【高考数学】圆锥曲线经典习题—抛物线大题合集20

【高考数学】圆锥曲线经典习题—抛物线大题合集20
【高考数学】圆锥曲线经典习题—抛物线大题合集20

【高考数学】圆锥曲线经典习题—抛物线大题合集20

未命名

一、解答题

1.如图,已知直线与抛物线()2

20y px p =>交于,M N 两点,点D

的坐标为(,

OD MN ⊥交MN 于点D ,,OM ON ⊥抛物线的焦点为F .

(1)求p 的值;

(2)记条件(1)所求抛物线为曲线C ,过点F 作两条斜率存在且互相垂直的直线12,l l ,设1l 与曲线C 相交于点,A B ,2l 与曲线C 相交于点,D E ,求AD ·EB 的最小值. 【答案】(1)2p =(2)16 【解析】

试题分析:(1)由OD MN ⊥,得12120x x

y y +=,由40x +-=与22y px

=消去x ,得2

80y p +-=,利用韦达定理,即可求p 的值;(2)设出直线1l 的方

程,联立直线和抛物线的方程,消去y ,得到关于x 的一元二次方程,利用韦达定理,求出两根之和和两根之积,同理可求出直线2l 的方程与抛物线的交点坐标,代入

AD ·

EB 利用基本不等式求最值,即可求得其的最小值 试题解析:(1)设()()1122,,,M x y N x y ,由,OM ON ⊥得12120x x y y +

= 由已知得直线MN

的方程是)1y

x =-即40x

+-=,则有

()()

1212440y

y +=即)121240y y y y ++=

由40x +-=与2

2y

px =消去x ,得2

80y p +-=

所以1212,8y y y y p +=-=- ③

把③代入①得()

82340p p --+=解得2p

=

当2p =时方程②成为2

160y +-=,显然此方程有实数根 所以2p =

(2)由(1)知抛物线方程为2

4y x =

由题意知,直线l 1的斜率存在且不为0,设为k ,则l 1的方程为y =k(x -1). 由()

2

14y k x y x

?=-?

=?得k 2x 2-(2k 2+4)x +k 2=0.

设A(x 1,y 1),B(x 2,y 2),则x 1,x 2是上述方程的两个实根,于是

x 1+x 2=2+2

4k ,x 1x 2=1. ∵l 1⊥l 2,∴l 2的斜率为-1

k .

设D(x 3,y 3),E(x 4,y 4),则同理可得x 3+x 4=2+4k 2,x 3x 4=1.

故AD ·EB =(AF +FD )·(EF +FB )=AF ·EF +AF ·FB +FD ·EF +

FD ·

FB =|AF ||FB |+|FD ||EF | =(x 1+1)(x 2+1)+(x 3+1)(x 4+1) =x 1x 2+(x 1+x 2)+1+x 3x 4+(x 3+x 4)+1

=1+(2+2

4

k )+1+1+(2+4k 2)+1

=8+4(k 2+21k )≥8+4×2

k =16.

当且仅当k 2=2

1k ,即k =±1时,AD ·EB 取最小值16.

考点:1.抛物线的简单性质;2.直线与抛物线相交的相关问题

2.如图,已知抛物线y x C 4:2

=,过点)2,0(M 任作一直线与C 相交于B A ,两点,过点B 作y 轴的平行线与直线AO 相交于点D (O 为坐标原点).

(1)证明:动点D 在定直线上;

(2)作C 的任意一条切线(不含x 轴),与直线2=y 相交于点1N ,与(1)中的定直线相交于点2N ,证明:2

12

2

MN MN -为定值,并求此定值.

【答案】(1)详见解析; (2)定值为8. 【解析】

试题分析:(1)由题意可知直线AB 的斜率存在,则可设AB 的方程为2+=kx y ,代入椭圆方程消去y 可得关于x 的一元二次方程,可得两根之和两根之积. 设

),(),,(2211y x B y x A ,可知直线AO ,BD 的方程.联立可解得点D 坐标.从而可得D 坐标

中,x y 的关系式,即点D 所在的直线方程. (2)设切线b ax y l +=:,代入抛物线方程可得关于x 的一元二次方程,依题意可知其判别式等于0.可得,a b 关系式,即可用a 表示b .求得点12,N N 的坐标,由两点间距离公式可求得2

12

2

MN MN -的值.

试题解析:解(1)依题意,设AB 的方程为2+=kx y ,代入y x 42

=

得)2(42

+=kx x ,即0842=--kx x ,设),(),,(2211y x B y x A ,则有821-=?x x 直线AO 的方程为x x y y 1

1

=

,直线BD 的方程为2x x =, 解得交点D 的坐标为??????==1212x x y y x x ,注意到821-=?x x 及1214y x =, 2481

1

2

1

2

11-=-=

??=

y y x x x y y 因此点D 在定直线)0(2≠-=x y 上

(2)依题意,切线l 的斜率存在且不为0,设b ax y l +=:代入y x 42

=

得)(42

b ax x +=,即0442

=--b ax x ,

令2

22:016)4(a ax y l a b b a -=?-=?=+=? 分别令2,2-==y y 得)2,2

(),2,2(

21-+-+a a N a a N 8)2

(4)2(2222

1

22=+-+-=-a a

a a MN MN 为定值 考点:直线与抛物线的位置关系问题.

3.已知过点P (0,2)的直线l 与抛物线C :y 2=4x 交于A 、B 两点,O 为坐标原点. (1)若以AB 为直径的圆经过原点O ,求直线l 的方程;

(2)若线段AB 的中垂线交x 轴于点Q ,求△POQ 面积的取值范围.

【答案】(1)y=﹣.(2)(2,+∞).

【解析】

试题分析:(1)设直线AB 的方程为y=kx+2(k≠0),A (x 1,y 1),B (x 2,y 2),由

得k 2x 2+(4k ﹣4)x+4=0,由△=(4k ﹣4)2﹣16k 2>0,得k <,由

=,,知y 1y 2=(kx 1+2)(kx 2+2)=,由以AB 为直径的圆经过原点O ,

能求出直线l 的方程.

(2)设线段AB 的中点坐标为(x 0,y 0),由

,得

故线段AB 的中垂线方程为,由此能求出△POQ 面积的取

值范围.

