电流互感器结构要求

电流互感器结构要求
电流互感器结构要求

电流互感器结构要求

电流互感器结构要求

1)电流互感器的结构应便于现场安装、运行、维护。

2)金属件外露表面应具有良好的防腐蚀层,产品铭牌及端子应符合图样要求。

3)电流互感器应有直径不小于8mm的接地螺栓或其它供接地用的零件,如面积足够且有连接孔的接地板,接地处应有平坦的金属表面,并在其旁标有明显的接地符号。

4)二次出线端子螺杆直径不得小于6mm,应用铜或铜合金制成,二次出线端子防潮性能良好,并有防转动措施。

5)投标商提供一次绕组和二次绕组端子连接用的全部紧固件。

6)所有端子及紧固件应有良好的防锈镀层,足够的机械强度和保护良好的导电接触面。

7)对于油浸式互感器要求:

a.电气设备电流互感器油箱下部应设置放油或取油样用的阀门(能密封取油的阀门),以便于取油或放油,放油阀的位置应能放出互感器最低处的油。

b.电流互感器应保证绝缘油与外界空气不直接接触或完全隔离的装置,如采用金属式膨胀器,或采用其他防油老化措施。

c.电气设备电流互感器应装有油面(油位)指示装置。

d.电气设备电流互感器应具有良好的密封性能,要求见下表:

施加气压

(MPa) 维持压力

时间(h) 剩余压力

(Mpa) 说明

0.06 6 0.03 不带膨胀器产品

0.1 6 0.07 带膨胀器产品

不带膨胀器试验

注:1)经表中要求的压力与时间后,观察产品外观应无渗漏现象。

2)带膨胀器产品,气压试验后再带膨胀器试验,注油静放12h后,应无渗漏。

8) 对于SF6互感器要求:

a. SF6气体年泄漏率≤0.5%;

b. SF6气体含水量<150×10-6,应有取气样阀门以便测量SF6气体含水量;

c. 每台设备应配备一套气体运行监测装置(包括气体密度继电器、压力指示器和温度指示器);

d. 提供的SF6气体应符合IEC376要求,对批量提供的SF6气体应附合无毒性检验结果;

e. SF6互感器零表压耐压试验,试验电压为最高系统工作电压的1.3倍1min。

9) 爬电距离:

10) 机械强度

a. 电流互感器应满足卧式运输要求。

b. 一次接线端子的允许机械荷载、材质及布置

非绝缘端绝缘端

水平纵向分量:3000N 3000N

垂直分量:2000N 2000N

水平横向分量:2000N 2000N

安全系数:2.5

动态系数:1.67

接线端子材质:铜镀银或采用满足接触面及电流密度要求的铝合金端子,并带有连接导线用的不锈钢螺栓、螺帽和垫圈。

端子应采用平放方式

c. 设备的阻尼装置如果有,应能充分地发挥作用,特性曲线应对各种应力、内力引起的振动都有较好的抑制作用。

11)电气设备电流互感器须装设二次回路开路的保护装置,安装在CT本体二次接线盒内。

电流互感器的工作原理,民熔

电流互感器 是依据电磁感应原理将一次侧大电流转换成二次侧小电流来测量的仪器。电流互感器是由闭合的铁心和绕组组成。它的一次侧绕组匝数很少,串在需要测量的电流的线路中。 因此它经常有线路的全部电流流过,二次侧绕组匝数比较多,串接在测量仪表和保护回路中,电流互感器在工作时,它的二次侧回路始终是闭合的,因此测量仪表和保护回路串联线圈的阻抗很小,电流互感器的工作状态接近短路。电流互感器是把一次侧大电流转换成二次侧小电流来测量,二次侧不可开路 工作原理 在发电、变电、输电、配电和用电的线路中电流大小悬殊,从几安到几万安都有。 为便于测量、保护和控制需要转换为比较统一的电流,另外线路上的电压一般都比较高如直接测量是非常危险的。电流互感器就起到电流变换和电气隔离作用

对于指针式的电流表,电流互感器的二次电流大多数是安培级的(如5A等)。对于数字化仪表,采样的信号一般为毫安级(0-5V、4-20mA等)。微型电流互感器二次电流为毫安级,主要起大互感器与采样之间的桥梁作用。 微型电流互感器也有人称之为“仪用电流互感器”。(“仪用电流互感器”有一层含义是在实验室使用的多电流比精密电流互感器,一般用于扩大仪表量程。 电流互感器与变压器类似也是根据电磁感应原理 工作,变压器变换的是电压而电流互感器变换的是电流罢了。电流互感器接被测电流的绕组(匝数为N1),称为一次绕组(或原边绕组、初级绕组);接测量仪表的绕组(匝数为N2)称为二次绕组(或副边绕组、次级绕组)。

电流互感器一次绕组电流I1与二次绕组I2的电流比,叫实际电流比K。电流互感器在额定电流下工作时的电流比叫电流互感器额定电流比,用Kn表示。 Kn=I1n/I2n 电流互感器(Current transformer 简称CT)的作用是可以把数值较大的一次电流通过一定的变比转换为数值较小的二次电流,用来进行保护、测量等用途。如变比为400/5的电流互感器,可以把实际为400A 的电流转变为5A的电流。

电流互感器原理是依据电磁感应原理的

专题四 电磁感应现象及其规律的应用 1.如图4-12所示,三个相同的金属圆环内存在不同的有界匀强磁场,虚线表示环的某条直径.已知所有磁场的磁感应强度随时间变化的关系都满足B =kt ,方向如图所示.测得A 环中感应电流强度为I ,则B 环和C 环内感应电流强度分别为( ) 图4-12 A .I B =I ,I C =0 B .I B =I ,I C =2I C .I B =2I ,I C =2I D .I B =2I ,I C =0 答案:D 2. 北半球地磁场的竖直分量向下.如图4-13所示,在北京某中学实验室 的水平桌面上,放置边长为L 的正方形闭合导体线圈abcd ,线圈的ab 边沿南北方向,ad 边沿东西方向.下列说法中正确的是( ) A .若使线圈向东平动,则a 点的电势比b 点的电势低 B .若使线圈向北平动,则a 点的电势比b 点的电势低 C .若以ab 为轴将线圈向上翻转,则线圈中感应电流方向为a →b →c →d →a D .若以ab 为轴将线圈向上翻转,则线圈中感应电流方向为a →d →c →b →a 解析:本题考查地磁场分布的特点,用楞次定律判断产生的感应电流的方向.线圈向东平动时,ba 和cd 两边切割磁感线,且两边切割磁感线产生的感应电动势大小相同,a 点电势比b 点电势低,A 对;同理,线圈向北平动,则a 、b 电势相等,高于c 、d 两点电势,B 错;以ab 为轴将线圈翻转,向下的磁通量减小了,感应电流的磁场方向应该向下,再由右手螺旋定则知,感应电流的方向为a →b →c →d →a ,则C 对.答案:AC 二、电磁感应现象中的力学问题: 1.通电导体在磁场中将受到安培力作用,电磁感应问题往往和力学问题联系在一起,基本方法是 : 图4-13

