离散数学(屈婉玲版)第一章部分习题汇总(完整资料).doc

离散数学(屈婉玲版)第一章部分习题汇总(完整资料).doc
离散数学(屈婉玲版)第一章部分习题汇总(完整资料).doc

【最新整理,下载后即可编辑】

第一章习题

1.1&1.2 判断下列语句是否为命题,若是命题请指出是简单命题还

是复合命题.并将命题符号化,并讨论它们的真值.

(1) √2是无理数.

是命题,简单命题.p:√2是无理数.真值:1

(2) 5能被2整除.

是命题,简单命题.p:5能被2整除.真值:0

(3)现在在开会吗?

不是命题.

(4)x+5>0.

不是命题.

(5) 这朵花真好看呀!

不是命题.

(6) 2是素数当且仅当三角形有3条边.

是命题,复合命题.p:2是素数.q:三角形有3条边.p q真值:1

(7) 雪是黑色的当且仅当太阳从东方升起.

是命题,复合命题.p:雪是黑色的.q:太阳从东方升起. p q 真值:0

(8) 2008年10月1日天气晴好.

是命题,简单命题.p:2008年10月1日天气晴好.真值唯一.

(9) 太阳系以外的星球上有生物.

是命题,简单命题.p:太阳系以外的星球上有生物.真值唯

一.

(10) 小李在宿舍里.

是命题,简单命题.P:小李在宿舍里.真值唯一.

(11) 全体起立!

不是命题.

(12) 4是2的倍数或是3的倍数.

是命题,复合命题.p:4是2的倍数.q:4是3的倍数.p∨q真

值:1

(13) 4是偶数且是奇数.

是命题,复合命题.P:4是偶数.q:4是奇数.p∧q真值:0

(14) 李明与王华是同学.

是命题,简单命题.p: 李明与王华是同学.真值唯一.

(15) 蓝色和黄色可以调配成绿色.

是命题,简单命题.p: 蓝色和黄色可以调配成绿色.真值:1

1.3 判断下列各命题的真值.

(1)若2+2=4,则3+3=6.

(2)若2+2=4,则3+3≠6.

(3)若2+2≠4,则3+3=6.

(4)若2+2≠4,则3+3≠6.

(5)2+2=4当且仅当3+3=6.

(6)2+2=4当且仅当3+3≠6.

(7)2+2≠4当且仅当3+3=6.

(8)2+2≠4当且仅当3+3≠6.

答案:

设p:2+2=4,q:3+3=6,则p,q都是真命题.

(1)p→q,真值为1.

(2)p→┐q,真值为0.

(3)┐p→q,真值为1.

(4)┐p→┐q,真值为1.

(5)p q,真值为1.

(6)p┐q,真值为0.

(7)┐p q,真值为0.

(8)┐p┐q,真值为1.

1.4将下列命题符号化,并讨论其真值。

(1)如果今天是1号,则明天是2号。

p:今天是1号。

q:明天是2号。

符号化为:p q

真值为:1

(2)如果今天是1号,则明天是3号。

p:今天是1号。

q:明天是3号。

符号化为:p q

真值为:0

1.5将下列命题符号化。

(1)2是偶数又是素数。

(2)小王不但聪明而且用功。

(3)虽然天气很冷,老王还是来了。

(4)他一边吃饭,一边看电视。

(5)如果天下雨,他就乘公共汽车上班。

(6)只有天下雨,他才乘公共汽车上班。

(7)除非天下雨,否则他不乘公共汽车上班。(意思为:如果他乘公共汽车上班,则天下雨或如果不是天下雨,那么他就不乘公共汽车上班)

(8)不经一事,不长一智。

答案:(1)设p:2是偶数,q:2是素数。符号化为:p∧q (2)设p:小王聪明,q:小王用功。符号化为:p∧q

(3)设p:天气很冷,q:老王来了。符号化为:p∧q

(4)设p:他吃饭,q:他看电视。符号化为:p∧q

(5)设p:天下雨,q:他乘公共汽车。符号化为:p→q

(6)设p:天下雨,q:他乘公共汽上班。符号化为:q→p

(7)设p:天下雨,q:他乘公共汽车上班。符号化为:q→p 或q→p

(8)设p:经一事,q:长一智。符号化为:p→q

1.6设p,q的真值为0;r,s的真值为1,求下列各命题公式的真值。

(1)p∨(q∧r)

(2)(p?r)∧(?p∨s)

(3)(p∧(q∨r))→(p∨q)∧(r∧s)

(4)?(p∨(q→(r∧?p))→(r∨?s)

解:(1)p∨(q∧r)

p r (p r)∧(?p ∨s)

(3)(p∧(q∨r))→(p∨q)∧(r∧s)

1.7 判断下列命题公式的类型。

(1)p(p q r) 解:

p q r p

q p q

r

p(p q

r)

0 0 0 0 0 1

0 0 1 0 1 1

0 1 0 1 1 1

0 1 1 1 1 1

1 0 0 1 1 1

1 0 1 1 1 1

1 1 0 1 1 1

1 1 1 1 1 1

由真值表可知,该命题公式为重言式。

(2)(p →┑p)→┑p

p

┑p p →┑p (p →┑p)→┑p

0 1 1 1

1 0 0 1

由真值知命题公式的类型是:重言式

(3)┐(q→p)∧p

p q q→p ┐(q→p)┐(q→p)∧p

0 0 1 0 0

0 1 0 1 0

1 0 1 0 0

1 1 1 0 0

(4)(p→q) →(﹁q→﹁p)

解:

其真值表为:

(5)( ﹁p→q) →(q→﹁p)

解:

其真值表为:

(7)(p∨?p)→((q∧?q) ∧?r) 解:

0 1 1 1 0 0 0 0

1 0 0 1 0 1 0 0

1 0 1 1 0 0 0 0

1 1 0 1 0 1 0

1 1 1 1 0 0 0

1.7(8)

(p q)→﹁(p∨q).

p q (p q) (p∨q) ﹁(p∨q) (p q)→﹁(p

∨q)

0 0 1 0 1 1

0 1 0 1 0 1

1 0 0 1 0 1

1 1 1 1 0 0 (9) ((p→q)∧(q→r))→(p→r)

解:

p qrp→

qq→

(p→q)∧

(q→r)

p→

A

0 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 0 1 0 0 1 1

0 1 1 1 1 1 1 1

1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 1 0 0 0 1 1 1 1 1 1 1 1 1

该命题为永真式

(10)((p∨q)→r)?s

解:

结论:此命题为非重言式可满足式

1.8 用等值演算法证明下列等值式

(1)(p∧q)∨(p∧﹁q) ?p

证明:

(p∧q)∨(p∧﹁q) (分配律)

?p∧(q∨﹁q) (排中律)

?p∧1 (同一律)

?p

(3)(p q) ( ( p q ) ( p q ) )

证明:(p q)

( ( p q ) (q p ) )

( ( p q ) ( q p ) )

( p q ) ( q p )

( p q ) ( q p )

( ( p q ) q ) ( (p q ) p )

( ( p q ) ( q q ) ) ( ( p p ) ( q p) )

(( p q ) 1) (1 ( q p) )

( p q ) ( q p)

( p q ) ( p q )

1.9 用等值演算法判断下列公式的类型。

(1)((p q)p).

解:(1)((p q)p)

((p q)p)蕴含等值式

((p q))p 德·摩根律

p q p 双重否定律

p p q 交换律

0q 矛盾律

0 零律

即原式为矛盾式.

(2)((p q) (q p))(p q)

解:((p q) (q p))(p q)

(p q) (p q)

((p q) (p q)) ((p q) (p q))

(P q) (p q)

(p q) (p q))

1

即((p q) (q p))(p q)是重言式。

(3) (p→q)→(q→p).

