485通信中干扰抑制方法

485通信中干扰抑制方法
485通信中干扰抑制方法

485通信中干扰抑制方法

RS-485匹配电阻

RS-485是差分电平通信,在距离较长或速率较高时,线路存在回波干扰,此时要在通信线路首末两端并联120Ω匹配电阻。推荐在通信速率大于或线路长度大于500米时,才考虑加接匹配电阻。

RS-485接地

RS-485通信双方的地电位差要求小于1V,所以建议将两边RS-485接口的信号地相连,注意信号地不要接大地。

还有,就是采用隔离措施

变频器应用中的干扰抑制措施

在进线侧加装电抗器,可以抑制变频器产生的谐波对电网的干扰。

输出侧不能加吸收电容,因为会导致变频器过电流时延迟过电流保护动作,只能加电抗器,以改善功率因数。

避免变频器的动力线与信号线平行布线和集束布线,应分散布线。检测器的连接线、控制用信号线要使用双绞屏蔽线。变频器、电机的接地线应接到同一点上。在大量产生噪声的机器上装设浪涌抑制器,加数据线滤波器到信号线上。将检测器的连接线、控制用信号线的屏蔽层用电缆金属夹钳接地。

信号线和动力线使用屏蔽线并分别套入金属管后,效果更好。

容易受干扰的其它设备的信号线,应远离变频器和他的输入输出线。

如何解决中频炉的谐波干扰

中频炉在使用中产生大量的谐波,导致电网中的谐波污染非常严重。谐波使电能传输和利用的效率降低,使电气设备过热,产生振动和噪声,并使其绝缘老化,使用寿命降低,甚至发生故障或烧毁;谐波会引起电力系统局部并联谐振或串联谐振,使谐波含量放大,造成电容补偿设备等设备烧毁。谐波还会引起继电器保护和自动装置误动作,使电能计量出现混乱。对于电力系统外部,谐波会对通信设备和电子设备产生严重干扰,因而,改善中频炉电力品质成为应对的主要着力点。

滤除中频炉系统谐波的传统方法是LC滤波器,LC滤波器是传统的无源谐波抑制装置,由滤波电容器、电抗器和电阻器适当组合而成,与谐波源并联,除起滤波作用外,还兼顾无功补偿的需要。这种滤波器出现最早,成本比较低,但同时存在一些较难克服的缺点,比如只能针对单次谐波,容易产生谐波共振,导致设备损毁,随着时间谐振点会漂移,导致谐波滤除效果越来越差。同时,这一方式无法应对瞬变、浪涌和高次谐波,存在节能的漏洞。

谐波抑制的另一个比较新的方法是采用有源电力滤波器(Active Power Filter--APF)。它是一种电力电子装置,其基本原理是从补偿对象中检测出谐波电流,由补偿装置产生一个与该谐波电流大小相等而极性相反的补偿电流,从而使电网电流只含基波分量。这种滤波器能对频率和幅值都变化的谐波进行跟踪补偿,且补偿特性不受电网阻抗的影响,因而受到广泛的重视,并且已在日本等国获得广泛应用。但有源电力滤波器成本高昂,价格昂贵,投资回报期长,大多数企业难以承受。

MF-Saver吸收融合了LC技术与APF技术的优点,同时引入TOPSPARK G5的核心技术,扬长避短,创造性地解决了上述技术的不足,以独特的方式为中频炉环保节能提供了更有效的解决方案。

MF-Saver对谐波的抑制范围不仅包含低次谐波,还包含浪涌、瞬变及高次谐波,实现了全频域覆盖,消除了浪涌、瞬变及高次谐波对中频炉系统的危害和电量的浪费,结合LC技术和APF技术的合理成分,自适应调整内部器件参数,避免谐振点的漂移,大大提高了设备的稳定性和可靠性。同时成本也得到有效控制,以缩短用

户的投资回报期。通过对中频炉全频域谐波的有效滤波,同时加强了设备的抗浪涌、瞬变侵害的能力,改善了电力品质,降低了设备损耗,节约了电能,最终实现环保节能的优异效果

PLC不能稳定工作什么原因

摘要:简要分析了PLC控制系统在实际应用中可能受到的干扰类型。从软、硬件等方面提出了针对性的抗干扰措施,并强调了其在工业控制领域应用时必须全面、系统地考虑抗干扰机理和措施。

关键词: PLC;控制系统;电磁兼容;抗干扰

可编程控制器PLC具有编程简单、通用性好、功能强、易于扩展等优点。PLC控制系统的可靠性直接影响到企业的安全生产和经济运行,系统的抗干扰能力是关系到整个系统可靠运行的关键。PLC中采用了高集成度的微电子器件,可靠性高,但由于使用时工业生产现场的工作环境恶劣,如大功率用电设备的起动或停止引起电网电压的波动形成低频干扰和电磁辐射等恶劣电磁环境,大大降低了PLC控制系统的可靠性。为了确保控制系统稳定工作,提高可靠性,必须对系统采取一定的抗干扰方法和措施。

1 影响PLC控制系统稳定的干扰类型

空间的辐射干扰

空间的辐射电磁场(EMI)主要由电力网络、电气设备、雷电、高频感应加热设备、大型整流设备等产生,通常称为辐射干扰,其分布极为复杂。其影响主要通过两条途径:一是对PLC通讯网络的辐射,由通讯线路的感应引入干扰;二是直接对PLC 内部的辐射,由电路感应产生干扰。若此时PLC置于其辐射场内,其信号、数据线和电源线即可充当天线接受辐射干扰。此种干扰与现场设备布置及设备所产生的电磁场的大小,特别是与频率有关。

传导干扰

(1)来自电源的干扰

在工业现场中,开关操作浪涌、大型电力设备的起停、交直流传动装置引起的谐波、电网短路暂态冲击等均能在电网中形成脉冲干扰。PLC的正常供电电源均由电网供

电,因而会直接影响到PLC的正常工作。由于电网覆盖范围广,它将受到所有空间的电磁干扰而产生持续的高频谐波干扰。特别在断开电网中的感性负载时产生的瞬时电压峰值是额定值的几十倍,其脉冲功率足以损坏PLC半导体器件,并且含有大量的谐波可以通过半导体线路中的分布电容、绝缘电阻等侵入逻辑电路,引起误动作。

(2)来自信号传输线上的干扰

除了传输有效的信息外,PLC系统连接的各类信号传输线总会有外部干扰信号的侵入。此干扰主要有2种途径:① 通过变送器供电电源或共用信号仪表的供电电源串人的电网干扰;② 信号线上的外部感应干扰,其中静电放电、脉冲电场及切换电压为主要干扰来源。由信号线引入的干扰会引起I/O信号工作异常和测量精度大大降低,严重时将引起元器件损伤。若系统隔离性能较差,还将导致信号间互相干扰,引起共地系统总线回流,造成逻辑数据变化、误动作甚至死机。

地电位的分布干扰

PLC控制系统的地线包括系统地、屏蔽地、交流地和保护地等。地电位的分布干扰主要是各个接地点的电位分布不均,不同接地点间存在地电位差,从而引起了地环路电流,该电流可能在地线上产生不等电位分布,影响PLC内逻辑电路和模拟电路的正常工作。由于PLC工作的逻辑电压干扰容限较低,逻辑地电位的分布干扰容易影响PLC的逻辑运算和数据存贮,造成数据混乱、程序跑飞或死机。模拟地电位的分布将导致测量精度下降,引起对信号测

控的严重失真和误动作。

PLC系统内部产生的干扰

产生这种干扰的主要原因是系统内部元器件及电路间的相互电磁辐射。如逻辑电路相互辐射及其对模拟电路的影响;模拟地与逻辑地的相互影响及元器件间的相互不匹配使用等。

2 提高抗干扰能力的硬件措施

硬件抗干扰技术是系统设计时应首选的措施,它能有效抑制干扰源,阻断干扰传输通道。

供电电源

电源波动造成的电压畸变或毛刺,将对PLC及I/O模块产生不良影响。据统计分

析,PLC系统的干扰中有70%是从电源耦合进来的。为了抑制干扰,保持电压稳定,常采用以下几种抗干扰方法:

(1)使用隔离变压器衰减从电源进线的高频干扰信号,输入、输出线应用双绞线以抑制共模干扰。其屏蔽层接地方式不同,对干扰抑制的效果也不一样,一般做法是将初、次级屏蔽层均接地。