(完整版)电流互感器末屏的工作原理及试验方法

电流互感器末屏的工作原理及试验方法(故障攻关特色工作室) 朔黄铁路原平分公司

一、什么是电流互感器的电容屏及末屏? 电容型电流互感器器身的一次绕组为“U”字型,导体根据额定电流的大小而有铝管、铜管等形式,一次绕组用绝缘纸缠绕,一般由数层绝缘纸绕制而成,绝缘纸之间有锡箔层,这些锡箔层即电容屏,其中,靠近一次绕组的屏称为“零屏”,最外层的电容屏称之为末屏,也称作“地屏”。两两电容屏之间形成电容。 二、电流互感器内部为什么要设置电容屏? 电容型电流互感器随着额定电压等级的提高,尤其是110KV及以上电压等级的电流互感器,其互感器缠绕一次绕组的绝缘纸厚度也越来越大,这就使绝缘内的电场强度越来越不均匀,而绝缘材料的耐电强度是有限的,电场强度不均匀后,某些局部绝缘所受的电场强度会超出本身耐电强度,绝缘整体的利用率就会降低,如果在绝缘纸中,设置一些电容屏,每两个电容屏与两屏之间的绝缘层就形成一个电容器,电容器的最内电极(零屏)与电流互感器一次绕组高压端连接,最外电极(末屏)与地连接时,整个电流互感器就构成一个高电压与地电位之间由多个电容器串联的电容器。 绝缘纸缠绕一次绕组为圆柱形同心圆结构,串联的每个电容器(相邻两个电容屏组成)都是一个圆柱形电容器,同等绝缘厚度下,电容屏设置越多,每个电容器的内极半径和外极半径之差就越小,内外电极表面的场强差别也就越小,若中间屏数量无限多,则各电容屏之间的场强差别趋近于零,但在实际的电流互感器中,电容屏数量是有限的,所以每个电容屏的场强也并不完全相等,但也起到了非常大

的均匀场强的作用,这样就使内绝缘的各部分尽量场强分布一致,最大程度的利用绝缘材料。 三、电流互感器的末屏为什么一定要接地? 电流互感器最外部的电容屏即末屏必须接地,如果末屏接地发生断裂或接触不良,末屏与地之间会形成一个电容,而这个电容远小于流互内部电容屏之间的电容,也就是说,首屏到末屏为数个容值一样的串联电容器,接地断裂或接触不良后,这个电路又串进一个容值很小的电容器。 容抗X=1/(2πfC),可见频率相同的情况下,电容器的容值与容抗成反比,所以在这个电路中,这个串进来的对地小电容容抗要远大于流互内部电容器。而又由于串联电路,电流处处相等,所以电流互感器内各电容器的电量Q是相等的,Q=CU,所以对地小电容所分得的电压远远大于流互内部电容器。这个末屏高电压会使电流互感器内部绝缘的电场强度分布极度不均匀,在电场力的作用下,内部绝缘的电荷会朝末屏聚集,场强集中后,周围固体介质会烧坏或炭化,也会使绝缘油分解出大量特征气体,从而使绝缘油色谱分析结果超标,也会对地发生火花放电。 如果末屏接地,电流互感器只存在电容屏组成的电容,则每个电容器电压均分,且末屏接地,导致末屏这个最外极的电容屏电势为零,而由于电容器两极板之间电荷一定是数量相等,极性相反,且只会从负极板经外部电路流向正极板放电,所以末屏这个极板的电荷并不会导入进地,即Q不变。

电流互感器简单易懂的原理讲解

一、电流互感器结构原理 1 普通电流互感器结构原理 电流互感器的结构较为简单,由相互绝缘的一次绕组、二次绕组、铁心以及构架、壳体、接线端子等组成。其工作原理与变压器基本相同,一次绕组的匝数(N1)较少,直 接串联于电源线路中,一次负荷电流()通过一次绕组时,产生的交变磁通感应产生按 比例减小的二次电流();二次绕组的匝数(N 2 )较多,与仪表、继电器、变送器等电流线圈的二次负荷(Z)串联形成闭合回路,见图1。 图1 普通电流互感器结构原理图 由于一次绕组与二次绕组有相等的安培匝数,I 1N 1 =I 2 N 2 ,电流互感器额定电流比: 。电流互感器实际运行中负荷阻抗很小,二次绕组接近于短路状态,相当于一个短路运行的变压器。 2 穿心式电流互感器结构原理 穿心式电流互感器其本身结构不设一次绕组,载流(负荷电流)导线由L1至L2穿过由硅钢片擀卷制成的圆形(或其他形状)铁心起一次绕组作用。二次绕组直接均匀地缠绕在圆形铁心上,与仪表、继电器、变送器等电流线圈的二次负荷串联形成闭合回路,见图2。

图2 穿心式电流互感器结构原理图 由于穿心式电流互感器不设一次绕组,其变比根据一次绕组穿过互感器铁心中的匝数确定,穿心匝数越多,变比越小;反之,穿心匝数越少,变比越大,额定电流比:。 式中I1——穿心一匝时一次额定电流; n——穿心匝数。 3特殊型号电流互感器 3.1 多抽头电流互感器。这种型号的电流互感器,一次绕组不变, 在绕制二次绕组时,增加几个抽头,以获得多个不同变比。它具有一