解:(1)设直线AB 的方程为y=kx+2(k≠0), 设A (x 1,y 1),B (x 2,y 2), 由

,得k 2x 2+(4k ﹣4)x+4=0,

则由△=(4k ﹣4)2﹣16k 2=﹣32k+16>0,得k <,

=,,

所以y 1y 2=(kx 1+2)(kx 2+2)=k 2x 1x 2+2k (x 1+x 2)+4=, 因为以AB 为直径的圆经过原点O ,

所以∠AOB=90°, 即,

所以

解得k=﹣,

即所求直线l 的方程为y=﹣

(2)设线段AB 的中点坐标为(x 0,y 0), 则由(1)得

所以线段AB 的中垂线方程为,

令y=0,得

==,

又由(1)知k <,且k≠0,得或,

所以,

所以

=,

所以△POQ 面积的取值范围为(2,+∞).

考点:直线与圆锥曲线的综合问题;直线的一般式方程.

4.已知抛物线

2

:4C x y =的焦点为F ,过点(0,1)D -的直线l 与抛物线C 交于不同的A B 、两点.

(Ⅰ)若AB =l 的方程;

(Ⅱ)记FA 、FB 的斜率分别为1k 、2k ,试问:12k k +的值是否随直线l 位置的变化而变化?证明你的结论.

【答案】

(Ⅰ):1l y =-;(Ⅱ)12k k +的值不随直线l 位置的变化而变化 【解析】

试题分析:(Ⅰ)设l :y=kx-1代入2

4x y =得:2440x kx -+=,利用弦长公式,结

合AB =

求直线l 的方程;(Ⅱ)利用斜率公式,结合由韦达定理,由此能够得到12k k +为定值.; 试题解析:(Ⅰ)根据题意,可设:1l y kx =-,

代入2

4x y =得:2440x kx -+=,令△2161601k k =->?>,

设1122(,)(,)A x y B x y 、,∴124x x k +=,124x x =,

∴AB =

=

==

∵AB =

,∴4

13(,1)

(1,)k k -=?=-∞-+∞,

∴:1l y =-; (Ⅱ)∵(0,1)F ,∴122112121212

11(1)(1)

y y x y x y k k x x x x ---+-+=

+= 211212121212(2)(2)22()8804

x kx x kx kx x x x k k x x x x -+--+-=

===,

∴12k k +的值不随直线l 位置的变化而变化. 考点:抛物线的简单性质;直线与圆锥曲线的综合

5.在直角坐标系xOy 中,设动点P 到定点)0,1(F 的距离与到定直线1:-=x l 的距离相等,记P 的轨迹为Γ,又直线AB 的一个方向向量(1,2)d =且过点)0,1(,AB 与Γ交

于B A 、两点,求||AB 的长. 【答案】5 【解析】

试题分析:根据抛物线的定义得动点P 的轨迹Γ是抛物线,求出其方程为

x y 42

=.由直线方程的点斜式,算出直线AB 的方程为22-=x y ,再将直线方程与抛物线方程联解,并结合抛物线的定义加以计算,可得线段AB 的长.

试题解析:由抛物线的定义知,动点P 的轨迹Γ是抛物线,方程

x y 42=. 直线AB 的方程为

2

11y

x =-,即22-=x y . 设),(11y x A 、),(22y x B ,22-=x y 代入x y 42

=, 整理,得0132=+-x x . 所以52||21=++=x x AB .

考点:抛物线的标准方程;两点间的距离公式

6.在平面直角坐标系xOy 中,曲线y=x 2﹣6x+1与坐标轴的交点都在圆心为C 的圆上. (1)求圆C 的方程;

(2)若圆C 与直线x ﹣y+a=0交于A ,B 两点,且CA ⊥CB ,求a 的值.

【答案】(1)(x ﹣3)2+(y ﹣1)2

=9;(2)a=1或﹣5.

【解析】试题分析:(Ⅰ)求出与y 轴,x 轴的交点坐标,可以看出圆心在x=3直线上,可设C 的圆心为(3,t ),利用条件求出方程; (Ⅱ)根据直线与圆的关系,可得AB=3

,利用点到直线的距离公式可得

,求出a 的值.

(Ⅰ)解:曲线y=x 2

﹣6x+1与y 轴的交点为(0,1),…(1分)

与x 轴的交点为,,…(3分)

∴可设C 的圆心为(3,t ),则有,解得t=1,

∴圆C 的半径为

∴圆C 的方程为(x ﹣3)2+(y ﹣1)2=9…(6分) (Ⅱ)CA ⊥CB , ∴AB=3

∴C 到AB 的距离为,

∴a=1或﹣5.…(12分) 考点:二次函数的性质.

视频

7.如图,M 是抛物线上y 2=x 上的一点,动弦ME 、MF 分别交x 轴于A 、B 两点,且MA=MB .

(1)若M为定点,证明:直线EF的斜率为定值;

(2)若M为动点,且∠EMF=90°,求△EMF的重心G的轨迹方程.

【答案】(1)见解析;(2)y2=x﹣(x>)

【解析】

试题分析:(1)可用待定系数法设出两直线的方程,用参数表示出两点E,F的坐标,用两点式求了过两点的直线的斜率,验证其是否与参数无关,若无关,则说明直线EF 的斜率为定值.

(2)设出点M的坐标,如(1)用参数表示出点E,F的坐标,再由重心坐标与三角形的三个顶点的坐标之间的关系将其表示出来,消参数即可得重心的方程.

解:(1)设M(y02,y0),直线ME的斜率为k(k>0),则直线MF的斜率为﹣k

直线ME的方程为y﹣y0=k(x﹣y02),由

消去x得ky+ky0﹣1=0,解得y E=,x E=

同理可得y F=,x F=

∴k EF=,将坐标代入得k EF=﹣(定值)

所以直线EF的斜率为定值.

(2)当∠EMF=90°时,∠MAB=45°,所以k=1

∴直线ME的方程为:y﹣y0=x﹣y02,

由得E((1﹣y0)2,1﹣y0)

同理可得F((1+y0)2,﹣(1+y0)),

设重心为G(x,y),则有

代入坐标得

消去参数y0得y2=x﹣(x>)

考点:直线的倾斜角;轨迹方程;抛物线的应用.

8.斜率为2的直线l经过抛物线的y2=8x的焦点,且与抛物线相交于A,B两点,求线段AB的长.

【答案】40

【解析】

试题分析:设直线l的倾斜解为α,则l与y轴的夹角θ=90°﹣α,cotθ=tanα=2,sinθ=,然后求出|AB|.

解:设直线l的倾斜解为α,则l与y轴的夹角θ=90°﹣α,

cotθ=tanα=2,

∴sinθ=,

|AB|==40.

线段AB的长为40.

考点:直线与圆锥曲线的关系.

9.已知抛物线:的焦点为,抛物线上的点到焦点的距离为3,椭圆:的一个焦点与抛物线的焦点重合,且离心率为.

