理证明的分析与思路,具有代表性的证明方法,解题的方法与技巧. 某些精细概念之间的本质差别.

五.要求、辅导及考试:

1.学习方法:尽快适应大学的学习方法, 尽快进入角色. 课堂上以听为主, 但要做课堂笔记.课后一定要认真复习消化, 补充笔记.一般课堂教学与课外复

: 3。

习的时间比例应为

对将来从事数学教学工作的师范大学本科生来说, 课堂听讲的内容应该更为丰富: 要认真评价教师的课堂教学, 把教师在课堂上的成功与失败变为自己的经验. 这对未来的教学工作是很有用的.

2.作业:作业以练习题中划线以上的部分习题为主要内容. 大体上每周收一次作业, 一次收清. 每次重点检查作业总数的三分之一. 作业的收交和完成情况有一个较详细的登记, 缺交作业将直接影响学期总评成绩.作业要按数学排版格式书写工整.

3. 辅导: 大体每周一次, 第一学期要求辅导时不缺席.

4. 考试: 按教学大纲的要求, 只以最基本的内容进行考试, 大体上考课堂教学和所布置作业的内容, 包括[1]中的典型例题. 考试题为标准化试题,理论证明题逐渐增多.

第一章实数集与函数

数值分析第1章习题

(A)1. 3.142和3.141分别作为π的近似数具有()和()为有效数字(有效数字) A. 4和3 B. 3和2 C. 3和4 D. 4和4 解..14159.3==*πx ,1103142.0?=a 时,1=m ,3102 1...00041.0)(-*?≤ =-=a x a E m-n= -3,所以n=4,即有4位有效数字。当1103141.0?=a 时,1=m , 2102 1005.0...00059.0)(-*?=≤=-=a x a E ,m-n= -2,所以n=3,即有3位有效数字。 (A)2. 为了减少误差,在计算表达式19992001-时,应该改为 199920012+计算,是属于()来避免误差。(避免误差危害原则) A.避免两相近数相减; B.化简步骤,减少运算次数; C.避免绝对值很小的数做除数; D.防止大数吃小数 解:由于2001和1999相近,两数相减会使误差大,因此化加法为减法,用的方法是避免误差危害原则。 (B)3.下列算式中哪一个没有违背避免误差危害原则(避免误差危害原则) A.计算123460.60.612345++- B.计算 25612520000450?- C.计算10.99994- D.计算11x x +- 解:A 会有大数吃掉小数的情况C 中两个相近的数相减,D 中两个相近的数相减也会增大误差 (D)4.若误差限为5105.0-?,那么近似数0.003400有()位有效数字。(有效数字) A. 5 B. 4 C. 7 D. 3 解:51021)(-?= a E 即m-n= -5,2103400.0-?=a ,m= -2,所以n=3,即有3位有效数字 (A)5.设*x 的近似数为40.32710a =?,如果a 具有3位有效数字,则a 的相对误差限为 ()(有效数字与相对误差的关系) A . 35103-g B. 33105-g C. 53105-g D. 5103 g -2 解:因为40.32710a =?所以31=a ,因为a 有3位有效数字,所以n=3,由相对误差和有效数字的关系可得a 的相对误差限为 31103510.5--?== n r a δ

授课章节:第一章实数集与函数---.doc

第一章实数集与函数 §1.1实数 教学目标:使学生掌握实数的基本性质. 教学重点:(1) 了解实数的有序性、稠密性和封闭性; (2)牢记并熟练运用实数绝对值的有关性质以及几个常见的不等式. 教学难点:实数集的概念及 其应用. 教学方法:讲授.(部分内容自学) 教学过程: 一、 实数及其性质 :叹嘗纟(阳为整数且q 主0)或有限小数和无限小数. 负分数,p 无理数:用无限不循环小数表示. R = {x\兀为实数} --全体实数的集合? 问题:有理数,无理数的表示不统一,这对统一讨论实数是不利的.为以下讨论的需要, 我们把“有限小数”(包括整数)也表示为“无限小数”.为此作如下规定: 对 于正有 限 小 数x = a n .其中0 b {}或存在非负整数/,使得cik=b k ,k = \,2, ,/,而%>$+】,则称尢大于y 或y 小 Tx,分别记为x 〉y 或)YX .对丁?负实数x 、y,若按上述规定分别有-x = -y 或-兀>-厂 则 有理数 (-)实数