个铁心和一个匝数固定的一次绕组,其二次绕组用绝缘铜线绕在套装于铁心上的绝缘筒上,将不同变比的二次绕组抽头引出,接在接线端子座上,每个抽头设置各自的接线端子,这样就形成了多个变比,见图3。 图3 多抽头电流互感器原理图 例如二次绕组增加两个抽头,K1、K2为100/5,K1、K3为75/5,K1、K4为50/5等。此种电流互感器的优点是可以根据负荷电流变比,调换二次接线端子的接线来改变变比,而不需要更换电流互感器,给使用提供了方便。 3.2 不同变比电流互感器。这种型号的电流互感器具有同一个铁心和一次绕组,而二次绕组则分为两个匝数不同、各自独立的绕组,以满足同一负荷电流情况下不同变比、不同准确度等级的需要,见图4。 图4 不同变比电流互感器原理图 例如在同一负荷情况下,为了保证电能计量准确,要求变比较小一些(以满足负荷电流在一次额定值的2/3左右),准确度等级高一些

电流互感器分类及原理

1、电流互感器(Current Transformer,CT) 电力系统电能计量和保护控制的重要设备,是电力系统电能计量、继电保护、系统诊断与监测分析的重要组成部分,其测量精度、运行可靠性是实现电力系统安全、经济运行的前提。目前在电力系统中广泛应用的是电磁式电流互感器。 2、电流互感器国标(GB 1208-87S) 1)准确级:以该准确级在额定电流下所规定的最大允许电流误差百分数标称。 2)测量用电流互感器的标准准确级有:0.1、0.2、0.5、1、3、5; 特殊要求的电流互感器的准确级有:0.2S和0.5S; 保护用电流互感器准确级有:5P和10P两级。 3、电磁式电流互感器 1)原理: 一次线圈串联于被测电流线路中,二次线圈串接电流测量设备,一二次侧线圈绕在同一铁芯上,通过铁芯的磁耦合实现一次二次侧之间的电流传感过程。一二次侧线圈之间以及线圈与铁芯之间要采取一定的绝缘措施,以保证一次侧与二次侧之间的电气隔离。根据应用场合以及被测电流大小的不同,通过合理改变一二次侧线圈匝数比可以将一次侧电流值按比例变换成标准的1A或5A电流值,用于驱动二次侧电器设备或供测量仪表使用。 2)缺点: ①.绝缘要求复杂,体积大,造价高,维护工作量大; ②.输出端开路产生的高电压对周围人员和设备存在潜在的威胁; ③.固有的磁饱和、铁磁谐振、动态范围小、频率响应范围窄; ④.输出信号不能直接和微机相连,难以适应电力系统自动化、数字化的发展趋势。 4、电子式电流互感器 1)特征: ①.可以采用传统电流互感器、霍尔传感器、空心线圈(或称为Rogowski coils)或光学装置 作为一次电流传感器,产生与一次电流相对应的信号; ②.可以利用光纤作为一次转换器和二次转换器之间的信号传输介质; ③.二次转换器的输出可以是模拟量电压信号或数字量。 2)分类 (1)按传感原理的不同划分:光学电流互感器和光电式电流互感器 I、光学电流互感器(Optical Current Transformer,简称OCT) 原理:传感器完全基于光学技术和光学器件来实现。 II、光电式电流互感器(Opto-Electronic Current Transformer,简称OECT) 原理:传感部分采用电子器件而信号的传输采用光学器件和光学技术,是光电子技术的结合。 (2)按传感侧是否需要电源划分:无源型电流互感器和有源型电流互感器 I、无源型电流互感器:光学电流互感器的传感和传输部分均采用无源光学器件,其利用Farady 磁光效应,传感和传输信号都是来自二次侧的光信号,一次侧不需要额外能量供给。因此光学电流互感器属于无源型电流互感器。 II、有源型电流互感器:一种基于传统电流传感原理、采用有源器件调制技术、由光纤将高压端转换得到的光信号传送到低压端解调处理并得到被测电流信号的新型电流互感器、由于其电路

电压和电流互感器原理及结构

电压互感器: 工作原理: 其工作原理与变压器相同,基本结构也是铁心和原、副绕组。特点是容量很小且比较恒定,正常运行时接近于空载状态。 电压互感器本身的阻抗很小,一旦副边发生短路,电流将急剧增长而烧毁线圈。为此,电压互感器的原边接有熔断器,副边可靠接地,以免原、副边绝缘损毁时,副边出现对地高电位而造成人身和设备事故。 测量用电压互感器一般都做成单相双线圈结构,其原边电压为被测电压(如电力系统的线电压),可以单相使用,也可以用两台接成V-V形作三相使用。实验室用的电压互感器往往是原边多抽头的,以适应测量不同电压的需要。供保护接地用电压互感器还带有一个第三线圈,称三线圈电压互感器。三相的第三线圈接成开口三角形,开口三角形的两引出端与接地保护继电器的电压线圈联接。 正常运行时,电力系统的三相电压对称,第三线圈上的三相感应电动势之和为零。一旦发生单相接地时,中性点出现位移,开口三角的端子间就会出现零序电压使继电器动作,从而对电力系统起保护作用。

上图中两个尖尖一个接电压,一个接地,就形成了一次绕组,类似变压器,再有二次绕组接出来即可以。对于三个单相的电压互感器来说,每一相一端都接地,就形成了三相星型连接方式,这个接地就是PT的一次接地,即工作接地,主要作用是将中性点电位统一拉到地电位。使对地相对电压能准确统一的测量。 二次绕组必须接地,是安全接地,即:为防止高低电压绕组间绝缘击穿造成设备和人身事故,二次侧必须接地。 电磁式电压互感器

电容式电压互感器 为了获得理想的电压源,在网络中串入非线性补偿电感线圈L;为抗干扰,减少互感器开口三角形绕组的不平衡电压,提高零序保护装置的灵敏度,增设一个高频阻断线圈L’,为了抑制谐振的产生,常在互感器二次侧接入D阻尼器。

