天线测量实用手册(第2版)

最新《微波技术与天线》傅文斌-习题答案-第2章

第2章 微波传输线 2.1什么是长线?如何区分长线和短线?举例说明。 答 长线是指几何长度大于或接近于相波长的传输线。工程上常将1.0>l 的传输线视为长线,将 1.0

卫星天线安装图解

卫星天线安装图解 天线的安装: 安装前的准备: 1.按说明书的地基施工图做好天线地基。 2.安装工具。包括:活动扳手(大18寸*2、小4寸*2或钳子)、专用改锥、剪子、水平仪、防水胶布等。 3.按照说明书清点卫星天线的另件数是否正确。 4.请准备12寸--14寸带AV输入的彩色或黑白电视机一台,视音频线(AV线)一套,一根3米左右的和一根30米左右的同轴电缆,一条临时的220V电源及插座。 安装步骤: 第一步:注意安装的基座立柱必须保证水平和垂直,可使用水平尺等进行调整。 第二步:安装天线的锅体四脚支撑。注意螺杆、螺母的正反方向。不要旋紧螺丝。 第三步:安装天线的方向轴。方向轴与天线的四脚支撑进行连接。注意方向轴的方向,使天线高频头支撑杆,中间的那只,保持在锅体下方即可。旋紧与之连接的固定螺丝。 第四步:把天线抬起,安装到天线基座的立柱上。 第五步:安装高频头支撑杆。不要把螺丝拧死。 第六步:把高频头置于高频头固定盘上。(可能需要专用螺丝刀,拆开高频头的保护罩) 第七步:使用馈线(同轴电缆)连接高频头的高频输出端至接收机的高频输入端。 第八步:上好其他部分的固定螺丝。注意都不要拧死。 第九步:使用AV线(视音频线)连接卫星接收机的视频输出到电视机的视频输入。 至此,天线的安装已经完成。 寻星指南: 调试前准备:1.安装工具。2.调试器材。3.连接线材。4.寻星参数。 寻星时间:根据你所在的地点和接收卫星的位置计算出当地的寻星时间。这对于卫星覆盖边缘地区、小天线尤为重要。 天线方向的调试:粗调:根据事先算出的仰角和方位角,将天线的这两个角度分别调到这两个数值上,使之对准所要接收的卫星,直至接收到电视信号。细调:使所收的信号最佳。根据现场的条件,可以有多种简易而有效的调整方法。 第一步:检查连接好的线路。 第二步:用量角器调整好天线仰角。 仰角直接用量角器就可以量 先将直尺最低端固定在天线最低端边沿上,另一端固定在天线最高端边沿上,注意直尺一定要通过天线中心,找准直径,不能倾斜,这是关键。直尺顶端留出20㎝以供固定量角器。在量角器中心钻一小孔,用小钉将带有重锤的线穿过量角器中心孔,将量角器一同

实验六天线的方向性与驻波比测量

实验六天线的方向性与驻波比测量 一、实验目的 1.了解八木天线的阻抗特性,知道八木天线驻波比的测量方法。 2.加深对方向图的理解,了解方向图的测试方法。 3.了解两天线法测增益的原理,知道测试方法。 二、实验器材 1、PNA3621及其成套附件 2、偶极子天线两根 3、待测八木天线一个 4、短路器一只 5、半波振子和全波振子各一个。 三、实验步骤 1、仪器进行校准。 2、插损和增益测量。 3、接上待测八木天线,按【菜单】键将光标移到【驻波】处,再按【执行】键,用驻波测量,打出测试曲线。 4、设置参考方位,控制器置手动(MAN),接通电源;按控制器右转(或左)按键,将天线转到底使其限位停下;左右微动使得转台停在指示灯亮的方位上,以

这点为参考方位。此点习惯上为-90°(或270°);将待测天线的-90°(或270°,即天线讯号的最小值处)方向,对准发射天线并固定之。 5、校最大值,控制器置手动(MAN),左右转动以便找到最大值。找到最大值后,按下仪器执行键。即完成了校最大值步骤,此时屏幕右下角显示测试频率值。 6、测试,按控制器右转(或左)键将天线转到底使其限位停下,然后再按一次仪器执行键,仪器进入测试状态,画面转为直角坐标;再按入控制器自动(AUTO)键使天线按270°→ 0°→90°→180°方向旋转;过270°后仪器即进入记录状态,这样记的目的是为了得到完整的主瓣与尾瓣。 四、实验记录 1、偶极子天线的插损及增益: 2、全波振子方向图:

3、半波振子方向图: 4、八木天线方向图:

5、八木天线驻波比图: 五、实验分析 对于天线增益:天线增益是指:在输入功率相等的条件下,实际天线与理想

天线等效接收增益测试系统

1.1.1.1天线等效接收增益测试系统 (1)用途 用于满足各型有源相控阵雷达天线接收状态天线等效接收增益自动测试与记录。 (2)必要性 第四代防空反导探测制导系统采用固态有源相控阵体制,天线与传统雷达天线的一个显著不同就是引入了有源T/R组件,在接收状态测试时天线系统中包含了R组件的参数。所以进行天线增益测试时,按原来无源天线增益的测试方法得到的结果就是不正确的,必须增加天线等效接收增益测试系统。 (3)工艺对系统的主要性能指标要求 系统主要指标如下所示: 信噪比测试系统可以同时满足4个波段的有源相控阵雷达天线接收增益测试需求; 能完成4个波段雷达发射信号的下变频功能; 能实现通道增益的自动控制,能设置合适通道信噪比; 能通过远程通讯控制设备控制标准信号源输出信号的频率,实现信号源的开关; 能实现阵面天线及标准天线的内部噪声的自动测试,完成通道信噪比测试与记录; 自动测试控制系统根据中频通道采样处理系统采样和处理的数据计算出天线阵面正面等效接收增益;