(2)用低通滤波器抑制高次谐波。低通滤波器的内部电容上电感组合方式不同,其高次谐波的抑制效果也有一定区别。另外其电源输入、输出线应分隔开,屏蔽层应可靠接地。一般是在电源系统中既使用滤波器又使用隔离变压器,但要注意先将滤波器接人电源再接隔离变压器。

图1 隔离变压器供电系统

(3)用频谱均衡法抑制电源中的瞬变干扰。这种方法不常用,其成本较贵。

接地

良好的接地是保证PLC可靠工作的重要条件之一,可以避免偶然发生的电压冲击危害。接地线与机器的接地端相联,基本单元必须接地,如果选用扩展单元,其接地点与基本单元接地点接在一起。为了抑制附加在电源及输入、输出端的干扰,应给PLC接以专用地线,接地线与动力设备(如电动机)的接地点应分开,若达不到此要求,则可与其它设备公共接地,严禁与其它设备串联接地,具体接地方式如图2。接地电阻要小于5Ω,接地线要粗,面积要大于2平方毫米,而且接地点最好靠近PLC装置,其间的距离要小于50米,接地线应避开强电回路,若无法避开时,应垂直相交,缩短平行走线的长度。

图2 PLC系统接地方式

输入/输出部分

输入信号的抗干扰

输入信号的输入线之间的差模干扰可以利用输入模块滤波来减小干扰,而输入线与大地间的共模干扰可通过控制器的接地来抑制。在输入端有感性负载时,为了防止电路信号突变而产生感应电势的影响,可采用硬件的可靠性容错和容差设计技术,对于交流输入信号,可在负载两端并联电容C和电阻R,对于直流输入信号,可并接续流二极管D。一般负载容量在10VA以下时,应选C为μF,R为120 ,当负载容量在10VA以上时,应选C为μF,R为47 。具体电路如图3所示.

图3 输入信号的抗干扰设计

输出电路的抗干扰

对于PLC系统为开关量输出,可有继电器输出、晶体管输出、晶闸管输出三种形式。具体选择要根据负载要求来决定。若负载超过了PLC的输出能力,应外接继电器或接触器,才可正常工作。

PLC输出端子若接有感性负载,输出信号由OFF变为ON或从ON变为OFF时都会有某些电量的突变而可能产生干扰,故应采取相应的保护措施,以保护PLC的输出触点,对于直流负载,通常是在线圈两端并联续流二极管D,二极管应尽可能靠近负载,二极管可为1A的管子。对于交流负载,应在线圈两端并联RC吸收电路,根据负载容量,电容可取μF,电阻可取47-120 ,且RC尽可能靠近负载。如图4所示。

图4 PLC 输出触点的保护

外部配线的抗干扰设计

外部配线之间存在着互感和分布电容,进行信号传送时会产生窜扰。为了防止或减少外部配线的干扰,交流输入、输出信号与直流输入、输出信号应分别使用各自的电缆。集成电路或晶体管设备的输入、输出信号线要使用屏蔽电缆,屏蔽电缆在输入、输出侧要悬空,而要在控制器侧要接地。配线时在30米以下的短距离,直流和交流输入、输出信号线最好不要使用同一电缆,如果要走同一配线管时,输入信号要使用屏蔽电缆。如图5所示。30-300米距离的配线时,直流和交流输出、输入信号线要分别使用各自电缆,并且输入信号线一定要用屏蔽线。对于300米以上长距离配线时,则可用中间继电器转换信号,或使用远程I/O通道。对于控制器的接地线要与电源线或动力线分开,输入、输出信号线要与高电压、大电流的动力线分开配线。

图 5 屏蔽电缆处理法

3 软件抗干扰设计

尽管硬件抗干扰可滤除大部分干扰信号,但因干扰信号产生的原因很复杂。且具有很大的随机性,很难保证系统完全不受干扰。因此往往在硬件抗干扰措施的基础上.采取软件抗干扰技术加以补充,作为硬件措施的辅助手段。软件抗干扰方法没计简单、修改灵活、耗费资源少,在PLC测控系统中同样获得了广泛的应用。对于PLC测控装置,其数据输入、输出、存储等系统属于弱电系统,如果工作环境中存在干扰,就有可能使数据受干扰而破坏,从而造成数据误差、控制状态失灵、程序状态和某些器件的工作状态被改变,严重时会使系统程序破坏。因此,数据抗干扰同样十分重要。

指令重复执行

指令重复执行就是根据需要使作用相同的指令重复执行多次,一般适用于开关量或数字量输入,输出的抗干扰。在采集某些开关量或数字量时,可重复采集多次,直到连续两次或两次以上的采集结果完全相同时才视为有效。若多次采集后,信号总是变化不定,可停止采集,发出报警信号。在满足实时性要求的前提,如果在各次采集数守信号之间插入一段延时,数据的可靠性会更高。如果在系统实时性要求不是很高的情况下,其指令重复周期尽可能长些。

数字滤波

在某些信号的采集过程中,由于存在随机干扰而可能使被测信号的随机误差加大。

针对这种情况,可以采用数字滤波技术。该方法具有可靠性高和稳定性好的特点,广泛应用于工业计算机测控系统中。此外,数字滤波的常用方法还有:程序判断滤波法、中值滤波法、算术平均滤波法、递推平均滤波法等。

4 结语

随着PLC应用范围的逐渐扩大,加之系统恶劣的工作环境,它所要克服的干扰就会越来越多,因此研究PLC系统的抗干扰问题就变得越来越重要。只有对工作环境作全面的分析,确定干扰性质,并采取相应的抗干扰措施,才能保证系统长期稳定地工作。

微机型继电保护的原理怎么样抗干扰以及抗干扰的措施

微机继电器保护的原理,你可以参照我的下面思路去理解:

一句话的解释是:通过对采集信息的分析,判断异常状态,并输出信息告警或驱动开关跳闸。

详细解释:

1)信息采集(即数据采样),包含模拟量采样(电流、电压)和数字量采样(接点信号,如开关分合位、储能状态、地刀位置等)

2)进行数据分析,则需要一个有计算能力的大脑,这就是微机芯片,例如:单片机、DSP、ARM等。

3)判断异常状态,这是如何判断的呢主要是软件通过一些列的算法对采样数据进行分析,然后得出电气设备运行状态是否异常的结果。

4)输出告警及驱动开关跳闸。这主要指信号输出。可以分解为继电器输出(独立的报警继电器输出、独立的跳闸继电器输出),指示灯输出(不同的告警信息驱动对应的指示灯),提示文字输出(在现实界面上弹出对应告警窗口,显示告警信息),通讯输出(把微机保护装置内的信息通过通讯的方式传送给监控主机或者上级监控中心)

5)与非微机型或者常规继电器比较更多的优点:微机型继电保护装置可以完成自检,自检异常时告警输出,及时通知到设备管理或运行维护人员。提高系统运行的安全性。

6)通过微机型继电保护装置的已有平台,可以实现更多的应用功能。例如:集成测量功能(实现对电气参数的完整测量),实现五防闭锁功能等。

7)从硬件的结构上可以分为几块:电源模块、数据采集(互感器板、开入板)、数据采样及分析处理(监控板)、继电器输出插件、人机界面、机箱等。

微机保护装置抑制电磁干扰的基本措施

硬件措施:1、隔离(光电隔离和变压器隔离)2、屏蔽(实质是通过具有良好导电性的金属材料所构成的壳体来隔离和衰减电磁干扰)3、接地(信号接地、屏蔽接地:即将装置外壳接地)。

软硬件结合抗干扰措施:

1.软、硬件结合的程序异常复位措施。(看门狗WATCHDOG技术)

2.关键输出口编码校核。为防止失控程序对重要的输出口进行非正常操作,导致跳闸等误操作,必须对输出的操作进行校核)

3.软、硬件冗余技术。(对采集数据进行比较或多通道采集数据、对运算结果进行核算)

对微机保护装置的抗干扰性能,有着严格的测试,其测试内容包括:

1.共模干扰符合IEC255-22-1标准等级3 1MHZ/1min

2.差模干扰符合IEC255-22-1标准等级3 1MHZ/1min

3.辐射电磁场干扰符合IEC255-22-3标准等级3

至试验设备天线距离>,

在所有侧面试验场强,

频率波段80-1000MHZ,10V/m

4.静电电场干扰符合IEC255-22-2标准等级4

接触放电 8KV

空气放电 15KV

5.快速瞬变干扰符合IEC255-22-1标准等级4

幅值:4KV 频率:5000HZ 持续时间:1min

监控摄像机常见的干扰源有那些啊

我是深圳领航员数码技术有限公司的,让我来为你解答你所遇到的那一些问题吧!