《数学分析》10第三章-函数极限

《数学分析》10第三章-函数极限

第三章 函数极限 引言 在《数学分析》中,所讨论的极限基本上分两 部分,第一部分是“数列的极限”,第二部分是“函数的极限”。二者的关系到是“特殊”与“一般”的关系;数列极限是函数极限的特例。 通过数列极限的学习。应有一种基本的观念:“极 限是研究变量的变化趋势的”或说:“极限是研究变量的变化过程,并通过变化的过程来把握变化的结果”。例如,数列{}n a 这种变量即是研究当n →+∞时,{}n a 的变化趋势。 我们知道,从函数角度看,数列{}n a 可视为一种特殊的函数f ,其定义域为N +,值域是{}n a ,即 :() n f N R n a +→→; 或 (),n f n a n N +=∈或()n f n a =. 研究数列{}n a 的极限,即是研究当自变量n →+∞时, 函数()f n 变化趋势。 此处函数()f n 的自变量n 只能取正整数!因此自变 量的可能变化趋势只有一种,即n →+∞。但是,如果代之正整数变量n 而考虑一般的变量为x R ∈,那么情况又如何呢?具体地说,此时自变量x 可能的变化趋势是否了仅限于x →+∞一种呢? 为此,考虑下列函数:

1,0;()0,0.x f x x ≠?=?=? 类似于数列,可考虑自变量x →+∞时,()f x 的变化趋 势;除此而外,也可考虑自变量x →-∞时,()f x 的变化趋势;还可考虑自变量x →∞时,()f x 的变化趋势;还可考虑自变量x a →时,()f x 的变化趋势, L 由此可见,函数的极限较之数列的极限要复杂得 多,其根源在于自变量性质的变化。但同时我们将看到,这种复杂仅仅表现在极限定义的叙述有所不同。而在各类极限的性质、运算、证明方法上都类似于数列的极限。 下面,我们就依次讨论这些极限。 §1 函数极限的概念 一、x →+∞时函数的极限 1. 引言 设函数定义在[,)a +∞上,类似于数列情形,我们研 究当自变量x →+∞时,对应的函数值能否无限地接近于某个定数A。这种情形能否出现呢?回答是可能出现,但不是对所有的函数都具此性质。 例如 1(),f x x x =无限增大时,()f x 无限地接近于 0;(),g x arctgx x =无限增大时,()f x 无限地接近于2 π;(),h x x x =无限增大时,()f x 与任何数都不能无限地接近。正因为如此,所以才有必要考虑x →+∞时,()f x 的变化趋势。

Rudin数学分析原理第一章答案

The Real and Complex Number Systems Written by Men-Gen Tsai email:b89902089@https://www.360docs.net/doc/b913118608.html,.tw 1. 2. 3. 4. 5. 6.Fix b>1. (a)If m,n,p,q are integers,n>0,q>0,and r=m/n=p/q,prove that (b m)1/n=(b p)1/q. Hence it makes sense to de?ne b r=(b m)1/n. (b)Prove that b r+s=b r b s if r and s are rational. (c)If x is real,de?ne B(x)to be the set of all numbers b t,where t is rational and t≤x.Prove that b r=sup B(r) where r is rational.Hence it makes sense to de?ne b x=sup B(x) for every real x. (d)Prove that b x+y=b x b y for all real x and y. 1

Proof:For(a):mq=np since m/n=p/q.Thus b mq=b np. By Theorem1.21we know that(b mq)1/(mn)=(b np)1/(mn),that is, (b m)1/n=(b p)1/q,that is,b r is well-de?ned. For(b):Let r=m/n and s=p/q where m,n,p,q are integers,and n>0,q>0.Hence(b r+s)nq=(b m/n+p/q)nq=(b(mq+np)/(nq))nq= b mq+np=b mq b np=(b m/n)nq(b p/q)nq=(b m/n b p/q)nq.By Theorem1.21 we know that((b r+s)nq)1/(nq)=((b m/n b p/q)nq)1/(nq),that is b r+s= b m/n b p/q=b r b s. For(c):Note that b r∈B(r).For all b t∈B(r)where t is rational and t≤r.Hence,b r=b t b r?t≥b t1r?t since b>1and r?t≥0.Hence b r is an upper bound of B(r).Hence b r=sup B(r). For(d):b x b y=sup B(x)sup B(y)≥b t x b t y=b t x+t y for all rational t x≤x and t y≤y.Note that t x+t y≤x+y and t x+t y is rational. Therefore,sup B(x)sup B(y)is a upper bound of B(x+y),that is, b x b y≥sup B(x+y)=b(x+y). Conversely,we claim that b x b r=b x+r if x∈R1and r∈Q.The following is my proof. b x+r=sup B(x+r)=sup{b s:s≤x+r,s∈Q} =sup{b s?r b r:s?r≤x,s?r∈Q} =b r sup{b s?r:s?r≤x,s?r∈Q} =b r sup B(x) =b r b x. And we also claim that b x+y≥b x if y≥0.The following is my proof: 2