人机交互界面则可以对测试系统需要的参数进行设置并显示实时的天线增益测量值。 (4)系统组成及工作原理 天线等效接收增益测试系统主要包括雷达发射信号下变频组件、通用中频信号调理组件、中频通道信号采样处理系统、支持无线通讯控制的自动控制测试系统及标准信号源系统。其原理组成框图如下图所示: 图错误!文档中没有指定样式的文字。-1 天线等效接收增益测试系统原 理及组成框图 天线等效接收增益测试系统主要构成如下:

本振信号源; 无线通讯设备; 各波段一体化雷达信号下变频组件; 中频信号调理组件; 中频通道信号采样处理系统; 自动测试控制系统(含软件); 人机交互系统。 理想情况下,被测天线被与其极化匹配的平面波所照射,并在匹配负载上测量接收功率。在其它条件相同的情况下,用增益标准天线替换被测天线,并再次测量进入其匹配负载的接收功率。雷达天线比较增益测量工作原理如下图所示。 T P S P 表 错误!文档中没有指定样式的文字。-1 雷达天线比较增益测量工作原 理 有弗里斯传输公式可得出分贝表示的被测天线的功率增益 ()T dB G :

卫星天线的调试策略和技巧

卫星天线的调试策略和 技巧 标准化管理部编码-[99968T-6889628-J68568-1689N]

浅谈地面卫星天线的调试方法和技巧 ——普陀区广电台张皓摘要:本文阐述了调试地面卫星天线中需要注意的各种要素、原则、方法和以及调试过程中的注意事项。 关键词:卫星天线搜星要素调整方法注意事项 随着卫星转发的广播电视节目和数据不断增多,各电视台下行接收设施也越来越多,而且由于各种原因导致传输原节目的卫星轨道经常变化,因此地面卫星接收站也需要不断调整天线方向来对准卫星,以保证正常收视。 一、地面站搜星要素 搜索卫星一般要注意四个要素:仰角、方位角、极化和焦距。 仰角:指卫星地面站的天线主瓣波束轴线对准卫星的连线与其在地平面的投影夹角,常用EL表示。 方位角:指当以地理正北为零度,按顺时针方向参考时,天线波束主瓣轴瞄准卫星的连线的投影线与正北方向线的夹角,常用AZ来表示。 极化:指电磁波在传播过程中的电场矢量方向和幅度随时间变化的特性,一般包括左旋、右旋圆极化及水平、垂直线极化四种极化方式,我国卫星接收信号通常采用水平、垂直线极化波。地卫站天线的极化方式一定要与所接收的卫星下行信号的极化方式一致即极化匹配,才能保证接收质量达到规定的标准,否则将影响信号的正常接收及质量。 焦距是指卫星接收天线对接收信号反射后信号汇聚最强的位置点。 二、常用计算公式与调星原则 地面站方位角、仰角是卫星接收天线指向的两个重要数据,馈源极化角ρ、焦距f是卫星接收天线调整中另外两个不容忽视的参数。四个参数可由以下卫星天线定位经验计算公式获得,实际应用中我们一般以Az的大小与正负来确定方位角。

哈工大天线实验报告

Harbin Institute of Technology 天线原理实验报告 课程名称:天线原理 班级: 姓名: 学号: 同组人: 指导教师: 实验时间: 实验成绩: 注:本报告仅供参考 哈尔滨工业大学

一、实验目的 1. 掌握喇叭天线的原理。 2. 掌握天线方向图等电参数的意义。 3. 掌握天线测试方法。 二、实验原理 1. 天线电参数 (1).发射天线电参数 a.方向图:天线的辐射电磁场在固定距离上随空间角坐标分布的图形。 b.方向性系数:在相同辐射功率,相同距离情况下,天线在该方向上的辐射功率密度Smax与无方向性天线在该方向上的辐射功率密度S0之比值。 c.有效长度:在保持该天线最大辐射场强不变的条件下,假设天线上的电流均匀分布时的等效长度。 d.天线效率:表征天线将高频电流或导波能量转换为无线电波能量的有效程度。 e.天线增益:在相同输入功率、相同距离条件下,天线在最大辐射方向上的功率密度Smax与无方向性天线在该方向上的功率密度S0之比值。 f.输入阻抗:天线输入端呈现的阻抗值。 g.极化:天线的极化是指该天线在给定空间方向上远区无线电波的极化。 h.频带宽度:天线电参数保持在规定的技术要求范围内的工作频率范围。 (2).接收天线电参数:除了上述参数以外,接收天线还有一些特有的电参数:等效面积和等效噪声温度。 a.等效面积:天线的极化与来波极化匹配,且负载与天线阻抗共轭匹配的最佳状态下,天线在该方向上所接收的功率与入射电波功率密度之比。 b.等效噪声温度:描述天线向接收机输送噪声功率的参数。 2. 喇叭天线 由逐渐张开的波导构成,是一种应用广泛的微波天线。按口径形状可分为矩形喇叭天线与圆形喇叭天线等。波导终端开口原则上可构成波导辐射器,由于口径尺寸小,产生的波束过宽;另外,波导终端尺寸的突变除产生高次模外,反射较大,与波导匹配不良。为改善这种情况,可使波导尺寸加大,以便减少反射,又可在较大口径上使波束变窄。 (1).H面扇形喇叭:若保持矩形波导窄边尺寸不变,逐渐张开宽边可得H面扇