(1)求抛物线和椭圆的方程;

(2)已知直线:交椭圆于、两个不同的点,若原点在以线段为直径的圆的外部,求的取值范围.

【答案】(1)抛物线的方程为:;椭圆的方程为;(2)

或.

【解析】

试题分析:(1)抛物线上的点到焦点的距离为3,即得到,解得,求出抛物线,再依据椭圆的一个焦点与抛物线的焦点重合,且离心率为,可以

求得 , ,得到椭圆 的方程;(2)原点 在以线段 为直径的圆的外部,则

,将直线 与椭圆联立消去 ,得到关于 的一元二次方程,再由韦达定理可以得到关于 的不等式,求解出即可; 试题解析:(1)由题意可知

,解得 ,所以抛物线 的方程为: .

∴抛物线 的焦点 ,∵椭圆 的一个焦点与抛物线 的焦点重合,

∴椭圆 半焦距 , .∵椭圆 的离心率为

,∴

,解得 ,

,∴椭圆 的方程为

(2)设 、 ,由

得 , ∴ ,

,由 ,即 , 解得

.①

由于原点 在以线段 为直径的圆的外部,则

, 因此

,解得

.②

由①②解得实数 的范围是

考点:直线与抛物线的位置关系;

10.已知抛物线C :2

2y px =()0p >的焦点为F 并且经过点()1,2A -.

(1)求抛物线C 的方程;

(2)过F 作倾斜角为45o 的直线l ,交抛物线C 于,M N 两点,O 为坐标原点,求△

OMN 的面积.

【答案】(1)y 2=4x (2)【解析】

试题分析:(1)将抛物线过的点坐标代入方程可得到p 值,从而得到抛物线方程;(2)将直线与抛物线联立方程,借助于韦达定理可得到相交弦的长度MN ,由点到直线的距离可求得三角形的高,进而得到三角形面积

试题解析:(1)把点A (1,﹣2)代入抛物线C :y 2=2px (p >0),可得(﹣2)2=2p×1,解得p=2.

∴抛物线C 的方程为:y 2=4x . (2)F (1,0).

设M (x 1,y 1),N (x 2,y 2). 直线l 的方程为:y=x ﹣1. 联立

化为x 2﹣6x+1=0, ∴x 1+x 2=6,x 1x 2=1.

∴|MN|=

=

=8.

原点O 到直线MN 的距离d=.

∴△OMN 的面积S=

==2

考点:1.抛物线方程;2.直线与抛物线相交的弦长问题

11.过点(0,4),斜率为1-的直线与抛物线2

2(0)y px p =>交于两点A 、B ,如果弦

AB 的长度为.

(1)求p 的值;

(2)求证:OA OB ⊥(O 为原点). 【答案】(1)2p =(2)详见解析 【解析】

试题分析:(1)联立直线与抛物线方程,利用韦达定理,计算弦|AB|的长度,即可求p 的值;(2)证明12120x x y y +=,即可得到OA ⊥OB

试题解析:(1)直线AB 的方程为4y x =-+,联立方程2

4

2y x y px

=-+??

=?,消去y 得,22(4)160x p x -++=.

设A (11,x y ),B (22,x y ),得2

12122(4),16,4(4)640x x p x x p +=+=?=+->

AB ===

= 解得2p =

(2)12122(4)12,16x x p x x +=+==

121212121212(4)(4)24()16216412160

x x y y x x x x x x x x ∴+=+-+-+=-++=?-?+=

2020高考数学圆锥曲线试题(含答案)

2020高考虽然延期,但是每天练习一定要跟上,加油! 圆锥曲线 一. 选择题: 1.(福建卷11)又曲线22 221x y a b ==(a >0,b >0)的两个焦点为F 1、 F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为B A.(1,3) B.(]1,3 C.(3,+∞) D.[)3,+∞ 2.(海南卷11)已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2, -1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( A ) A. (4 1 ,-1) B. (4 1,1) C. (1,2) D. (1,-2) 3.(湖北卷10)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点 的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④ 1 1 c a <2 2 c a . 其中正确式子的序号是B

A. ①③ B. ②③ C. ①④ D. ②④ 4.(湖南卷8)若双曲线22221x y a b -=(a >0,b >0)上横坐标为32 a 的点 到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞) 5.(江西卷7)已知1F 、2F 是椭圆的两个焦点,满足120MF MF ?=u u u u r u u u u r 的点M 总在椭圆内部,则椭圆离心率的取值范围是C A .(0,1) B .1 (0,]2 C .(0, 2 D .,1)2 6.(辽宁卷10)已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( A ) A B .3 C D .92 7.(全国二9)设1a >,则双曲线22 22 1(1)x y a a - =+的离心率e 的取值范围是( B ) A . B . C .(25), D .(2 8.(山东卷(10)设椭圆C 1的离心率为 13 5 ,焦点在X 轴上且长轴长为 A B C D -

高考圆锥曲线典型例题(必考)

椭 圆 典例精析 题型一 求椭圆的标准方程 【例1】已知点P 在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为45 3 和 25 3 ,过P 作长轴的垂线恰好过椭圆的一个焦点,求椭圆的方程. 【解析】故所求方程为x 25+3y 2 10=1或3x 210+y 2 5 =1. 【点拨】(1)在求椭圆的标准方程时,常用待定系数法,但是当焦点所在坐标轴不确定时,需要考虑两种情形,有时也可设椭圆的统一方程形式:mx 2+ny 2=1(m >0,n >0且m ≠n );(2)在求椭圆中的a 、b 、c 时,经常用到椭圆的定义及解三角形的知识. 【变式训练1】已知椭圆C 1的中心在原点、焦点在x 轴上,抛物线C 2的顶点在原点、焦点在x 轴上.小明从曲线C 1,C 2上各取若干个点(每条曲线上至少取两个点),并记录其坐标(x ,y ).由于记录失误,使得其中恰有一个点既不在椭圆C 1上,也不在抛物线C 2上.小明的记录如下: 据此,可推断椭圆C 1的方程为 . x 212+y 2 6 =1.

