高频变压器大全

高频变压器大全
高频变压器大全

TYDZ高频变压器用途及性能

TYDZ高频变压器 TYDZ高频变压器简称高频变压器,不同用法名称也有所不同,例如;用自激振荡电路称为电子变压器,用做功率转换称为功率变压器,也称电源变压器。简单来说,它主要是由高频变压器磁芯(铁芯)与两个或两个以上的线圈组成,它们互不改变位置,从一个或两个以上的电回路中,通过交流电力借助电磁感应作用,转变成交流电压及电流。而在高频变压器的输出端,对一个或两个以上的用电回路,供给不同电压等级的高频交流或直流电。TYDZ变压器广泛用于升压、降压、隔离、整流、变频、倒相、阻抗匹配、逆变、储能、滤波等电子线路中。 1. TYDZ高频变压器特点 TYDC高频变压器具有体积小,重量轻,价格低等优点,所以被广泛用在各种电器中。其性能稳定,体积小,功率大,弥补了硅钢片变压器体大、笨重、价高等缺点。TYDC高频变压器一般在开关电源和电子整流器中较为多见,因为是用在高频率的电路中因此而得名“高频变压器”因为首先要得到一个高频率,所以在实际电路中将这个变压器设计成是振荡源的变压器又是能量输出变压器,将两个功能合在一起,就开关电源而言,原理大概是这样:先将市电(50HZ交流电)整流、滤波成直流电------由高频变压器组成振荡源并输出高频率稳定电压的交流电(严格讲是高频脉冲)-------整流成直流电备用 2.TYDZ高频变压器材料与性能 1、磁性材料:TYDZ高频变压器是采用铁氧体磁芯材料。 2、工作频率:高频变压器的工作频率一般都在1KHZ以上,甚至几十KHZ或者上百KHZ,应用范围不同频率也不一样。 3、应用方面:高频变压器用途很广泛(如;手机充电器,电子镇流器,开关电源,彩电电源,电脑电源,液晶驱动及电源等等许多场合都有使用)。 3.TYDZ高频变压器常用型号规格参数,恕不能一一例举! 例如:EE22高频变压器 一.EE22高频变压器尺寸外观图(单位:mm)

高频变压器的分析与设计.

高频链中高频变压器的分析与设计 文章作者:四川成都西南交通大学龙海峰郭世明江苏南京国电南京自动化股份有限公司呙道静文章类型:设计应用文章加入时间:2004年9月6日14:54 文章出处:电源技术应用 摘要:高频链逆变技术用高频变压器代替传统逆变器中笨重的工频变压器,大大减小了逆变器的体 积和重量。在高频链的硬件电路设计中,高频变压器是重要的一环。叙述了高频变压器的设计过程。 实验结果证明该设计满足要求。 关键词:高频链;高频变压器;逆变器 引言 MESPELAGE于1977年提出了高频链逆变技术的新概念[1]。高频链逆变技术与常规的逆变技术最 大的不同,在于利用高频变压器实现了输入与输出的电气隔离,减小了变压器的体积和重量。近年来, 高频链技术引起人们越来越多的兴趣。 1 概述 图1是传统的逆变器框图。其缺点是采用了笨重庞大的工频变压器和滤波电感,导致效率低,噪 音大,可靠性差。另外,谐波含量大,波形畸变严重,与要求的优质正弦波相差甚远。

图2所示为电压源高频链逆变器的框图,该方案是当今研究的最先进方案[2],也是本文中采用的方案。采用此方案有其一系列的优点,诸如,以小型的高频变压器替代工频变压器;只有两级功率变换;正弦波质量高;控制灵活等。高频变压器是高频链的核心部件,肩负着隔离和传输功率的重任,其性能好坏直接决定逆变器的性能好坏。不合格的变压器温升高,效率低,漏感严重,输出波形畸变大,直接影响电路的稳定性和可靠性,甚至损坏开关器件,导致实验失败。 2 高频变压器的设计 设计高频变压器首先应该从磁芯开始。开关电源变压器磁芯多是在低磁场下使用的软磁材料,它有较高磁导率,低的矫顽力,高的电阻率。磁导率高,在一定线圈匝数时,通过不大的激磁电流就能承受较高的外加电压,因此,在输出一定功率要求下,可减轻磁芯体积。磁芯矫顽力低,磁滞面积小,则铁耗也少。高的电阻率,则涡流小,铁耗小。各种磁芯物理性能及价格比如表1所列。铁氧体材料是复合氧化物烧结体,电阻率很高,适合高频下使用,但Bs值比较小,常使用在开关电源中。本文采用的就是铁氧体材料。 表1 各种磁芯特性比较表

高频变压器绕法

高频变压器绕法 高频变压器的两种基本绕法:顺序绕法和三明治绕法。 普通顺序绕法: 一般的单输出电源,变压器分为3个绕组,初级绕组Np,次级绕组Ns,辅助电源绕组Nb,绕制的顺序是:Np--Ns--Nb 此种绕法工艺简单,易于控制磁芯的各种参数,一致性较好,绕线成本低,适用于大批量的生产,但漏感稍大,而耦合电容小,EMI比较好故适用于对漏感不敏感的小功率场合,一般功率小于30~40W的电源中普遍实用这种绕法。 三明治绕法: 三明治绕法久负盛名,几乎每个做电源的人都知道这种绕法,但真正对三明治绕法做过深入研究的人,应该不多 相信很多人都吃过三明治,就是两层面包中间夹一层奶油。顾名思义,三明治绕法就是两层夹一层的绕法。由于被夹在中间的绕组不同,三明治又分为两种绕法:初级夹次级,次级夹初级。