监控摄像机常见的干扰有以下几种:

不洁净电源干扰:

比如本电网中有大功率可控硅调频调速装置、可控硅整流装置、可控硅交直流变换装置等,都会对电源产生污染。不洁净电源使摄像机和其它有源设备工作不稳定,进而形成干扰。

广播干扰:

电缆在空中架设时,这时电缆本身就相当于一根很长的天线。由于天线效应的结果,电缆中会产生相当大的广播干扰电压,并在电缆外皮上产生干扰电流,这一电流通过电缆两端接地点与地构成回路,于是在终端负载上就会产生广播干扰信号的电压,使干扰信号混入视频信号中。这种干扰信号在图像上表现为较密的横纹、竖纹、斜纹等,严重时甚至会淹没整个视频图象。

电源干扰:

当系统需要始端与末端同时接地时,由于两端接地电位不同及电缆外皮电阻的存

在,在两地之间引起50Hz的地电位差,从而产生干扰信号电压。当干扰信号被叠加在视频信号上时,使正常图像上出现很宽的横暗带等。

谐波干扰:

谐波干扰主要表现在大电流或高电压的电力线周围,是电力电缆向四周的辐射信号,其频率为2500Hz和125000Hz,主要干扰视频信号的低频段。

传输线路干扰:

视频线缆质量不好,屏蔽性能差(屏蔽层稀疏或非铜介质屏蔽层等),线缆电阻过大,而造成的视频信号严重衰减等。

高频干扰:

电缆屏蔽层对于频率越低的信号其屏蔽效果越差,由于这种原因而引入的高频干扰信号有载波电话,电台的信号等。它们在图像上造成水平条纹的干扰。

最新变频器产生的干扰及解决方案

变频器产生的干扰及 解决方案

变频器产生的干扰及解决方案 摘要:变频器具有很多的优越性,但它对电网的谐波干扰和电磁辐射干扰也越来越受到人们的关注,本文主要介绍谐波、电磁辐射的标准和危害及其减弱或消除的方法。 1 引言 采用变频器驱动的电动机系统因其节能效果明显、调节方便、维护简单、网络化等优点而得到越来越多的应用。但是,由于变频器特殊的工作方式带来的干扰越来越不容忽视。变频器干扰主要有:一是变频器中普遍使用了晶闸管或者整流二极管等非线性整流器件,其产生的谐波对电网将产生传导干扰,引起电网电压畸变(电压畸变率用THDv表示,变频器产生谐波引起的THDv在10~40%左右),影响电网的供电质量;二是变频器的输出部分一般采用的是IGBT等开关器件,在输出能量的同时将在输出线上产生较强的电磁辐射干扰,影响周边电器的正常工作。 2 谐波和电磁辐射对电网及其它系统的危害 (1)谐波使电网中的电器元件产生了附加的谐波损耗,降低了输变电及用电设备的效率。 (2)谐波可以通过电网传导到其它的用电器,影响了许多电气设备的正常运行,比如谐波会使变压器产生机械振动,使其局部过

热,绝缘老化,寿命缩短,以至于损坏;还有传导来的谐波会干扰电器设备内部软件或硬件的正常运转。 (3)谐波会引起电网中局部的串联或并联谐振,从而使谐波放大。 (4)谐波或电磁辐射干扰会导致继电保护装置的误动作,使电气仪表计量不准确,甚至无法正常工作。 (5)电磁辐射干扰使经过变频器输出导线附近的控制信号、检测信号等弱电信号受到干扰,严重时使系统无法得到正确的检测信号,或使控制系统紊乱。 一般来讲,变频器对电网容量大的系统影响不十分明显,这也就是谐波不被大多数用户重视的原因。但对系统容量小的系统,谐波产生的干扰就不能忽视。 3 有关谐波的国际及国家标准 现行的有关标准主要有:国际标准IEC61000-2-2, IEC61000-2-4,欧洲标准EN61000-3-2,EN61000-3-12,国际电工学会的建议标准IEEE519-1992,中国国家标准GB/T14549-93《电能质量共用电网谐波》。下面分别做简要介绍。 3.1 国际标准

电磁干扰(EMI)抑制技术

电磁干扰(EMI)抑制技术 时间:2012-08-14 11:38:34 来源:作者: 1 电磁干扰基本概念 在复杂的电磁环境中,任何电子及电气产品除了本身能够承受一定的外来电磁干扰(Electromagnetic Interference,EMI)而保持正常工作外,还不会对其他电子及电气设备产生不可承受的电磁干扰,该产品即具有电磁兼容性(Electromagnetic Compatibility,EMC)[1]。 21世纪将是信息爆炸的时代,信息的产生、传递、接收、处理和储存等都需要依赖电磁波作为载体。广义地说,声波、无线电波、光波均可作为信息载体,因此,广义的电磁兼容性概念也应拓展到声、光、电的广阔领域。 电子及电气产品的电磁干扰发射或受到电磁干扰的侵害都是通过产品的外壳、交/直流电源端口、信号线、控制线及地线而形成的。按照EMI的传播方式,可将其分为电磁辐射干扰和电磁传导干扰两大类。通常,辐射干扰出现在产品周围的媒体中,传导干扰则出现在各种导体中。一般来说,通过外壳发射的电磁干扰,或通过外壳侵入的干扰都是辐射干扰,而通过其它导体发射和入侵的干扰属于传导干扰。 2 人类必须关注电磁兼容问题 2.1 电磁环境不断恶化 20世纪中叶以来,电子技术的迅猛发展,使人类社会的进步和文明上了一个新的台阶,但是也给人们带来了一系列社会问题和环境问题。家用电器、通信、计算机及信息设备、电动工具、航空、航天等工业、科技、医学等各个领域的自动控制、测量仪器以及电力电子系统等的广泛普及、应用,深入千家万户之中,使得电磁污染问题日益突出,而电子设备的高频化、数字化,干扰信号的能量密度增大,使有限空间内的电磁环境更为恶化。 1996年3月,日本SAPIO杂志公布了日本家用电器电磁辐射的检测结果(表1)。瑞典等北欧三国于1993年所作的联合调查指出:人类长期受到2mG(毫高斯)以上的电磁辐射影响,患白血病的机会是正常人的2.1倍,患脑肿瘤的机会是正常人的1.5倍,其他疾病的发病概率也明显增加。 表1 家用电器电磁辐射检测结果(单位:mG)[2] 2.2 电磁污染危害不浅 电磁干扰和污染看不见、摸不着、听不到,因其无色、无味也无形,但它确实无处不在、危害不浅,威胁人体健康。德国专家指出,电磁污染能影响对人体生物钟起作用的激素和传达神经信息的激素,还能破坏细胞膜;美国科学家的研究表明,电磁污染可直接杀伤人

电磁干扰及其抑制方法的研究

弱电工程中电磁干扰及其抑制方法的研究 (葛洲坝通信工程有限公司方宏坤 151120) 【摘要】在弱电工程应用领域,强电与弱电交叉耦合,电磁干扰(EMI)错综复杂,严重影响弱电系统的稳定性和安全性。本文详细介绍了 EMI 产生的原因、分析EMI/RFI的特性,及其传输途径和危害,利用电磁理论和工程实践,分析并提出了一些在弱电工程领域行之有效的 EMI 抑制方法。 【关键词】弱电电磁干扰(EMI)射频干扰(RFI)干扰抑制 随着计算机技术,特别是网络技术的飞速发展,IT技术在弱电工程领域的广泛应用,IT设备日益精密、复杂,使得电子干扰问题日趋严峻。它可使系统的稳定性、可靠性降低,功能失效,甚至导致系统完瘫痪和设备损坏。特别是EMI/RFI(电磁干扰/射频干扰)问题,已成为近几年弱电工程领域的焦点。 1、电磁干扰分类和特性 生活中电磁干扰无处不在,其干好错综复杂。通常我们把电磁干扰主要划分为电磁干扰(EMI)、射频干扰(RFI)和电磁脉冲(EMP)三种,根据其来源可分为外界和内部两种,严格的说所有电子运行的元件均可看作干扰源。本文中所提EMI是对周围电磁环境有较强影响的干扰;RFI则从属于EMI;EMP 是一种瞬态现象,它可由系统内部原因(电压冲击、电源中断、电感负载转换等)或外部原因(闪电等)引起,能耦合到任何导线上,如电源线和通信电缆等,而与这些导线相连的电子系统可能受到瞬时严重干扰或使系统内的电子电路永久性损坏。图 1 给出了常见 EMI/RFI 的干扰源及其频率范围。