如何调试卫星天线角度介绍

如何调试卫星天线角度介绍 1、卫星转发器 卫星转发器,是这样的设备,接收地面发射站发来的14GHz或6GHz的微弱的上行电视信号,经频率变换(一次变频、二次变频)为不同的下行频率12GHz或4GHz,再由技术处理放大到一定功率向地球发射,有卫星电视接收设备接收。每一路音视频和数据通道都是由一个卫星转发器进行接收处理然后再传输,每一个转发器所处理的信号都有一个中心频率及一个特定的带宽,目前卫星转发器主要使用L、S、C、Ku和Ka频段。 2、水平极化、垂直极化 极化通常是指与电波传播方向垂直的平面内,瞬时电场矢量的方向。在极化波中,以地平线为准,当极化方向与地面平行时,称为水平极化。当极化方向与地面垂直时,称为垂直极化。 3、卫星天线 卫星天线的作用是收集由卫星传来的微弱信号,并尽可能去除杂讯。大多数天线通常是抛物面状的,也有一些多焦点天线是由球面和抛物面组合而成。卫星信号通过抛物面天线的反射后集中到它的焦点处。 4、馈源 馈源的主要功能是将天线收集的信号聚集送给高频头(LNB),馈源在

接收系统中的作用是非常重要的。 馈源的种类 锥形馈源 环形馈源 圆锥馈源 梯状馈源 6、LNB高频头 高频头(Low Noise Block)即下行解频器,其功能是将由馈源传送的卫星经过放大和下变频,把Ku或C波段信号变成L波段,经同轴电缆传送给卫星接收机。 调试过程 由于一般用户都没有场强仪等专用设备,因此本文将介绍的是如何使用指南针、量角器等常用设备寻星。 器材准备:卫星天线、高频头(馈源一体化)、卫星接收机、电视机、指南针、量角器以及连接线若干。 计算寻星所需参数 对于固定式天线系统,需要根据天线所在地的经纬度及所要接收卫星的经度计算出天线的方位角和仰角,并以此角度调整天线使其对准相应的卫星。

天线测试方法介绍

天线测试方法介绍 对天线与某个应用进行匹配需要进行精确的天线测量。天线工程师需要判断天线将如何工作,以便确定天线是否适合特定的应用。这意味着要采用天线方向图测量(APM)和硬件环内仿真(HiL)测量技术,在过去5年中,国防部门对这些技术的兴趣已经越来越浓厚。虽然有许多不同的方法来开展这些测量,但没有一种能适应各种场合的理想方法。例如,500MHz以下的低频天线通常是使用锥形微波暗室(anechoic chamber),这是20世纪60年代就出现的技术。遗憾的是,大多数现代天线测试工程师不熟悉这种非常经济的技术,也不完全理解该技术的局限性(特别是在高于1GHz的时候)。因此,他们无法发挥这种技术的最大效用。 随着对频率低至100MHz的天线测量的兴趣与日俱增,天线测试工程师理解各种天线测试方法(如锥形微波暗室)的优势和局限的重要性就愈加突出。在测试天线时,天线测试工程师通常需测量许多参数,如辐射方向图、增益、阻抗或极化特性。用于测试天线方向图的技术之一是远场测试,使用这种技术时待测天线(AUT)安装在发射天线的远场范围内。其它技术包括近场和反射面测试。选用哪种天线测试场取决于待测的天线。 为更好地理解选择过程,可以考虑这种情况:典型的天线测量系统可以被分成两个独立的部分,即发射站和接收站。发射站由微波发射源、可选放大器、发射天线和连接接收站的通信链路组成。接收站由AUT、参考天线、接收机、本振(LO)信号源、射频下变频器、定位器、系统软件和计算机组成。 在传统的远场天线测试场中,发射和接收天线分别位于对方的远场处,两者通常隔得足够远以模拟想要的工作环境。AUT被距离足够远的源天线所照射,以便在AUT的电气孔径上产生接近平面的波阵面。远场测量可以在室内或室外测试场进行。室内测量通常是在微波暗室中进行。这种暗室有矩形的,也有锥形的,专门设计用来减少来自墙体、地板和天花板的反射(图1)。在矩形微波暗室中,采用一种墙面吸波材料来减少反射。在锥形微波暗室中,锥体形状被用来产生照射。 图1:这些是典型的室内直射式测量系统,图中分别为锥形(左)和矩形(右)测试场。

RFID天线调试总结

RFID 天线调试总结 一. R FID 天线工作原理 RFID 天线不是传统意义上的天线,传统天线是通过向空中辐射电磁波来传输电磁信号,天线工作于远场区,为了能把电磁信号辐射到空中,天线的长度需和工作的波长相比拟。RFID 天线的工作距离远小于传统天线,传统天线的工作距离远大于波长,例如手机天线需要接收来自几百米甚至几十公里以外的基站信号,收音机天线需要接收来自几十甚至几百公里以外的发射塔的信号。RFID 天线工作距离远小于工作波长,工作于近场耦合区。例如ISO14443-A/B 的工作距离只有几个厘米,远小于22.12m 的工作波长,通过电磁耦合进行电磁能量的传输,RFID 天线可以看作是一个耦合线圈。RFID 天线是利用安培定律:电流流经线圈,在线圈周围产生磁场,再利用电磁感应定律:时变磁场穿过闭合空间产生感应电压,让标签得电开始工作。标签和读卡器也通过该电磁场来进行信息交换。 二. R FID 天线等效电路 RFID 天线可以用如图1所示的等效电路表示。线圈电感为Lant ,Rs_ant 为线圈的损耗电阻,Cant 为线圈之间和连接器之间的寄生电容。 图1 天线等效电路 要使得天线工作于13.56MHz ,那么可以在天线外部并联或串联一个电容,将电容和天线线圈组成一个LC 谐振电路,调整该并联或串联的电容大小,使得谐振频率为13.56MHz 。那么此时,读写器可通过此谐振电路将能量传输至射频卡。由汤姆逊公式: (1 2f π= 可知,天线的工作频率(谐振频率)和Lant 、C 有关。 三. 天线调试 读写卡模块天线原始匹配电路如图2所示。