如上图,顺序为Np/2-Ns-Np/2-Nb,此种绕法有量大优点 这样有利于初次级的耦合,减少漏感;还有利于绕线的平整度;最后一个好处是,供电绕组电压变化受次级的负载影响较小,更稳定。 由于增加了初次级的有效耦合面积,可以极大的减少变压器的漏感,而减少漏感带来的好处是显而易见的:漏感引起的电压尖峰会降低,这就使MOSFET的电压应力降低,同时,由MOSFET与散热片引起的共模干扰电流也可以降低,从而改善EMI; 由于在初级中间加入了一个次级绕组,所以减少了变压器初级的层间电容,而层间电容的减少,就会使电路中的寄生振荡减少,同样可以降低MOSFET与次级整流管的电压电流应力,改善EMI。 缺点:由于初次级有两个接触面,绕组耦合电容比较大,所以EMI又比较难过。

如上图,顺序为Ns/2,Np,Ns/2,Nb。当输出是低压大电流时,一般采用此种绕法,其优点有二: 1、可以有效降低铜损引起的温升:由于输出是低压大电流,故铜损对导线的长度较为敏感,绕在内侧的Ns/2可以有效较少绕线长度,从而降低此Ns/2绕组的铜损及发热。外层的Ns/2虽说绕线相对较长,但是基本上是在变压器的外层,散热良好故温度也不会太高。 2、可以减少初级耦合至变压器磁芯高频干扰。由于初级远离磁芯,次级电压低,故引起的高频干扰小。

差动变压器及应用

. 差动变压器及其应用 5月专号)一、差动变压器简介(摘自日刊《传感器技术》1986年差动变压器是一种将机械位移变换成电信号的电磁感应式位移传感器。它主要是靠圆筒线圈内的可动铁芯的位移,在圆筒线圈的输入线圈和输出线圈之间建立起相互感应关系,可动铁芯的位移可以通过测定与其成正比的输出线圈的感应电压来获得。、差动变压器的特点1级之间有200mm)线性范围的种类很多,容易根据用途进行选择,通常在±2mm~±(1 个左右类型的品种。10 )结构简单,所以耐振性和耐冲击性都很强。(2 )不磨损,不变质,耐久性优良。(3)输出电压对铁心的位移有精确的比例,即直线性好。一般这种传感器中全行程偏差小4(0.3%。1%于,在高档品可以保证在±0.2%~±)因为灵敏度高,可以获得大的输出电压,不要求外围电路高级化也能检测到微小的位(5 移。)因为输出变化平滑,故能进行高分辨率的检测。(6 )零点稳定,以其作为测定的基准点对维持精度有好处。(7 的高的响应速度。到100Hz (8)能够得到从500Hz 2、差动变压器原理典型的差所示,由圆筒形线圈和与其完全分离的铁芯构成。差动变压器的构造原理如图1-1动变压器的圆筒线圈有三只,各是总长度的三分之一,中间是一次线圈,两侧是二次线圈。加入圆筒线圈中的铁芯用来在线圈中链接磁力线而构成磁路。(这由于与两端线圈的互感就产生了电动势(即激磁),当在中间的一次线圈加上交流电压时一点与普通变压器相同)。因为二次线圈彼此极性相反地串联,两个二次线圈中的感应电动势相位相反,将其相加的 结果,在输出端产生二者的电位差。相对于线圈长度方向的中心处,两个二次线圈的感应电压。大小相等方向相反,因而输出为零。这个位置被称为差动变压器的机械零点(或简称为零点)当铁芯从零点相某一方向改变位置时,位移方向的二次线圈的电压就增大,另一个二次线圈的电压则减小。产品设计保证产生的电位差与铁芯的位移成正比。当铁芯从零点向与刚才相反的方向移动 .. . °。相对于铁芯位移的二次线但是相位与刚才的情况相差180时,就会同样产生成正比的电压,圈电压和输出电压差的关系示于图1-2。电压差和铁芯位移成正比的范围称为直线范围,其比例性称为线性,是差动变压器最重要 的一项指标。X

变压器基本工作原理

第1章 变压器的基本知识和结构 1.1变压器的基本原理和分类 一、变压器的基本工作原理 变压器是利用电磁感应定律把一种电压等级的交流电能转换成同频率的另一种电压等级的交流电能。 变压器工作原理图 当原边绕组接到交流电源时,绕组中便有交流电流流过,并在铁心中产生与外加电压频率相同的磁通,这个交变磁通同时交链着原边绕组和副边绕组。原、副绕组的感应分别表示为 dt d N e Φ-=1 1 dt d N e Φ-=2 2 则 k N N e e u u ==≈2 12121 变比k :表示原、副绕组的匝数比,也等于原边一相绕组的感应电势与副边一相绕组的感应电势之比。 改变变压器的变比,就能改变输出电压。但应注意,变压器不能改变电能的频率。 二、电力变压器的分类 变压器的种类很多,可按其用途、相数、结构、调压方式、冷却方式等不同来进行分类。 按用途分类:升压变压器、降压变压器; 按相数分类:单相变压器和三相变压器;

按线圈数分类:双绕组变压器、三绕组变压器和自耦变压器; 按铁心结构分类:心式变压器和壳式变压器; 按调压方式分类:无载(无励磁)调压变压器、有载调压变压器; 按冷却介质和冷却方式分类:油浸式变压器和干式变压器等; 按容量大小分类:小型变压器、中型变压器、大型变压器和特大型变压器。 三相油浸式电力变压器的外形,见图1,铁心和绕组是变压器的主要部件,称为器身见图2,器身放在油箱内部。 1.2电力变压器的结构 一、铁心 1.铁心的材料 采用高磁导率的铁磁材料—0.35~0.5mm厚的硅钢片叠成。 为了提高磁路的导磁性能,减小铁心中的磁滞、涡流损耗。变压器用的硅钢片其含硅量比较高。硅钢片的两面均涂以绝缘漆,这样可使叠装在一起的硅钢片相互之间绝缘。