第二章电流互感器基础学习知识原理

第二章 电流互感器原理 电流互感器是一种专门用作变换电流的特种变压器。在正常工作条件下,其二次电流实质上与一次电流成正比,而且在连接方向正确时,二次电流对一次电流的相位差接近于零。 电流互感器的工作原理示于图2-1。互感器的一次绕组串连在电力线路中,线路电流就是互感器的一次电流。互感器的二次绕组外部回路接有测量仪器、仪表或继电保护、自动控制装置。在图2-1中将这些串联的低电压装置的电流线圈阻抗以及连接线路的阻抗用一个集中的阻抗Z b 表示。当线路电流,也就是互感器的一次电流变化时,互感器的二次电流也相应变化,把线路电流变化的信息传递给测量仪器、仪表和继电保护、自动控制装置。 根据电力线路电压等级的不同,电流互感器的一、二次绕组之间设置有足够的绝缘,以保证所有低压设备与高电压相隔离。 电力线路中的电流各不相同,通过电流互感器一、二次绕组匝数比的配置,可以将不同的线路电 流变换成较小的标准电流值,一般是5A 或1A ,这样可以减小仪表和继电器的尺寸,简化其规格。所以说电流互感器的主要作用是:①给测量仪器、仪表或继电保护、控制装置传递信息;② 使测量、保护和控制装置与高电压相隔离;③ 有利于测量仪器、仪表和继电保护、控制装置小型化、标准化。 第一节 基本工作原理 1. 磁动势和电动势平衡方程式 从图2-1看出,当一次绕组流过电流1I &时,由于电磁感应,在二次绕组中感应出电 动势,在二次绕组外部回路接通的情况下,就有二次电流2I &流通。此时的一次磁动势为一次电流1I &与一次绕组匝数N 1的乘积11N I &,二次磁动势为二次电流2I &与二次绕组匝数 N 2的乘积22N I &。根据磁动势平衡原则,一次磁动势除平衡二次磁动势外,还有极小的一 部分用于铁心励磁,产生主磁通m Φ&。因此可写出磁动势平衡方程式 102211N I N I N I &&&=+,A (2-1) 式中 1I &? 一次电流,A ; 2I &? 二次电流,A ; 0I &? 励磁电流,A ; N 1 ? 一次绕组匝数; 图2-1 电流互感器工作原理图 1?一次绕组 2?铁心 3?二次绕组 4?负荷 2

电压互感器与电流互感器的作用、原理及两者区别

电流互感器作用及工作原理_电压互感器的作用及工作原理_电压互感器和电流互感器的区别 电力系统为了传输电能,往往采用交流电压、大电流回路把电力送往用户,无法用仪表进行直接测量。互感器的作用,就是将交流电压和大电流按比例降到可以用仪表直接测量的数值,便于仪表直接测量,同时为继电保护和自动装置提供电源,所以说电压互感器与电流互感器在电力系统中起到了非常的大的作用,而本文要介绍的就是电压互感器与电流互感器的区别以及如何使用电压互感器测量交流电路线电压。 电流互感器作用及工作原理 电流互感器的主要所用是用来将交流电路中的大电流转换为一定比例的小电流(我国标准为5安倍),以供测量和继电保护只之用。大家应该知道在发电、变电、输电、配电过程中由于用电设备的不同,电流往往从几十安到几万安都有,而且这些电路还可能伴随高压。那么为了能够对这些线路的电路进行监控、测量,同时又要解决高压、高电流带来的危险,这时就需要用到电流互感器了。有些人可能见过电工用的钳形表,这是一种用来测量交流电流的设备,它那个“钳”便是穿心式电流互感器。

电流互感器的结构如下图所示,可用它扩大交流电流表的量程。在使用时,它的原线圈应与待测电流的负载线路相串联,副边线圈则与电流表串接成闭合回路,如图中右边的电路图所示。 电流互感器的原线圈是用粗导线绕成,其匝数只有一匝或几匝,因而它的阻抗极小。原线圈串接在待测电路中时,它两端的电压降极小。副线圈的匝数虽多,但在正常情况下,它的电动势E2并不高,大约只有几伏。 由于I1/I2=K i(Ki称为变流比)所以I1=K i*I2

由此可见,通过负载的电流就等于副边线圈所测得的电流与变流比K i之乘积。如果电流表同一只专用的电流互感器配套使用,则这安培表的刻度就可按大电流电路中的电流值标出。电流互感器次级电流最大值,通常设计为标准值5A。不同的电流的电路所配用的电流互感器是不同的,其变流比有10/5、20/5、30/5、50/5、75/5、100/5等等。 为了安全起见,电流互感器副线圈的一端和铁壳必须接地。 电流互感器规格型号识别方法 电流互感器的型号是由2~4位拼音字母及数字组成。通常能表示出电流互感器的线圈型式、绝缘种类、导体的材料及使用场所等。横线后面的数字表示绝缘结构的电压等级(4级)。电流互感器型号中字母的含义如下: L:在第一位,表示电流互感器;

电流互感器的原理与作用

讲师:靳红波 徒弟:马富敏胡振敏 内容:电流互感器的原理与作用 1、电流互感器的工作原理 电流互感器是电力系统中很重要的电力元件,作用是将一次高压侧的大电流通过交变磁通转变为二次电流供给保护,测量,虑波,计度等使用,本局所用电流互感器二次侧额定电流均为5A,也就是铭牌上标注为100/5、200/5等,表示一次侧如果100A或者200A电流,转换到二次侧电流就是5A。 电流互感器在二次侧必须有一点接地,目的是防止俩侧绕组的绝缘击穿后一次高压引入二次回路造成设备与人身伤害。同时电流互感器也只能有一点接地,如果有俩点接地,电网之间可能存在的潜电流会引起保护等设备的不正确动作。 在一般的电流回路中都是选择在该电流回路所在的端子箱接各个比较电流都在各自的端子箱接地,有可能由于地网的分流从而影响工作。所以对于差动保护规定所有电流回路都在差动保护屏一点接地。电力系统中广泛采用的是电磁式电流互感器(简称电流互感器)它的工作原理和和变压器相似。电流互感器的原理接线电流互感器的特点:(1)一次线圈串联在电路中,并且匝数很少,因此一次线圈中的电流而与二次电流无关等。 1、电流互感器不满足10%误差时,可采取哪些措施? (1)增大二次电缆截面 (2)将同名相两组电流互感器二次绕组串联 (3)改用饱和倍数较高的电流互感器 2、为什么不允许电流互感器长时间过负荷运行? 答:电流互感器长时间过负荷运行,会使误差增大,表计指示不正确。另外,由于一、二次电流增大,会使铁芯和绕组过热,绝缘老化快,甚至损坏电流互感器。 3、什么电压互感器和电流互感器的二次侧必须接地? 答:电压互感器和电流互感器的二次侧接地属于保护接地。因为一、二次侧绝缘如果损坏,一次侧高压串到二次侧,就会威胁人身和设备的安全,所以二次则必须接地。 在平时的实践中注意认真学习,才能真正的掌握这些理论知识,以及亲自动手实践。通过这短时间的培训、增加了徒弟们的团队合作精神、提高了徒弟们的动手能力。