图2 天线匹配电路 该天线匹配电路采用串联匹配的形式,由于读卡芯片支持双天线,且为了增强抗干扰能力,匹配电路采用此平衡电路。电容C1~C6是匹配电路用于调整输入阻抗和工作频率的,电阻R1,R2是调整天线Q值的,在此,天线Q值确定,所以不用调整该电阻值。 读写卡模块样机制作出来未调节天线匹配电路时,用公司门禁卡(S50卡,后面测试均使用该卡测试)测试读卡距离仅为3.6cm左右,远远达不到要求。通过用网络分析仪测量天线,Smith圆图如图3所示: 图3 未调电容前的天线Smith图 由图可知,此时的谐振点偏低,那么需要将谐振点调高,即需要将电容调小。对应图2中,需要将C2,C3并联后的值,以及C4,C5并联后的值调小,调试过程中,发现将C3,C5的值调为36pF时,用公司门禁卡(S50卡)测试读卡距离,发现有5cm左右,用网络分析仪测量天线,Smith圆图如图4所示:

实验五天线的输入阻抗与驻波比测量

实验五天线的输入阻抗与驻波比测量 一、实验目的 1.了解单极子的阻抗特性,知道单极子阻抗的测量方法。 2.了解半波振子的阻抗特性,知道半波振子阻抗与驻波比的测量方法。 3.了解全波振子的阻抗特性,知道全波振子阻抗与驻波比的测量方法。 4.了解偶极子的阻抗特性,知道偶极子阻抗与驻波比的测量方法。 二、实验器材 PNA3621及其全套附件,作地用的铝板一块,待测单极子3个,分别为Φ1,Φ3,Φ9,长度相同。短路器一只,待测半波振子天线一个,待测全波振子天线一个,待测偶极子天线一个。 三、实验步骤 1.仪器按测回损连接,按【执行】键校开路; 2.接上短路器,按【执行】键校短路; 3.拔下短路器,插上待测振子即可测出输入阻抗轨迹。 4.拔下短路器,接上待测半波振子天线,按菜单键将光标移到【移+0.000m】处,设置移参数据约0.184m,再将光标上移到【矢量】处,按【执行】键。 5.拔下短路器,接上待测全波振子天线,按菜单键将光标移到【移+0.000m】处,设置移参数据约0.133m,再将光标上移到【矢量】处,按【执行】键。 6.拔下短路器,接上待测偶极子天线,按菜单键将光标移到【移+0.000m】处,设置移参数据约0.074m,再将光标上移到【矢量】处,按【执行】键。 四、实验记录

单极子?3: 单极子?2: 单极子?1: 偶极子: 半波振子: 全波振子: 五、实验仿真 以下为实验仿真及其结果: 六、实验扩展分析 单极子天线是在偶极子天线的基础上发展而来的。最初偶极子天线有两个臂,每个臂长四分之一波长,方向图类似面包圈;研究人员利用镜像原理,在单臂下面加一块金属板,变得到了单极子天线。单极子天线很容易做成超宽带。至于其他方面的电性能,基本与偶极子天线相似。 上图左边为单极子,右边为偶极子。虚线根据地面作为等势面镜像而来,单极子是从中心馈电点处切去一半并相对于地面馈电的偶极子。单极子是从中心馈电点处切去一半并相对于地面馈电的偶极子。因此可以理解为:上半个偶极子+对称面作为接地=单极子。由于单极子接地面就是偶极子的对称面,因此单极子馈电部分输入端的缝隙宽度只有偶极子的一半,根据电压等于电场的线积分,这导致输入电压只有偶极子的一半。又因为对称性,单极子和偶极子的电流大小相同,因此单极子的输入阻抗是偶极子的一半。同理,辐射电阻或辐射功率也是偶极子的一半。 由于单极子只辐射上半空间,而偶极子辐射整个空间,因此单极子的方向性是偶极子的

天线测试平台搭建方法介绍

NSAT-5000微波天线自动测试系统介绍 一、研发背景 天线测试一般有两方面的特性:电路特性(输入阻抗,效率等)和辐射特性(方向图,增益,极化,相位等)。天线测试系统的任务就是用实验的方法检定和检验天线的这些参数特性。 NSAT-5000微波天线自动测试系统突破单一测试的局限性,提供专业的测试步骤,实现天线电路特性和辐射特性测试,帮助用户大幅度的提高测试效率。借助系统软件可对系统内各个设备进行同步远程控制。 本测试系统由工业电脑、矢量网络分析仪、频谱分析仪、远程数据通信装置、合成信号源等设备搭配专业的天线测试系统软件所组成。能够实现对天线各端口进行自动化测试,用户只要录入被测天线的批次号、产品型号以及产品编号,便可对天线进行自动测试,保存测试数据到本地电脑。用户可根据需要查询测试数据并生成报表。 二、软件特点 ●兼容中电41所(思仪)、是德科技(Keysight)、安捷伦(Aglient)、 日本安立(Anritsu)、罗德与施瓦茨(R&S)、韩国兴仓(Protek)、 HP等主流仪器型号。 ●自动对系统内各个设备进行同步远程控制并对天线的电路特性(输入 阻抗,效率等)和辐射特性(方向图,增益,极化,相位等)完成测 试。 ●自动测量天线的幅度方向图、增益、相位中心等指标。