解:(p→q)→(q→p)

((p∨q))∨(q∨p)

(p∧q) ∨(q∨p)

(p∨(p∧q))∧(q∨(q∨p))

( (p∨p)∨q)∧((q∨q)∨p]

(p∨q) ∧(p∨q)

(p∨q)

或(p→q)→(q→p)

((p∨q))∨(q∨p)

(p∧q) ∨(q∨p)

((p∧q) ∨q)∨p结合律

p∨q 吸收律

结论:该公式为可满足式。

1.12(1)求下面命题公式的主析取范式、主合取范式、成真赋值、成假赋值。

(p∨(q∧r))→(p∧q∧r)

?(p∨(q∧r))∨(p∧q∧r)

(?p∧(?q∨?r)) ∨(p∧q∧r)

(?p∧?q) ∨(?p∧?r)∨(p∧q∧r)

((?p∧?q)∧(r∨?r)) ∨((?p∧?r)∧(q∨?q)) ∨(p∧q∧r)

(?p∧?q∧r)∨(?p∧?q∧?r)∨(?p∧?q∧?r) ∨(?p∧q∧?r) ∨(p∧q∧r)

(?p∧?q∧r)∨(?p∧?q∧?r) ∨(?p∧q∧?r) ∨(p∧q∧r)

((?p∧?q∧?r) ∨(?p∧?q∧r)∨(?p∧q∧?r) ∨(p∧q∧r)

m0∨m1∨m2∨m7

∑(0,1,2,7)

故其主析取范式为

(p∨(q∧r))→(p∧q∧r)∑(0,1,2,7)

由最小项定义可知道原命题的成真赋值为

(0,0,0) (0,1,0) (0,0,1) (1,1,1)

成假赋值为(0,1,1)(1,0,0)(1,0,1)(1,1,0)

由主析取范式和主合取范式的关系即可知道主合取范式为

(p∨(q∧r))→(p∧q∧r)∏(3,4,5,6)

(3)(p q)q r

解:(p q)q r

(p q)q r

p q q r

既(p q)q r是矛盾式。(p q)q r的主合取范

式为M

0 M

1

M

2

M

3

M

4

M

5

M

6

M

7,

成假赋值为:000,

001,010,011,100,101,111.

13.通过求主析取范式判断下列各组命题公式是否等值。

(1)①p→(q→r);②q→(p→r).

解:p→(q→r) ﹁p (q→r)

﹁p (﹁q r)

﹁p﹁q r

(﹁p(q﹁q)(r﹁r))((p﹁p)﹁q(r﹁r))((p ﹁p)(q﹁q) r)

(﹁p q r) (﹁p q﹁r) (﹁p﹁q r) (﹁p﹁q

﹁r) (p﹁q r) (p﹁q﹁r) (﹁p q r)

∑(0,1,2,3,4,5,7)

q→(p→r)﹁q (﹁p r)

﹁p﹁q r

∑(0,1,2,3,4,5,7)

所以两式等值。

(2)①p q

?(p∧q)

(p∧(q∨?q))∨(q∧(p∨?p))

(p∧q)∨(?p∧?q) ∨(?q∧p) ∨(?p∧?q)

(?p∧q) ∨(?p∧?q) ∨(p∧?q)

m

1∨m

∨m

2

∑(0,1,2)

(p∧?q)处原为(?q∧p),不是极小项

②令A = p q

B= ?(p∧q)

C=(?p∧q) ∨(?p∧?q) ∨(p∧?q)

D = p↓q

则B*=?(p∨q) p↓q=D

且A B C

所以D A*C*

C* = (?p∨q)∧(?p∨?q)∧(p∨?q)

∏(0,1,2)∑(3)

所以①!②

1.15某勘探队有3名队员,有一天取得一块矿样,3人判断如下:甲说:这不是铁,也不是铜;

乙说:这不是铁,是锡;

丙说:这不是锡,是铁;

经实验室鉴定后发现,其中一人两个判断都正确,一个人判对一半,另一个人全错了。根据以上情况判断矿样的种类。

解:p:是铁q:是铜r:是锡

由题意可得共有6种情况:

1)甲全对,乙对一半,丙全错:(﹁p∧﹁q) ∧((﹁p∧﹁r)∨(p∧r)) ∧(r∧﹁p) ①

2)甲全对,丙对一半,乙全错:(﹁p∧﹁q) ∧((﹁r∧﹁p)∨(r ∧p))∧(p∧﹁r) ②

3)乙全对,甲对一半,丙全错:(﹁p∧r)∧((﹁p∧q) ∨(﹁q∧p)) ∧(r∧﹁p) ③

4)乙全对,丙对一半,甲全错:(﹁p∧r)∧((﹁r∧﹁p) ∨(r∧p)) ∧(p∧q) ④

5)丙全对,甲对一半,乙全错:(﹁r∧p) ∧( (﹁p∧q) ∨(p∧﹁q)) ∧(p∧﹁r) ⑤

6)丙全对,乙对一半,甲全错:(﹁r∧p) ∧((﹁p∧﹁r)∨(p∧r)) ∧(p∧q) ⑥

则①∨②∨③∨④∨⑤∨⑥ 1

①(﹁p∧﹁q∧﹁p∧﹁r∧r∧﹁p) ∨(﹁p∧﹁q∧p∧r∧r∧﹁p)

0∨00

②(﹁p∧﹁q∧﹁r∧﹁p∧p∧﹁r)∨(﹁p∧﹁q∧r∧p∧p∧﹁r) 0∨00

③(﹁p∧r∧﹁p∧q∧r∧﹁p) ∨(﹁p∧r∧﹁q∧p∧r∧﹁p)(﹁p∧q∧r) ∨0﹁p∧q∧r

④(﹁p∧r∧﹁r∧﹁p∧p∧q)∨(﹁p∧r∧r∧p∧p∧q)0∨00

⑤(﹁r∧p∧﹁p∧q∧p∧﹁r) ∨(﹁r∧p∧p∧﹁q∧p∧﹁

r)0∨(p∧﹁q∧﹁r) p∧﹁q∧﹁r

⑥(﹁r∧p∧﹁p∧﹁r∧p∧q) ∨(﹁r∧p ∧p∧r∧p∧q)0∨

00

所以①∨②∨③∨④∨⑤∨⑥(﹁p∧q∧r)∨(p∧﹁q∧﹁r)而这块矿石不可能既是铜又是锡,所以只能是

1.16判断下列推理是否正确,先将命题符号化,再写出前提和结论,让后进行判断。

3如果今天是1号,则明天是5号。今天是1号,所以明天是5号。

p:今天是1号q:明天是5号

解:前提:p→q ,p

结论:q

推理的形式结构为:((p→q)∧p)→q

证明:①p→q 前提引入

②p 前提引入

③q 假言推理

此命题是正确命题

1.16(2)

判断下列推理是否正确,先将命题符号化再写出前提和结论,然后进行判断

如果今天是1号,则明天是5号。明天是5号,所以今天是1号。

解设p: 今天是1号,q: 明天是5号,则该推理可以写为

( (p→q)∧q)→p

前提p→q,q

结论p

判断

证明

( (p→q)∧q)→p ? ( (p→q)∧q)∨p

?( p→q)∨?q∨p

?( ?p∨q) ∨?q∨p

(p∧?q) ∨?q∨p

?q∨p

此式子为非重言式的可满足式,故不可以判断其正确性

所以此推理不正确

1.16(3)如果今天是1号,则明天是5号,明天不是5号,所以今天不是1号。

解:p:今天1号.

q:明天是5号.

((p→q)∧?q)→?p

前提:p→q,?q.

结论: ?p.

证明:①p→q 前提引入

②?q 前提引入

③?p ①②拒取式

推理正确

1.17(1)前提:﹁(p∧﹁q),﹁q∨r,﹁r

结论:﹁p.

证明:①﹁q∨r 前提引入

②﹁r 前提引入

③﹁q ①②析取三段论

④﹁(p∧﹁q) 前提引入

⑤﹁p∨q ④置换

⑥﹁p ③⑤析取三段论

即推理正确。

(2)前提:p→(q→s),q, p∨﹁r

结论:r →s.