电流互感器的工作原理

电流互感器的工作原理 在供电用电的线路中电流大大小小相差悬殊从几安到几万安都有。为便于二次仪表测量需要转换为比较统一的电流,另外线路上的电压都比较高如直接测量是非常危险的。电流互感器就起到变流和电气隔离作用。 目前显示仪表大部分是指针式的电流表,所以电流互感器的二次电流大多数是安培级的(如5A等)。现在的电量测量大多数字化,而计算机的采样的信号一般为毫安级(0-5V、4-20mA等)。微型电流互感器二次电流为毫安级,主要起大互感器与采样之间的桥梁作用。 电流互感器由一次线圈、二次线圈、铁心、绝缘支持及出线端子等组成,如图1所示。 电流互感器的铁心由硅钢片叠制而成,其一次线圈与主电路串联,且通过被测电流I1,它在铁心内产生变磁通,使二次线圈感应出相应的二次电流I2(其额定电流为5A)。如将励磁损耗忽略不计,则I1n1=I2n2,其中n1和n2分别为一、二次线圈的匝数,电流互感器的变流比K=I1/I2=n2/n1。由于电流互感器的一次线圈连接在主电路中,所以一次线圈对地必须采取与一次线路电压相相适应的绝缘材料,以确保二次回路与人身的安全。二次回路由电流互感器的二次线圈、仪表以及继电器的电流线圈串联组成。 电流互感器大致可分为两类,测量用电流互感器和保护用电流互感器。 一、测量用电流互感器 测量用电流互感器主要与测量仪表配合,在线路正常工作状态下,用来测量电流、电压、功率等。测量用电流互感器主要要求: 1、绝缘可靠, 2、足够高的测量精度, 3、当被测线路发生故障出现的大电流时互感器应在适当的量程内饱和(如500%的额定电流)以保护测量仪表。 二、保护用电流互感器 保护用电流互感器主要与继电装置配合,在线路发生短路过载等故障时,向继电装置提供信号切断故障电路,以保护供电系统的安全。保护用电流互感器的工作条件与测量用互感器完全不同,保护用互感器只是在比正常电流大几倍几十倍的电流时才开始有效的工作。保护用互感器主要要求: 1、绝缘可靠, 2、足够大的准确限值系数, 3、足够的热稳定性和动稳定性。 保护用互感器在额定负荷下能够满足准确级的要求最大一次电流叫额定准确限值一次电流。准确限值系数就是额定准确限值一次电流与额定一次电流比。当一次电流足够大时铁芯就会饱和起不到反映一次电流的作用,准确限值系数就是表示这种特性。保护用互感器准确等级5P、10P,表示在额定准确限值一次电流时的允许误差5%、10% 线路发生故障时的冲击电流产生热和电磁力,保护用电流互感器必须承受。二次绕组短路情况下,电流互感器在一秒内能承受而无损伤的一次电流有效值,称额定短时热电流。二次绕组短路情况下,电流互感器能承受而无损伤的一次电流峰值,称额定动稳定电流。 保护用电流互感器分为: 1、过负荷保护电流互感器, 2、差动保护电流互感器, 3、接地保护电流互感器(零序电流互感器)。 diandao999

电流互感器结构原理-串并联

电流互感器结构原理 1普通电流互感器结构原理 电流互感器的结构较为简单,由相互绝缘的一次绕组、二次绕组、铁心以及构架、壳体、接线端子等组成。其工作原理与变压器基本相同,一次绕组的匝数(N1)较少,直接串联于电 源线路中,一次负荷电流(人)通过一次绕组时,产生的交变磁通感应产生按比例减小的二次 电流(右);二次绕组的匝数(N0较多,与仪表、继电器、变送器等电流线圈的二次负荷(Z)串联形成闭合回路,见图5-1。 图5 - 1 普通电流互感器结构原理图 由于一次绕组与二次绕组有相等的安培匝数,l1N1=l2N2,电流互感器额定电流比: 瓦二丽。电流互感器实际运行中负荷阻抗很小,二次绕组接近于短路状态,相当于一个短路运行的变压器 2穿心式电流互感器结构原理 穿心式电流互感器其本身结构不设一次绕组,载流(负荷电流)导线由L1至L2穿过由硅钢片擀卷制成的圆形(或其他形状)铁心起一次绕组作用。二次绕组直接均匀地缠绕在圆形铁心上,与仪表、继电器、变送器等电流线圈的二次负荷串联形成闭合回路,见图5- 2。

图5 - 2穿心式电流互感器结构原理图 由于穿心式电流互感器不设一次绕组,其变比根据一次绕组穿过互感器铁心中的匝数确 定,穿心匝数越多,变比越小;反之,穿心匝数越少,变比越大,额定电流比:n。 式中11 ――穿心一匝时一次额定电流; n ――穿心匝数。 3特殊型号电流互感器 3.1多抽头电流互感器。这种型号的电流互感器,一次绕组不变,在绕制二次绕组时,增加几个抽头,以获得多个不同变比。它具有一个铁心和一个匝数固定的一次绕组,其二次绕组 用绝缘铜线绕在套装于铁心上的绝缘筒上,将不同变比的二次绕组抽头引出,接在接线端子 座上,每个抽头设置各自的接线端子,这样就形成了多个变比,见图 5 - 3。 二反绕纽 Ki K-i 心Kd 图5 - 3多抽头电流互感器原理图 例如二次绕组增加两个抽头, K1、K2为100/5 , K1、K3为75/5 , K1、K4为50/5等。此种电流互感器的优点是可以根据负荷电流变比,调换二次接线端子的接线来改变变比,而不需要更换电流互感器,给使用提供了方便。 3.2不同变比电流互感器。这种型号的电流互感器具有同一个铁心和一次绕组,而二次绕组则分为两个匝数不同、各自独立的绕组,以满足同一负荷电流情况下不同变比、不同准确度 等级的需要,见图 5-4。