●自动保存配置信息、测试数据保存到本地电脑,方便随时查询。 ●自动生成测试报告,用户可根据需要定制报告模板。 ●操作方便简单,提高测试效率。 三、主要测试项目 测试项目所用仪器 主瓣电平信号源,矢网 旁瓣电平(dB)信号源,矢网 增益信号源,矢网 天线效率信号源,矢网水平面半功率波束宽度(°)信号源,矢网 垂直面半功率波束宽度(°)信号源,矢网 隔离度(dB)信号源,矢网 交叉极化比(dB)信号源,矢网 前后比(dB)信号源,矢网 电压驻波比信号源,矢网 输入阻抗信号源,矢网 主方向倾斜度信号源,矢网 方向图一致性(dB)信号源,矢网 四、基于硬件 ●信号源 ●矢量网络分析仪 ●频谱分析仪 ●远程数据通信装置 五、系统图示 NSAT-5000天线测试系统由工业电脑、频谱分析仪、远程数据通信装置、合成信号源转台等设备搭配专业的天线测试系统软件所组成。

天线及其测量方法

现代微波与天线测量技术
第 6 讲:无源天线及其测量技术
彭宏利
博士
2008.11
微波与射频研究中心 上海交通大学-电信学院-电子工程系

第 8 节:无源天线及其测量技术
8.1. 8.2. 8.3. 8.4. 8.5. 8.6. 8.7. 能的影响 8.8. 8.9. 8.10. 8.11. 天线概述; 天线主要性能指标; Helical 外置天线; PIFA 内置天线; Monopole 内置天线; PIFA 和 Monopole 天线比较; 天线性能与环境: 其它部件对手机天线性 天线测量条件和测量参数; 天线方向图测量技术; 天线增益测量技术; 天线极化参数测量
第 1/ 39 页

8.1. 天线概述
8.1.1. 天线的定义
在无线电发射和接收系统中,用来发射或接收电磁波的元件,被称为天线。
8.1.2. 天线的作用
天线的作用是转换电磁波的型态:
? ? ? ? 发射天线将电路传输结构中的导引波转换成空间中的辐射波; 接收天线将空间中的辐射波转换成电路传输结构中的导引波; 接收和发射天线是互易的。 导引波(Guided wave) :电磁波被局限在一般电路中,沿传输线往特定的方向前进, 分析参数为电压和电流。 ? 辐射波(Radiation wave) :电磁波可以往空间任意方向传播,分析参数为电场和磁场。
8.1.3. 天线工作机理
第 2/ 39 页

导线载有交变电流时,就可以形成电磁波的辐射,辐射的能力与导线的长短和形状有关。 如果两平行导线的距离很近,则两导线所产生的感应电动势几乎可以抵消,辐射很微弱。如果 两导线张开,则由于两导线的电流方向相同,两导线所产生的感应电动势方向相同,因而辐射 较强。 当导线的长度l远小于波长时,导线的电流很小,辐射很微弱。当导线的长度可与波长相 比拟时,导线上的电流就大大增加,能形成较强的辐射。通常将能产生显著辐射的直导线称为 振子。
8.1.4. 天线分类 基站天线:
第 3/ 39 页

试验四天线方向图测量试验

实验四 天线方向图测量实验 一、预习要求 1、什么是天线的方向性? 2、什么是天线的方向图,描述方向图有哪些主要参数? 二、实验目的 1、通过天线方向图的测量,理解天线方向性的含义; 2、了解天线方向图形成和控制的方法; 3、掌握描述方向图的主要参数。 三、实验原理 天线的方向图是表征天线的辐射特性(场强振幅、相位、极化)与空间角度关系的图形。完整的方向图是一个空间立体图形,如图7所示。 它是以天线相位中心为球心(坐标原点),在半径足够大的球面上,逐点测定其辐射特性绘制而成的。测量场强振幅,就得到场强方向图;测量功率,就得到功率方向图;测量极化就得到极化方向图;测量相位就得到相位方向图。若不另加说明,我们所述的方向图均指场强振幅方向图。空间方向图的测绘十分麻烦,实际工作中,一般只需测得水平面和垂直面的方 向图就行了。 图7 立体方向图 天线的方向图可以用极坐标绘制,也可以用直角坐标绘制。极坐标方向图的特点是直观、简单,从方向图可以直接看出天线辐射场强的空间分布特性。但当天线方向图的主瓣窄而副瓣电平低时,直角坐标绘制法显示出更大的优点。因为表示角度的横坐标和表示辐射强度的纵坐标均可任意选取,例如即使不到1o的主瓣宽度也能清晰地表示出来,而极坐标却无法绘制。一般绘制方向图时都是经过归一化的,即径向长度(极坐标)或纵坐标值(直角坐标)是以相对场强max `)(E E ?θ表示。这里,)(`?θE 是任一方向的场强值,max E 是最大辐射方向的场强值。因此,归一化最大值是1。对于极低副瓣电平天线的方向图,大多采用分贝值表示,归一化最大值取为零分贝。图8所示为同一天线方向图的两种坐标表示法。