数学分析习作-数列极限与函数极限的异同

云南大学 数学分析习作课(1)读书报告 题目:数列极限与函数极限的异同 (定义,存在条件,性质,运算四方面的对比)学院:物理科学技术学院 专业:数理基础科学 姓名、学号: 任课教师: 时间: 2009-12-26 摘要 极限是数学中极其重要的概念之一,极限的思想是人们认知数学世界解决数学问题的 重要武器,是高等数学这个庞大的数学体系得以建立的基础和基石; 极限在数学中处于基础的地位,它是解决微积分等一系列重要数学问题的前提和基 础; 极限是一种思维,在学习高数时最好理解透彻了,在线代中没什么用.但是概率中用 的比较多,另外物理中许多都用到了极限的思维,它也能帮助更好的理解一些物理知 识;

在高等数学中,极限是一个重要的概念,极限可分为数列极限与函数极限,下面是关于两种极限的简要联系与说明。 关键词:数列极限与函数极限的定义,存在条件,性质,运算 一数列极限与函数极限的定义 1、数列与函数: a、数列的定义:数列是指按自然数编了号的一串数:x1,x2,x3,…,x n,…. 通常记作{x n},也可将其看作定义在自然数集N上的函数x n=N (, ), n n f∈故也称之为整标函数。 b、函数的定义:如果对某个范围X内的每一个实数x,可以按照确定的规律f, 得到Y内唯一一个实数y和这个x对应,我们就称f是X上的函数,它在x的数值(称为函数值)是y,记为) f y=。 (x (x f,即) 称x是自变量,y是因变量,又称X是函数的定义域,当x遍取X内的所有实数时,在f的作用下有意义,并且相应的函数值) f的全体所组成的范围叫作 (x

函数f 的值域,要注意的是:值域不一定就是Y ,它当然不会比Y 大,但它可能比Y 小。 2、 (一) 数列极限的定义: 对数列}{x n ,若存在常数A ,对N n N >?∈?>?,N ,0ε,有 ε<-A x n ,则称 数列收敛且收敛于A ,并称数列}{x n 的极限为A ,记为x n n lim ∞ →=A. 例1.试用定义验证:01 lim =∞→n n . 证明:分析过程,欲使,1 01ε<=-n n 只需ε 1 >n 即可,故 εεε<->?+?? ? ???=?>?01:,11,0n N n N . 例2.试用定义验证:).11(lim <<-=∞ →q n 证明:分析过程.欲使[]ε <=-n n q q 0, 只需q n lg lg ε > (注意0lg ??? ????????????????=?n q N n q N 对于比较复杂的表达式n n A x α=-,一般地,我们通过运算,适当放大,将n α变形简化到n β,既使得对于0>?ε由不等式εβ时,恒成立不等式εβn n n n n n n n n n n 1 95) 423(310 531423222 222. 故,

第一章复习题解答(数学分析)

第一章复习题 一.填空 1、数集,...}2,1:)1({=-n n n 的上确界为 1 ,下确界为 -1 。 2、 =∈-=E R x x x E sup ,|][{则 1 , =E inf 0 ; 3、)(lim 2 n n n n -+∞ → = _______ 1 2 ________。 4、设数列}{n a 递增且 a a n n =∞ →lim (有限). 则有a = {}sup n a . 5. 设,2 12,21221 2n n n n n n x x +=-=- 则 =∞→n n x lim 1 二. 选择题 1、设)(x f 为实数集R 上单调增函数,)(x g 为R 上单调减函数,则函数 ))((x g f 在R 上( B )。 A、是单调递增函数; B、是单调递减函数; C、既非单调增函数,也非单调减函数 ; D、其单调性无法确定. 2、在数列极限的“δε-”极限定义中,ε与δ的关系是( B ) A 、 先给定ε后唯一确定δ; B 、 先给定ε后确定δ,但δ的值不唯一; C 、 先给定δ后确定ε; D 、 δ与ε无关. 3、设数列{}(0,1,2,...)n n a a n ≠=收敛,则下列数列收敛的是( D ) A 、}1 { 2n a ; B 、}1{a n ; C 、 }1{a n ; D 、}{n a . 4. 若数列}{n x 有极限a ,则在a 的ε邻域之外,数列中的点( B ) (A) 必不存在; (B) 至多只有有限多个; (C) 必定有无穷多个; (D) 可能有有限多个,也可能有无穷多个. 5.设a x n n =∞ →||lim ,则 ( D ) (A) 数列}{n x 收敛; (B) a x n n =∞ →lim ; (C) a x n n -=∞ →lim ; (D) 数列}{n x 可能收敛,也可能发散。 6. 设}{n x 是无界数列,则 ( D ) (A) ∞=∞ →n n x lim ; (B) +∞=∞ →n n x lim ;