证明:①p∨﹁r 前提引入

②r 附加前提引入

③p 析取三段论

④p→(q→s) 前提引入

⑤q→s 假言推理

⑥q 前提引入

⑦s 假言推理

由附加前提证明法可知,结论正确。

(3): 前提: p→q.

结论: p→(p∧q).

证明: ①p→q. 前提引入

②p 附加前提引入

③q ①②假言推理

④p∧q ②③合取引入规则(4)前提:q p,q s,s t,t r.

结论:p q s r.

证明:1) t r;前提引入

2) t ;1)的化简

3) s t;前提引入

4)(s t)(t s); 3)的置换

5) t s 4)的化简

6) s;2),5)的假言推理

7) q s;前提引入

8) (q s)(s q);7)置换

9) s q 8)的化简

10) q;6),9)的假言推理

11) q p;前提引入

12) p;10),11)的假言推理

13)r 1)的化简

14) p q s r 6),10),12),13)的合取

所以推理正确。

1.18 如果他是理科学生,他必学好数学。如果他不是文科学生,他必是理科学生。他没学好数学。所以它是文科学生。

判断上面推理是否正确,并证明你的结论。

解:p:他是理科学生q:他学好数学r:他是文科学生前提:p→q ,┐r→p ,┐q

结论:r

①┐p前提引入

②p→q 前提引入

③┐p ①②拒取式

④┐r→p 前提引入

⑤r ③④拒取式

1.19 给定命题公式如下:p(q r)。

求命题公式的主析取范式、主合取范式、成真赋值、成假赋值。

解:p(q r)

(( p q q))(r r))((q r)(p p))

p q r)p q r)(p q r)(p q r)(p q r)(p q r)

m

7m

6

m

5

vm

4

m

6

m

2

m

7m

6

m

5

vm

4

m

2 2、4、5、6、7

∴p(q r) 0、1、3

既010、100、101、110、111是成真赋值,

000、001、011是成假赋值

1.20 给定命题公式如下:(p q)r。

求命题公式的主析取范式、主合取范式、成真赋值、成假赋

值。

解:(p q)r

(p q)r

((p q)(r r))((p p)(q q)r)

(p q r)(p q r)(p q r)(p q r)(p q r) (p q r)

m

7m

6

m

7

m

5

m

3

m

1

m

7m

6

m

5

m

3

m

1 1、3、5、6、7

∴(p q)r 0、2、4

既001、011、101、110、111是成真赋值,

000、010、100是成假赋值。

例题

例1.25 给定命题公式如下,用等值演算判断公式类型

(1)(p∧q) →(p∨q)

解:﹁(p∧q) ∨(p∨q)

﹁p∨﹁q∨p∨q

(﹁p∨p) ∨(﹁q∨q)

1∨1

1

所以为重言式

(2)(p?q) ?((p→q)∧(q→p))

解:(p?q) ?((p→q)∧(q→p))

(p?q) ?(?q)

((p?q)→(p?q))∧((p?q)→(p?q))

(p?q)→(p?q)

?(p?q) ∨(p?q)

?((p→q) ∧(q→p)) ∨((p→q) ∧(q→p))

((?(p→q) ∨? (q→p)) ∨(p→q)) ∧(?(p→q) ∨? (q→

p)) ∨(q→p))

(1∨? (q→p))∧(1∨(q→p))

1 ∧1

1

所以此式是重言式(红色字体部分可删去)

(3) (p→q)∧q

解: (p→q)∧q(p∨q)∧q (p∧q)∧q p∧(q∧q) p∧00

由上使等值演算结果可知:此式为矛盾式。

(4) (p p)q

0q

(0q)(q0)

(0q)(q0)

1q

q

由此结果可得此式为:非重言式的可满足式(5)p(p q);

解:p(p q)

p( p q)

(p p)q

1q

1

所以该命题公式是重言式。

(6)(p∨﹁p)→((q∧﹁q)∧r)

1→(0∧r)

1→0

﹁1∨0

所以为矛盾式

(7)((p→q)→p)p

解: ((p→q)→p) p

((p→q)∨p) p

((p∨q) ∨p) p

(p∧q) ∨p p

p p

(p→p)∧(p→p) 等价等值式

p→p 等幂律

p∨p 蕴涵等值式

1

所以该式为重言式

例1.25 第(8)题

(p∧q)∨(p∧﹁q)

((p∧q)∨p)∧((p∧q)∨﹁q)

(p∨p)∧(q∨p)∧(p∨﹁q)∧(q∨﹁q)

p∧(p∨q)∧(p∨﹁q)

p∧(p∨﹁q)

p

或(p∧q)∨(p∧﹁q)

p∧(q∨﹁q)

p∧1

p

为可满足式

(9) (p∨q∨r) (p∧q∧r)

((p∨q) ∨r) (p∧q∧r)

(p∨q)∧r) (p∧q∧r)

(p∧q∧r) (p∧q∧r)

((p∧q∧r)→(p∧q∧r))∧((p∧q∧r)→(p∧q∧r))

离散数学屈婉玲版第一章部分习题汇总

第一章习题 1.1&1.2 判断下列语句是否为命题,若是命题请指出是简单命题还 是复合命题.并将命题符号化,并讨论它们的真值. (1) √2是无理数. 是命题,简单命题.p:√2是无理数.真值:1 (2) 5能被2整除. 是命题,简单命题.p:5能被2整除.真值:0 (3)现在在开会吗? 不是命题. (4)x+5>0. 不是命题. (5) 这朵花真好看呀! 不是命题. (6) 2是素数当且仅当三角形有3条边. 是命题,复合命题.p:2是素数.q:三角形有3条边.p?q真值:1 (7) 雪是黑色的当且仅当太阳从东方升起. 是命题,复合命题.p:雪是黑色的.q:太阳从东方升起. p?q真值:0 (8) 2008年10月1日天气晴好. 是命题,简单命题.p:2008年10月1日天气晴好.真值唯 一. (9) 太阳系以外的星球上有生物. 是命题,简单命题.p:太阳系以外的星球上有生物.真值唯一. (10) 小李在宿舍里. 是命题,简单命题.P:小李在宿舍里.真值唯一. (11) 全体起立! 不是命题. (12) 4是2的倍数或是3的倍数. 是命题,复合命题.p:4是2的倍数.q:4是3的倍数.p∨q 真值:1 (13) 4是偶数且是奇数.

是命题,复合命题.P:4是偶数.q:4是奇数.p∧q真值:0 (14) 李明与王华是同学. 是命题,简单命题.p: 李明与王华是同学.真值唯一. (15) 蓝色和黄色可以调配成绿色. 是命题,简单命题.p: 蓝色和黄色可以调配成绿色.真值:1 1.3 判断下列各命题的真值. (1)若 2+2=4,则 3+3=6. (2)若 2+2=4,则 3+3≠6. (3)若 2+2≠4,则 3+3=6. (4)若 2+2≠4,则 3+3≠6. (5)2+2=4当且仅当3+3=6. (6)2+2=4当且仅当3+3≠6. (7)2+2≠4当且仅当3+3=6. (8)2+2≠4当且仅当3+3≠6. 答案: 设p:2+2=4,q:3+3=6,则p,q都是真命题. (1)p→q,真值为1. (2)p→┐q,真值为0. (3)┐p→q,真值为1. (4)┐p→┐q,真值为1. (5)p?q,真值为1. (6)p?┐q,真值为0. (7)┐p?q,真值为0. (8)┐p?┐q,真值为1. 1.4将下列命题符号化,并讨论其真值。 (1)如果今天是1号,则明天是2号。 p:今天是1号。 q:明天是2号。 符号化为:p→q 真值为:1 (2)如果今天是1号,则明天是3号。 p:今天是1号。

离散数学习题答案(耿素云屈婉玲)