各种近远场天线测量系统比较

按照天线场区的划分,天线测量系统可分为远场测量系统和近场测量系统。 1. 远场测量系统 远场测量系统按使用环境可分为室外远场测量系统和室内远场测量系统。 室外远场需要较长的测量距离,通常用天线高架法来尽量减小地面反射,其他架设方法还有地面反射法和斜距法。室外远场测量需要在合适的外部环境和天气下进行,同时,室外远场对安全和电磁环境有较高要求。 室内远场在微波暗室中进行,暗室四周和上下铺设吸波材料来减小电磁反射。如果暗室条件满足远场测量条件,可选择传统远场测量法,如果测量距离不够远场条件,可以选择紧缩场,通过反射天线在被测天线处形成平面电磁波。 2. 近场测量系统 近场测量在天线辐射近场区域实施。在三至五个波长的辐射近场区,感应场能量已完全消退。采集这一区域被测天线辐射的幅度和相位数据信息,通过严格的数学计算就可以推出被测天线测远场方向图。 按照扫描方式的不同,常用的近场测量系统可以分为平面近场系统、柱面近场系统和球面近场系统。 (1)近场测量系统 平面近场测量系统在辐射近场区的平面上采集幅相信息,这种类型的测试系统适用于增益>15dBi的定向天线、阵列天线等,最大测量角度<± 70 º。

(2)柱面测量系统 柱面近场测量系统在辐射近场区的柱面上采集幅相信息,这种类型的测试系统适用于扇形波束和宽波瓣的天线。 (3)球面测量系统 球面近场测量系统在辐射近场区的球面上采集幅相信息,这种类型的测试系统适用于低增益的宽波瓣或全向天线。 3.如何选择天线测量系统,需要考虑到的几个重要的特性和指标: 1.天线应用领域; 2.远场角度范围:远场波瓣图坐标系、各种天线性能参数定义、副瓣和后瓣特性; 3.电尺寸:根据电尺寸和计算出远场距离; 4.方向性指标:宽波瓣或窄波瓣; 5.工作频率和带宽:工作频率设计到吸波材料尺寸和暗室工程设计及造价; 6.环境和安全性要求:天气、地表环境等因素; 7.其他因素:转台或铰链、通道切换开关等。 近场(平面、柱面、球面)测量系统与远场|(室外、室内、紧缩场)测量系统的能力比较

天线测试方法介绍

天线测试方法介绍 来源:Vince Rodriguez公司 对天线与某个应用进行匹配需要进行精确的天线测量。天线工程师需要判断天线将如何工作,以便确定天线是否适合特定的应用。这意味着要采用天线方向图测量(APM)和硬件环内仿真(HiL)测量技术,在过去5年中,国防部门对这些技术的兴趣已经越来越浓厚。虽然有许多不同的方法来开展这些测量,但没有一种能适应各种场合的理想方法。例如,500MHz 以下的低频天线通常是使用锥形微波暗室(anechoic chamber),这是20世纪60年代就出现的技术。遗憾的是,大多数现代天线测试工程师不熟悉这种非常经济的技术,也不完全理解该技术的局限性(特别是在高于1GHz的时候)。因此,他们无法发挥这种技术的最大效用。 随着对频率低至100MHz的天线测量的兴趣与日俱增,天线测试工程师理解各种天线测试方法(如锥形微波暗室)的优势和局限的重要性就愈加突出。在测试天线时,天线测试工程师通常需测量许多参数,如辐射方向图、增益、阻抗或极化特性。用于测试天线方向图的技术之一是远场测试,使用这种技术时待测天线(AUT)安装在发射天线的远场范围内。其它技术包括近场和反射面测试。选用哪种天线测试场取决于待测的天线。 为更好地理解选择过程,可以考虑这种情况:典型的天线测量系统可以被分成两个独立的部分,即发射站和接收站。发射站由微波发射源、可选放大器、发射天线和连接接收站的通信链路组成。接收站由AUT、参考天线、接收机、本振(LO)信号源、射频下变频器、定位器、系统软件和计算机组成。 在传统的远场天线测试场中,发射和接收天线分别位于对方的远场处,两者通常隔得足够远以模拟想要的工作环境。AUT被距离足够远的源天线所照射,以便在AUT的电气孔径上产生接近平面的波阵面。远场测量可以在室内或室外测试场进行。室内测量通常是在微波暗室中进行。这种暗室有矩形的,也有锥形的,专门设计用来减少来自墙体、地板和天花板的反射(图1)。在矩形微波暗室中,采用一种墙面吸波材料来减少反射。在锥形微波暗室中,锥体形状被用来产生照射。

远场天线测试系统

远场天线测量系统 睿腾万通 科技有限公司

目录 1概述 (3) 2用户需求分析 (4) 2.1用户需求 (4) 2.2用户远场环境 (4) 3远场天线测量系统特点 (5) 4远场天线测量系统 (5) 4.1系统组成 (5) 4.2系统清单 (6) 4.3系统布局 (8) 4.4系统原理 (8) 4.5系统测试能力 (11) 4.6射频链路预算 (11) 4.7系统扩展性 (12) 5分系统设计 (12) 5.1机械子系统 (12) 5.2控制子系统 (16) 5.3射频子系统 (17) 5.4天线测量软件 (20) 6培训 (21) 6.1安装期间培训 (22) 7系统维护、保修等 (23) 7.1服务优势 (23) 7.2专业的售后服务保障团队 (23) 7.3系统维护服务保障 (24)