1.1 EMI特性分析 在电子系统设计中,应从三个方面来考虑电磁干扰问题:首先是电子系统产生和发射干扰的程度;其次是电子系统在强度为 1~10 V/m、距离为 3 米的电磁场中的抗扰特性;第三是电子系统内部的干扰问题。利用干扰三要素分析与EMI相关的问题需要把握EMI的五个关键因素,这五个关键因素是频率、幅度、时间、阻抗和距离。 在EMI分析中的另一个重要参数是电缆的尺寸、导线及护套,这是因为,当EMI成为关键因素时,电缆相当于天线或干扰的传输器,必须考虑其物理长度与屏蔽问题。 1.2 RFI特性分析 无线电发射源无处不在,如无线电台、移动通信、发电机、电动机、电锤等等。所有这些电子活动都会影响电子系统的性能。无论RFI的强度和位置如何,电子系统对RFI必须有一个最低的抗扰度。在通信、无线电工程中,抗扰度定义为设备承受每单位RFI功率强度的敏感度。从“干扰源—耦合途径—接收器”的观点出发,电场强度E 是发射功率、天线增益和距离的函数,即 E=5.5· P·G d 式中P为发送功率(mW/cm2),G为天线增益,d为电路或系统距干扰源的距离(m)。 由于模拟电路一般在高增益下运行,对RF场比数字电路更为敏感,因此,必须解决μV级和mV级信号的问题;对于数字电路,由于它具有较大的信号摆动和噪声容限,所以对RF场的抑制力更强。 1.3 干扰途径 任何干扰问题可分解为干扰源、干扰接收器和干扰的耦合途径三个方面,即所谓的干扰三要素。如表 2 所示。 表2 干扰源耦合途径干扰类型接收器 共地阻抗传导干扰 辐射场到互连电缆(共模)辐射干扰 微控制器辐射场到互连电缆(差模)辐射干扰 有源器件电缆间串扰(电容效应)感应干扰微控制器 静电放电电缆间串扰(电感效应)感应干扰通信接收器 通信发射机电缆间串扰(漏电导)传导干扰有源器件 电源电缆间串扰(场耦合)辐射干扰其他电子系统扰动电源线到机箱传导干扰 雷电辐射场到机箱辐射干扰

产生的干扰及解决方案

变频器产生的干扰及解决方案 一、前言 采用变频器驱动的电动机系统因其节能效果明显、调节方便、维护简单、网络化等优点而被越来越多的应用。但是,由于变频器特殊的工作方式带来的干扰越来越不容忽视。变频器干扰主要有:一是变频器中普遍使用了晶闸管或者整流二极管等非线性整流器件,其产生的谐波对电网将产生传导干扰,引起电网电压畸变(电压畸变率用THDv表示,变频器产生谐波引起的THDv在10~40%左右),影响电网的供电质量;二是变频器的输出部分一般采用的是IGBT等开关器件,在输出能量的同时将在输出线上产生较强的电磁辐射干扰,影响周边电器的正常工作。 二、谐波和电磁辐射对电网及其它系统的危害 1.谐波使电网中的电器元件产生了附加的谐波损耗,降低了输变电及用电设备的效率。 2.谐波可以通过电网传导到其它的用电器,影响了许多电气设备的正常运行,比如谐波会使变压器产生机械振动,使其局部过热,绝缘老化,寿命缩短,以至于损坏;还有传导来的谐波会干扰电器设备内部软件或硬件的正常运转。 3.谐波会引起电网中局部的串联或并联谐振,从而使谐波放大。 4.谐波或电磁辐射干扰会导致继电器保护装置的误动作,使电气仪表计量不准确,甚至无法正常工作。 5.电磁辐射干扰使经过变频器输出导线附近的控制信号、检测信号等弱电信号受到干扰,严重时使系统无法得到正确的检测信号,或使控制系统紊乱。 一般来讲,变频器对电网容量大的系统影响不十分明显,这也就是谐波不被大多数用户重视的原因。但对系统容量小的系统,谐波产生的干扰就不能忽视。 三、有关谐波的国际及国家标准 现行的有关标准主要有:国际标准IEC61000-2-2,IEC61000-2-4,欧洲标准 EN61000-3-2,EN61000-3-12,国际电工学会的建议标准IEEE519-1992,中国国家标准 GB/T14549-93《电能质量共用电网谐波》。下面分别做简要介绍: 1.国际标准 IEC61000-2-2标准适用于公用电网,IEC61000-2-4标准适用于厂级电网,这两个标准规定了不给电网造成损害所允许的谐波程度,它们规定了最大允许的电压畸变率THDv. IEC61000-2-2标准规定了电网公共接入点处的各次谐波电压含有的THDv约为8%. IEC61000-2-4标准分三级。第一类对谐波敏感场合(如计算机、实验室等)THDv为5%;第二类针对电网公共接入点和一部分厂内接入点THDv为8%;第三类主要针对厂内接入点THDv为10%. 以上两个标准还规定了电器设备所允许产生谐波电流的幅值,前者主要针对16A以下,后者主要针对16A到64A.

开关电源中电磁干扰的产生及其抑制

开关电源中电磁干扰的产生及其抑制 摘要:电磁干扰对开关电源的效率和安全性及使用的影响日益成为人们关注的热点。本文分析了开关电源中电磁干扰产生的原因和传播的路径,并提出了抑制干扰的有效措施。 关键词:开关电源、电磁干扰、耦合通道、电磁屏蔽 1 引言 电磁兼容EMC是英文electro magnetic compatibility 的缩写。它包括两层含义,一是设备在工作中产生的电磁辐射必须限制在一定水平内,二是设备本身要有一定的抗干扰能力,它必须具备三个要素:干扰源、耦合通道、敏感体。给电子线路供电的开关电源对干扰的抑制对保证电子系统的正常稳定运行具有重要意义。本文通过分析开关电源中的干扰源和耦合通道,提出了抑制干扰的有效措施。并提出了开关电源中开关变压器的设计和制作方法。 2 开关电源中的干扰源和耦合通道 开关电源首先将工频交流电整流为直流电,然后经过开关管的控制变为高频,最后经过整流滤波电路输出,得到稳定的直流电压,因此,自身含有大量的谐波干扰。同时,由于变压器的漏感和输出二极管的反向恢复电流造成的尖峰,都会产生不同程度的电磁干扰。开关电源中的干扰源主要集中在电压、电流变化大(即dV/dt或dI/dt很大)的元器件上,尤其是开关管、输出二极管和高频变压器等。同时,杂散电容会将电网的噪声传导到电子系统的电源而对电子线路的工作产生干扰。 这里我们来分析一下几种干扰产生的原因及其耦合的路径。 2.1输入整流滤波电路产生的谐波干扰 开关电源输入端普遍采用桥式整流,电容滤波电路。由于整流二极管的非线性和滤波电容的储能作用,使得输入电流i成为一个时间很短、峰值很高的周期性尖峰电流,如图1所示。这种畸变的输入电流,它除了基波外,还含有丰富的高次谐波分量。

电磁干扰及抑制技术

电磁干扰及常用的抑制技术 摘要:各种干扰是机电一体化系统和装置出现瞬时故障的主要原因。电磁兼容性设计是目前电子设备及机电一体化系统设计时考虑的一个重要原则,它的核心是抑制电磁干扰。电磁干扰的抑制要从干扰源、传播途径、接收器三个方面着手,切断干扰耦合的途径,干扰的影响也将被消除。常用的方法有滤波、降低或消除公共阻抗、屏蔽、隔离等。 关键词:电磁干扰干扰抑制屏蔽接地 1.电磁干扰 电磁干扰(electro magnetic interference,EMI)是指系统在工作过程中出现的一些与有用信号无关的、并且对系统性能或信号传输有害的电气变化现象。构成电磁干扰必须具备三个基本条件:①存在干扰源;②有相应的传输介质;③有敏感的接收元件。只要除去其中一个条件,电磁干扰就可消除,这就是电磁抑制技术的基本出发点。 1.1 电磁干扰的分类 常见的各种电磁干扰根据干扰的现象和信号特征不同有以下分类方法。 1、按其来源分类 (1) 自然干扰。 自然干扰是指由于大自然现象所造成的各种电磁噪声。 (2) 人为干扰。