数学分析第一章

第一章 实数集与函数 §1 实数 Ⅰ.教学目的与要求 1.理解实数的概念,掌握实数的表示方法 2.了解实数的性质, 并在有关命题中正确地加以应用 3.理解绝对值的概念,掌握绝对值的性质,并在有关命题中正确地加以应用. Ⅱ.教学重点与难点 重点: 实数的定义及性质、绝对值与不等式. 难点: 实数的定义及其应用. Ⅲ.讲授内容 一 实数及其性质 实数的组成:实数由有理数与无理数两部分组成. 有理数的表示:有理数可用分数形式q p (p ?q 为整数,q ≠0)表示,也可用有限十进 小数或无限十进循环小数来表示. 无理数:无限十进不循环小数则称为无理数.有理数和无理数统称为实数. 有限小数(包括整数)也表示为无限小数.规定如下:对于正有限小数(包括整数)x,当x=a 0.a 1a 2n a 时,其中0,9≤≤i a i=1,2, n, na ,0≠0a 为非负整数,记x=a 0.a 1a 2-n a ( 1)?.999 9, 而当x=a 1为正整数时,则记x=(a 0—1).999 9…, 例如2.001记为2.000 999 9…;对于负有限小数(包括负整数)y ,则先将—y 表示为无限小数,再在所得无限小数之前加负号,例如—8记为—7.999 9…;又规定数0表示为0.000 0….于是,任何实数都可用一个确定的无限小数来表示. 我们已经熟知比较两个有理数大小的方法.现定义两个实数的大小关系. 定义1 给定两个非负实数 x= 0a .a a 1n a , y=,.210 n b b b b 其中00,b a 为非负整数,k k b a ,(k=1,2,…)为整数,0≤a k ≤9,0≤b k ≤9.若有==k b a k k ,0,1,2,, 则称x 与y 相等,记为x=y ;若00b a >或存在非负整数L ,使得 a k =b k (k=0,1,2,…,L)而11++>l l b a ,则称x 大于y 或y 小于x ,分别记为x>y 或y-,则分别称x=y 与xx).另外,自然规定任何非负实数大于任何负实数. 定义2 : x =a 0.a 1a 2n a 为非负实数.称有理=n x a 0.1a a 2n a 为实数

集合与函数的概念

第一章集合与函数的概念 龙港高中林长豪 课题:§1.1 集合 1.1.1 集合的含义与表示 教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。 课型:新授课 教学目标:(1)通过实例,了解集合的含义,体会元素与集合的“属于”关系、集合相等的含义; (2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用; 教学重点:集合的基本概念与表示方法; 教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;教学过程: 引入课题 引例1:(数学家和牧民的故事)牧民非常喜欢数学,但不知道集合是什么,于是他请教一位数学家.集合是不定义的概念,数学家很难回答牧民的问题.有一天他来到牧场,看到牧民正把羊往羊圈里赶,等到牧民把全部羊赶入羊圈关好门.数学家灵机一动,高兴地告诉牧民:“你看这就是集合!” 2:军训时当教官一声口令:“高一(14)班同学到操场集合” 在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。 阅读课本P2-P3内容 新课教学 (一)集合的有关概念 集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。 一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。思考1:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。 关于集合的元素的特征 (1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。 (2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。 (3)集合相等:构成两个集合的元素完全一样 元素与集合的关系; (1)如果a是集合A的元素,就说a属于(belong to)A,记作a∈A (2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作aA(举例) 常用数集及其记法

实数集与函数.

第一章 实数集与函数 §1.1实数 授课章节:第一章 实数集与函数——§1.1 实数 教学目标:使学生掌握实数的基本性质. 教学重点:(1)理解并熟练运用实数的有序性、稠密性和封闭性; (2)牢记并熟练运用实数绝对值的有关性质以及几个常见的不等式.(它们是分析论证的重要工具) 教学难点:实数集的概念及其应用. 教学方法:讲授.(部分内容自学) 教学过程: 引言 上节课中,我们与大家共同探讨了《分析》这门课程的研究对象、主要内容等话题.从本节课开始,我们就基本按照教材顺序给大家介绍这门课程的主要内容.首先,从大家都较为熟悉的实数和函数开始. 问题: 为什么从“实数”开始. 答:《数学分析》研究的基本对象是函数,但这里的“函数”是定义在“实数集”上的(《复变函数》研究的是定义在复数集上的函数).为此,我们要先了解一下实数的有关性质. 一、 实数及其性质 (一) 实数(,q p q p ??≠?? ???? 正分数,有理数为整数且q 0)或有限小数和无限小数.负分数,无理数:用无限不循环小数表示. {}|R x x =--为实数全体实数的集合. 问题: 有理数,无理数的表示不统一,这对统一讨论实数是不利的.为以下讨论的需要,我们把“有限小数”(包括整数)也表示为“无限小数”.为此作如下规定: 对于正有限小数01 ,n x a a a =其中009,1,2,,,0,i n a i n a a ≤≤=≠为非负整数,记 0119999n x a a a -=;对于正整数0,x a =则记0(1).9999 x a =-;对于负有限小数(包括负整 数)y ,则先将y -表示为无限小数,现在所得的小数之前加负号.0= 0.0000