题型二 椭圆的几何性质的运用 【例2】已知F 1、F 2是椭圆的两个焦点,P 为椭圆上一点,∠F 1PF 2=60°. (1)求椭圆离心率的范围; (2)求证:△F 1PF 2的面积只与椭圆的短轴长有关. 【解析】(1)e 的取值范围是[12,1).(2)2 1 F PF S =12mn sin 60°=3 3 b 2, 【点拨】椭圆中△F 1PF 2往往称为焦点三角形,求解有关问题时,要注意正、余弦定理,面积公式的使用;求范围时,要特别注意椭圆定义(或性质)与不等式的联合使用,如|PF 1|·|PF 2|≤(|PF 1|+|PF 2|2)2 ,|PF 1|≥a -c . 【变式训练2】 已知P 是椭圆x 225+y 2 9=1上的一点,Q ,R 分别是圆(x +4)2 +y 2 =1 4 和圆 (x -4)2+y 2=1 4上的点,则|PQ |+|PR |的最小值是 .【解析】最小值 为9. 题型三 有关椭圆的综合问题 【例3】(2010全国新课标)设F 1,F 2分别是椭圆E :x 2a 2+y 2 b 2=1(a >b >0)的 左、右焦点,过F 1斜率为1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列. (1)求E 的离心率;

圆锥曲线大题(有答案)

三、解答题 1.( 2013年上海市春季高考数学试卷 (含答案))本题共有2个小题,第1小题满分 已知椭圆C 的两个焦点分别为 只(1,0)、F 2(1, 0),短轴的两个端点分别为 B (1) 若RBB2为等边三角形,求椭圆c 的方程; ujir (2) 若椭圆C 的短轴长为2 ,过点F 2的直线I 与椭圆C 相交于P 、Q 两点,且F 1P 2 2 【答案】[解](1)设椭圆C 的方程为x 2 y 2 1(a b 0). a b a 2b 2 4 2 1 根据题意知。… ,解得a 2 4, b 2 ' a 2 b 2 1 3 3 2 2 故椭圆C 的方程为X y 1. 4 1 3 3 2 ⑵ 容易求得椭圆C 的方程为X y 2 1. 2 当直线I 的斜率不存在时,其方程为x 1,不符合题意; 当直线I 的斜率存在时,设直线I 的方程为y k(x 1). 设 P(X 1,yJ ,Q(X 2, y 2),则 unr uuir uir uur 因为F 1P F 1Q ,所以F 1P FQ 0,即 4分,第2小题满分9分. B 2 uur FQ ,求直线I 的方程? y k(x 由x 2 2 — y 2 1)x 2 4k 2x 2(k 2 1) 0. x X 2 4k 2 2k 2严 2(k 2 2k 1) uir uuir (X 1 1,yJ, FQ (X 2 1小) 1) 得(2k 2 1

解得k 2 1 ,即k 7 所以,a 2. 又由已知,c 1, 所以椭圆C 的离心率e C 1 2 a V 2 2 2 X 2 由 知椭圆C 的方程为—y 1. 设点Q 的坐标为(x,y). ⑵ 当直线l 与x 轴不垂直时,设直线l 的方程为y kx 2 . 因为M,N 在直线I 上,可设点M,N 的坐标分别为(石,心 2),(x 2,kx 2 2),则 2 2 (k 1)x 1x 2 (k 2 1)(x 1 x 2) k 1 7 k 2 1 2 k 2 1 0, 故直线l 的方程为x 7y 1 0 或 x 7y 2. (2013年高考四川卷(理)) 2 已知椭圆 C : x 2 a 2 y 2 1,(a b 0)的两个焦点分别为 R( b 1,0),F 2(1,0),且椭圆 (I )求椭圆 C 的离心率; (n )设过点 A(0,2)的直线 I 与椭圆C 交于M 、N 两点,点Q 是线段MN 上的点,且 1 ,2 2 | AQ|2 | AM | 2 ,求点 Q 的轨迹方程? |AN |2 【答案】解:2a PF 1 PF 2 (1)当直线l 与x 轴垂直时,直线l 与椭圆C 交于 0,1 , 0, 1两点,此时Q 点坐标为 0,2

【2020届】高考数学圆锥曲线专题复习:圆锥曲线解答题12大题型解题套路归纳

【高考数学中最具震撼力的一个解答题!】注:【求解完第一问以后,】→WILL COME ACROSS圆锥曲线题10大题型:(1)弦长问题(2)中点问题(3)垂直问题(4)斜率问题(5)对称问题(6)向量问题(7)切线问题(8)面积问题(9)最值问题(10)焦点三角形问题。中的2-----4类;分门别类按套路求解; 1.高考最重要考:直线与椭圆,抛物线的位置关系。第一问最高频考(总与三个问题有关):(1)———————;(2)——————————;(3)—————————; 2.圆锥曲线题,直线代入圆锥曲线的“固定3步走”:---------------------------------------------------; ——————————————————————————————————————; 3.圆锥曲线题固定步骤前9步:-------------------;---------------------------------------------;————————————;—————————;——————————;—————————————————;———————————;——————————————; 4.STEP1:首先看是否属于3种特殊弦长:(1)圆的弦长问题;(2)中点弦长问题(3)焦点弦长问题;→(1)圆的弦长问题:(2法)首选方法:垂径定理+勾

股定理:图示:--------------------------------;公式为:-------------------------;其中求“点线距”的方法:———————;次选:弦长公式;→(2) 中点弦长问题:(2法)首选方法:“点差法” 椭圆:(公式一)--------------------------------;(公式二)--------------------------------;副产品:两直线永远不可能垂直!原因:___________;【两直线夹角的求法:(夹角公式)___________;】双曲线(公式一)--------------------------------;(公式二)--------------------------------;抛物线:形式一:___________;(公式一)--------------------------------;(公式二)--------------------------------;形式2:___________;(公式一)--------------------------------;(公式二)--------------------------------;附:“点差法”步骤:椭圆:“点”_______________________;___________________________;“差”__________________________________;“设而不求法”_______________________________;“斜率公式”+“中点公式”_____________________;___________;___________;→得公式:(公式一)-------------------;(公式二)---------------------;附:“点差法”步骤:抛物线;形式一___________;:“点”_______________________;_____________________;“差”_________________________;“设而不求法”___________________;“斜率公式”+“中点公式”_____________;___________;___________;→得公式:(公式一)---------------------;(公式二)--------------------;附:“点差法”步骤:

高考数学一轮复习专题突破训练圆锥曲线

圆锥曲线 一、填空题 1、(2015年江苏高考)在平面直角坐标系xoy 中,P 为双曲线221x y -=右支上的一个动点,若P 到直线10x y -+=的距离大于c 恒成立,则c 的最大值 为___ 2 __________。 2、(2013年江苏高考)双曲线19 162 2=-y x 的两条渐近线的方程为 。 3、(2013年江苏高考)在平面直角坐标系xOy 中,椭圆C 的标准方程为 )0,0(122 22>>=+b a b y a x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d ,若126d d =,则椭圆 C 的离心率为 。 4、( 南京、盐城市高三二模)在平面直角坐标系xoy 中,已知抛物线C : y x 42=的焦点为F ,定点)0, 22(A ,若射线FA 及抛物线C 相交于点M ,及抛物线C 的准线相交于点N ,则FM :MN= 5、(苏锡常镇四市 高三教学情况调研(二))已知双曲线22 221(,0) x y a b a b -=>的离心率等于2,它的焦点到渐近线的距离等于1,则该双曲线的方程为 ▲ 6、(泰州市 高三第二次模拟考试)已知双曲线22 14x y m -=的渐近线方程为 2 y x =± ,则m = ▲