由于电子设备和其他人工装置产生的电磁干扰。 2、按干扰功能分类 (1) 有意干扰。 有意干扰是指人为了达到某种目的而有意识制造的电磁干扰信号。这是当前电子战的重要手段。 (2) 无意干扰。 无意干扰是指人在无意之中所造成的干扰,如工业用电、高频及微波设备等引起的干扰等。 3、按干扰出现的规律分类 (1) 固定干扰。 多为邻近电气设备固定运行时发出的干扰。 (2) 半固定干扰。 偶尔使用的设备(如行车、电钻等)引起的干扰。 (3) 随机干扰。 无法预计的偶发性干扰。 4、按耦合方式分类 (1) 传导耦合干扰。 传导耦合是指电磁噪声的能量在电路中以电压或电流的形式,通过金属导线或其他元件(如电容器、电感器、变压器等)耦合到被干扰设备(电路)。 (2) 辐射耦合干扰。 电磁辐射耦合是指电磁噪声的能量以电磁场能量的形式,通过空

变频器谐波干扰的解决方法

变频器谐波干扰的解决方法 变频器以其节能显著,保护完善,控制性能好,使用维护方便等特点,迅速发展起来,已成为电动机调速的主潮流,怎样结合生产工艺要求正确使用变频器并使其充分发挥效益,已成为我们关注的焦点。 近年来,随着我厂变频器投用量增多,变频设备干扰引起故障也在增多,电气设备出现的谐波干扰问题主要表现有以下几方面:(1)谐波干扰导致电力系统无功功率增大,造成功率因数明显降低;(2)现场电机受到变频谐波干扰引起电机噪声与振动增大,温度升高;(3)谐波干扰造成系统电缆故障率增多,绝缘老化,引起电缆对地故障;(4)谐波干扰引起断路器工作不稳定,引起开关误动作;(5)谐波干扰对通讯电路的干扰,引起联锁电路误动作等。 一、变频器的基本原理和电路组成 变频器有主回路和辅助控制电路组成,其中主回路有整流模块、平波电容、滤波电容、逆变电路、限流电阻和接触器等元器件组成;辅助控制电路由驱动电路、保护信号检测电路、控制电路脉冲发生及信号处理电路等组成,如下为变频器逆变电路图。这种电

路特点是,电源采用三相电流全波整流,中间直流环节的储能单元采用大容量电容作为储能元件,负载的无功功率将由它来缓冲。由于大电容的作用,主电路的直流电压比较平稳。然后经过6个功率管IGBT进行信号调制,产生电动机端的电压为方波或波电流。故称为电压型变频器。现在普遍应用的都是电压型变频器。 二、变频器应用中的谐波干扰问题及危害 谈到变频器的谐波干扰问题,首先要了解干扰的来源,变频器本身就是一种谐波干扰源,变频器谐波是由交流电整流电路和直流电转换为交流过程中产生的。当电子元件IGBT工作于开关模式作高速切换时,产生大量耦合性电磁电流。 因此变频器对电气系统内其它电子、电气设备来说是一个电磁干扰源。在现实工作中,变频器产生的谐波电流从输出端经过电缆传导到电动机定子绕组上,造成电机铜损、铁损大幅增加。致使电机无功损耗增大,温度升高,严重影响电机的运转特性;另一方面变频器输入回路产生的3次谐波经过电源电缆影响到电力系统,它可在变压器内形成环流,造成变压器内部温度升高,影响变压器的使用效率;谐波干扰还会引起断路器保护电路检测产生误差,导致断路器

电磁干扰的屏蔽方法知识

电磁干扰的屏蔽方法 EMC问题常常是制约中国电子产品出口的一个原因,本文主要论述EMI的来源及一些非常具体的抑制方法。 电磁兼容性(EMC)是指“一种器件、设备或系统的性能,它可以使其在自身环境下正常工作并且同时不会对此环境中任何其他设备产生强烈电磁干扰(IEEEC63.12-1987)。”对于无线收发设备来说,采用非连续频谱可部分实现EMC 性能,但是很多有关的例子也表明EMC并不总是能够做到。例如在笔记本电脑和测试设备之间、打印机和台式电脑之间以及蜂窝电话和医疗仪器之间等都具有高频干扰,我们把这种干扰称为电磁干扰(EMI)。 EMC问题来源 所有电器和电子设备工作时都会有间歇或连续性电压电流变化,有时变化速率还相当快,这样会导致在不同频率内或一个频带间产生电磁能量,而相应的电路则会将这种能量发射到周围的环境中。 EMI有两条途径离开或进入一个电路:辐射和传导。信号辐射是通过外壳的缝、槽、开孔或其他缺口泄漏出去;而信号传导则通过耦合到电源、信号和控制线上离开外壳,在开放的空间中自由辐射,从而产生干扰。 很多EMI抑制都采用外壳屏蔽和缝隙屏蔽结合的方式来实现,大多数时候下面这些简单原则可以有助于实现EMI屏蔽:从源头处降低干扰;通过屏蔽、过滤或接地将干扰产生电路隔离以及增强敏感电路的抗干扰能力等。EMI抑制性、隔离性和低敏感性应该作为所有电路设计人员的目标,这些性能在设计阶段的早期就应完成。 对设计工程师而言,采用屏蔽材料是一种有效降低EMI的方法。如今已有多种外壳屏蔽材料得到广泛使用,从金属罐、薄金属片和箔带到在导电织物或卷带上喷射涂层及镀层(如导电漆及锌线喷涂等)。无论是金属还是涂有导电层的塑料,一旦设计人员确定作为外壳材料之后,就可着手开始选择衬垫。 金属屏蔽效率

继电器电磁干扰的分析及抑制

摘要:本文主要介绍了对电气设备中继电器及其开关触点干扰抑制的机理,提出了抑制干扰的有效措施。 关键词:继电器电磁干扰分析抑制 1前言 随着科学技术的飞速发展,电子、电力电子、电气设备应用越来越广泛,它们在运行过程中会产生较强的电磁干扰和谐波干扰。其中,电磁干扰具有很宽的频率范围(从几百Hz 到MHz),又有一定的幅度,经过传导和辐射会污染电磁环境,对电子设备造成干扰,有时甚至危及操作人员的安全。特别是大功率中、短波广播发射中心,其周围电磁环境尤为复杂,要想保证设备安全稳定运行,电子设备及电源必须具有更高的电磁兼容性。 2电磁干扰的抑制 电磁干扰EMI(Electromagnetic Interference)是指由无用信号或电磁骚扰(噪声)对有用电磁信号的接收或传输所造成的损害。一个系统或系统内,某一线路受到电磁干扰的程度可以表示为如下关系式: N=G×C/I 其中:G为噪声源强度; I为受干扰电路的敏感程度;

C为噪声通过某种途径传导受干扰处的耦合因素。 从上式可以看出,电磁干扰抑制的技术就是围绕这三个要素所采取的各种措施,归纳起来就是: (1)抑制电磁干扰源; (2)切断电磁干扰耦合途径; (3)降低电磁敏感装置的敏感性。 2.1抑制电磁干扰源 首先必须确定干扰源在何处,越靠近干扰源的地方采取措施抑制效果越好,一般来说,电流电压瞬变的地方(即di/dt或du/dt)即是干扰源,如:继电器开合、电容充放电、电机运转、集成电路开关工作等都可能成为干扰源。另外,市电并非理想的50Hz正弦波,其中充满各种频率噪声,也是不可忽视的干扰源。 抑制干扰源就是尽可能的减小di/dt或du/dt,这是抗干扰设计时最优先和最重要的原则。减小di/dt的干扰源,主要是在干扰回路串联电感或电阻以及增加续流二极管来实现;减小du/dt的干扰源,则是通过在干扰源两端并联电容来实现。 抑制方法通常采用低噪声电路、瞬态抑制电路、稳压电路等,所选用的器件应尽可能采用低噪声、高频特性好、稳定性高的电子元件,特别要注意,抑制电路中不适当的器件选择可能会产生新的干扰源。