数学分析之函数极限

第三章 函数极限 教学目的: 1.使学生牢固地建立起函数极限的一般概念,掌握函数极限的基本性质; 2.理解并运用海涅定理与柯西准则判定某些函数极限的存在性; 3.掌握两个重要极限 和 ,并能熟练运用; 4.理解无穷小(大)量及其阶的概念,会利用它们求某些函数的极限。 教学重(难)点: 本章的重点是函数极限的概念、性质及其计算;难点是海涅定理与柯西准则的应用。 教学时数:14学时 § 1 函数极限概念 (2学时) 教学目的:使学生建立起函数极限的准确概念;会用函数极限的定义证明函数极限等有关命题。 教学要求:使学生逐步建立起函数极限的δε-定义的清晰概念。会应用函数极限的δε-定义证明函数的有关命题,并能运用δε-语言正确表述函数不以某实数为极限等相应陈述。 教学重点:函数极限的概念。 教学难点:函数极限的δε-定义及其应用。 一、 复习:数列极限的概念、性质等 二、 讲授新课: (一) 时函数的极限:

以时和为例引入. 的直观意义. 介绍符号: 的意义, 定义 ( 和 . ) 几何意义介绍邻域 其中为充分大的正数.然后用这些邻域语言介绍几何意义. 例1 验证 例2 验证 例3 验证 证…… 时函数的极限: (二) 由考虑时的极限引入. 定义函数极限的“”定义. 几何意义. 用定义验证函数极限的基本思路.

例4 验证 例5验证 例6 验证 证由= 为使需有 为使需有 于是, 倘限制 , 就有 例7 验证 例8 验证 ( 类似有 (三)单侧极限: 1.定义:单侧极限的定义及记法. 几何意义: 介绍半邻域

然后介绍等的几何意义. 例9 验证 证考虑使的 2.单侧极限与双侧极限的关系: Th 类似有: 例10 证明: 极限不存在. 例11 设函数 在点的某邻域内单调. 若存在, 则有 = §2 函数极限的性质(2学时) 教学目的:使学生掌握函数极限的基本性质。 教学要求:掌握函数极限的基本性质:唯一性、局部保号性、不等式性质以及有理运算性等。 教学重点:函数极限的性质及其计算。 教学难点:函数极限性质证明及其应用。 教学方法:讲练结合。 一、组织教学:

数学分析知识点汇总

第一章实数集与函数 §1实数 授课章节:第一章实数集与函数——§1实数 教学目的:使学生掌握实数的基本性质. 教学重点: (1)理解并熟练运用实数的有序性、稠密性和封闭性; (2)牢记并熟练运用实数绝对值的有关性质以及几个常见的不等式.(它们是分析论证的重要工具) 教学难点:实数集的概念及其应用. 教学方法:讲授.(部分内容自学) 教学程序: 引言 上节课中,我们与大家共同探讨了《数学分析》这门课程的研究对象、主要内容等话题.从本节课开始,我们就基本按照教材顺序给大家介绍这门课程的主要内容.首先,从大家都较为熟悉的实数和函数开始. [问题]为什么从“实数”开始. 答:《数学分析》研究的基本对象是函数,但这里的“函数”是定义在“实数集”上的(后继课《复变函数》研究的是定义在复数集上的函数).为此,我们要先了解一下实数的有关性质. 一、实数及其性质

1、实数 (,q p q p ?≠??????有理数:任何有理数都可以用分数形式为整数且q 0)表示,也可以用有限十进小数或无限十进小数来表示.无理数:用无限十进不循环小数表示. {}|R x x =为实数--全体实数的集合. [问题]有理数与无理数的表示不统一,这对统一讨论实数是不利的.为以下讨论的需要,我们把“有限小数”(包括整数)也表示为“无限小数”.为此作如下规定: 01(1)9999n n a a --0,a =则记表示为无限小数,现在所得的小数之前加负例: 2.001 2.0009999→; 利用上述规定,任何实数都可用一个确定的无限小数来表示.在此规定下,如何比较实数的大小? 2、两实数大小的比较 1)定义1给定两个非负实数01.n x a a a =,01.n y b b b =. 其中 3 2.99992.001 2.0099993 2.9999→-→--→-; ;