离散数学习题答案 习题二及答案:(P38) 5、求下列公式的主析取范式,并求成真赋值: (2)()()p q q r ?→∧∧ 解:原式()p q q r ?∨∧∧q r ?∧()p p q r ??∨∧∧ ()()p q r p q r ??∧∧∨∧∧37m m ?∨,此即公式的主析取范式, 所以成真赋值为011,111。 ) 6、求下列公式的主合取范式,并求成假赋值: (2)()()p q p r ∧∨?∨ 解:原式()()p p r p q r ?∨?∨∧?∨∨()p q r ??∨∨4M ?,此即公式的主合取范式, 所以成假赋值为100。 7、求下列公式的主析取范式,再用主析取范式求主合取范式: (1)()p q r ∧∨ 、 解:原式()(()())p q r r p p q q r ?∧∧?∨∨?∨∧?∨∧ ()()()()()()p q r p q r p q r p q r p q r p q r ?∧∧?∨∧∧∨?∧?∧∨?∧∧∨∧?∧∨∧∧ ()()()()()p q r p q r p q r p q r p q r ??∧?∧∨?∧∧∨∧?∧∨∧∧?∨∧∧ 13567m m m m m ?∨∨∨∨,此即主析取范式。 主析取范式中没出现的极小项为0m ,2m ,4m ,所以主合取范式中含有三个极大项0M ,2M ,4M ,故原式的主合取范式024M M M ?∧∧。 9、用真值表法求下面公式的主析取范式: (1)()()p q p r ∨∨?∧ 。 解:公式的真值表如下:

由真值表可以看出成真赋值的情况有7种,此7种成真赋值所对应的极小项的析取即为主析取范式,故主析取范式 1234567m m m m m m m ?∨∨∨∨∨∨ 习题三及答案:(P52-54) 11、填充下面推理证明中没有写出的推理规则。 前提:,,,p q q r r s p ?∨?∨→ [ 结论:s 证明: ① p 前提引入 ② p q ?∨ 前提引入 ③ q ①②析取三段论 ④ q r ?∨ 前提引入 ⑤ r ③④析取三段论 ⑥ r s → 前提引入 } ⑦ s ⑤⑥假言推理 15、在自然推理系统P 中用附加前提法证明下面推理: (2)前提:()(),()p q r s s t u ∨→∧∨→ 结论: p u → 证明:用附加前提证明法。 ① p 附加前提引入

离散数学答案解析屈婉玲版第二版高等教育出版社课后答案解析

离散数学答案屈婉玲版 第二版高等教育出版社课后答案 第一章部分课后习题参考答案 16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。 (1)p∨(q∧r)?0∨(0∧1) ?0 (2)(p?r)∧(﹁q∨s) ?(0?1)∧(1∨1) ?0∧1?0. (3)(?p∧?q∧r)?(p∧q∧﹁r) ?(1∧1∧1)? (0∧0∧0)?0 (4)(?r∧s)→(p∧?q) ?(0∧1)→(1∧0) ?0→0?1 17.判断下面一段论述是否为真:“π是无理数。并且,如果3是无理数,则2也是无理数。另外6能被2整除,6才能被4整除。” 答:p: π是无理数 1 q: 3是无理数0 r: 2是无理数 1 s:6能被2整除 1 t: 6能被4整除0 命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。19.用真值表判断下列公式的类型: (4)(p→q) →(?q→?p) (5)(p∧r) ?(?p∧?q) (6)((p→q) ∧(q→r)) →(p→r) 答:(4) p q p→q ?q ?p ?q→?p (p→q)→(?q→?p) 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 1 所以公式类型为永真式 (5)公式类型为可满足式(方法如上例) (6)公式类型为永真式(方法如上例) 第二章部分课后习题参考答案

3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值. (1) ?(p∧q→q) (2)(p→(p∨q))∨(p→r) (3)(p∨q)→(p∧r) 答:(2)(p→(p∨q))∨(p→r)?(?p∨(p∨q))∨(?p∨r)??p∨p∨q∨r?1所以公式类型为永真式 (3)P q r p∨q p∧r (p∨q)→(p∧r) 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 0 1 1 1 0 0 1 0 0 1 0 0 1 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 所以公式类型为可满足式 4.用等值演算法证明下面等值式: (2)(p→q)∧(p→r)?(p→(q∧r)) (4)(p∧?q)∨(?p∧q)?(p∨q) ∧?(p∧q) 证明(2)(p→q)∧(p→r) ? (?p∨q)∧(?p∨r) ??p∨(q∧r)) ?p→(q∧r) (4)(p∧?q)∨(?p∧q)?(p∨(?p∧q)) ∧(?q∨(?p∧q) ?(p∨?p)∧(p∨q)∧(?q∨?p) ∧(?q∨q) ?1∧(p∨q)∧?(p∧q)∧1 ?(p∨q)∧?(p∧q) 5.求下列公式的主析取范式与主合取范式,并求成真赋值 (1)(?p→q)→(?q∨p) (2)?(p→q)∧q∧r (3)(p∨(q∧r))→(p∨q∨r)

离散数学屈婉玲版课后习题

第一章部分课后习题参考答案 16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。 (1)p∨(q∧r)?0∨(0∧1) ?0 (2)(p?r)∧(﹁q∨s) ?(0?1)∧(1∨1) ?0∧1?0. (3)(?p∧?q∧r)?(p∧q∧﹁r) ?(1∧1∧1)? (0∧0∧0)?0 (4)(?r∧s)→(p∧?q) ?(0∧1)→(1∧0) ?0→0?1 17.判断下面一段论述是否为真:“π是无理数。并且,如果3是无理数,则2也是无理数。另外6能被2整除,6才能被4整除。” 答:p: π是无理数 1 q: 3是无理数0 r: 2是无理数 1 s:6能被2整除 1 t: 6能被4整除0 命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。 19.用真值表判断下列公式的类型: (4)(p→q) →(?q→?p) (5)(p∧r) ?(?p∧?q) (6)((p→q) ∧(q→r)) →(p→r) 答:(4) p q p→q ?q ?p ?q→?p (p→q)→(?q→?p) 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 1 所以公式类型为永真式 (5)公式类型为可满足式(方法如上例) (6)公式类型为永真式(方法如上例) 第二章部分课后习题参考答案 3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值. (1) ?(p∧q→q) (2)(p→(p∨q))∨(p→r) (3)(p∨q)→(p∧r) 答:(2)(p→(p∨q))∨(p→r)?(?p∨(p∨q))∨(?p∨r)??p∨p∨q∨r?1 所以公式类型为永真式 (3) P q r p∨q p∧r (p∨q)→(p∧r) 0 0 0 0 0 1

屈婉玲版离散数学课后习题答案【2】

第四章部分课后习题参考答案 3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值: (1) 对于任意x,均有错误!未找到引用源。2=(x+错误!未找到引用源。)(x 错误!未找到引用源。). (2) 存在x,使得x+5=9. 其中(a)个体域为自然数集合. (b)个体域为实数集合. 解: F(x): 错误!未找到引用源。2=(x+错误!未找到引用源。)(x 错误!未找到引用源。). G(x): x+5=9. (1)在两个个体域中都解释为)(x xF ?,在(a )中为假命题,在(b)中为真命题。 (2)在两个个体域中都解释为)(x xG ?,在(a )(b)中均为真命题。 4. 在一阶逻辑中将下列命题符号化: (1) 没有不能表示成分数的有理数. (2) 在北京卖菜的人不全是外地人. 解: (1)F(x): x 能表示成分数 H(x): x 是有理数 命题符号化为: ))()((x H x F x ∧??? (2)F(x): x 是北京卖菜的人 H(x): x 是外地人 命题符号化为: ))()((x H x F x →?? 5. 在一阶逻辑将下列命题符号化: (1) 火车都比轮船快. (3) 不存在比所有火车都快的汽车. 解: (1)F(x): x 是火车; G(x): x 是轮船; H(x,y): x 比y 快