变频器故障及处理方法

变频器故障及处理方法 在各种工业控制系统中,随着变频器等电力电子装置的广泛使用,系统的电磁干扰(EMI)日益严重,相应的抗干扰设计技术(即电磁兼容EMC)已经变得越来越重要。变频器系统的干扰有时能直接造成系统的硬件损坏,有时虽不能损坏系统的硬件,但常使微处理器的系统程序运行失控,导致控制失灵,从而造成设备和生产事故。因此,如何提高系统的抗干扰能力和可靠性是自动化装置研制和应用中不可忽视的重要内容,也是计算机控制技术应用和推广的关键之一。谈到变频器的抗干扰问题,首先要了解干扰的来源、传播方式,然后再针对这些干扰采取不同的措施。 一、变频器干扰的来源 首先是来自外部电网的干扰。电网中的谐波干扰主要通过变频器的供电电源干扰变频器。电网中存在大量谐波源如各种整流设备、交直流互换设备、电子电压调整设备,非线性负载及照明设备等。这些负荷都使电网中的电压、电流产生波形畸变,从而对电网中其它设备产生危害的干扰。变频器的供电电源受到来自被污染的交流电网的干扰后若不加处理,电网噪声就会通过电网电源电路干扰变频器。供电电源的干扰对变频器主要有(1)过压、欠压、瞬时掉电(2)浪涌、跌落 (3)尖峰电压脉冲 (4)射频干扰。 1、晶闸管换流设备对变频器的干扰

当供电网络内有容量较大的晶闸管换流设备时,由于晶闸管总是在每相半周期内的部分时间内导通,容易使网络电压出现凹口,波形严重失真。它使变频器输入侧的整流电路有可能因出现较大的反向回复电压而受到损害,从而导致输入回路击穿而烧毁。 2、电力补偿电容对变频器的干扰 电力部门对用电单位的功率因数有一定的要求,为此,许多用户都在变电所采用集中电容补偿的方法来提高功率因数。在补偿电容投入或切出的暂态过程中,网络电压有可能出现很高的峰值,其结果是可能使变频器的整流二极管因承受过高的反向电压而击穿。 其次是变频器自身对外部的干扰。变频器的整流桥对电网来说是非线性负载,它所产生的谐波对同一电网的其它电子、电气设备产生谐波干扰。另外变频器的逆变器大多采用PWM技术,当工作于开关模式且作高速切换时,产生大量耦合性噪声。因此变频器对系统内其它的电子、电气设备来说是一电磁干扰源。 变频器的输入和输出电流中,都含有很多高次谐波成分。除了能构成电源无功损耗的较低次谐波外,还有许多频率很高的谐波成分。它们将以各种方式把自己的能量传播出去,形成对变频器本身和其它设备的干扰信号。 (1)输入电流的波形变频器的输入侧是二极管整流和电容滤波电路。显然只有电源的线电压UL大于电容器两端的直流电压UD时,整流桥中才有充电电流。因此,充电电流总是出现在电源电压的振幅值附近,呈不连续的冲击波形式。它具有很强的高次谐波成分。有关资料表明,输入电流中的5次谐波和7次谐波的谐波分量是最大的,分别是50HZ基波的80%和70%。 (2)输出电压与电流的波形绝大多数变频器的逆变桥都采用SPWM调制方式,其输出电压为占空比按正弦规律分布的系列矩形式形波;由于电动机定子绕组的电感性质,定子的电流十分接近于正弦波。但其中与载波频率相等的谐波分量仍是较大的。 二、干扰信号的传播方式 变频器能产生功率较大的谐波,由于功率较大,对系统其它设备干扰性较强,其干扰途径与一般电磁干扰途径是一致的,主要分传导(即电路耦合)、电磁辐射、感应耦合。具体为:首先对周围的电子、电气设备产生电磁辐射;其次对直接驱动的电动机产生电磁噪声,使得电机铁耗和铜耗增加;并传导干扰到电源,通过配电网络传导给系统其它设备;最后变频器对相邻的其它线路产生感应耦合,感应出干扰电压或电流。同样,系统内的干扰信号通过相同的途径干扰变频器的正常工作。 (1)电路耦合方式即通过电源网络传播。由于输入电流为非正弦波,当变频器的容量较大时,将使网络电压产生畸变,影响其他设备工工作,同时输出端产生的传导干扰使直接驱动的电机铜损、铁损大幅增加,影响了电机的运转特性。显然,这是变频器输入电流干扰信号的主要传

电磁干扰和抑制方法的研究

弱电工程中电磁干扰及其抑制方法的研究 (洲坝通信工程方宏坤 151120) 【摘要】在弱电工程应用领域,强电与弱电交叉耦合,电磁干扰(EMI)错综复杂,严重影响弱电系统的稳定性和安全性。本文详细介绍了 EMI 产生的原因、分析EMI/RFI的特性,及其传输途径和危害,利用电磁理论和工程实践,分析并提出了一些在弱电工程领域行之有效的 EMI 抑制方法。 【关键词】弱电电磁干扰(EMI)射频干扰(RFI)干扰抑制 随着计算机技术,特别是网络技术的飞速发展,IT技术在弱电工程领域的广泛应用,IT设备日益精密、复杂,使得电子干扰问题日趋严峻。它可使系统的稳定性、可靠性降低,功能失效,甚至导致系统完瘫痪和设备损坏。特别是EMI/RFI(电磁干扰/射频干扰)问题,已成为近几年弱电工程领域的焦点。 1、电磁干扰分类和特性 生活中电磁干扰无处不在,其干好错综复杂。通常我们把电磁干扰主要划分为电磁干扰(EMI)、射频干扰(RFI)和电磁脉冲(EMP)三种,根据其来源可分为外界和部两种,严格的说所有电子运行的元件均可看作干扰源。本文中所提EMI是对周围电磁环境有较强影响的干扰;RFI则从属于EMI;EMP 是一种瞬态现象,它可由系统部原因(电压冲击、电源中断、电感负载转换等)或外部原因(闪电等)引起,能耦合到任何导线上,如电源线和通信电缆等,而与这些导线相连的电子系统可能受到瞬时严重干扰或使系统的电子电路永久性损坏。图 1 给出了常见 EMI/RFI 的干扰源及其频率围。 1.1 EMI特性分析

在电子系统设计中,应从三个方面来考虑电磁干扰问题:首先是电子系统产生和发射干扰的程度;其次是电子系统在强度为 1~10 V/m、距离为 3 米的电磁场中的抗扰特性;第三是电子系统部的干扰问题。利用干扰三要素分析与EMI相关的问题需要把握EMI的五个关键因素,这五个关键因素是频率、幅度、时间、阻抗和距离。 在EMI分析中的另一个重要参数是电缆的尺寸、导线及护套,这是因为,当EMI成为关键因素时,电缆相当于天线或干扰的传输器,必须考虑其物理长度与屏蔽问题。 1.2 RFI特性分析 无线电发射源无处不在,如无线电台、移动通信、发电机、电动机、电锤等等。所有这些电子活动都会影响电子系统的性能。无论RFI的强度和位置如何,电子系统对RFI必须有一个最低的抗扰度。在通信、无线电工程中,抗扰度定义为设备承受每单位RFI功率强度的敏感度。从“干扰源—耦合途径—接收器”的观点出发,电场强度E 是发射功率、天线增益和距离的函数,即 E=5.5·√P·G d 式中P为发送功率(mW/cm2),G为天线增益,d为电路或系统距干扰源的距离(m)。 由于模拟电路一般在高增益下运行,对RF场比数字电路更为敏感,因此,必须解决μV级和mV级信号的问题;对于数字电路,由于它具有较大的信号摆动和噪声容限,所以对RF场的抑制力更强。 1.3 干扰途径 任何干扰问题可分解为干扰源、干扰接收器和干扰的耦合途径三个方面,即所谓的干扰三要素。如表 2 所示。 表2 干扰源耦合途径干扰类型接收器 共地阻抗传导干扰 辐射场到互连电缆(共模)辐射干扰 微控制器辐射场到互连电缆(差模)辐射干扰 有源器件电缆间串扰(电容效应)感应干扰微控制器 静电放电电缆间串扰(电感效应)感应干扰通信接收器 通信发射机电缆间串扰(漏电导)传导干扰有源器件 电源电缆间串扰(场耦合)辐射干扰其他电子系统扰动电源线到机箱传导干扰 雷电辐射场到机箱辐射干扰 设备到设备辐射辐射干扰