12v电子变压器工作原理

电子变压器工作原理图 电子变压器就是开关稳压电源。它实际上就是一种逆变器。首先把交流电变为直流电,然后用电子元件组成一个振荡器直流电变为高频交流电。通过开关变压器输出所需要的电压然后二次整流供用电器使用。开关稳压电源具有体积小,重量轻,价格低等优点,所以被广泛用在各种电器中。开关稳压电源的原理较复杂。 下面一种电子变压器电路图的分析,输入为AC220V,输出为AC12V,功率可达50W。它主要是在高频电子镇流器电路的基础上研制出来的一种变压器电路,其性能稳定,体积小,功率大,因而克服了传统的硅钢片变压器体大、笨重、价高等缺点。 电子变压器电路图: 电子变压器工作原理电路如图所示。电子变压器原理与开关电源工作原理相似,二极管VD1~VD4 构成整流桥 把市电变成直流电,由振荡变压器T1,三极管VT1、VT2组成的高频振荡电路,将脉动直流变成高频电流,然后由铁氧体输出变压器T2对高频高压脉冲降压,获得所需的电压和功率。R1为限流电阻。电阻 R2、电容C1和双向触发二极管VD5构成启动触发电路。三极管VT1、VT2选用S13005,其B为15~2 0倍。也可用C3093等BUceo>=35OV的大功率三极管。触发二极管VD5选用32V左右的DB3或VR60。振荡变压器可自制,用音频线绕制在H7 X 10 X 6的磁环上。TIa、T1b绕3匝,Tc绕1匝。铁氧体输出变压器T2也需自制,磁心选用边长27mm、宽20mm、厚10mm的EI型铁氧体。T2a用直径为0.45mm高强度漆包线绕100匝,T2b用直径为1.25mm高强度漆包线绕8匝。二极管VD1~VD4选用IN4007型,双向触发二极管选用DB3型,电容C1~C3选用聚丙聚酯涤纶电容,耐压250V。此电子变压器电路工作时,A点工作电压约为12V;B点约为25V;C点约为105V;D点约为10V。如果电压不满足上述数值,或电子变压器电路不振荡,则应检查电路有无错焊、漏焊或虚焊。然后再检查VT1、VT2是否良好,T1a、T1b的相位是否正确。整个电子变压器电路装调成功后,可装入用金属材料制作的小盒内,发利于屏蔽和散热,但必须注意电路与外壳的绝缘。引外,改变T2 a、b二线圈的匝数,则可改变输出的高频电压。

高频变压器工作原理及用途解析

高频变压器工作原理及用途 简介 是作为开关电源最主要的组成部分。开关电源中的拓扑结构有很多。比如半桥式功率转换电路,工作时两个开关三极管轮流导通来产生100kHz的高频脉冲波,然后通过高频变压器进行变压,输出交流电,高频变压器各个绕组线圈的匝数比例则决定了输出电压的多少。典型的半桥式变压电路中最为显眼的是三只高频变压器:主变压器、驱动变压器和辅助变压器(待机变压器),每种变压器在国家规定中都有各自的衡量标准,比如主变压器,只要是200W以上的电源,其磁芯直径(高度)就不得小于35mm。而辅助变压器,在电源功率不超过300W时其磁芯直径达到16mm就够了。 工作原理 变压器是变换交流电压、电流和阻抗的器件,当初级线圈中通有交流电流时,铁芯(或磁芯)中便产生交流磁通,使次级线圈中感应出电压(或电流)。 变压器由铁芯(或磁芯)和线圈组成,线圈有两个或两个以上的绕组,其中接电源的绕组叫初级线圈,其余的绕组叫次级线圈。 用途 高频变压器是工作频率超过中频(10kHz)的电源变压器,主要用于高频开关电源中作高频开关电源变压器,也有用于高频逆变电源和高频逆变焊机中作高频逆变电源变压器的。按工作频率高低,可分为几个档次: 10kHz- 50kHz、50kHz-100kHz、100kHz~500kHz、500kHz~1MHz、1MHz以上。传送功率比较大的情况下,功率器件一般采用 IGBT,由于IGBT存在关断电流拖尾现象,所以工作频率比较低;传送功率比较小的,可以采用MOSFET,工作频率就比较高。 制造工艺 高频变压器的制造工艺要点一。 绕线 A 确定BOBBIN的参数 B 所有绕线要求平整不重叠为原则 C 单组绕线以单色线即可,双组绕线必需以双色线或开线浸锡来分脚位,以免绕错 D 横跨线必需贴胶带隔离 1. 疏绕完全均匀疏开

高频变压器计算步骤精编版

高频变压器计算 (CCM模式) 反激式DC/DC变换电路 电路基本参数: Vo1=15V Io1=0.4A Vo2=-10V Io2=0.4A Vs=15V(范围10V~20V) Po=10W 设定参数: 1.电路工作频率(根据UC3843的特性,初步确定为50KHz),电路效率为G=75% 2.反激式变换器的工作模式CCM 3.占空比确定(Dmax=0.4) 4.磁芯选型(EE型) 设计步骤 (1)选择磁芯大小 Pin=Po/G=10/0.75=13.3W(查表),选择EE19磁芯 (2)计算导通时间 Dmax=0.4,工作频率fs=50KHz ton=8us (3)选择工作时的磁通密度 根据所选择的磁芯EE19(PC40材料)Ae=22mm2,Bmax=0.22T (4)计算原边匝数 Np=(Vs*ton)/(Bmax*Ae)=(10*8)/(0.22*22)=16.52,取整16 (5)计算副边绕组 以输出电压为15V为例进行计算,设整流二极管及绕组的压降为1V 15+1=16V 原边绕组每匝伏数=Vs/Np=10/16=0.625V/匝 副边绕组匝数Ns1=16/0.625=25.6,取整26 (6)计算选定匝数下的占空比;辅助输出绕组匝数 新的每匝的反激电压为:16/26=0.615V ton=(Ts*0.615)/(0.625+0.615)=9.92us 占空比D=9.92/20=0.496 对于10V直流输出,考虑绕组及二极管压降1V后为11V Ns2=11/0.615=17.88,取整17 (7)初级电感,气隙的计算 在周期Ts内的平均输入电流Is=Pin/Vs=13.3/10=1.33A 导通时间内相应的平均值为Iave=(Is*Ts)/ton=1.33*20/9.92=2.68A 开关管导通前的电流值Ip1=Iave/2=2.68/2=1.34A 开关管关闭前的电流值Ip2=3Ip1=1.34*3=4.02A 初级电感量Lp=Vs*&t/&i=10*9.92/2.68=37.01uH 气隙长度Lg=(u0*Np^2*Ae)/Lp=0.19mm