命题符号化为: )) F x G x→ ∧ ? ? y y ( )) ( ) , x ((y ( H (2) (1)F(x): x是火车; G(x): x是汽车; H(x,y): x比y快 命题符号化为: ))) x x F y y→ ?? ∧ ? G (y H ( , ( ) ( ( x ) 9.给定解释I如下: (a) 个体域D为实数集合R. (b) D中特定元素错误!未找到引用源。=0. (c) 特定函数错误!未找到引用源。(x,y)=x错误!未找到引用源。y,x,y D ∈错误!未找到引用源。. (d) 特定谓词错误!未找到引用源。(x,y):x=y,错误!未找到引用源。(x,y):x

离散数学(屈婉玲版)第四章部分答案

离散数学(屈婉玲版)第四章部分答案

4.1 (1)设S={1,2},R 是S 上的二元关系,且xRy 。如果R=Is ,则(A );如 果R 是数的小于等于关系,则(B ),如果R=Es ,则(C )。 (2)设有序对与有序对<5,2x+y>相等,则 x=(D),y=(E). 供选择的答案 A 、 B 、 C :① x,y 可任意选择1或2;② x=1,y=1;③ x=1,y=1 或 2;x=y=2; ④ x=2,y=2;⑤ x=y=1或 x=y=2;⑥ x=1,y=2;⑦x=2,y=1。 D 、 E :⑧ 3;⑨ 2;⑩-2。 答案: A: ⑤ B: ③ C: ① D: ⑧ E: ⑩ 4.2设S=<1,2,3,4>,R 为S 上的关系,其关系矩阵是 ????? ???????0001100000011001 则(1)R 的关系表达式是(A )。 (2)domR=(B),ranR=(C). (3)R ?R 中有(D )个有序对。 (4)R ˉ1的关系图中有(E )个环。 供选择的答案 A :①{<1,1>,<1,2>,<1,4>,<4,1>,<4,3>}; ②{<1,1>,<1,4>,<2,1>,<4,1>,<3,4>}; B 、 C :③{1,2,3,4};④{1,2,4};⑤{1,4}⑥{1,3,4}。 D 、 E ⑦1;⑧3;⑨6;⑩7。 答案: A:② B:③ C:⑤ D:⑩ E:⑦ 4.3设R 是由方程x+3y=12定义的正整数集Z+上的关系,即 {<x,y >︳x,y ∈Z+∧x+3y=12}, 则 (1)R 中有A 个有序对。 (2)dom=B 。 (3)R ↑{2,3,4,6}=D 。 (4){3}在R 下的像是D 。 (5)R 。R 的集合表达式是E 。 供选择的答案 A:①2;②3;③4. B 、 C 、 D 、E:④{<3,3>};⑤{<3,3>,<6,2>};⑥{0,3,6,9,12};

离散数学版屈婉玲(答案)

《离散数学1-5章》练习题答案第2,3章(数理逻辑) 1.答:(2),(3),(4) 2.答:(2),(3),(4),(5),(6) 3.答:(1)是,T (2)是,F (3)不是 (4)是,T (5)不是(6)不是 4.答:(4) 5.答:?P ,Q→P 6.答:P(x)∨?yR(y) 7.答:??x(R(x)→Q(x)) 8、 c、P→(P∧(Q→P)) 解:P→(P∧(Q→P)) ??P∨(P∧(?Q∨P)) ??P∨P ? 1 (主合取范式) ? m0∨ m1∨m2∨ m3 (主析取范式) d、P∨(?P→(Q∨(?Q→R))) 解:P∨(?P→(Q∨(?Q→R))) ? P∨(P∨(Q∨(Q∨R))) ? P∨Q∨R ? M0 (主合取范式) ? m1∨ m2∨m3∨ m4∨ m5∨m6 ∨m7 (主析取范式) 9、

b、P→(Q→R),R→(Q→S) => P→(Q→S) 证明: (1) P 附加前提 (2) Q 附加前提 (3) P→(Q→R) 前提 (4) Q→R (1),(3)假言推理 (5) R (2),(4)假言推理 (6) R→(Q→S) 前提 (7) Q→S (5),(6)假言推理 (8) S (2),(7)假言推理 d、P→?Q,Q∨?R,R∧?S??P 证明、 (1) P 附加前提 (2) P→?Q 前提 (3)?Q (1),(2)假言推理 (4) Q∨?R 前提 (5) ?R (3),(4)析取三段论 (6 ) R∧?S 前提 (7) R (6)化简 (8) R∧?R 矛盾(5),(7)合取 所以该推理正确 10.写出?x(F(x)→G(x))→(?xF(x) →?xG(x))的前束范式。 解:原式??x(?F(x)∨G(x))→(?(?x)F(x) ∨ (?x)G(x)) ??(?x)(?F(x)∨G(x)) ∨(?(?x)F(x) ∨ (?x)G(x)) ? (?x)((F(x)∧? G(x)) ∨G(x)) ∨ (?x) ?F(x)

离散数学(屈婉玲版)第四章部分答案

4.1 (1)设S={1,2},R 是S 上的二元关系,且xRy 。如果R=Is ,则(A );如 果R 是数的小于等于关系,则(B ),如果R=Es ,则(C )。 (2)设有序对与有序对<5,2x+y>相等,则 x=(D),y=(E). 供选择的答案 A 、 B 、 C :① x,y 可任意选择1或2;② x=1,y=1;③ x=1,y=1 或 2;x=y=2; ④ x=2,y=2;⑤ x=y=1或 x=y=2;⑥ x=1,y=2;⑦x=2,y=1。 D 、 E :⑧ 3;⑨ 2;⑩-2。 答案: A: ⑤ B: ③ C: ① D: ⑧ E: ⑩ 4.2设S=<1,2,3,4>,R 为S 上的关系,其关系矩阵是 ????? ???????0001100000011001 则(1)R 的关系表达式是(A )。 (2)domR=(B),ranR=(C). (3)R ?R 中有(D )个有序对。 (4)R ˉ1的关系图中有(E )个环。 供选择的答案 A :①{<1,1>,<1,2>,<1,4>,<4,1>,<4,3>}; ②{<1,1>,<1,4>,<2,1>,<4,1>,<3,4>}; B 、 C :③{1,2,3,4};④{1,2,4};⑤{1,4}⑥{1,3,4}。 D 、 E ⑦1;⑧3;⑨6;⑩7。 答案: A:② B:③ C:⑤ D:⑩ E:⑦ 4.3设R 是由方程x+3y=12定义的正整数集Z+上的关系,即 {<x,y >︳x,y ∈Z+∧x+3y=12}, 则 (1)R 中有A 个有序对。 (2)dom=B 。 (3)R ↑{2,3,4,6}=D 。 (4){3}在R 下的像是D 。 (5)R 。R 的集合表达式是E 。 供选择的答案 A:①2;②3;③4. B 、 C 、 D 、E:④{<3,3>};⑤{<3,3>,<6,2>};⑥{0,3,6,9,12};

离散数学(屈婉玲版)第四章部分标准答案

4.1 (1)设S={1,2},R 是S 上的二元关系,且xR y。如果R=Is ,则(A); 如果R 是数的小于等于关系,则(B),如果R=Es ,则(C)。 (2)设有序对<x+2,4>与有序对<5,2x+y>相等,则 x=(D),y=(E). 供选择的答案 A、B 、C :① x ,y 可任意选择1或2;② x=1,y=1;③ x=1,y=1 或 2;x=y=2; ④ x=2,y=2;⑤ x=y=1或 x =y=2;⑥ x=1,y=2;⑦x=2,y =1。 D 、E:⑧ 3;⑨ 2;⑩-2。 答案: A: ⑤ B: ③ C: ① D: ⑧ E: ⑩ 4.2设S =<1,2,3,4>,R 为S 上的关系,其关系矩阵是 ????? ???????0001100000011001 则(1)R 的关系表达式是(A )。 (2)dom R=(B),ranR=(C). (3)R ?R中有(D)个有序对。 (4)R ˉ1的关系图中有(E)个环。 供选择的答案 A :①{<1,1>,<1,2>,<1,4>,<4,1>,<4,3>}; ②{<1,1>,<1,4>,<2,1>,<4,1>,<3,4>}; B、C :③{1,2,3,4};④{1,2,4};⑤{1,4}⑥{1,3,4}。 D、E ⑦1;⑧3;⑨6;⑩7。 答案: A :② B:③ C:⑤ D:⑩ E:⑦ 4.3设R 是由方程x+3y=12定义的正整数集Z+上的关系,即 {︳x,y ∈Z+∧x +3y=12}, 则 (1)R 中有A 个有序对。 (2)d om=B 。 (3)R ↑{2,3,4,6}=D 。 (4){3}在R 下的像是D 。 (5)R 。R 的集合表达式是E 。 供选择的答案 A:①2;②3;③4. B 、 C 、 D 、 E :④{<3,3>};⑤{<3,3>,<6,2>};⑥{0,3,6,9,12};⑦{3,6,