1概述 成都睿腾万通科技有限公司很高兴能有机会为客户推荐一套由本公司研发、集成的的远场天线测量系统。睿腾万通公司是一家专门从事天线测量产品的研发、集成、生产与销售的高科技企业。公司以电子科技大学为技术依托,技术团队由多名业内资深的技术专家组成,团队成员的专业领域覆盖电磁场与微波技术,软件工程,自动化控制,结构机械等,具有博士、硕士学历人员占40%。公司具体从事业务覆盖通用近场、远场的开发与集成,基于通用天线测量系统的功能升级,数字阵、相控阵列快速测量与诊断的解决方案,以及天线测量技术咨询与服务。公司掌握远近场天线测量的核心算法与控制,具有丰富的系统集成与研发能力。 我们为国内多个用户提供过系统集成方案,测试频率从500MHz至110GHz,集成系统包括室内远场、室外远场、平面近场及紧缩场。 本方案推荐了一套多轴转台远场天线测量系统,以满足客户的当前以及未来产品的测量需求。推荐的远场测量系统采用4轴被测天线转台,集成是德科技的射频组建,使用睿腾万通公司自主开发的远场天线测量软件及控制系统,构成一套具有高可靠性,高性能的远场测量系统,测量系统除了能够进行常规的远场测量外,还具天线罩参数测量、相控阵及数字阵列的扩展功能。更进一步的细节将在后面的章节有所描述。 为了使客户充分地了解和使用此套天线测量系统的特性和功能,睿腾万通将在现场安装验收期间提供近场测量系统涉及到的测量理论、系统应用、实际操作和维护的详细培训。并在用户使用过程中提供良好的技术服务的咨询。 我们衷心希望能够同用户的专家合作,提供一套高性能远场测试系统。这是一个令人兴奋的工程,我们期待与客户在此项目上完美愉快和顺利的合作。

天线测试方法选择及评估

天线测试方法选择及评估 对天线与某个应用进行匹配需要进行精确的天线测量。天线工程师需要判断天线将如何工作,以便确定天线是否适合特定的应用。这意味着要采用天线方向图测量(APM)和硬件环内仿真(HiL)测量技术,在过去5年中,国防部门对这些技术的兴趣已经越来越浓厚。虽然有许多不同的方法来开展这些测量,但没有一种能适应各种场合的理想方法。例如,500MHz以下的低频天线通常是使用锥形微波暗室(anechoic chamber),这是20世纪60年代就出现的技术。遗憾的是,大多数现代天线测试工程师不熟悉这种非常经济的技术,也不完全理解该技术的局限性(特别是在高于1GHz的时候)。因此,他们无法发挥这种技术的最大效用。 随着对频率低至100MHz的天线测量的兴趣与日俱增,天线测试工程师理解各种天线测试方法(如锥形微波暗室)的优势和局限的重要性就愈加突出。在测试天线时,天线测试工程师通常需测量许多参数,如辐射方向图、增益、阻抗或极化特性。用于测试天线方向图的技术之一是远场测试,使用这种技术时待测天线(AUT)安装在发射天线的远场范围内。其它技术包括近场和反射面测试。选用哪种天线测试场取决于待测的天线。 为更好地理解选择过程,可以考虑这种情况:典型的天线测量系统可以被分成两个独立的部分,即发射站和接收站。发射站由微波发射源、可选放大器、发射天线和连接接收站的通信链路组成。接收站由AUT、参考天线、接收机、本振(LO)信号源、射频下变频器、定位器、系统软件和计算机组成。 在传统的远场天线测试场中,发射和接收天线分别位于对方的远场处,两者通常隔得足够远以模拟想要的工作环境。AUT被距离足够远的源天线所照射,以便在AUT的电气孔径上产生接近平面的波阵面。远场测量可以在室内或室外测试场进行。室内测量通常是在微波暗室中进行。这种暗室有矩形的,也有锥形的,专门设计用来减少来自墙体、地板和天花板的反射(图1)。在矩形微波暗室中,采用一种墙面吸波材料来减少反射。在锥形微波暗室中,锥体形状被用来产生照射。 图1:这些是典型的室内直射式测量系统,图中分别为锥形(左)和矩形(右)测试场。 近场和反射测量也可以在室内测试场进行,而且通常是近场或紧缩测试场。在紧缩测试场中,反射面会产生一个平面波,用于模拟远场行为。这使得可以在长度比远场距离短的测试场中对天线进行测量。在近场测试场中,AUT被放置在近场,接近天线的表面上的场被测量。随后测量数据经过数学转换,即可获得远场行为(图2)。图3显示了在紧缩测试场中由静区上的反射面产生的平面波。 图2:在紧缩测试场,平坦波形是由反射测量产生。 一般来说,10个波长以下的天线(中小型天线)最容易在远场测试场中测量,这是因为在可管理距离内往往可以轻松满足远场条件。对大型天线(electrically large antenna)、反射面和阵列(超过10个波长)来说,远场通常在许多波长以外。因此,近场或紧缩测试场可以提供更加可行的测量选项,而不管反射面和测量系统的成本是否上升。 假设天线测试工程师想要在低频下进行测量。国防部门对此尤感其兴趣,因为他们需要研究诸如在低频下使用天线等事项,以便更好地穿透探地雷达(GPR)系统中的结构(针对工作在400MHz范围的射频识别(RFID)标签),以及支持更高效的无线电设备(如软件定义无线电(SDR))和数字遥感无线电设备。在这种情况下,微波暗室可以为室内远场测量提供足够好的环境。 矩形和锥形是两种常见的微波暗室类型,即所谓的直接照射方法。每种暗室都有不同的物理尺寸,因此会有不同的电磁行为。矩形微波暗室处于一种真正的自动空间状态,而锥形