高频变压器基础理论知识

15、为什么变压器不能过负荷运行? 过负荷运行是指变压器运行时超过了铭牌上规定的电流值。过负荷分为正常过负荷和事故过负荷两种,前者是指在正常供电情况下,用户用电量增加而引起的,它往往使变压器温度升高,促使变压器绝缘老化,降低使用寿命,所以不允许变压器过负荷运行。特殊情况下变压器短时间内的过负荷运行,也不能超过额定负荷的30%(冬季),在夏季不得超过15%。对后者,事故过负荷与允许过的时间要求见下表。事故过负荷允许时间 16、变压器在运行中应该做哪几种测试? 为了保证调压器能够正常运行,应经常进行下列几项测试;(1)温度测试。变压器运行状态是不是正常,温度的高低是很重要的。规程规定上层油温不得超过850C(即温升550C)。一般变压器都装有专用温度测定装置。(2)负荷测定。为了提高变压器的利用率,减少电能的损失,在变压器运行中,必须测定变压器真正能承担的供电能力。测定工作通常在每一季节用电蜂屯蚁聚时期进行,用钳形电流表直接测定。电流值应为变压器额定电流的70~80%,超过时说明过负荷,应立即调整。 (3)电压测定。规程要求电压变动范围应在额定电压±5%以内。如果超过这一范围,应采用分接头进行调整,使电压达到规定范围。一般用电压表分别测量次级线圈端电压和未端用户的端电压。(4)绝缘电阻测定。为了使变压器始终处于正常运行状态,必须进行绝缘电阻的测定,以防绝缘老化和发生事故。测定时应设法使变压器停止运行,利用摇表测定变压器绝缘电阻值,要求所测电阻不低于以前所测值的70%,选用摇表时,低压线圈可采用500伏电压等级的。 17、什么是变压器的极性?在实用中有何作用? 变压器极性是用来标志在同一时刻初级绕组的线圈端头与次级绕组的线圈端头彼此电位的相对关系。因为电动势的大小与方向随时变化,所以在某一时刻,初、次级两线圈必定会出现同时为高电位的两个端头,和同时为低电位的两个端头,这种同时刻为高的对应端叫变压器的同极性端。由此可见,变压器的极性决定线圈绕向,绕向改变了,极性也改变。在实用中,变压器的极性是变压器并联的依据,按极性可以组合接成多种电压形式,如果极性接反,往往会出现很大的短路电流,以致烧坏变压器。因此,使用变压器时必须注意铭牌上的标志。 18、如何判别变压器极性? 当遇到变压器铭牌标志不清或系旧变压器,可通过测试加以判别,方法有两种:(1)直流法。测单相变压器时,如图36所示, 在初级线圈一侧拉入一个1.5伏的干电池,然后在次级线圈拉入一直流毫伏表。当合上开关K的一瞬间,表针朝正方向摆动(或拉开开关时表针向负方向摆),说明接电池正极一端是同极性,或

变压器工作原理

变压器 变压器图片 变压器 bian ya qi利用电磁感应的原理来改变交流电压的装置,主要构件是初级线圈、次级线圈和铁心(磁芯)。在电器设备和无线电路中,常用作升降电压、匹配阻抗,安全隔离等。 英文名称:Transformer 编辑本段变压器的简介

电力系统发电能力相比较,它仍然归属于小电力之范围。

树脂浇注干式变压器

磁通数量却有变动,这是互感应的原理。变压器就是一种利用电磁互感应,变换电压,电流和阻抗的器件。 编辑本段变压器与变频器的区别: 变频器:通过它调整能够达到所需要的用电频率(50hz,60hz等),来满足我们对用电的特殊需要。 变压器变频器 变压器:一般为“降压器”,常见于小区附近或工厂附近,它的作用是将超高的电压降到我们居民正常用电电压,满足人们的日常用电。 补充变压器工作原理: 变压器是变换交流电压、电流和阻抗的器件,当初级线圈中通有交流电流时,铁芯(或磁芯)中便产生交流磁通,使次级线圈中感应出电压(或电流)。 变压器由铁芯(或磁芯)和线圈组成,线圈有两个或两个以上的绕组,其中接电源的绕组叫初级线圈,其余的绕组叫次级线圈。 2.理想变压器 不计一次、二次绕组的电阻和铁耗, 其间耦合系数 K=1 的变压器称之为理想变压器 描述理想变压器的电动势平衡方程式为 e1(t) = -N1 d φ/dt e2(t) = -N2 d φ/dt 若一次、二次绕组的电压、电动势的瞬时值均按正弦规律变化, 则有 不计铁心损失,根据能量守恒原理可得 由此得出一次、二次绕组电压和电流有效值的关系 令 K=N1/N2,称为匝比(亦称电压比),则 二.变压器的结构简介 1.铁心