7、(盐城市 高三第三次模拟考试)若抛物线28y x =的焦点F 及双曲线 22 13x y n -=的一个焦点重合,则n 的值为 ▲ 8、( 江苏南京高三9月调研)已知双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的渐近 线方程 为y =±3x ,则该双曲线的离心率为 ▲ 9、( 江苏苏州高三9月调研)已知双曲线22 15 x y m -=的右焦点及抛物线 212y x =的焦点相同,则此双曲线的渐近线方程为 ▲ 10、(南京市、盐城市 高三)若双曲线222(0)x y a a -=>的右焦点及抛物线 24y x =的焦点重合,则a = ▲ . 11、(南通市 高三)在平面直角坐标系xOy 中,以直线2y x =±为渐近线,且经过抛物 线24y x =焦点的双曲线的方程是 12、(苏州市 高三上期末)以抛物线24y x =的焦点为顶点,顶点为中心,离心率为2的双曲线标准方程为 13、(泰州市 高三上期末)双曲线12222=-b y a x 的右焦点到渐近线的距离是其 到左顶点距离的一半,则双曲线的离心率e = ▲ 14、(苏锡常镇四市2014届高三5月调研(二))在平面直角坐标系xOy 中,已知双曲线22 19x y m -=的一个焦点为(5,0),则实数 m = ▲ 15、(南京、盐城市2014届高三第二次模拟(淮安三模))在平面直角坐 标系xOy 中,双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的两条渐近线及抛物线y 2=4x Y

高考数学圆锥曲线专题复习

圆锥曲线 一、知识结构 1.方程的曲线 在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系: (1)曲线上的点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线. 点与曲线的关系若曲线C的方程是f(x,y)=0,则点P0(x0,y0)在曲线C上?f(x0,y 0)=0; 点P0(x0,y0)不在曲线C上?f(x0,y0)≠0 两条曲线的交点若曲线C1,C2的方程分别为f1(x,y)=0,f2(x,y)=0,则 f1(x0,y0)=0 点P0(x0,y0)是C1,C2的交点? f2(x0,y0) =0 方程组有n个不同的实数解,两条曲线就有n个不同的交点;方程组没有实数解,曲线就没有交点.

2.圆 圆的定义:点集:{M ||OM |=r },其中定点O 为圆心,定长r 为半径. 圆的方程: (1)标准方程 圆心在c(a,b),半径为r 的圆方程是 (x-a)2 +(y-b)2 =r 2 圆心在坐标原点,半径为r 的圆方程是 x 2 +y 2 =r 2 (2)一般方程 当D 2 +E 2 -4F >0时,一元二次方程 x 2 +y 2 +Dx+Ey+F=0 叫做圆的一般方程,圆心为(-2D ,-2 E ),半径是 2 4F -E D 22+.配方,将方程 x 2 +y 2 +Dx+Ey+F=0化为 (x+2D )2+(y+2 E )2=44 F -E D 22+ 当D 2 +E 2 -4F=0时,方程表示一个点 (-2D ,-2 E ); 当D 2 +E 2-4F <0时,方程不表示任何图形. 点与圆的位置关系 已知圆心C(a,b),半径为r,点M 的坐标为(x 0,y 0),则 |MC |<r ?点M 在圆C 内,|MC |=r ?点M 在圆C 上,|MC |>r ?点M 在圆C 内, 其中|MC |=2 02 0b)-(y a)-(x +. (3)直线和圆的位置关系 ①直线和圆有相交、相切、相离三种位置关系 直线与圆相交?有两个公共点 直线与圆相切?有一个公共点 直线与圆相离?没有公共点 ②直线和圆的位置关系的判定 (i)判别式法 (ii)利用圆心C(a,b)到直线Ax+By+C=0的距离d= 2 2 C Bb Aa B A +++与半径r 的大小关系来判 定.

高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线 1. 如图,直线l1与l2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l1 上(B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l1上的射影点是N ,且|BN|=2|DM|. 2. (Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程. (Ⅱ)过点D 且不与l1、l2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足: ○1(R);AG AD λλ=∈u u u r u u u r ○22;GE GF GH +=u u u r u u u r u u u r ○30.GH EF ?=u u u r u u u r 求点G 的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率 23=e ,已知点)3,0(P 到这个椭圆上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是, 425=x 其左、右顶点分别 是A 、B ;双曲线1 :22 222=-b y a x C 的一条渐近线方程为3x -5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P ,连结AP 交椭圆C1于点M ,连结PB 并延长交椭圆C1于点N ,若=. 求证:.0=? B A D M B N l2 l1

4. 椭圆的中心在坐标原点O,右焦点F (c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A ,B 两点.设AB 中点为M ,直线AB 与OM 的夹角为αa. (1)用半焦距c 表示椭圆的方程及tg α; (2)若2

圆锥曲线大题专题训练答案和题目

圆锥曲线大题专题训练 1.如图,曲线G 的方程为22(0)y x y =≥.以原点为圆心.以(0)t t >为半径的圆分别 与曲线G 和y 轴的正半轴相交于点A 与点B .直线AB 与x 轴相交于点C . (Ⅰ)求点A 的横坐标a 与点C 的横坐标 c 的关系式 (Ⅱ)设曲线G 上点D 的横坐标为2a +, 求证:直线CD 的斜率为定值. 1.解: (Ⅰ)由题意知,(A a . 因为OA t =,所以2 2 2a a t +=.由于0t > 由点(0)(0)B t C c ,,,的坐标知,直线BC 的方程为 1c t +=. 又因点A 在直线BC 上,故有 1a c +=,将(1)代入上式,得1a c =, 解得2c a =+ (Ⅱ)因为(2D a +,所以直线CD 的斜率为 1CD k = ===-. 所以直线CD 的斜率为定值. 2.设F 是抛物线2 :4G x y =的焦点. (I )过点(04)P -,作抛物线G 的切线,求切线方程; (II )设A B ,为抛物线G 上异于原点的两点,且满足0FA FB =u u u r u u u r g ,延长AF ,BF 分别交抛物线G 于点C D ,,求 四边形ABCD 面积的最小值. 2.解:(I )设切点2 004x Q x ?? ???,.由2x y '=,知抛物线在Q 点处的切线斜率为02x ,故所求切线方程为 2000()42x x y x x -=-. 即2 04 24x x y x =-. 因为点(0)P -4,在切线上. 所以2 044 x -=-,2 016x =,04x =±.所求切线方程为24y x =±-. (II )设11()A x y ,,22()C x y ,. 由题意知,直线AC 的斜率k 存在,由对称性,不妨设0k >.