北邮天线实验报告

北邮天线实验报告 篇一:北京邮电大学电磁场与电磁波实验报告《天线部分》《电磁场与微波实验》 ——天线部分实验报告 姓名:班级:序号:学号: 实验一网络分析仪测量振子天线输入阻抗 一、实验目的 1. 掌握网络分析仪校正方法; 2. 学习网络分析仪测量振子天线输入阻抗的方法; 3. 研究振子天线输入阻抗随振子电径变化的情况。 二、实验原理 当双振子天线的一端变为一个无穷大导电平面后,就形成了单振子天线。实际上当导电平面的径向距离大到0.2~0.3λ,就可以近似认为是无穷大导电平面。这时可以采用镜像法来分析。天线臂与其镜像构成一对称振子,则它在上半平面辐射场与自由空间对称振子的辐射场射相同。 由于使用坡印亭矢量法积分求其辐射功率只需对球面上半部分积分,故其辐射功率为等臂长等电流分布的对称振子的一半,其辐射电阻也为对称振子的一半。当h ?2。由于天 线到地面的单位长度电容比到对称振子另一个臂的单位长度电容大一倍,则天线的平均特征阻抗也为等臂长对称

振子天线的一半,为 ?2h??60?ln()?1?。 a?? 三、实验步骤 1. 设置仪表为频域模式的回损连接模式后,校正网络分析仪; 2. 设置参数并加载被测天线,开始测量输入阻抗; 3. 调整测试频率寻找天线的两个谐振点并记录相应阻抗数据; 4. 更换不同电径(φ1,φ3,φ9)的天线,分析两个谐振点的阻抗变化情况; 设置参数:BF=600,?F=25,EF=2600,n=81。 校正图: 测量图 1mm天线的smith圆图: 3mm天线的smith圆图: 9mm天线的smith圆图: 篇二:北邮电磁场与微波实验天线部分实验报告一信息与通信工程学院 电磁场与微波实验报告 实验一网络分析仪测量阵子天线 输入阻抗 一、实验目的:

天线_RCS近场测量系统的研究

天线/RCS 近场测量系统的研究 a 张士选,郑会利,尚军平 (西安电子科技大学,710071)摘要:给出了由HP 8530B 组成的天线/RCS 近场测量系统的有关技术指标。利 用该系统对典型天线进行了分析测量。结果表明,所研制的近场系统可提供各种天线的精确测量结果。 关键词:近场测量;天线;采样;收发系统;精度 中图分类号:T N957.2 文献标识码:B 文章编号:1005-0388(1999)01-0092-5 Study on Antenna /RCS Near Field Test System ZHANG Shi -xuan ,ZHENG Hui -li ,SHANG Jun -ping (Xidian University,Xian 710071Chian) Abstract :Antenna/RCS near field test system w ith HP8530B m icrow ave rceiv- er is intro duced in this paper.Som e pr oblem in the desig ning and realizing the sy s-tem are analy sised.The technolo gical index of the sy stem is g iven.So me ty piced an-tenna are tested w ith this sysem .It is concluded that the accurate testing results of various antenna can be prov ided with this system . Key words :Near field test;Antenna ;Sam ple;T ransmitter and receiver sy s- tem Accuracy 1 引言 天线近场测试技术越来越受到人们的重视。由于科学技术发展的要求,人们在天线研究中发现,一些高性能指标天线的研究,利用原有的远场技术已无法解决所出现的问题。例如在低副瓣天线研究中,要求测量-50dB 电平时精度优于±5dB,常规的远场技术已无能为力。在相控阵天线研究中,由于各种实际条件的限制,实际的天线口径分布和设计值总存在一定的误差,如何使天线性能尽可能的逼近设计结果,迫切要求人们研究新型的近场测量技术。本文介绍了一种大型高精度天线/RCS 近场测试系统,对该系统的各部分技术性能进行了分析,并给出了该系统的技术指标,对典型天线进行了测量研究。结果表明,利用此系统可完成各种高性 第14卷 第1期 1999年3月 电 波 科 学 学 报CH INESE JOURNAL O F RADIO SCIENCE M arch,1999a 收稿日期:1998-04

基站天线测量方法

国家通信导航设备质检中心──基站天线测量方法 Test specification of Base station antenna center 1 增益、半功率波束宽度、前后比及交叉极化比的测量可以采用远场或近场等测试方法,本标准叙述最常用的远场测试方法。 The test has long distance and near distance for antenna gain,beam width front to back ratio amd polarization. 2 增益测量 Gain test 2.1测量框图见图1 test draws: 图1天线增益测试框图 antenna gain testing draws 测量条件 test qualification 2.2.1被测天线具有相同的极化方式。 The antenna and source antenna is same polarization 2.2.2被测天线与源天线之间测量距离应满足: 式中:L ──源天线与被测天线距离m; there is distance of the antenna to source antenna D ──被测天线最尺寸m; there is max dimension of source antenna D ──源天线最大辐射尺寸m; there is max radiancy of the antenna λ──测试频率波长m 。 test frequency beam long 2.2.3被测天线应安装于场强基本均匀的区域内,场强应预先用一个半波偶极天线的有效天线体积内进行检测,如果电场变化超过1.5dB ,则认为试验场是不可用的。此外,增益基准天线在两个正交极化面上测得的场强差值小于1dB 。 The antenna under test should be placed within a constant field,and the field stremgth can first be measured within the magnetism field of the antenna under test. Should the electric field show fluctuations greater than 1.5dB, the test field should ge considered unsuitable. Moreover, the measured field stremgrhs of the horizontal amd vertical polarized components, s measured by the standard gain antenna, should mot differ by more than 1dB. 2.2.4测量用信号发生器、接收机等测量设备和仪表应具有良好的稳定性、可靠性、动态范围和测量精度,以保证测量 数据的正确性。测量用仪表应有计量合格证,并在校验周期内。 The signal generator,receiver and other equipment and meters used for testing should have high stability, reliability,measurement precision and wide dynamic range in order to guarantee data accuracy. Source antenna 源天线 The antenna 隔离器 信号源发生器 L ≧ 2(D 2+d 2) λ (1)

相关文档
最新文档