变压器的应用现状与趋势讲解

随着新增发电装机的不断增长,我国对各类变压器的需求也持续增长。近年来,国内变压器行业通过引进国外先进技术,使变压器产品品种、水平及高电压变压器容量都有了大幅提高。国内企业生产的变压器品种包括超高压变压器、换流变压器、全密封式变压器、环氧树脂干式变压器、卷铁心变压器、组合式变压器等。此外,随着新材料、新工艺的不断应用,国内各变压器制造企业还不断研制和开发出各种结构形式的变压器,以适应市场发展。 1变压器行业规模和市场结构分析 目前,我国注册的变压器生产企业1000多家,有能力生产500kV 变压器的企业不超过10家,其中包括特变电工的沈阳变压器厂、衡阳变压器厂、西安变压器厂、保定天威保变电气股份有限公司、常州 压器有限公司等;能生产220kV变压器的企业不超过30家,生产110kV级的企业则有100家左右,其中年产超过百台的企业有特变电工衡变、沈变,保变、青岛青波、华鹏等厂家;生产干式配电变压器的企业约有100家,生产能力在100万kV?A以上的企业有顺德、金乡、许继、华鹏等厂家;生产箱式变压器的企业有600~700家。

我国变压器行业规模庞大,但中小企业居多。根据截止2008年11月的统计,我国变压器行业内共有企业1589个,工业总产值超过1亿的只有130多家,员工人数超过2000人的只有16家。根据统计,销售收入最高的保定天威达到了107.9亿元,占全行业的5.86%,前10名企业的累计份额为20.6%。近年来,通过技术改造、兼并重组和扩张等方式,我国变压器类产品的生产能力大幅度提升。例如,特变 生产厂,保定天威拥有保定、秦皇岛、合肥等生产厂。三个集团变压器类产品的生产能力均接近或超过80000MV?A。与此同时,以华鹏、达驰、青岛、钱江等企业为代表的生产企业也在逐步地扩大自己的生产规模,提高自己的生产能力,年生产能力均在千万千瓦时以上。 中国投资,近年来在我国建立的变压器合资生产企业,如ABB、西门子、阿海珐、东芝、晓星等,在中国变压器市场上尤其是在高电压等级产品上占有一定的份额。 目前,在中国境内生产变压器的企业主要分为四大阵营:ABB、阿海珐、西门子、东芝等几大跨国集团公司以绝对优势形成了第一阵营,占据20%~30%的市场份额,且市场份额仍在不断扩大;保变、西变、特变等国内大型企业通过提升产品的技术水平和等级,占有

变压器基本工作原理

第1章 变压器的基本知识和结构 1.1变压器的基本原理和分类 一、变压器的基本工作原理 变压器是利用电磁感应定律把一种电压等级的交流电能转换成同频率的另一种电压等级的交流电能。 变压器工作原理图 当原边绕组接到交流电源时,绕组中便有交流电流流过,并在铁心中产生与外加电压频率相同的磁通,这个交变磁通同时交链着原边绕组和副边绕组。原、副绕组的感应分别表示为 则 k N N e e u u ==≈2 12121 变比k :表示原、副绕组的匝数比,也等于原边一相绕组的感应电势与副边一相绕组的感应电势之比。 改变变压器的变比,就能改变输出电压。但应注意,变压器不能改变电能的频率。 二、电力变压器的分类 变压器的种类很多,可按其用途、相数、结构、调压方式、冷却方式等不同来进行分类。 按用途分类:升压变压器、降压变压器; 按相数分类:单相变压器和三相变压器; 按线圈数分类:双绕组变压器、三绕组变压器和自耦变压器; 按铁心结构分类:心式变压器和壳式变压器; 按调压方式分类:无载(无励磁)调压变压器、有载调压变压器; 按冷却介质和冷却方式分类:油浸式变压器和干式变压器等; 按容量大小分类:小型变压器、中型变压器、大型变压器和特大型变压器。 三相油浸式电力变压器的外形,见图1,铁心和绕组是变压器的主要部件,称为器身见图2,器身放在油箱内部。

1.2电力变压器的结构 一、铁心 1.铁心的材料 采用高磁导率的铁磁材料—0.35~0.5mm厚的硅钢片叠成。 为了提高磁路的导磁性能,减小铁心中的磁滞、涡流损耗。变压器用的硅钢片其含硅量比较高。硅钢片的两面均涂以绝缘漆,这样可使叠装在一起的硅钢片相互之间绝缘。 2.铁心形式 铁心是变压器的主磁路,电力变压器的铁心主要采用心式结构 。 二、绕组 1.绕组的材料 铜或铝导线包绕绝缘纸以后绕制而成。 2.形式