变频器干扰的解决方法,如何解决变频器的电磁干扰

变频器干扰的解决方法,如何解决变频器的电磁干扰 变频器(Variable-frequency Drive,VFD)是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。在工业现场,变频器的干扰问题出现得比较多,且比较严重,甚至导致控制系统无法正常投入使用。比如使得PLC通讯控制变得不稳定,比如使得现场控制柜的指示灯常亮,让人误解。用户都非常苦恼因为变频器干扰带来的困扰。然而,变频器的工作原理注定其会产生强电磁干扰。 在各种工业控制系统中,随着变频器等电力电子装置的广泛使用,系统的电磁干扰(EMI)日益严重,相应的抗干扰设计技术(即电磁兼容EMC)已经变得越来越重要。变频器系统的干扰有时能直接造成系统的硬件损坏,有时虽不能损坏系统的硬件,但常使微处理器的系统程序运行失控,导致控制失灵,从而造成设备和生产事故。因此,如何提高系统的抗干扰能力和可靠性是自动化装置研制和应用中不可忽视的重要内容,也是计算机控制技术应用和推广的关键之一。谈到变频器的抗干扰问题,首先要了解干扰的来源、传播方式,然后再针对这些干扰采取不同的措施。 变频器包括整流电路和逆变电路,输入的交流电经过整流电路和平波回路,转换成直流电压,再通过逆变器把直流电压变换成不同宽度的脉冲电压(称为脉宽调制电压,PWM)。用这个PWM电压驱动电机,就可以起到调整电机力矩和速度的目的。这种工作原理导致以下三种电磁干扰: (1)射频辐射干扰:射频辐射干扰来自变频器的输入电缆和输出电缆。在上述的射频传导发射干扰的情形中,变频器的输入输出电缆上有射频干扰电流时,由于电缆相当于天线,必然会产生电磁波辐射,产生辐射干扰。变频器输出电缆上传输的PWM电压,同样包含丰富的高频的成分,会产生电磁波辐射,形成辐射干扰。辐射干扰的特征是,当其他电子设备靠近变频器时,干扰现象变得严重。 (2)谐波干扰:整流电路会产生谐波电流,这种谐波电流在供电系统的阻抗上产生电压降,导致电压波型发生畸变,这种畸变的电压对于许多电子设备形成干扰(因为大部分电

485通信中干扰抑制方法

485通信中干扰抑制方法 RS-485匹配电阻 RS-485就是差分电平通信,在距离较长或速率较高时,线路存在回波干扰,此时要在通信线路首末两端并联120Ω匹配电阻。推荐在通信速率大于19、2Kbps或线路长度大于500米时,才考虑加接匹配电阻。 RS-485接地 RS-485通信双方的地电位差要求小于1V,所以建议将两边RS-485接口的信号地相连,注意信号地不要接大地。 还有,就就是采用隔离措施 变频器应用中的干扰抑制措施 在进线侧加装电抗器,可以抑制变频器产生的谐波对电网的干扰。 输出侧不能加吸收电容,因为会导致变频器过电流时延迟过电流保护动作,只能加电抗器,以改善功率因数。 避免变频器的动力线与信号线平行布线与集束布线,应分散布线。检测器的连接线、控制用信号线要使用双绞屏蔽线。变频器、电机的接地线应接到同一点上。在大量产生噪声的机器上装设浪涌抑制器,加数据线滤波器到信号线上。将检测器的连接线、控制用信号线的屏蔽层用电缆金属夹钳接地。 信号线与动力线使用屏蔽线并分别套入金属管后,效果更好。 容易受干扰的其它设备的信号线,应远离变频器与她的输入输出线。 如何解决中频炉的谐波干扰

中频炉在使用中产生大量的谐波,导致电网中的谐波污染非常严重。谐波使电能传输与利用的效率降低,使电气设备过热,产生振动与噪声,并使其绝缘老化,使用寿命降低,甚至发生故障或烧毁;谐波会引起电力系统局部并联谐振或串联谐振,使谐波含量放大,造成电容补偿设备等设备烧毁。谐波还会引起继电器保护与自动装置误动作,使电能计量出现混乱。对于电力系统外部,谐波会对通信设备与电子设备产生严重干扰,因而,改善中频炉电力品质成为应对的主要着力点。 滤除中频炉系统谐波的传统方法就是LC滤波器,LC滤波器就是传统的无源谐波抑制装置,由滤波电容器、电抗器与电阻器适当组合而成,与谐波源并联,除起滤波作用外,还兼顾无功补偿的需要。这种滤波器出现最早,成本比较低,但同时存在一些较难克服的缺点,比如只能针对单次谐波,容易产生谐波共振,导致设备损毁,随着时间谐振点会漂移,导致谐波滤除效果越来越差。同时,这一方式无法应对瞬变、浪涌与高次谐波,存在节能的漏洞。 谐波抑制的另一个比较新的方法就是采用有源电力滤波器(Active Power Filter--APF)。它就是一种电力电子装置,其基本原理就是从补偿对象中检测出谐波电流,由补偿装置产生一个与该谐波电流大小相等而极性相反的补偿电流,从而使电网电流只含基波分量。这种滤波器能对频率与幅值都变化的谐波进行跟踪补偿,且补偿特性不受电网阻抗的影响,因而受到广泛的重视,并且已在日本等国获得广泛应用。但有源电力滤波器成本高昂,价格昂贵,投资回报期长,大多数企业难以承受。 MF-Saver吸收融合了LC技术与APF技术的优点,同时引入TOPSPARK G5的核心技术,扬长避短,创造性地解决了上述技术的不足,以独特的方式为中频炉环保节能提供了更有效的解决方案。

如何解决电气控制柜变频器的干扰

如何解决电气控制柜变频器的干扰 在各种工业控制系统中,随着变频器等电力电子装置的广泛使用,系统的电磁干扰(EMI)日益严重,相应的抗干扰设计技术(即电磁兼容EMC)已经变得越来越重要。变频器系统的干扰有时能直接造成系统的硬件损坏,有时虽不能损坏系统的硬件,但常 使微处理器的系统程序运行失控,导致控制失灵,从而造成设备和生产事故。因此, 如何提高系统的抗干扰能力和可靠性是自动化装置研制和应用中不可忽视的重要内容,也是计算机控制技术应用和推广的关键之一。谈到变频器的抗干扰问题,首先要了解 干扰的来源、传播方式,然后再针对这些干扰采取不同的措施。 一、变频器干扰的来源 首先是来自外部电网的干扰。电网中的谐波干扰主要通过变频器的供电电源干扰变频器。电网中存在大量谐波源如各种整流设备、交直流互换设备、电子电压调整设备, 非线性负载及照明设备等。这些负荷都使电网中的电压、电流产生波形畸变,从而对 电网中其它设备产生危害的干扰。变频器的供电电源受到来自被污染的交流电网的干 扰后若不加处理,电网噪声就会通过电网电源电路干扰变频器。供电电源的干扰对变 频器主要有(1)过压、欠压、瞬时掉电(2)浪涌、跌落 (3)尖峰电压脉冲 (4)射频干扰。1、晶闸管换流设备对变频器的干扰 当供电网络内有容量较大的晶闸管换流设备时,由于晶闸管总是在每相半周期内的部 分时间内导通,容易使网络电压出现凹口,波形严重失真。它使变频器输入侧的整流 电路有可能因出现较大的反向回复电压而受到损害,从而导致输入回路击穿而烧毁。2、电力补偿电容对变频器的干扰 电力部门对用电单位的功率因数有一定的要求,为此,许多用户都在变电所采用集中 电容补偿的方法来提高功率因数。在补偿电容投入或切出的暂态过程中,网络电压有 可能出现很高的峰值,其结果是可能使变频器的整流二极管因承受过高的反向电压而 击穿。 其次是变频器自身对外部的干扰。变频器的整流桥对电网来说是非线性负载,它所产 生的谐波对同一电网的其它电子、电气设备产生谐波干扰。另外变频器的逆变器大多 采用PWM技术,当工作于开关模式且作高速切换时,产生大量耦合性噪声。因此变频器对系统内其它的电子、电气设备来说是一电磁干扰源。

三菱FX3U485无协议通讯程序详细讲解(含程序)