实数集与函数解读

第一章 实数集与函数 习题 §1实数 1、 设a 为有理数,x 为无理数。证明: (1)a+ x 是无理数;(2)当a ≠0时,ax 是无理数。 2、 试在数轴上表示出下列不等式的解: (1)x (2x -1)>0;(2)|x-1|<|x-3|;(3)1-x -12-x ≥23-x 。 3、 设a 、b ∈R 。证明:若对任何正数ε有|a-b|<ε,则a = b 。 4、 设x ≠0,证明|x+x 1|≥2,并说明其中等号何时成立。 5、 证明:对任何x ∈R 有(1)|x-1|+|x-2|≥1;(2)|x-1|+|x-2|+|x-3|≥2。 6、 设a 、b 、c ∈+R (+R 表示全体正实数的集合)。证明 |22b a +-22c a +|≤|b-c|。 你能说明此不等式的几何意义吗? 7、 设x>0,b>0,a ≠b 。证明x b x a ++介于1与b a 之间。 8、 设p 为正整数。证明:若p 不是完全平方数,则p 是无理数。 9、 设a 、b 为给定实数。试用不等式符号(不用绝对值符号)表示下列不等式的解: (1)|x-a|<|x-b|;(2)|x-a|< x-b ;(3)|2x -a|0(a ,b ,c 为常数,且a

《数学分析》5第一章§3函数概念

授课章节:第一章 §3 函数概念 教学目的:使学生深刻理解函数概念。 教学要求:(1)深刻理解函数的定义以及复合函数、反函数和初等函数的定义,熟悉函数的各种表示方法; (2)牢记基本初等函数的定义、性质及其图象。会求初等函数的存在域,会分析初等函数的复 合关系。 教学重点:函数的概念。 教学难点:初等函数复合关系的分析。 教学方法:课堂讲授,辅以提问、练习、部分内容可自学。 教学程序: 引言:关于函数概念,在中学数学中已有了初步的了解。为便于今后的学习,本节将对此作进一步讨 论。 一 函数的定义 1.定义1 设,D M R ?,如果存在对应法则f ,使对x D ?∈,存在唯一的一个数y M ∈与之对应,则称f 是定义在数集D上的函数,记作:f D M →(|x y →). 函数f 在点x 的函数值,记为()f x ,全体函数值的集合称为函数f 的值域,记作()f D 。即 {}()|(),f D y y f x x D ==∈。 2.几点说明 (1)函数定义的记号中“:f D M →”表示按法则f 建立D到M的函数关系,|x y →表示这两个数集中元素之间的对应关系,也记作|()x f x →。习惯上称x 自变量,y 为因变量。 (2) 函数有三个要素,即定义域、对应法则和值域。当对应法则和定义域确定后,值域便自然确定下来。因此,函数的基本要素为两个:定义域和对应法则。所以函数也常表示为:(),y f x x D =∈. 由此,我们说两个函数相同,是指它们有相同的定义域和对应法则。 例如:1)()1,,f x x R =∈ {}()1,\0.g x x R =∈(不相同,对应法则相同,定义域不同) 2)()||,,x x x R ?=∈ ().x x R ψ=∈(相同,对应法则的表达形式不同) 。 (3)函数用公式法(解析法)表示时,函数的定义域常取使该运算式子有意义的自变量的全体,通常称为存在域(自然定义域)。此时,函数的记号中的定义域D可省略不写,而只用对应法则f 来表示一个函数。即“函数()y f x =”或“函数f ”。 (4)“映射”的观点来看,函数f 本质上是映射,对于a D ∈,()f a 称为映射f 下a 的象。a 称为()f a 的原象。 (5)函数定义中,x D ?∈,只能有唯一的一个y 值与它对应,这样定义的函数称为“单值函数”,若对同一个x 值,可以对应多于一个y 值,则称这种函数为多值函数。本书中只讨论单值函数(简称函数)。 (6)定义1中的定义是Cauchy 于1834年给出。不是完美的、现代意义上的函数定义。事实上,函数定义的产生也经历了一个从无到有,从具体到抽象。从特殊到一般,从不完美到逐步完美的过程。这个进程

数学分析中求极限的方法总结

数学分析中求极限的方法 总结 This model paper was revised by the Standardization Office on December 10, 2020