(完整版)高考圆锥曲线经典真题

高考圆锥曲线经典真题 知识整合: 直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法,要求考生分析问题和解决问题的能力、计算能力较高,起到了拉开考生“档次”,有利于选拔的功能. 1.(江西卷15)过抛物线22(0)x py p =>的焦点F 作倾角为30o 的直线,与抛物线 分别交于A 、B 两点(A 在y 轴左侧),则 AF FB = .1 3 2 (2008年安徽卷)若过点A(4,0)的直线l 与曲线 22 (2)1x y -+=有公共点,则直线l 的斜率的取值范围为 ( ) A. [3,3] B. (3,3) C. 33[33- D. 33 (,33- 3(2008年海南---宁夏卷)设双曲线22 1916x y -=的右顶点为A,右焦点为F,过点F 平行双曲线的一条渐近线的直线与双曲线交于点B,则三角形AFB 的面积为-___________. 热点考点探究: 考点一:直线与曲线交点问题 例1.已知双曲线C :2x2-y2=2与点P(1,2) (1)求过P(1,2)点的直线l 的斜率取值范围,使l 与C 分别有一个交点,两个交点,没有交点. 解:(1)当直线l 的斜率不存在时,l 的方程为x=1,与曲线C 有一个交点.当l

的斜率存在时,设直线l 的方程为y -2=k(x -1),代入C 的方程,并整理得 (2-k2)x2+2(k2-2k)x -k2+4k -6=0 (*) (ⅰ)当2-k2=0,即k=± 2 时,方程(*)有一个根,l 与C 有一个交点 (ⅱ)当2-k2≠0,即k ≠±2 时 Δ=[2(k2-2k)]2-4(2-k2)(-k2+4k -6)=16(3-2k) ①当Δ=0,即 3-2k=0,k=23 时,方程(*)有一个实根,l 与C 有一个交点. ②当Δ>0,即k <23 ,又 k ≠± 2 ,故当k <- 2 或-2 <k < 2 或 2<k <2 3 时,方程(*)有两不等实根,l 与C 有两个交点. ③当Δ<0,即 k >23 时,方程(*)无解,l 与C 无交点. 综上知:当k=±2,或k=23 ,或 k 不存在时,l 与C 只有一个交点; 当2<k <23 ,或-2<k <2,或k <- 2 时,l 与C 有两个交点; 当 k >23 时,l 与C 没有交点. (2)假设以Q 为中点的弦存在,设为AB ,且A(x1,y1),B(x2,y2),则2x12-y12=2,2x22-y22=2两式相减得:2(x1-x2)(x1+x2)=(y1-y2)(y1+y2) 又∵x1+x2=2,y1+y2=2 ∴2(x1-x2)=y1-y1 即kAB= 2 121x x y y --=2 但渐近线斜率为±2,结合图形知直线 AB 与C 无交点,所以假设不正确,即以 Q 为中点的弦不存在.

新课标高考《圆锥曲线》大题专题含答案

新课标高考《圆锥曲线》大题专题含答案

全国高考理科数学试题分类汇编9:圆锥曲线 一、选择题 1 .(2013年高考江西卷(理)) 过点2,0) 引直线l 与曲线2 1y x = +相交于 A,B 两点,O 为坐标原点,当?AOB 的面积取最大值时,直线 l 的斜 率 等 于 ( ) A .y E B B C CD =++3 B .3 C .3± D .32 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版)) 双曲线 2 214 x y -=的顶点到其渐近线的距离等于 ( ) A .25 B .4 5 C 25 D 453 .(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版)) 已知中心在原 点的双曲线C 的右焦点为()3,0F ,离心率等于3 2 ,在双曲线C 的方程 是 ( ) A .22 145 x -= B .22 145 x y -= C . 22 125 x y -= D . 22 125 x -=

4 .(2013年高考新课标1(理)) 已知双曲线C : 22 2 21x y a b -=(0,0a b >>)的离心率为52 ,则C 的渐近 线 方 程为 ( ) A .14y x =± B .13 y x =± C . 12 y x =± D .y x =± 5 .(2013年高考湖北卷(理)) 已知04π θ<<,则双曲线 22 122:1 cos sin x y C θθ -=与22 2222 :1sin sin tan y x C θθθ -=的 ( ) A .实轴长相等 B .虚轴长相等 C .焦 距相等 D .离心率相等 6 .(2013年高考四川卷(理)) 抛物线2 4y x =的焦点到双曲线 2 21 3 y x -=的渐近线的距 离 是 ( ) A .12 B .3 2 C .1 D 3

全国卷高考数学圆锥曲线大题集大全

全国卷高考数学圆锥曲线大题集大全 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高考二轮复习专项:圆锥曲线大题集 1. 如图,直线l 1与l 2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l 1上(B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l 1上的射影点是N ,且|BN|=2|DM|. (Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程. (Ⅱ)过点D 且不与l 1、l 2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足: (R); AG AD λλ=∈2; GE GF GH +=0.GH EF ?= 求点G 的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率 23 = e ,已知点)3,0(P 到 这个椭圆上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是 , 425=x 其左、右顶点分别 B A D M B N l 2 l 1

是A、B;双曲线 1 : 2 2 2 2 2 = - b y a x C 的一条渐近线方程为3x-5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P,连结AP交椭圆C1于点M,连结PB并延长交椭圆C1于点N,若AM=. 求证:.0 = ?AB MN 4. 椭圆的中心在坐标原点O,右焦点F(c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A,B两点.设AB中点为M,直线AB与OM的夹角为αa. (1)用半焦距c表示椭圆的方程及tanα; (2)若2