三菱FX2N PLC串行通讯指令(FNC 80 RS) 串行通讯指令(FNC 80 RS) 1、指令格式:[RS D0 K8 D10 K8] 发送数据帧起始地址和数目↓ 接收数据帧起始地址和数目 2、功能和动作: ※RS指令是为使用RS232C、RS-485功能扩展板及特殊适配器,进行发送和接收串行数据的指令。 ※传送的数据格式在后面讲述的特殊寄存器D8120设定。RS指令驱动时即使改变D8120的设定, 实际上也不接收。 ※在只发送的系统中,可将接收数设定为K0。(K表示常数) ※在只接收的系统中,可将发送数设定为K0。 ※在程序中可以多次使用RS指令,但在同一时间必须保证只有一个RS指令被驱动。 ※在一次完整的通讯过程中,RS指令必须保持一直有效,直至接收数据完成。 D8120说明: ※根据MD320的通讯协议,无帧头和帧尾,则(bit9,bit8)=(0,0)。 ※bit13~15是计算机链接通讯时的设定项目,使用RS指令时必须设定为0。 ※RS485未考虑设置控制线的方法,使用FX2N-485-BD、FX0N-485ADP时,(bit11,bit10 )=(1,1)。 ※若PLC和变频器之间的通讯参数如下:8位数据位,无校验,2位停止位,波特率9600,无帧头无帧尾,无协议模式,则D8120=H0C89(H表示16进制)(0000 1100 1000 1001B) M8002 │──||────────── [ MOV H0C89 D8120 ] 5、相关标志位:

一.基本指令介绍 ※M8122:数据发送请求标志 当PLC处于接收完成状态或接收等待状态时,用脉冲触发M8122,将使得从D0开始的连续8个数据被发送。当发送完成后,M8122自动被复位。当RS指令的驱动输入X0变为ON状态时,PLC就进入接收等 待状态。 ※M8123:数据接收完成标志 当M8123置位时,表明接收已经完成,此时需要将接收到的数据从接受缓冲区转移到用户指定的数据区,然后手工复位M8123。复位M8123后,则PLC再次进入接收等待状态。 如果指定的接收长度为0,则M8123不动作,也不进入接收等待状态。从这个状态想进入接收等待状态,必须使接受长度≥0,然后对M8123进行ON→OFF操作。 ※M8129:通讯超时标志 接收数据中途中断时,那个时点开始如果在D8129中规定的时间内不再重新开始接收,作为超时输出标 志M8129变为ON状态,则接收结束。M8129需手工复位。 二.详细程序(与英威腾GD20变频器测试通讯成功的案例)

电磁干扰及常用的抑制技术

电磁干扰及常用的抑制技术 刘宇媛 哈尔滨工程大学 摘要:各种干扰是机电一体化系统和装置出现瞬时故障的主要原因。电磁兼容性设计是目前电子设备及机电 一体化系统设计时考虑的一个重要原则,它的核心是抑制电磁干扰。电磁干扰的抑制要从干扰源、传播途径、接收器三个方面着手,切断干扰耦合的途径,干扰的影响也将被消除。常用的方法有滤波、降低或消除公共阻抗、屏蔽、隔离等。 关键词:电磁干扰干扰抑制屏蔽接地 1.电磁干扰 电磁干扰(electro magnetic interference,EMI)是指系统在工作过程中出现的一些与有用信号无关的、并且对系统性能或信号传输有害的电气变化现象。构成电磁干扰必须具备三个基本条件:①存在干扰源;②有相应的传输介质;③有敏感的接收元件。只要除去其中一个条件,电磁干扰就可消除,这就是电磁抑制技术的基本出发点。 1.1 电磁干扰的分类 常见的各种电磁干扰根据干扰的现象和信号特征不同有以下分类方法。 1、按其来源分类(1) 自然干扰。自然干扰是指由于大自然现象所造成的各种电磁噪声。 (2) 人为干扰。由于电子设备和其他人工装置产生的电磁干扰。 2、按干扰功能分类 (1) 有意干扰。有意干扰是指人为了达到某种目的而有意识制造的电磁干扰信号。这是当前电子战的重要手段。 (2) 无意干扰。无意干扰是指人在无意之中所造成的干扰,如工业用电、高频及微波设备等引起的干扰等。 3、按干扰出现的规律分类 (1) 固定干扰。多为邻近电气设备固定运行时发出的干扰。 (2) 半固定干扰。偶尔使用的设备(如行车、电钻等)引起的干扰。 (3) 随机干扰。无法预计的偶发性干扰。 4、按耦合方式分类 (1) 传导耦合干扰。传导耦合是指电磁噪声的能量在电路中以电压或电流的形式,通过金属导线或其他元件(如电容器、电感器、变压器等)耦合到被干扰设备(电路)。 (2) 辐射耦合干扰。电磁辐射耦合是指电磁噪声的能量以电磁场能量的形式,通过空间辐射传播,耦合到被干扰设备(或电路)。 1.2 电磁噪声耦合途径 干扰源对电子设备的干扰是通过一定耦合形式进行的,无论是内部干扰或外部干扰,都是通过“路”(传输线路或电路)或“场”(静电场或交变电磁场)耦合到被干扰设备中的。 1、电磁噪声传导耦合 (1)直接传导耦合。电导性直接传导耦合最简单、最常见,但它也是最易被人们忽视的一种耦合方式。在考虑电磁兼容性问题时,必须考虑导线不但有电阻足,而且有电感L,漏电阻R,以及杂散电容C。在实际使用中尤其是频率比较高时,这些分布参数对信号的传输有着十分重要的影响。如何考虑分布参数的影响与传输线的长度密切相关。根据传输线的长度与传输信号频率的关系可把传输线分为长线和短线,对短信号线不必进行阻抗匹配,而对长信号线应在终端进行阻抗匹配。 (2)公共阻抗耦合。当干扰源的输出回路与被干扰电路存在一个公共阻抗时,两者之间就会产生公共阻抗耦合。干扰源的电磁噪声将会通过公共阻抗耦合到被干扰电路而产生干扰。所谓“公共阻抗”通常不是人们故意接人的阻抗,而是由公共地线和公共电源线的引线电感所

关于变频器干扰案例分析及其处理方案

关于变频器干扰案例分析及其处理方案 1引言交流感应异步电动机变频器调速是20世纪电气传动领域划时代的技术 进步。随着变频器的广泛应用,变频器日益成为工厂自动化领域最大的电磁污染源。可以经常的看到在一间设备密集型工厂装机几十台上百台变频器。变频器直—交逆变器的非线性等效负荷使得变频器在许多系统集成工程中不仅污染工厂 供电系统,还直接对自动化工程项目干扰,引起测控系统失准失灵,严重破坏大系统的稳定性,甚至变频器自身受到干扰引发“自举”式的调速故障。尽管国际标准对电气设备E M C(I E C61000系列电磁兼容设计)有严格的规范,并且国家质量技术监督局已决定在国内“等同”采用,同时,中国国家标准电能质量公用电网谐波G B/T14549-93已经生效14年之久,但是国家经济技术的飞速发展使得功率电子开关器件的污染控制已经刻不容缓。 在近年的客服中经常遇到变频器的干扰问题,造成设备误动作,使得工厂的生产 线不能运行,而且这一类问题的原因查找起来也比较困难,经过查阅有关资料,再 结合工作中处理问题的一些经验来具体谈一下变频器干扰的来源,传播方式以及一些针对实际应用中遇到干扰问题的不同情况的处理,希望不同于教科书的教条说教。 2变频器干扰分析 变频器的干扰问题一般分为变频器自身干扰;外界设备产生的电磁波对变频器干扰;变频器对其它弱电设备干扰3类情况。变频器本身就是一个干扰源,众所周知,变频器由主回路和控制回路两大部分组成,变频器主回路主要由整流电路,逆变电路,控制电路组成,其中整流电路和逆变电路由电力电子器件组成,电力、电子器件具有非线性特性,当变频器运行时,它要进行快速开关动作,因而产生高次谐波,这样变频器输出波形除基波外还含有大量高次谐波。无论是哪一种干扰类型,高次谐波是变频器产生干扰的主要原因。变频器本身就是谐波干扰源,所以对电源侧和输出侧的设备会产生影响。与主回路相比,变频器的控制回路却是小能量、弱信号回路,极易遭受其它装置产生的干扰。因此,变频器在安装使用时,必须对控制回路采取抗干扰措施。 3变频器干扰案例问题分析及其处理 3.1怎样来判定变频器出现干扰问题 变频器的干扰问题主要体现在电机的运行情况上。例如电机在运行过程中突然停机,电机运行时快时慢,运行速度不稳定.电机停不下来,按钮不起任何作用等等, 这些都是变频器受到干扰情况的体现。 3.2第三种方式接地 干扰问题的一般处理方法是要保证良好的接地,接地端子的一般要求为:接地端 子以“第三种方式”接地(单独接地),接地线愈短愈好,而且必须接地良好;控制回

相关文档
最新文档