数学分析中求极限的方法总结 1 利用极限的四则运算法则和简单技巧 极限的四则运算法则叙述如下: 定理:如果0 x x lim f x =,lim g x =x x →→A B ()() (1)[]0 lim ()()lim ()lim ()x x x x x x f x g x f x g x →→→±=±=A ±B (2)[]0 x x lim f x g x =lim f x)lim ()x x x x g x →→→??=A?B ()()( (3)若B ≠0 (4)0 x lim c ()lim ()x x x f x c f x c →→?=?=A (5)[]00lim ()lim ()n n n x x x x f x f x →→??==A ????(n 为自然数) 上述性质对于,,x x x →∞→+∞→-∞也同样成立i 由上述的性质和公式我们可以看书函数的和、差、积、商的极限等于函数极限的和、差、积、商。 例1. 求225 lim 3x x x →+-的极限 解:由定理中的第三式可以知道 例2. 求3 x →的极限

式子经过化简后就能得到一个只有分母含有未知数的分式,直接求极限即可 例3. 已知 ()1111223 1n x n n = +++ ??-?,求lim n n x →∞ 解: 观察 11=112 2-? 111=2323- ?因此得到 ()1111223 1n x n n = +++ ??-? 所以 1lim lim 11n n n x n →∞→∞ ?? =-= ??? 2 利用导数的定义求极限 导数的定义:函数f(x)在0x 附近有定义,χ??,则 如果 存在, 则此极限值就称函数f(x)在点0x 的导数记为 () 0'f x 。 即 在这种方法的运用过程中,首先要选好f(x)。然后把所求极限都表示成f(x)在定点 x 的导数。

数学分析(一)第一章复习题

第一章复习题 一.填空 1、数集,...}2,1:)1({=-n n n 的上确界为 ,下确界为 。 2、 =∈-=E R x x x E sup ,|][{则 , =E inf ; 3、)(lim 2n n n n -+∞ → = _______________。 4、设数列}{n a 递增且 a a n n =∞ →lim (有限). 则有a = . 5. 设,2 12,212212n n n n n n x x +=-=- 则 =∞→n n x lim 二. 选择题 1、设)(x f 为实数集R 上单调增函数,)(x g 为R 上单调减函数,则函数 ))((x g f 在R 上( )。 A、是单调递增函数; B、是单调递减函数; C、既非单调增函数,也非单调减函数 ; D、其单调性无法确定. 2、在数列极限的“δε-”极限定义中,ε与δ的关系是( ) A 、 先给定ε后唯一确定δ; B 、 先给定ε后确定δ,但δ的值不唯一; C 、 先给定δ后确定ε; D 、 δ与ε无关. 3、设数列{}(0,1,2,...)n n a a n ≠=收敛,则下列数列收敛的是( ) A 、}1{2n a ; B 、}1{a n ; C 、 }1{a n ; D 、}{n a . 4. 若数列}{n x 有极限a ,则在a 的ε邻域之外,数列中的点( ) (A) 必不存在; (B) 至多只有有限多个; (C) 必定有无穷多个; (D) 可能有有限多个,也可能有无穷多个. 5.设a x n n =∞ →||lim ,则 ( ) (A) 数列}{n x 收敛; (B) a x n n =∞ →lim ; (C) a x n n -=∞ →lim ; (D) 数列}{n x 可能收敛,也可能发散。 6. 设}{n x 是无界数列,则 ( ) (A) ∞=∞→n n x lim ; (B) +∞=∞ →n n x lim ;

数学分析课程简介

导言数学分析课程简介 一、数学分析(mathematical analysis)简介: 1.背景: 从切线、面积、计算 sin、实数定义等问题引入. 32 2.极限 ( limit ) ——变量数学的基本运算: 3.数学分析的基本内容:数学分析以极限为基本思想和基本运算研究变实值 函数.主要研究微分(differential)和积分(integration)两种特殊的极限运算, 利用这两种运算从微观和宏观两个方面研究函数, 并依据这些运算引进并研究 一些非初等函数. 数学分析基本上是连续函数的微积分理论. 微积运算是高等数学的基本运算. 数学分析与微积分(calculus)的区别. 二、数学分析的形成过程: 1.孕育于古希腊时期:在我国,很早就有极限思想. 纪元前三世纪, Archimedes就有了积分思想. 2.十七世纪以前是一个漫长的酝酿时期,是微积分思想的发展、成果的积累 时期. 3.十七世纪下半叶到十九世纪上半叶——微积分的创建时期. 4.十九世纪上半叶到二十世纪上半叶——分析学理论的完善和重建时 期: 三、数学分析课的特点: 逻辑性很强, 很细致, 很深刻; 先难后易, 是说开头四章有一定的难度, 倘能努力学懂前四章(或前四章的 ), 后面的学习就会容易一些; 只要