历年高考数学圆锥曲线试题汇总

高考数学试题分类详解——圆锥曲线 一、选择题 1.设双曲线22 221x y a b -=(a >0,b >0)的渐近线与抛物线y=x 2 +1相切,则该双曲线的离心率等于( C ) (A (B )2 (C (D 2.已知椭圆2 2:12 x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3F A F B =,则||AF = (A). (B). 2 (D). 3 3.过双曲线22 221(0,0)x y a b a b -=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线 的交点分别为,B C .若1 2 AB BC =,则双曲线的离心率是 ( ) A B C D 4.已知椭圆22 221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x ⊥轴, 直 线AB 交y 轴于点P .若2AP PB =,则椭圆的离心率是( ) A B .2 C .13 D .12 5.点P 在直线:1l y x =-上,若存在过P 的直线交抛物线2 y x =于,A B 两点,且 |||PA AB =,则称点P 为“ 点”,那么下列结论中正确的是 ( ) A .直线l 上的所有点都是“点” B .直线l 上仅有有限个点是“点” C .直线l 上的所有点都不是“ 点” D .直线l 上有无穷多个点(点不是所有的点)是“ 点” 6.设双曲线12222=-b y a x 的一条渐近线与抛物线y=x 2 +1 只有一个公共点,则双曲线的离心率为 ( ). A. 4 5 B. 5 C. 25 D.5 7.设斜率为2的直线l 过抛物线2 (0)y ax a =≠的焦点F,且和y 轴交于点A,若△OAF(O 为坐标原点)

圆锥曲线历年高考题附答案解析

数学圆锥曲线测试高考题 一、选择题: 1. (2006全国II )已知双曲线x 2a 2-y 2 b 2 =1的一条渐近线方程为y =43x ,则双曲线的离心率为( ) (A )53 (B )43 (C )54 (D )32 2. (2006全国II )已知△ABC 的顶点B 、C 在椭圆 x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( ) (A )2 3 (B )6 (C )4 3 (D )12 3.(2006全国卷I )抛物线2y x =-上的点到直线4380x y +-=距离的最小值是( ) A .43 B .75 C .85 D .3 4.(2006高考卷)已知双曲线2239x y -=,则双曲线右支上的点P 到右焦点的距离与点P 到右准线的距离之比等于( ) B. C. 2 D. 4 5.(2006卷)方程22520x x -+=的两个根可分别作为( ) A.一椭圆和一双曲线的离心率 B.两抛物线的离心率 C.一椭圆和一抛物线的离心率 D.两椭圆的离心率 6.(2006卷)曲线221(6)106x y m m m +=<--与曲线22 1(59)59x y m m m +=<<--的( ) (A)焦距相等 (B) 离心率相等 (C)焦点相同 (D)准线相同 7.(2006高考卷)若抛物线2 2y px =的焦点与椭圆22 162x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .4 8.(2006卷)直线2y k =与曲线2222 918k x y k x += (,)k R ∈≠且k 0的公共点的个数为( ) (A)1 (B)2 (C)3 (D)4 二、填空题: 9. (2006全国卷I )双曲线221mx y +=的虚轴长是实轴长的2倍,则m = 。 10. (2006卷)已知在平面直角坐标系xOy 中的一个椭圆,它的中心在原点,左焦点为(F ,右顶点为(2,0)D ,设

高中数学圆锥曲线专题-理科

圆锥曲线专题 【考纲要求】 一、直线 1.掌握直线的点方向式方程、点法向式方程、点斜式方程,认识坐标法在建立形与数的关 系中的作用; 2.会求直线的一般式方程,理解方程中字母系数表示斜率和截距的几何意义:懂得一元二 次方程的图像是直线; 3.会用直线方程判定两条直线间的平行或垂直关系(方向向量、法向量); 4.会求两条相交直线的交点坐标和夹角,掌握点到直线的距离公式。 二、圆锥曲线 1.理解曲线的方程与方程的曲线的意义,并能由此利用代数方法判定点是否在曲线上,以 及求曲线交点; 2.掌握圆、椭圆、双曲线、抛物线的定义,并理解上述曲线在直角坐标系中的标准方程的 推导过程; 3.理解椭圆、双曲线、抛物线的有关概念及简单的几何特性,掌握求这些曲线方程的基本 方法,并能根据曲线方程的关系解决简单的直线与上述曲线有两个交点情况下的有关问题; 4.能利用直线和圆、圆和圆的位置关系的几何判定,确定它们之间的位置关系,并能利用 解析法解决相应的几何问题。 【知识导图】【精解名题】 一、弦长问题 例1 如图,已知椭圆 2 21 2 x y +=及点B(0, -2),过点B引椭圆的割线(与椭圆相交的直线)BD与椭圆交于C、D两点 (1)确定直线BD斜率的取值范围 (2)若割线BD过椭圆的左焦点 12 ,F F是椭圆的右焦点,求 2 CDF ?的面积 y x B C D F1F2 O

二、轨迹问题 例2 如图,已知平行四边形ABCO ,O 是坐标原点,点A 在线段MN 上移动,x=4,y=t (33)t -≤≤上移动,点C 在双曲线 22 1169 x y -=上移动,求点B 的轨迹方程 三、对称问题 例3 已知直线l :22 2,: 1169 x y y kx C =++=,问椭圆上是否存在相异两点A 、B ,关于直线l 对称,请说明理由 四、最值问题 例4 已知抛物线2 :2()C x y m =--,点A 、B 及P(2, 4)均在抛物线上,且直线PA 与PB 的倾斜角互补 (1)求证:直线AB 的斜率为定值 (2)当直线AB 在y 轴上的截距为正值时,求ABP ?面积的最大值 五、参数的取值范围 例5 已知(,0),(1,),a x b y → → == ()a → +⊥()a → - (1)求点P (x, y )的轨迹C 的方程 (2)直线:(0,0)l y kx m k m =+≠≠与曲线C 交于A 、B 两点,且在以点D (0,-1)为圆 心的同一圆上,求m 的取值范围 六、探索性问题 例6 设x, y ∈R ,,i j →→ 为直角坐标平面内x, y 轴正方向上的单位向量,若向量 (2)a x i y j → →→=++,且(2)b x i y j →→→=+-且8a b →→ += (1)求点M (x, y )的轨迹方程 (2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB → → → =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程;若不存在,请说明理由

全国卷高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线大题集 1. 如图,直线11与12是同一平面两条互相垂直的直线, 交点是A ,点B 、D 在直线11上(B 、 D 位于点A 右侧),且|AB|=4 , |AD|=1 , M 是该平面上的一个动点, M 在l i 上的射影点 是 N ,且 |BN|=2|DM|. (I )建立适当的坐标系,求动点 M 的轨迹C 的方程. (II )过点D 且不与11、12垂直的直线1交(I )中的轨迹C 于E 、F 两点;另外平面上的点 G 、 求点G 的横坐标的取值围. M ___ B ___________________ A D N B 11 、3 e 2. 设椭圆的中心是坐标原点,焦点在 x 轴上,离心率 2,已知 点P(0,3) 到这个椭圆 上的点的最远距离是 4,求这个椭圆的方程. H 满足: AD( R); G E G F 2G H ; G H E F 0. 12