电流互感器工作原理

电流互感器 1、原理 一次电流I 1流过一次绕组,建立一次磁动势 (N 1I 1),亦被称为一次安匝,其中N 1为一次绕组的匝数;一次磁动势分为两部分,其中小一部分用于励磁,在铁心中产生磁通,另一部分用来平衡二次磁动势(N 2I 2),亦被称为二次安匝,其中N 2为二次绕组的匝数。励磁电流设为I 0,励磁磁动势(N 1I 0),亦被称为励磁安匝。平衡二次磁动势的这部分一次磁动势,其大小与二次磁动势相等,但方向相反。磁势平衡方程式如下: 120121I N I N I N ? ? ? += 在理想情况下,励磁电流为零,即互感器不消耗能量,则有 12120I N I N ? ? += 若用额定值表示,则 1212 N N I N I N ? ? =- 其中1N I ? ,2N I ? 为一次、二次绕组额定电流。

额定一次、二次电流之比为电流互感器额定电流比,12N N N I K I = P 1 1I ? P 2 2 I ? Z B 电流互感器工作原理 E 2 11I N ? 22I N ? 22I N ? - 01I N ?

电流互感器的等值电路如下图所示: Z 1 Z 2 1 I ? 2I ? ? Z M 2U ? Z B ' 1 E ? 2E ? 根据电工原理,励磁电流在铁心中建立主磁通,它穿过一次、二次绕组的全部线匝。由于互感器铁心有磁滞和涡流损耗,励磁电流的一部分供给这些损耗,称为有功部分,另一部分用于励磁,称为无功部分。所以励磁电流与主磁通相差角,这个角称为铁损角。主磁通在二次绕组中感应出电动势2E ? ,相位相差90(滞后);则: 222()B E I Z Z ? ? =+ 式中 Z 2---二次绕组的内阻抗, Z 2= R 2 +jX2

电流互感器结构及原理

电流互感器结构及原理 Revised as of 23 November 2020

一、电流互感器结构原理 1普通电流互感器结构原理 电流互感器的结构较为简单,由相互绝缘的一次绕组、二次绕组、铁心以及 构架、壳体、接线端子等组成。其工作原理与变压器基本相同,一次绕组的匝 数(N1)较少,直接串联于电源线路中,一次负荷电流()通过一次绕组时,产 生的交变磁通感应产生按比例减小的二次电流();二次绕组的匝数(N2)较 多,与仪表、继电器、变送器等电流线圈的二次负荷(Z)串联形成闭合回路,见 图1。 图1普通电流互感器结构原理图 由于一次绕组与二次绕组有相等的安培匝数,I1N1=I2N2,电流互感器额定电 流比:。电流互感器实际运行中负荷阻抗很小,二次绕组接近于短路状 态,相当于一个短路运行的变压器。 2穿心式电流互感器结构原理 穿心式电流互感器其本身结构不设一次绕组,载流(负荷电流)导线由L1至 L2穿过由硅钢片擀卷制成的圆形(或其他形状)铁心起一次绕组作用。二次绕组 直接均匀地缠绕在圆形铁心上,与仪表、继电器、变送器等电流线圈的二次负 荷串联形成闭合回路,见图2。 图2穿心式电流互感器结构原理图 由于穿心式电流互感器不设一次绕组,其变比根据一次绕组穿过互感器铁 心中的匝数确定,穿心匝数越多,变比越小;反之,穿心匝数越少,变比越 大,额定电流比:。 式中I1——穿心一?匝时一次额定电流;n——穿心匝数。 3特殊型号电流互感器 多抽头电流互感器。这种型号的电流互感器,一次绕组不变,在绕制二次绕组时,增加几个抽头,以获得多个不同变比。它具有一个铁心和一个匝数固定的一次绕组,其二

电流互感器

填空题: 1、将两个变比相同、容量相同的电流互感器的二次绕组串联后,变比(),容量()。答案为:不变、增大一倍 2、电流互感器二次回路的阻抗(),在正常工作情况下接近于()状态。 答案为:很小、短路 3、发现电流互感器二次侧开路时,应尽快设法在就近的()端子上,将电流互感器二次短路,再检查处理开路点。短接时,应使用良好的(),并按()进行,穿绝缘靴、戴绝缘手套。 答案为:试验、短接线、图纸 4、电流互感器根据整体结构,可分为()式、()式和()式。 答案为:穿墙、支柱、套管 5、当电流互感器电压在110千伏及以上时,常常采用()式结构和()式结构。答案为:串级、电容 6、电流互感器的二次绕组在运行中()开路,因为开路时,将使二次电流消失。 答案:不允许 7、当发现电流互感器外部过热、内部有()()()()()等情况时,应立即将其停运答案:放电声及噪声、发出焦臭味、冒烟、大量漏油、不见油位 8、电流互感器二次回路上工作时,禁止采用()缠绕方式短接二次回路答案:熔丝或导线 9、运行中的电流互感器一次最大负荷电流不得超过()额定电流,如长时间过负荷, 会使测量误差加大和()。 答案:1.2倍绕组过热和损坏 10、电流互感器在运行中接头应无()()()瓷绝缘件应() ()现象 答案:过热、无声响、无异味、清洁完整、无破损和放电 11、当电流互感器着火时,应立即将其停用,然后使用()()() 等进行灭火。 答案:干粉灭火器、干燥的沙子、1211灭火器 12、清扫电流互感器时应()选择适当地点将二次侧短接() ()()等条件进行工作 答案:不允许开路、禁止在电流互感器与短路点间、使用绝缘工作、穿长袖工作服和线手套13、运行中的电流互感器在()()以及()而发生放电等情况下均 会造成声音异常 答案:过负荷、二次开路、绝缘损坏 14、发现电流互感器有异常音响、二次回路有放电声、且电流表指示数低到零,可判断 为() 答案:二次回路断线

电流互感器的用途与基本结构

电流互感器的用途与基本结构一.电流互感器的用途: 电流互感器:它接在线路上用来改变线路上的电流的大小。 电流互感器在使用时一次绕组W1接在线路上,二次绕组W2接电器 仪表;因此,在测量高压线路上的电流时,尽管初级线圈上的电压 很高,但是次级上的电压却很低,操作人员和仪表都很安全。 电流互感器用来变电流,因此其最主要的参数是电流比。一次电流 与二次电流之比,叫实际电流比,用K表示,即: K=I1/I2 为了生产使用方便,电流互感器的一次电流和二次电流都规定有标准,叫 额定一次电流和二次电流。额定即:在这个电流下,绕组可以长期工作而不被 破坏。电绕组的电流超过额定电流时,叫做过负荷。这样,额定一次电流与额 定二次电流之比用Kn表示,简称为电流比。一般所说的电流比,都是指它的 额定电流比,即:Kn=I1n/I2n 其中I1n-------额定一次电流,I2n-----额定二次 电流;当略去电流互感器的误差时K=Kn. 1.测量用电流互感器: 用途:⑴用来测量高压线路上的电流和功率,起绝缘隔