离散数学最全课后答案(屈婉玲版)

………………………………………………最新资料推 荐……………………………………… 1.1.略 1.2.略 1.3.略 1.4.略 1.5.略 1.6.略 1.7.略 1.8.略 1.9.略 1.10.略 1.11.略 1.12.将下列命题符号化,并给出各命题的真值: (1)2+2=4当且仅当3+3=6.(2)2+2= 4的充要条件是3+3≠6.(3)2+2≠4与 3+3=6互为充要条件.(4)若2+2≠4, 则 3+3≠6,反之亦然. (1)p?q,其中,p: 2+2=4,q: 3+3=6, 真值为 1.(2)p??q,其中,p:2+2=4,q:3+3=6,真值为0. (3)?p?q,其中,p:2+2=4,q:3+3=6,真值为 0.(4)?p??q,其中,p:2+2=4,q:3+3=6,真值为1. 1.13.将下列命题符号化, 并给出各命题的真值:(1) 若今天是星期一,则明天是星期二.(2)只有今天 是星期一,明天才是星期二.(3)今天是星期一当 且仅当明天是星期二. (4)若今天是星期一,则明 天是星期三. 令p: 今天是星期一;q:明天是星期二;r:明天是星期三.(1) p→q ? 1. (2) q→p ? 1. (3) p?q? 1. (4)p→r当p ? 0时为真; p ? 1时为假. 1.14.将下列命题符号化. (1) 刘晓月跑得快,跳得高.(2) 老王是山东人或河北人. (3)因为天气冷, 所以我穿了羽绒服. (4)王欢与李乐组成一个小 组. (5)李辛与李末是兄弟. (6)王强与刘威都学过法语. (7)他一面吃 饭, 一面听音乐. (8)如果天下大雨,他就乘 班车上班.(9)只有天下大雨,他才乘班车上 班.(10)除非天下大雨,他才乘班车上班.(11) 下雪路滑, 他迟到了. (12)2与4都是素数,这是不对的. (13)“2或4是素数,这是不对的”是不对的.

离散数学屈婉玲版

1 离散数学(第四版) ( ( ( (耿素云屈婉玲张立昂著) ) ) ) 清华大学出版社 第第第第 1 1 1 1 章章章章习题解答习题解答习题解答习题解答 1.1 除(3),( 4),( 5),( 11)外全是命题,其中,(1),( 2),( 8),( 9),(10),( 14),( 15)是简单命题,(6),( 7),( 12),( 13)是复合命题。 分析首先应注意到,命题是陈述句,因而不是陈述句的句子都不是命题。 本题中,(3)为疑问句,(5)为感叹句,(11)为祈使句,它们都不是陈述句, 所以它们都不是命题。 其次,(4)这个句子是陈述句,但它表示的判断结果是不确定。又因为(1),(2),( 8),( 9),( 10),( 14),( 15)都是简单的陈述句,因而作为命题,它们都是简单命题。(6)和(7)各为由联结词“当且仅当”联结起来的复合命题,(12)是由联结词“或”联结的复合命题,而(13)是由联结词“且”联结起来 的复合命题。这里的“且”为“合取”联结词。在日常生活中,合取联结词有许 多表述法,例如,“虽然……,但是……”、“不仅……,而且……”、“一面……,一面……”、“……和……”、“……与……”等。但要注意,有时“和”或“与”联结的是主语,构成简单命题。例如,(14)、( 15)中的“与”与“和”是联结 的主语,这两个命题均为简单命题,而不是复合命题,希望读者在遇到“和”或“与”出现的命题时,要根据命题所陈述的含义加以区分。 1.2 (1)是无理数,p 为真命题。 2: p (2)能被 2 整除,p 为假命题。 :5 p (6)。其中,是素数,q:三角形有三条边。由于 p 与 q 都是真 qp → 2 : p 命题,因而为假命题。 qp → (7),其中,p:雪是黑色的,q:太阳从东方升起。由于 p 为假命 qp → 题,q 为真命题,因而为假命题。 qp → (8)年 10 月 1 日天气晴好,今日(1999 年 2 月 13 日)我们还不 :2000 p 课后答案网 https://www.360docs.net/doc/b917626345.html, 2 知道 p 的真假,但 p 的真值是确定的(客观存在的),只是现在不知道而已。 (9)p:太阳系外的星球上的生物。它的真值情况而定,是确定的。 (10)p:小李在宿舍里. p 的真值则具体情况而定,是确定的。 (12),其中,是偶数,是奇数。由于 q 是假命题,所以,q qp ∨ 4 : p 4: q 为假命题,为真命题。 qp ∨ (13),其中,是偶数,是奇数,由于 q 是假命题,所以, qp ∨ 4 : p 4: q 为假命题。 qp ∨ (14) p:李明与王华是同学,真值由具体情况而定(是确定的)。 (15) p:蓝色和黄色可以调配成绿色。这是真命题。 分析命题的真值是唯一确定的,有些命题的真值我们立即可知,有些则不 能马上知道,但它们的真值不会变化,是客观存在的。 1.3 令则以下命题分别符号化为 6,33:4,22: +=+= qp (1) qp → (2) qp →?

离散数学最全最新答案 屈婉玲

第一章 命题逻辑基本概念 课后练习题答案 4.将下列命题符号化,并指出真值: (1)p∧q,其中,p:2是素数,q:5是素数,真值为1; (2)p∧q,其中,p:是无理数,q:自然对数的底e 是无理数,真值为1; (3)p∧┐q,其中,p:2是最小的素数,q:2是最小的自然数,真值为1; (4)p∧q,其中,p:3是素数,q:3是偶数,真值为0; (5)┐p∧┐q,其中,p:4是素数,q:4是偶数,真值为0. 5.将下列命题符号化,并指出真值: (1)p∨q,其中,p:2是偶数,q:3是偶数,真值为1; (2)p∨q,其中,p:2是偶数,q:4是偶数,真值为1; (3)p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0; (4)p∨q,其中,p:3是偶数,q:4是偶数,真值为1; (5)┐p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0; 6.(1)(┐p∧q)∨(p∧┐q),其中,小丽从筐里拿一个苹果,q :小丽从筐里拿一个梨; (2)(p∧┐q)∨(┐p∧q),其中,p :刘晓月选学英语,q :刘晓月选学日语;. 7.因为p 与q 不能同时为真. 13.设p:今天是星期一,q:明天是星期二,r:明天是星期三: (1)p→q,真值为1(不会出现前件为真,后件为假的情况); (2)q→p,真值为1(也不会出现前件为真,后件为假的情况); (3)p q ,真值为1; (4)p→r,若p 为真,则p→r 真值为0,否则,p→r 真值为1. 16 设p 、q 的真值为0;r 、s 的真值为1,求下列各命题公式的真值。 (1)p ∨(q ∧r)? 0∨(0∧1) ? (2)(p ?r )∧(﹁q ∨s) ?(0?1)∧(1∨1) ?0∧1?0. (3)(?p ∧?q ∧r )?(p ∧q ∧﹁r) ?(1∧1∧1) ? (0∧0∧0)?0 (4)(?r ∧s )→(p ∧?q) ?(0∧1)→(1∧0) ?0→0? 1 17.判断下面一段论述是否为真:“π是无理数。并且,如果3是无理数,则2也是无理数。另外6能被2整除,6才能被4整除。” 答:p: π是无理数 1 q: 3是无理数 r: 2是无理数 1 s: 6能被2整除 1 t: 6能被4整除 0 命题符号化为: p ∧(q →r)∧(t →s)的真值为1,所以这一段的论述为真。 19.用真值表判断下列公式的类型: (4)(p →q) →(?q →?p) (5)(p ∧r) ?(?p ∧?q) (6)((p →q) ∧(q →r)) →(p →r) 答: (4) p q p →q ?q ?p ?q →?p (p →q)→(?q →?p) 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 1 所以公式类型为永真式 //最后一列全为1 (5)公式类型为可满足式(方法如上例)//最后一列至少有一个1 (6)公式类型为永真式(方法如上例)// 返回 第二章 命题逻辑等值演算 本章自测答案 3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值. (1) ?(p ∧q →q) (2)(p →(p ∨q))∨(p →r) (3)(p ∨q)→(p ∧r) 答:(2)(p →(p ∨q))∨(p →r)?(?p ∨(p ∨q))∨(?p ∨r)??p ∨p ∨q ∨r ?1 所以公式类型为永真式 (3) P q r p ∨q p ∧r (p ∨q )→(p ∧r) 0 0 0 0 0 1 0 0 1 0 0 1