在课堂上专心听讲, 一般是可以听得懂的, 但即便能听懂, 习题还是难以顺利完成. 这是因为数学分析技巧性很强, 只了解基本的理论和方法, 不辅以相应的技巧, 是很难顺利应用理论和方法的. 论证训练是数学分析课基本的,也是重要的内容之一, 也是最难的内容之一. 一般懂得了证明后, 能把证明准确、严密、简练地用数学的语言和符号书写出来,似乎是更难的一件事. 因此, 理解证明的思维方式, 学习基本的证明方法, 掌握叙述和书写证明的一般语言和格式, 是数学分析教学贯穿始终的一项任务. 有鉴于此, 建议的学习方法是: 预习, 课堂上认真听讲, 必须记笔记, 但要注意以听为主, 力争在课堂上能听懂七、八成. 课后不要急于完成作业, 先认真整理笔记, 补充课堂讲授中太简或跳过的推导, 阅读教科书, 学习证明或推导的叙述和书写. 基本掌握了课堂教学内容后, 再去做作业. 在学习中, 要养成多想问题的习惯. 四、课堂讲授方法: 1.关于教材及参考书:这是大学与中学教学不同的地方, 本课程主要从以下教科书中取材: [1]华东师范大学数学系编,数学分析(第三版),高等教育出版社,2001; [2] 陈纪修於崇华等编,《数学分析》(第二版)高等教育出版社,2001 [3]谢惠民,恽自求等数学分析习题课讲义,高等教育出版社,2003; [4]马振民,数学分析的方法与技巧选讲,兰州大学出版社,1999; [5]林源渠,方企勤数学分析解题指南,北京大学出版社,2003. 2.本课程按[1]的逻辑顺序并在其中取材.本课程为适应教学改革的要求,只介绍数学分析最基本的内容,并加强实践环节,注重学生的创新能力的培养。带星号的内容略讲或删去,相应的内容作为选修课将在数学分析方法课开设.

数学分析求极限的方法

求极限的方法 具体方法 ⒈利用函数极限的四则运算法则来求极限 定理1①:若极限)(lim 0 x f x x →和)(lim x g x x →都存在,则函数)(x f ±)(x g ,)()(x g x f ? 当0x x →时也存在且 ①[])()()()(lim lim lim 0 .00 x g x f x g x f x x x x x →→→± = ± ②[])()()()(lim lim lim 0 x g x f x g x f x x x x x x →→→?= ? 又若0)(lim 0 ≠→x g x x ,则 ) ()(x g x f 在0x x →时也存在,且有 ) ()() ()(lim lim lim x g x f x g x f x x x x x x →→→= 利用极限的四则运算法则求极限,条件是每项或每个因子极限存在,一般所给的变量都不满足这个条件,如 ∞ ∞、 0等情况,都不能直接用四则运算法则, 必须要对变量进行变形,设法消去分子、分母中的零因子,在变形时,要熟练掌握饮因式分解、有理化运算等恒等变形。 例1:求2 42 2 lim --- →x x x 解:原式=()() ()022 22lim lim 2 2 =+= -+-- - →→x x x x x x ⒉用两个重要的极限来求函数的极限 ①利用1sin lim =→x x x 来求极限 1sin lim =→x x x 的扩展形为: 令()0→x g ,当0x x →或∞→x 时,则有 ()() 1sin lim =→x g x g x x 或()() 1sin lim =∞ →x g x g x

数学分析第一章

Chapter1.Metric Spaces §1.Metric Spaces A metric space is a set X endowed with a metricρ:X×X→[0,∞)that satis?es the following properties for all x,y,and z in X: 1.ρ(x,y)=0if and only if x=y, 2.ρ(x,y)=ρ(y,x),and 3.ρ(x,z)≤ρ(x,y)+ρ(y,z). The third property is called the triangle inequality. We will write(X,ρ)to denote the metric space X endowed with a metricρ.If Y is a subset of X,then the metric space(Y,ρ|Y×Y)is called a subspace of(X,ρ). Example1.Letρ(x,y):=|x?y|for x,y∈I R.Then(I R,ρ)is a metric space.The set I R equipped with this metric is called the real line. Example2.Let I R2:=I R×I R.For x=(x1,x2)∈I R2and y=(y1,y2)∈I R2,de?ne ρ(x,y):= (x1?y1)+(x2?y2). Thenρis a metric on I R2.The set I R2equipped with this metric is called the Euclidean plane.More generally,for k∈I N,the Euclidean k space I R k is the Cartesian product of k copies of I R equipped with the metricρgiven by ρ(x,y):= k j=1(x j?y j)2 1/2 ,x=(x1,...,x k)and y=(y1,...,y k)∈I R k. Example3.Let X be a nonempty set.For x,y∈X,de?ne ρ(x,y):= 1if x=y, 0if x=y. In this case,ρis called the discrete metric on X. Let(X,ρ)be a metric space.For x∈X and r>0,the open ball centered at x∈X with radius r is de?ned as B r(x):={y∈X:ρ(x,y)0 such that B r(x)?A. 1

相关文档
最新文档