高频变压器磁芯如何选型

高频变压器磁芯如何选型 电子变压器在电源技术中的作用,电源技术对电子变压器的要求,电子变压器采用新软磁材料和新磁芯结构对电源技术发展的影响. 电子变压器的使用条件,包括两方面内容:可靠性和电磁兼容性.以前只注意可靠性,现在由于环境保护意识增强,必须注意电磁兼容性. 可靠性是指在具体的使用条件下,电子变压器能正常工作到使用寿命为止.一般使用条件中对电子变压器影响最大的是环境温度.决定电子变压器受温度影响强度的参数是软磁材料的居里点.软磁材料居里点高,受温度影响小;软磁材料居里点低,对温度变化比较敏感,受温度影响大.例如锰锌铁氧体的居里点只有215℃,比较低,磁通密度、磁导率和损耗都随温度发生变化,除正常温度25℃而外,还要给出60℃,80℃,100℃时的各种参数数据.因此,锰锌铁氧体磁芯的工作温度一般限制在100℃以下,也就是环境温度为40℃时,温升必须低于60℃.钴基非晶合金的居里点为205℃,也低,使用温度也限制在100℃以下.铁基非晶合金的居里点为370℃,可以在150℃~ 180℃以下使用.高磁导坡莫合金的居里点为460℃至480℃,可以在200℃~250℃以下使用.微晶纳米晶合金的居里点为600℃,取向硅钢居里点为730℃,可以在300℃~400℃下使用. 电磁兼容性是指电子变压器既不产生对外界的电磁干扰,又能承受外界的电磁干扰.电磁干扰包括可听见的音频噪声和听不见的高频噪声.电子变压器产生电磁干扰的主要原因是磁芯的磁致伸缩.磁致伸缩系数大的软磁材料,产生的电磁干扰大.铁基非晶合金的磁致伸缩系数通常为最大(27~30)×10-6,必须采取减少噪声抑制干扰的措施.高磁导Ni50坡莫合金的磁致伸缩系数为25×10-6,锰锌铁氧体的磁致伸缩系数为21×10-6.以上这3种软磁材料属于容易产生电磁干扰的材料,在应用中要注意.3%取向硅钢的磁致伸缩系数为(1~3)×10-6,微晶纳米晶合金的磁致伸缩系数为(0.5~2)×10-6.这2种软磁材料属于比较容易产生电磁干扰的材料.6.5%硅钢的磁致伸缩系数为0.1×10-6,高磁导Ni80坡莫合金的磁致伸缩系数为(0.1~0.5)×10-6,钴基非晶合金的磁致伸缩系数为0.1×10-6以下.这3种软磁材料属于不太容易产生电磁干扰的材料.由磁致伸缩产生的电磁干扰的频率一般与电子变压器的工作频率相同.如果有低于或高于工作频率的电磁干扰,那是由其他原因产生的. 完成功能 电子变压器从功能上区分主要有变压器和电感器2种.特殊元件完成的功能另外讨论.变压器完成的功能有3个:功率传送、电压变换和绝缘隔离.电感器完成功能有2个:功率传送和纹波抑制 功率传送有2种方式.第一种是变压器传送方式,即外加在变压器原绕组上的交变电压,在磁芯中产生磁通变化,使副绕组感应电压,加在负载上,从而使电功率从原边传送到副边.传送功率的大小决定于感应电压,也就是决定于单位时间内的磁通密度变量ΔB.ΔB与磁导率无

变压器的应用

广西大学 摘要:本文主要介绍变压器的结构与原理及变压器的种类,阐述变压器的功能,从原理上说明常见常用的几种变压器的特点及应用,通过以上变压器的基本内容着重分析其在实际中的应用。 关键词:变压器;结构与原理;种类;功能;实际应用 The Transformer is Applied in Practice Abstract: This paper mainly introduces the structure and principle and type of transformer, elaborated the function of the transformer, in principle shows that the characteristics and appli-cations of the commonly used several kinds of common transformer, through the basic content of the above transformers, focused on the analyzed of its actual application. Keywords:transformer; structure and principle; type; function; the practical application 1 引言 变压器是电力输送、使用中必不可少的设备,在电力输送系统中,变压器通过大幅度提高电压、减少电流,从而降低大量电路消耗,使远距离输电成为可能;在配电系统中,变压器可以灵活的调节电压以达到配电要求;在我们日常生活和生产中,由于很多电器使用电压不一,而配电站提供的电压比较单一(220/380V),因而变压器广泛应用于工农业生产,以达到保护电器和发挥电器最佳效能的目的;在电子技术中,变压器经常用来进行电路间的耦合、信号变换和传递、稳压、隔离、阻抗匹配等。【1】 变压器在生活生产中的普遍使用,我们有必要了解它的基本知识,以及在实际生活生产的作用,从而才能更好应用于生产实践中。 2 变压器的基本结构及原理 一般变压器主要构件是初级线圈、次级线圈和铁芯。线圈有两个或两个以上的绕组,其中接电源的绕组叫初级线圈,其余的绕组叫次级线圈。铁芯的作用是是加强两个线圈的磁耦合。为了减少铁内的涡流和磁滞损耗,铁芯由涂漆的硅钢片叠压而成。另外,还有油箱、油枕、呼吸器、散热器、防爆器、绝缘套管等。 变压器是利用电磁感应原理工作的。一般情况下,变压器可以看做是理想原件,即忽略涡流、漏磁等问题,一次、二次绕组电压之比为 K=U1/U2≈E1/E2=N1\N2 其中K称为变压器的比变,等于一次、二次线圈的匝数比。 电流之比 I1/I2≈N2/N1=1/K 当负载电流确定时,一次电流将按比例确定,匝数越多电流越小,匝数越少电流越大。【1】 3变压器的分类

变压器的应用教案

课题:变压器的应用 课型:讲授 教学目的要求: 1、掌握变压器在电压变换方面的应用:自耦变压器、电压互感器。 2、掌握变压器在电流变换方面的应用:电流互感器、钳形电流表。 3、了解变压器阻抗变换方面的应用。 教学重点、难点: 教学重点:变压器的电压变换和电流变化及其应用。 教学难点:变压器空载运行和电压变换,负载运行与电流变换。 教学分析: 本次课通过对变压器空载运行时,原副线圈中感应电动势的分析得出变压器的变压比概念,然后具体分析利用电压变换原理的两种常用电器元件——自耦变压器及电压互感器的工作原理,最后通过例题巩固其知识点。电流变化及阻抗变换也基本采用这一模式来讲解相关内容。 复习、提问: 1、变压器工作原理是什么? 2、变压器的额定值有哪些,其关系是怎样的? 教学过程: 上节课讲述了变压器的工作原理和有关磁路方面的概念。今天我们来看看变压器有哪些应用。 一、空载运行和电压变换 原线圈接上交流电压,铁心中产生的交变磁通同时通过原、副线圈,原、副线圈中交变的磁通可视为相同。 设原线圈匝数为N 1,副线圈匝数为N 2,磁通为?,感应电动势为 由此得2 1 2 1 N N E E = 忽略线圈内阻得 上式中K 称为变压比。由此可见:变压器原副线圈的端电压之比等于匝数比。 如果N 1