离散数学(屈婉玲版)第六章部分答案

6.1(5) 5S =n M (R),+为矩阵加法,则S 是(群) 答:满足封闭性,因为矩阵加法可结合所以为半群,且幺元为e =0的矩阵,故为独异点。又因为以任一n 阶矩阵的逆元存在是它的负矩阵,所以是群。 评语:答案太简单 6.2 (1)因为可结合,交换,幺元为1,但不存在逆元 所以是半群 (2)因为可交换,结合,幺元为0,是有限阶群并且是循环群,G 中的2阶元是2,4阶元是1和3 6.4 设Z 为正数集合,在Z 上定义二元运算 ° ,? x,y ∈Z 有 x ° y=x+y-2, 那么Z 与运算 ° 能否构成群?为什么? 解: 设 ? a,b,c ∈Z (a ° b )° c = (a+b-2) ° c = a+b- 2+ c-2 =a+b+c-4 a ° ( b ° c) = a ° (b+c-2) =a + b+c-2-2 =a+b+c-4 对2∈Z ,? x ∈Z 有 x ° 2=x+2-2=x=2° x, 可见 , 存在幺元,幺元为2。 对? x ∈Z 有4-x ∈Z,使x ° (4-x )= (4-x) ° x=2 所以 x-1 = 4-x 所以Z 与运算 ° 能构成群 。 6.7 下列各集合对于整除关系都构成偏序集,判断哪些偏序集是格? (1)L={1,2,3,4,5}. (2)L={1,2,3,6,12}. (3)L={1,2,3,4,6,9,12,18,36}. (4)L={1,2,2(2),…,2(n)}. (1)L={1,2,3,4,5}. 解:由它的哈斯图可以知道,该偏序集不是格,因为3和4、5和4 、3和5有最大下届是1,但是没有最小上届。 (2)L={1,2,3,6,12}. 解:由它的哈斯图可以知道,该偏序集是格。因为L 中的任意俩个元素都有最大下结和最小上届。 (3)L={1,2,3,4,6,9,12,18,36}. 解:由它的哈斯图可以知道,该偏序集是格。因为L 中的任意俩个元素都有最大下结和最小上届。 (4)L={1,2,2(2),…,2(n)}.

离散数学最全课后答案(屈婉玲版)_0

离散数学最全课后答案(屈婉玲版) 离散数学习题解1 习题1 1 . 1 . 2 . 1 . 3 . 1 . 4 . 1 . 5 . 1 . 6 . 1 . 7 . 1 . 8 . 1 . 9 . |下列命题用符号表示,并给出其真值: (1) 2+2(2) 2+2 = 4的充要条件是3+3?6.(3)2+2?4和3+3 = 6都是必要和充分的条件。(4)如果2+2?4,然后3+3?6,反之亦然。 (1)p?q,其中p: 2+2 = 4,q: 3+3 = 6,真值为1。(2)p??q,其中p: 2+2 = 4,q: 3+3 = 6,真值为0。(3)?p?q,其中p: 2+2 = 4,q: 3+3 = 6,真值为0。(4)?p??q,其中p: 2+2 = 4,q: 3+3 = 6,真值为1. 1.13。用符号表示下列命题,并给出每个命题的真实值:(1)如果今天是星期一,明天就是星期二。只有今天是星期一。明天是星期二。(3)今天是星期一,只有明天是星期二。(4)如果今天是星期一,明天就是星期三。

订单P:今天是星期一;问:明天是星期二;明天是星期三。问??1.(2) q?p??1.(3) p?问??1. (4) p?r何时p??0为真;p??一小时是假的。 1.14。象征以下命题。 (1)刘跑得快,跳得高。老王来自山东或河北。 (3)因为天气寒冷。所以我穿上了羽绒服。(4)王欢和李乐组成一个小组。 (5)李欣和李默是兄弟。 (6)王强和刘伟都学过法语。他一边吃饭一边听音乐。如果下大雨,他就乘公共汽车去上班。只有下大雨时,他才乘公共汽车去上班。除非下大雨。他刚刚乘公共汽车去上班。雪很滑,他迟到了。(12)2和4是质数,这是错误的。(13)“2或4是质数,这是错误的”是错误的。离散数学习题解答 (1)p?其中,刘跑得快,刘跳得高。(2)p?其中,p:老王来自山东,q:老王来自河北。(3)p?问:那里的天气很冷,问:我穿着羽绒服。(4)p,其中P:王欢和李乐组成一个组,这是一个简单的命题。(5)p,其中P:李欣和李默是兄弟。 (6)p?其中,王强学的是法语,刘伟学的是法语。其中,p:他吃饭,q:他听音乐。其中,p:雨下得很大,q:他乘公共汽车去上班。其中,

离散数学答案屈婉玲版第二版高等教育出版社课后答案

离散数学答案屈婉玲版第二版高等教育出版社 课后答案 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

离散数学答案屈婉玲版 第二版高等教育出版社课后答案 第一章部分课后习题参考答案 16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。 (1)p∨(q∧r)? 0∨(0∧1) ?0 (2)(pr)∧(﹁q∨s) ?(01)∧(1∨1) ?0∧1?0. (3)(?p∧?q∧r)(p∧q∧﹁r) ?(1∧1∧1) (0∧0∧0)?0 (4)(?r∧s)→(p∧?q) ?(0∧1)→(1∧0) ?0→0?1 17.判断下面一段论述是否为真:“π是无理数。并且,如果3是无理数,则2也是无理数。另外6能被2整除,6才能被4整除。” 答:p: π是无理数 1 q: 3是无理数 0 r: 2是无理数 1 s: 6能被2整除 1 t: 6能被4整除 0 命题符号化为: p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。19.用真值表判断下列公式的类型: (4)(p→q) →(?q→?p) (5)(p∧r) ?(?p∧?q) (6)((p→q) ∧(q→r)) →(p→r) 答:(4) p q p→q ?q ?p ?q→?p (p→q)→(?q→?p) 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 1 所以公式类型为永真式 (5)公式类型为可满足式(方法如上例) (6)公式类型为永真式(方法如上例)