离的作 用以保证操作人员和仪表的安全。 ⑵用来测量高压线路上的大电流和大功率,使用 统一的 5A的二次线路和测量仪表。 因此对测量用电流互感器有以下要求: 第一,绝缘必须可靠,以保证安全。 第二,必须邮筒一的测量准确度; 第三,仪表保安系数Fs较小。 当有很大电流通过互感器时,仪表保安系数愈小说明互感器铁心愈饱和,二次电流不会按比例上升,互感器二次所接的仪表愈安全。采用各种补偿的电流互 感器,可减小铁心截面,从而减小仪表保安系数。 2.保护用电流互感器:就是将线路上的电流变为一定大小的电流给继电器等 保护装置供电。保护用电流互感器的准确级用5P和10P表示也相当于其允许 误差为5%或10%。 可见,测量用互感器是在线路正常供电时,用来测量功率和电流的;而保护用 电流互感器只是在线路发生故障时,才起作用。 因此,对保护用电流互感器有三个要求: ⑴绝缘必须可靠,以保证安全。 ⑵必须有足够大的准确限值系数。 ⑶必须有足够大的热稳定和动稳定性。 保护用电流互感器,在额定负荷下能够满足准确级5P或10P要求的最大一次

电流互感器-电压互感器结构原理和使用注意事项

电流互感器/电压互感器的结构原理和使用注意事项 通常所说的电压互感器和电流互感器都是电磁式的,电磁式电压互感器电气文字符号是PT,电磁式电流互感器电气文字符号是CT。电压互感器和电流互感器在电力设备中应用广泛,用途也是缺之不可的,同时也是最常见的电气设备之一。 一、互感器的结构和工作原理 1.电压互感器(PT)是一种将高电压变换为低电压的电气设备,一次绕组与高压系统的一次回路并联,二次绕组则与二次设备的负载并联。PT基于电磁感应原理工作,正常运行时其二次负载基本不变,电流很小,接近于空载状态。 一般的PT包括测量级和保护级,其基本结构为:一次线圈和二次线圈分别绕在铁心上,在两个线圈之间和线圈与铁心之间都有绝缘隔离。电力系统用的三线圈电压互感器,除了上述的一次线圈和二次线圈外,还有一个零序电压线圈,用来接继电器。在线路出现单相接地故障时,线圈中产生的零序电压使继电器动作,切断线路,以保护线路中的发电机和变压器等贵重设备。 2.电流互感器(CT)是一种将高压电网大电流变换为小电流的电气设备,一次绕组串联在高压系统的一次回路内,二次绕组则与二次设备的负载相串联。CT也是基于电磁感应的原理工作,但是它的二次负

载阻抗很小,接近于短路状态。 电流互感器也分为测量用与保护用两类,基本结构和PT相似,一次线圈、二次线圈分别绕在铁心上,两个线圈之间及线圈与铁心之间有绝缘隔离。根据电力系统要求切除短路故障和继电保护动作时间的快慢,保护用电流互感器分为稳态保护用与暂态保护用两种,前者用于电压比较低的电网中,称为一般保护用电流互感器;后者则用于高压超高压线路上。 二、互感器的使用注意事项 1.PT二次侧直接与电压表连接,相当于运行在变压器的空载状态,短路会引起很大的短路电流,使用中不允许短路。 电磁式互感器都有一定的额定容量,从电力网中消耗功率,成为系统的负载,存在负荷分担问题。而PT存在的最为严重的问题是可能出现铁磁谐振:PT的铁心电感和系统的电容元件由于感抗与容抗的交换,组成许多复杂的振荡回路,如果满足一定的条件,就可能激发起持续时间较长的铁磁谐振,这种谐振现象,某些元件的电压过高危及

专家详解 电流互感器(结构篇)

专家详解:电流互感器(结构篇) 为电力系统中二次设备采集电流的唯一媒介,电流互感器的重要性不言而喻。从工作原理的角度分析,电流互感器实质上属于变压器的一种:通过电磁感应原理传递电气量;并依据原副边的变比值,将电力系统中一次侧大电流转换为二次设备使用的小电流。 为确保电流互感器运行的稳定、高效,行业内从设备的生产、运输、装配、运维等各个方面设有多项规章制度。本章节将节选部分规程,将理论与实际生产相结合,讨论规程的内在逻辑与实际意义。 为便于大家理解,本文先来讨论电流互感器的一次结构 一、电流互感器的绝缘结构: 在高压电力系统中,一次电力设备内绝缘通常采用电容型绝缘结构。所谓电容型绝缘结构是指:利用绝缘材料(油浸电缆纸)与电容屏(铝箔)将设备主绝缘层层包裹,通过调整电容屏间的径向厚度,以达到内绝缘场强均匀分布的目的。 电容型绝缘结构的机理如下图所示:

其中,内圆柱代表内侧电容屏,外圆柱代表外侧电容屏,内外电容屏间由绝缘材料填充;内屏半径OA1==R1,外屏半径OA2==R2; 针对圆柱型电容结构,绝缘介质中任意一点的径向场强Er(假设方向由轴心指向边缘)有如下公式: Er = U / r * ln(R2/R1) U表示电容屏间施加的电压。 分析公式可知,可得到以下两个结论: 1)当r == R2 时,径向场强Er达到最小值,即外电容屏场强最小;r == R1 时,径向场强达到最大值,即内电容屏场强最大; 2)若电容屏间的半径比值R2/R1数值越大,内外电容屏的场强差也越大; 而高压电力设备(110kV及以上),绝缘的厚度较大,其内外场强相差较大,严重时会超过绝缘材料本身的击穿场强;因此,为解决场强差的问题,并提高绝缘材料的利用效率,会在较厚的绝缘层中设置多个电容屏,通过调整电容屏间的径向距离,令径向场强均匀分布。 通常情况下,与一次高压绕组连接的电容屏称为零屏(高压电屏),靠近二次绕组的电容屏称为末屏(地电屏)。末屏可靠接地后,就在高压绕组与大地之间形成串联电容器组。若电容屏无限多,那么各屏表面场强可近乎于相等;但在实际情况下,电容屏数量有限,但各屏表面的场强差有着严格的限制。