如果N 1>N 2,K>1,电压下降,称为降压变压器。 应用实例: 1、自耦变压器 实验室中常用的调压器就是一种可改变副绕组匝数的自耦变压器 (a)符号(b)外形(c)实际电路 图2自耦变压器 原副边电压之比是: 2、电压互感器 电压互感器属于 仪用互感器的一种,它的优点是: ⑴使测量仪表与 高压电路分开,以保证工作安全。 ⑵扩大测量仪表的量程。 注意点: (1) 为了工作安全,电压互感器的铁壳及副绕组的一端都必须接 地,以防高、低压线圈绝缘损坏时,低压线圈和测量仪表对地产生一个高电压,危及工作人员的人身安全。 (2) 副线圈不允许短路。如果电压互感器的二次侧运行中短路, 二次线圈的阻抗大大减小,就会出现很大的短路电流,使副线圈因严重发热而烧毁。因此在运行中互感器不允许短路。一般电压互感器二次侧要用熔断器。只有35千伏及以下的互感器中,才在高压侧有熔断器其目的是当互感器发生短路时把它从高压电路中切断。 二、负载运行和电流变换 负载运行:变压器的原绕组接电压U1,副绕组接负载Z L 这种运行状态称为负载运行。 根据能量守恒定律,变压器输出功率与从电网中获得功率相等,即P 1=P 2,由交流电功率的公式可得 (a)构造(b)接线图 图3电压互感器

变压器基本原理及应用介绍

变压器基本原理及应用介绍 1.1基本要求 1.了解变压器的基本构造、工作原理、铭牌数据和外特性。 2.掌握变压器的三个变换功能及其用途。 3.理解阻抗匹配的意义。 1.2基本内容 1. 变压器主要由铁心、原绕组(一次绕组)和副绕组(二次绕组)组成。铁心构成磁路,原绕组 和副绕组(副边开路时仅原绕组)产生的磁通由磁路闭合而实现能量或信号的传递。 2.变压器的功能可由三个变换来表述: 电压变换──主要用途是电源升降压。原绕组电压与副绕组电压的比值近似为原绕组匝数与副绕 组匝数的比值称为变比,即:1 12 2 U N U N k = = 电流变换──主要用途是电流互感器。原绕组电流与副绕组电流的比值近似为变比的倒数,即: 122 1 1 I N I N k = = 阻抗变换──主要用途是电路耦合及阻抗匹配。副绕组的负载阻抗Z 折合到原绕组(电源)端 可表示为该阻抗与变比平方的乘积,即:2k Z Z '= 3.变压器铭牌数据通常包括: ①一次侧额定电压1N U 和二次侧额定电压N U 2 ②一次侧额定电流N I 1和二次侧额定电流N I 2 ③额定容量N S 变压器的额定容量之所以用视在功率N S 表示是因为变压器输出的有功功率与负载的功率因数有关。例如在额定电压和额定电流下,负载的功率因数为1时,kVA 100的变压器可输出kW 100的功率,而当负载的功率因数5.0时则只能输出kW 50的功率。 4.变压器阻抗变换的一个重要用途是实现阻抗匹配,即采用不同的匝数比将负载阻抗变换为所需要的、比较合适的数值,这通常可以使负载从信号源或电源获得最大的信号幅度或功率值。 1.3重点和难点 1. 变压器是按照电磁感应原理来实现电能转换的,当变压器的输入端接直流电源时,副边将无 法产生感应电势,因此变压器不能用于直流场合。 2. 变压器的额定容量和输出功率通常是分相等的,它们的表达式分别是: 22112222 ()cos N N N N N N N S U I U I V A P U I ?=≈= 2N 2P S cos ?= 即:式中2cos ?为负载的功率因数,上式表达的变压器的输出与负载的功率因数有关。

高频变压器设计的五个步骤

变压器的设计过程包括五个步骤: ①确定原副边匝数比; 为了提高高频变压器的利用率,减小开关管的电流,降低输出整流二极管的反向电压,减小损耗和降低成本,高频变压器的原副边变比应尽量大一些. 为了在任意输入电压时能够得到所要求的电压,变压器的变比应按最低输入电压选择.选择副边的最大占空比为 ,则可计算出副边电压最小值为: ,式中, 为输出电压最大值, 为输出整流二极管的通态压降, 为滤波电感上的直流压降.原副边的变比为: ②确定原边和副边的匝数; 首先选择磁芯.为了减小铁损,根据开关频率 ,参考磁芯材料手册,可确定最高工作磁密、磁芯的有效导磁截面积、窗口面积 .则变压器副边匝数为: .根据副边匝数和变比,可计算原边匝数为 ③确定绕组的导线线径; 在选用导线线径时,要考虑导线的集肤效应.所谓集肤效应,是指当导线中流过交流电流时,导线横截面上的电流分布不均匀,中间部分电流密度小,边缘部分电流密度大,使导线的有效导电面积减小,电阻增加.在工频条件下,集肤效应影响较小,而在高频时影响较大.导线有效导电面积的减小一般采用穿透深度来表示.所谓穿透深度,是指电流密度下降到导线表面电流密度的0.368(即: )时的径向深度. ,式中, , 为导线的磁导率,铜的相对磁导率为 ,即:铜的磁导率为真空中的磁导率 , 为导线的电导率,铜的电导率为 . 为了有效地利用导线,减小集肤效应的影响,一般要求导线的线径小于两倍的穿透深度,即 .如果要求绕组的线径大于由穿透深度所决定的最大线径时,可采用小线径的导线多股并绕或采用扁而宽的铜皮来绕制,铜皮的厚度要小于两倍的穿透深度 (4)确定绕组的导线股数 绕组的导线股数决定于绕组中流过的最大有效值电流和导线线径.在考虑集肤效应确定导线的线径后,我们来计算绕组中流过的最大有效值电流. 原边绕组的导线股数:变压器原边电流有效值最大值 ,那么原边绕组的导线股数 (式中,J 为导线的电流密度,一般取J=3~5 , 为每根导线的导电面积.). 副边绕组的导电股数:①全桥方式:变压器只有一个副边绕组,根据变压器原副边电流关系,副边的电流有效值最大值为: ;②半波方式:变压器有两个副边绕组,每个负载绕组分别提供半个周期的负载电流,因此其有效值为 ( 为输出电流最大值).因此副边绕组的导线股数为(5)核算窗口面积 在计算出变压器的原副边匝数、导线线径及股数后,必须核算磁芯的窗口面积是否能够绕得下或是否窗口过大.如果窗口面积太小,说明磁芯太小,要选择大一点的磁芯;如果窗口面积