第二章部分课后习题参考答案 3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值. (1) ?(p∧q→q) (2)(p→(p∨q))∨(p→r) (3)(p∨q)→(p∧r) 答:(2)(p→(p∨q))∨(p→r)?(?p∨(p∨q))∨(?p∨r)??p∨p∨q∨r?1所以公式类型为永真式 (3) P q r p∨q p∧r (p∨q)→(p∧r) 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 0 1 1 1 0 0 1 0 0 1 0 0 1 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 所以公式类型为可满足式 4.用等值演算法证明下面等值式: (2)(p→q)∧(p→r)?(p→(q∧r)) (4)(p∧?q)∨(?p∧q)?(p∨q) ∧?(p∧q) 证明(2)(p→q)∧(p→r) ? (?p∨q)∧(?p∨r) ??p∨(q∧r)) ?p→(q∧r) (4)(p∧?q)∨(?p∧q)?(p∨(?p∧q)) ∧(?q∨(?p∧q) ?(p∨?p)∧(p∨q)∧(?q∨?p) ∧(?q∨q) ?1∧(p∨q)∧?(p∧q)∧1 ?(p∨q)∧?(p∧q) 5.求下列公式的主析取范式与主合取范式,并求成真赋值 (1)(?p→q)→(?q∨p) (2)?(p→q)∧q∧r

离散数学(屈婉玲版)第二章习题答案

设解释I为:个体域D I ={-2,3,6},一元谓词F(X):X3,G(X):X>5,R(X):X7。在I下求下列各式的真值。 (1)x(F(x)G(x)) 解:x(F(x)G(x)) (F(-2) G(-2)) (F(3) G(3)) (F(6) G(6)) ((-23) (-2>5)) ((33) (3>5)) ((63) (6<5)) ((1 0))((1 0)) ((0 0)) 000 (2) x(R(x)F(x))G(5) 解:x(R(x)F(x))G(5) (R(-2)F(-2)) (R(3)F(3)) (R(6)F(6)) G(5) ((-27) (-23)) (( 37) (33)) (( 67) (63)) (5>5) (1 1) (1 1) (10) 0 1 1 0 0 (3)x(F(x)G(x)) 解:x(F(x)G(x)) (F(-2) G(-2)) (F(3) G(3)) (F(6) G(6)) ((-23) (-2>5)) ((33) (3>5)) ((63) (6>5)) (1 0) (1 0) (0 1) 1 1 1

1 求下列各式的前束范式,要求使用约束变项换名规则。 (1)??xF(x)→?yG(x,y) (2) ?(?xF(x,y) ∨?yG(x,y) ) 解:(1)??xF(x)→?yG(x,y) ???xF(x)→?yG(z,y) 代替规则 ??x?F(x)→?yG(z,y) 定理(2 ) ??x(?F(x) →?yG(z,y) 定理(2)③ ??x?y(?F(x) →G(z,y)) 定理(1)④ (2)?(?xF(x,y) ∨?yG(x,y) ) ??(?zF(z,y) ∨?tG(x,t)) 换名规则 ??(?zF(z,y) )∧?(?tG(x,t) ) ??z?F(z,y) ∧?t?G(x,z) ??z (?F(z,y) ∧?t?G(x,z)) ??z ?t(?F(z,y) ∧?G(x,t)) 求下列各式的前束范式,要求使用自由变项换名规则。(代替规则)(1)xF(x)∨yG(x,y) xF(x) ∨yG(z,y) 代替规则 x(F(x) ∨yG(z,y))定理(1)① xy(F(x) ∨G(z,y))定理(2)① (2)x(F(x)∧yG(x,y,z))→zH(x,y,z) x(F(x)∧yG(x,y,t))→zH(s,r,z) 代替规则 xy (F(x)∧G(x,y,t))→zH(s,r,z) 定理(1)② x(y (F(x)∧G(x,y,t))→zH(s,r,z))定理(2)③ xy((F(x)∧G(x,y,t))→zH(s,r,z))定理(1)③ xyz((F(x)∧G(x,y,t))→H(s,r,z))定理(2)④ 构造下面推理的证明。

离散数学屈婉玲版课后答案

3 习题一 1.1.略 1.2.略 1.3.略 1.4.略 1.5.略 1.6.略 1.7.略 1.8.略 1.9.略1.10.1.11.1.12.略 略 将下列命题符号化, 并给出各命题的真值: (1)2+2=4当且仅当3+3=6. (2)2+2=4的充要条件是3+3?6. (3)2+2?4与3+3=6互为充要条件. (4)若2+2?4, 则3+3?6, 反之亦然. (1)p q, 其中, p: 2+2=4, q: 3+3=6, 真值为1. (2)p ←q, 其中, p: 2+2=4, q: 3+3=6, 真值为0. (3) ←p q, 其中, p: 2+2=4, q: 3+3=6, 真值为0. (4) ←p ←q, 其中, p: 2+2=4, q: 3+3=6, 真值为1. 将下列命题符号化, 并给出各命题的真值: (1)若今天是星期一, 则明天是星期二. (2)只有今天是星期一, 明天才是星期二. (3)今天是星期一当且仅当明天是星期二. (4)若今天是星期一, 则明天是星期三. 令p: 今天是星期一; q: 明天是星期二; r: 明天是星期三. (1) p q ? 1. (2) q p ? 1. (3) p q ? 1. (4) p r当p ? 0时为真; p ? 1 时为假. 将下列命题符号化. (1) 刘晓月跑得快, 跳得高. (2)老王是山东人或河北人. (3)因为天气冷, 所以我穿了羽绒服. (4)王欢与李乐组成一个小组. (5)李辛与李末是兄弟. (6)王强与刘威都学过法语. (7)他一面吃饭, 一面听音乐. (8)如果天下大雨, 他就乘班车上班. (9)只有天下大雨, 他才乘班车上班. (10)除非天下大雨, 他才乘班车上班. (11)下雪路滑, 他迟到了. (12)2与4都是素数, 这是不对的. (13)“2或4是素数, 这是不对的”是不对的.

离散数学(屈婉玲版)第七章部分答案

列各组数中,那些能构成无向图的度数列那些能构成无向简单图的度数列 (1)1,1,1,2,3 (2)2,2,2,2,2 (3)3,3,3,3 (4)1,2,3,4,5 (5)1,3,3,3 解答:(1),(2),(3),(5)能构成无向图的度数列。 (1),(2),(3)能构成五项简单图的度数列。 设有向简单图D 的度数列为2,2,3,3,入度列为0,0,2,3,试求D 的出度列。 解:因为 出度=度数-入度,所以出度列为2,2,1,0。 设D 是4阶有向简单图,度数列为3,3,3,3。它的入度列(或出度列)能为1,1, 1,1吗 解:由定理可知,有向图的总入度=总出度。该有向图的总入度=1+1+1+1=4,总出度=2+2+2+2=8,4!=8,所以它的出度列(或入度列)不能为1,1,1,1。 35条边,每个顶点的度数至少为3的图最多有几个顶点 解:根据握手定理,所有顶点的度数之和为70,假设每个顶点的度数都为3,则 n 为小于等于3 70的最大整数,即:23 ∴ 最多有23个顶点 7.7 设n 阶无向简单图G 中,δ(G )=n-1,问△(G )应为多少 解: 假设n 阶简单图图n 阶无向完全图,在K n 共有 2)1(-n n 条边,各个顶点度数之和为n (n-1) ∴每个顶点的度数为n n n )1(-=n-1 ∴△(G )=δ(G )=n-1 一个n (n ≥2)阶无向简单图G中,n 为奇数,有r 个奇度数顶点,问G的补图G 中有几个奇度顶点 解:在K n 图中,每个顶点的度均为(n-1),n 为奇数,在G中度为奇数的顶点在G 中仍然为奇数, ∴共有r 个奇度顶点在G 中 7.9 设D是n 阶有向简单图,D’是D的子图,已知D’的边数m ’=n (n-1),问D的边数m 为多少 解: 在D’中m ’=n (n-1) 可见D’为有个n 阶有向完全图,则D=D’ 即D’就是D本身, ∴m=n (n-1) 有向图D 入图所示。求D 中长度为4 的通路总数,并指出其中有多少条是回路

相关文档
最新文档