电流互感器的工作原理

电流互感器的工作原理 电流互感器原理是依据电磁感应原理制成的。电流互感器是由闭合的铁心和绕组组成。它的一次侧绕组匝数很少,串在需要测量的电流的线路中,因此它经常有线路的全部电流流过,二次侧绕组匝数比较多,串接在测量仪表和保护回路中,电流互感器在工作时,它的二次侧回路始终是闭合的,因此测量仪表和保护回路串联线圈的阻抗很小,电流互感器的工作状态接近短路。电流互感器是把一次侧大电流转换成二次侧小电流来测量,二次侧不可开路。 电流互感器的主要所用是用来将交流电路中的大电流转换为一定比例的小电流(我国标准为5安倍),以供测量和继电保护之用。大家应该知道在发电、变电、输电、配电过程中由于用电设备的不同,电流往往从几十安到几万安都有,而且这些电路还可能伴随高压。那么为了能够对这些线路的电路进行监控、测量,同时又要解决高压、高电流带来的危险,这时就需要用到电流互感器了。有些人可能见过电工用的钳形表,这是一种用来测量交流电流的设备,它那个“钳”便是穿心式电流互感器。 电流互感器由一次线圈、二次线圈、铁心、绝缘支撑及出线端子等组成。电流互感器的铁心由硅钢片叠制而成,其一次线圈与主电路串联,且通过被测电流I1,它在铁心内产生交变磁通,使二次线圈感应出

相应的二次电流I2。如将励磁损耗忽略不计,则I1n1=I2n2,其中n1和n2分别为一、二次线圈的匝数。电流互感器的变流比K=I1/I2=n2/n1。 由于电流互感器的一次线圈连接在主电路中,所以一次线圈对地必须采取与一次线路电压相适应的绝缘材料,以确保二次回路与人身的安全。二次回路由电流互感器的二次线圈、仪表以及继电器的电流线圈串联组成。电流互感器大致可分为两类,测量用电流互感器和保护用电流互感器。 电流互感器的原理是依据电磁感应原理,它的一次绕组经常有线路的全部电流流过,电流互感器在工作时,它的2次回路始终是闭合的,因此测量仪表和保护回路串联线圈的阻抗很小,电流互感器的工作状态接近短路。 在理想的电流互感器中,如果假定空载电流Ⅰ0=0,则总磁动势Ⅰ0N0=0,根据能量守恒定律,一次绕组磁动势等于二次绕组磁动势,即 Ⅰ1NI=-Ⅰ2N2 即电流互感器的电流与它的匝数成反比,一次电流对二次电流的比值Ⅰ1 /Ⅰ2称为电流互感器的电流比。当知道二次电流时,乘上电流比就可以求出一次电流,这时二次电流的相量与一次电流的相量相差1800。

电容型电流互感器绝缘结构基本原理-最新年文档

电容型电流互感器绝缘结构基本原理 正立式电容型绝缘电流互感器由器身、油箱、储油柜、瓷套及膨胀器等几大部件构成,器身的一次绕组为“ U'字形,导体根据额定电流的大小而有铝管、铜管或扁铜线等形式。一次绕组用高压电缆纸绕缠全部主绝缘,绝缘中设有多个电容屏,其中靠近一次绕组线芯的屏称高压屏或零屏,最后一个屏也是准备接地的屏称为末屏或地屏。零屏与末屏之间的电容屏将高压对地分成多个电容层串联而成的电容器,每个电容层之间电容量相等,承受电压也几乎相等。使整个绝缘强度均匀,绝缘利用率提高。电容屏的端部有改善绝缘局部放电的端部保护设计,通常用设计为多个长度较主屏较小的端屏(或副屏),电屏材料一般为铝箔或半导体纸带。 倒立式电容型绝缘电流互感器由底座、瓷套、倒立吊环形电容型绝缘器身、储油柜、膨胀器等部件所构成。互感器的所有次绕组组合后集中装配在一铝壳中(或其他金属壳),二次绕组引线通过联接在铝壳上的引线管引至下部的底座上。铝壳及引线管的外表面即电容型绝缘的电屏(或者另设电屏),在其上用绝缘性优良的电缆纸(平纹纸)或皱纹纸缠绕全部主绝缘。绝缘中设多个主屏及端屏。高压屏与一次绕组引出端连接,地屏运行时接地。电容屏材料一般为半导体纸带或纤维带。 1圆柱形电场的电场强度

对于已知内电极半径为R1,外电极半径为R2的圆柱形电容器,绝缘介质中任一半径r 处的径向电场强度按下式计算: 2.3-71 ) 式中,U—加在两电极之间的电压。 由(2.3-7 1 )式可以看出,当r = R1 ,即在内电极表面的 场强最大,当r= R2时,即在外电极表面的强度最小。R2与R1 相差越大,则场强差别也越大。 对于66kV及以下的电流互感器,绝缘厚度不会很大,即R2 和R1相差较小,场强差别不是很大。但是,到了110kV及以上,电流互感器的整个绝缘厚度越来越大,也就是绝缘内电场分布越来越不均匀,为保证绝缘内的场强不致超过其本身耐电强度,势必要增加绝缘厚度,绝缘材料的利用率降低。如果在较厚的绝缘层中,设置一些中间电极(电容屏),每两个电屏之间及其中间的绝缘层就构成一个电容器。当内电极(电屏)与电流互感器次绕组高压端连接,靠近二次绕组外电屏与地连接时,就构成一个高电压与地电位之间由多个电容串联的电容器。因为,每一电 容器之间的内电极与外电极半径大大减少,所以绝缘层中内外电屏表面场强几乎相等,绝缘介质得到充分利用。但实际中间电屏数为有限的,各电屏表面的场强也不仅相等,但限制在一定的差别范围内。在油浸式电流互感器中,电容屏间的绝缘是油浸纸,故这种绝缘结构称为电容均压型油纸绝缘,也常简称电容型绝 极表面的场强差别也大大缩小。如果中间屏数量无限多,则各电

相关文档
最新文档