变压器的基本工作原理

变压器的基本工作原理Orga nize en terprise safety man ageme nt pla nning, guida nee, in spect ion and decisi on-mak ing. en sure the safety status, and unify the overall pla n objectives

编制:____________________ 审核:____________________ 时间:____________________

变压器的基本工作原理 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查 和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 一、变压器的种类: 1. 按冷却方式分类:干式(自冷)变压器、油浸(自冷)变压器、氟化物(蒸发冷却)变压器。 2. 按防潮方式分类:开放式变压器、灌封式变压器、密封式 变压器。 3. 按铁芯或线圈结构分类:芯式变压器(插片铁芯、C型 铁芯、铁氧体铁芯)、壳式变压器(插片铁芯、C型铁芯、铁氧体铁芯)、环型变压器、金属箔变压器。 4. 按电源相数分类:单相变压器、三相变压器、多相变压器。 5. 按用途分类:电源变压器、调压变压器、音频变压器、中频变压器、高频变压器、脉冲变压器 二、变压器工作原理: 变压器的基本工作原理是:变压器是由一次绕组、二次绕组和铁心组成,当一次绕组加上交流电压时,铁心中产生交变磁

通,交变磁通在一次、二次绕组中感应电动势与在单匝上感应电动势的大小是相同的,但一次、二次侧绕组的匝数不同,一次、二次侧感应电动势的大小就不同,从而实现了变压的目的,一次、二次侧感应电动势之比等于一次、二次侧匝数之比。 当二次侧接上负载时,二次侧电流也产生磁动势,而主磁通由于外加电压不变而趋于不变,随之在一次侧增加电流,使磁动势达到平衡,这样,一次侧和二次侧通过电磁感应而实现了能量的传递。 三、变压器的主要部件结构作用: (2) 变压器组成部件:器身(铁芯、绕组、绝缘、引线)、变压器油、油箱和冷却装置、调压装置(即分接开关,分为无励磁调压和有载调压)、保护装置(吸湿器、安全气道、气体继电器、储油柜、净油器及测温装置等)和出线套管。 (3) 变压器主要部件的作用: (1)铁芯:作为磁力线的通路,同时起到支持绕组的作用。变压器通常由含硅量较高,厚度分别为0.35 mm\0.3mm\0.27 mm,表面涂有绝缘漆的热轧或冷轧硅钢片叠装而成铁心分为铁

高频变压器匝数计算

高频变压器参数计算 一.电磁学计算公式推导: 1.磁通量与磁通密度相关公式: Ф = B * S ⑴ Ф ----- 磁通(韦伯) B ----- 磁通密度(韦伯每平方米或高斯) 1韦伯每平方米=104高斯 S ----- 磁路的截面积(平方米) B = H * μ⑵ μ ----- 磁导率(无单位也叫无量纲) H ----- 磁场强度(伏特每米) H = I*N / l ⑶ I ----- 电流强度(安培) N ----- 线圈匝数(圈T) l ----- 磁路长路(米) 2.电感中反感应电动势与电流以及磁通之间相关关系式: E L =⊿Ф / ⊿t * N ⑷ E L = ⊿i / ⊿t * L ⑸ ⊿Ф ----- 磁通变化量(韦伯) ⊿i ----- 电流变化量(安培) ⊿t ----- 时间变化量(秒) N ----- 线圈匝数(圈T) L ------- 电感的电感量(亨) 由上面两个公式可以推出下面的公式: ⊿Ф / ⊿t * N = ⊿i / ⊿t * L 变形可得: N = ⊿i * L/⊿Ф 再由Ф = B * S 可得下式: N = ⊿i * L / ( B * S ) ⑹ 且由⑸式直接变形可得: ⊿i = E L* ⊿t / L ⑺ 联合⑴⑵⑶⑷同时可以推出如下算式: L =(μ* S )/ l * N2⑻ 这说明在磁芯一定的情况下电感量与匝数的平方成正比(影响电感量的因素) 3.电感中能量与电流的关系: Q L = 1/2 * I2 * L ⑼ Q L -------- 电感中储存的能量(焦耳) I -------- 电感中的电流(安培) L ------- 电感的电感量(亨) 4.根据能量守恒定律及影响电感量的因素和联合⑺⑻⑼式可以得出初次级匝数比与占空比的关系式: N1/N2 = (E1*D)/(E2*(1-D)) ⑽ N1-------- 初级线圈的匝数(圈) E1-------- 初级输入电压(伏特) N2-------- 次级电感的匝数(圈) E2-------- 次级输出电压(伏特)

相关文档
最新文档