2 2 C x y 1( b 0) 3. 已知椭圆/ b2的一条准线方程是25 , 4其左、右顶点分别

(I) 求椭圆C i的方程及双曲线C2的离心率; (H)在第一象限取双曲线C2上一点P,连结AP交椭圆C i于点M,连结PB并延长交椭 圆C i于点N,若AM MP.求证:MN ?AB 0. 4. 椭圆的中心在坐标原点O,右焦点F (c,0)到相应准线的距离为1,倾斜角为45。的直线交 椭圆于A, B两点.设AB中点为M,直线AB与OM的夹角为 a. (1) 用半焦距c表示椭圆的方程及tan ; (2) 若2b>0)的离心率 3 ,过点A (0, -b)和B (a, 0)的直线 ,3 与原点的距离为 2 (1)求椭圆的方程 (2)已知定点E (-1, 0),若直线y= kx + 2 (k乒0与椭圆交于C D两点问:是否存在k的值,使以CD 为直径的圆过E点?请说明理由 2 2 C x y 是A、B;双曲线, a2b2 1 的一条渐近线方程为3x- 5y=0. 2 x 2 5.已知椭圆a

(完整word版)2018年高考圆锥曲线大题

2018年高考圆锥曲线大题 一.解答题(共13小题) 1.已知斜率为k的直线l与椭圆C:+=1交于A,B两点,线段AB的中点为M(1,m)(m>0).(1)证明:k<﹣; (2)设F为C的右焦点,P为C上一点,且++=.证明:||,||,||成等差数列,并求该数列的公差. 2.已知斜率为k的直线l与椭圆C:+=1交于A,B两点,线段AB的中点为M(1,m)(m>0).(1)证明:k<﹣; (2)设F为C的右焦点,P为C上一点,且++=,证明:2||=||+||.

3.双曲线﹣=1,F1、F2为其左右焦点,C是以F2为圆心且过原点的圆. (1)求C的轨迹方程; (2)动点P在C上运动,M满足=2,求M的轨迹方程. 4.设椭圆C:+y2=1的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0).(1)当l与x轴垂直时,求直线AM的方程; (2)设O为坐标原点,证明:∠OMA=∠OMB.

5.已知椭圆M:+=1(a>b>0)的离心率为,焦距为2.斜率为k的直线l与椭圆M有 两个不同的交点A,B. (Ⅰ)求椭圆M的方程; (Ⅱ)若k=1,求|AB|的最大值; (Ⅲ)设P(﹣2,0),直线PA与椭圆M的另一个交点为C,直线PB与椭圆M的另一个交点为D.若C,D和点Q(﹣,)共线,求k. 6.设常数t>2.在平面直角坐标系xOy中,已知点F(2,0),直线l:x=t,曲线Γ:y2=8x(0≤x≤t,y≥0).l与x轴交于点A、与Γ交于点B.P、Q分别是曲线Γ与线段AB上的动点. (1)用t表示点B到点F的距离; (2)设t=3,|FQ|=2,线段OQ的中点在直线FP上,求△AQP的面积; (3)设t=8,是否存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上?若存在,求点P的坐标;若不存在,说明理由.

圆锥曲线综合试题(全部大题目)含答案

1. 平面上一点向二次曲线作切线得两切点,连结两切点的线段我们称切点弦.设过抛物线 22x py =外一点00(,)P x y 的任一直线与抛物线的两个交点为C 、D ,与抛物线切点弦AB 的交点为Q 。 (1)求证:抛物线切点弦的方程为00()x x p y y =+; (2)求证:112|||| PC PD PQ +=. 2. 已知定点F (1,0),动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且.||||,0PN PM PF PM ==? (1)动点N 的轨迹方程; (2)线l 与动点N 的轨迹交于A ,B 两点,若304||64,4≤≤-=?AB OB OA 且,求直线l 的斜率k 的取值范围. 3. 如图,椭圆13 4: 2 21=+y x C 的左右顶点分别为A 、B ,P 为双曲线134:222=-y x C 右支上(x 轴上方)一点,连AP 交C 1于C ,连PB 并延长交C 1于D ,且△ACD 与△PCD 的面积 相等,求直线PD 的斜率及直线CD 的倾斜角. 4. 已知点(2,0),(2,0)M N -,动点P 满足条件||||PM PN -=记动点P 的轨迹为W . (Ⅰ)求W 的方程;

(Ⅱ)若,A B 是W 上的不同两点,O 是坐标原点,求OA OB ?的最小值. 5. 已知曲线C 的方程为:kx 2+(4-k )y 2=k +1,(k ∈R) (Ⅰ)若曲线C 是椭圆,求k 的取值范围; (Ⅱ)若曲线C 是双曲线,且有一条渐近线的倾斜角是60°,求此双曲线的方程; (Ⅲ)满足(Ⅱ)的双曲线上是否存在两点P ,Q 关于直线l :y=x -1对称,若存在,求出过P ,Q 的直线方程;若不存在,说明理由。 6. 如图(21)图,M (-2,0)和N (2,0)是平面上的两点,动点P 满足: 6.PM PN += (1)求点P 的轨迹方程; (2)若2 ·1cos PM PN MPN -∠=,求点P 的坐标. 7. 已知F 为椭圆22221x y a b +=(0)a b >>的右焦点,直线l 过点F 且与双曲线 12 2 2=-b y a x 的两条渐进线12,l l 分别交于点,M N ,与椭圆交于点,A B . (I )若3 MON π∠= ,双曲线的焦距为4。求椭圆方程。 (II )若0OM MN ?=(O 为坐标原点),1 3 FA AN =,求椭圆的离心率e 。

全国卷高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线大题集 1. 如图,直线l 1与l 2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l 1上 (B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l 1上的射影点是N ,且|BN|=2|DM|. (Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程. (Ⅱ)过点D 且不与l 1、l 2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足: ①(R);AG AD λλ=∈②2;GE GF GH +=③0.GH EF ?= 求点G 的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率23 = e ,已知点)3,0(P 到这个椭圆 上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是 , 425=x 其左、右顶点分别 B A D M B N l 2 l 1

是A、B;双曲线 1 : 2 2 2 2 2 = - b y a x C 的一条渐近线方程为3x-5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P,连结AP交椭圆C1于点M,连结PB并延长交椭圆C1于点N,若MP AM=. 求证:.0 = ?AB MN 4. 椭圆的中心在坐标原点O,右焦点F(c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A,B两点.设AB中点为M,直线AB与OM的夹角为αa. (1)用半焦距c表示椭圆的方程及tanα; (2)若2

相关文档
最新文档