谷氨酸发酵

谷氨酸发酵
谷氨酸发酵

前言

氨基酸是构成蛋白质的基本单位,是人体及动物的重要营养物质,氨基酸产品广泛应用于食品、饲料、医药、化学、农业等领域。谷氨酸是一种重要的氨基酸,我们吃的味精就是以谷氨酸为原料生成的。1957年以前,人们用酸法水解小麦面筋或大豆蛋白来制取L- 谷氨酸。1957年,人们分离得到了产生谷氨酸的菌种,接着又进行了大量的研究工作,大规模发酵谷氨酸得以成功[1]。

谷氨酸发酵法的建立,对初级代谢产物微生物法生产的研究起到了极大的推动作用。在谷氨酸发酵法成功的激励之下,各种研究项目得以展开。谷氨酸单钠现已完全由发酵法生产,主要用于食品调味剂——味精的生产,其产量已超过400000吨。

味精的现状和前景

味精近年来已成为人们普遍使用的一种调味品,其消费量在国内呈上升趋势。味精产量增长较快。2001年味精产量91.28万吨,2002年1--6月产量累计53.04万吨,比上年同期增长17.92%。

味精是一种强碱弱酸盐,它在水溶液中可以完全电离变成谷氨酸离子和钠离子。谷氨酸是氨基酸的一种,氨基酸是构成蛋白质的基本单位,是人体和动物的重要营养物质。谷氨酸一钠被人体吸收以后,同样也是电离成谷氨酸离子和钠离子而分别参加人体的代谢活动。所以味精作为调味剂除了能增加食品的美味外,它在人体中具有特殊的生理作用。

(1)谷氨酸在人体内通过转氨酶的作用将其分子中的氨基转移给丙氨酮酸,形成丙氨酸。

(2)谷氨酸与血液中的氨形成无毒的谷氨酰氨,使血液中的氨的浓度下降,减少氨中毒的危险性。

(3)谷氨酸在体内与胱氨酸、甘氨酸结合形成谷胱甘肽。这个化合物是一种很有效的抗氧化剂,对于延续衰老,促进疾病恢复均有好处。能够分解体内代谢过程中所产生的过氧化物,避免肌体遭受过氧化物的侵害,有利于维持身体健康。

(4)谷氨酸在体内能够形成V-氨基丁酸,它是一种神经递质,帮助神经的传导;有人说,味精补脑,其道理恐怕就是基于这种物质的形成。

中国调味品行业在空前繁荣和发展的同时,也处在大转变、大整合和大发展时期。国外跨国食品集团涉足调味品生产,在国内频频展开收购;国内民营资本也纷纷投资调味品产业。可以说从

东北到西北,从华北到华南,调味品生产企业以国有企业为主的格局正在发生较大转变,很多国有企业市场逐渐萎缩,为行业的整合和企业并购创造了条件,让出了市场。同时,调味品市场竞争也日趋激烈,品牌效益日益明显。

谷氨酸是目前氨基酸生产中产量最大的一种,同时,谷氨酸发酵生产工艺也是氨基酸发酵生产中最典型、最成熟的。我们就以谷氨酸的发酵生产为例探讨发酵生产过程的奥妙。

第1章方案论证

1.1淀粉糖化的原理及工艺流程

根据原料淀粉的性质及采用的水解液催化剂不同,水解淀粉为葡萄糖的方法有三种:酸解法、酶解法、酶酸结合法。本实验采用酸解法水解淀粉,一是由于实验室的仪器设备及条件的限制,二是因为酸解法具有生产方便、设备要求简单、水解时间短、设备生产能力大等优点。

1.1.1淀粉酸水解原理[2]

淀粉经酸水解反应生成葡萄糖过

程中,同时发生三方面的化学反应:淀

粉水解生成葡萄糖,这是主反应;其次

是生成的葡萄糖有一部分发生复合反

应生成龙胆二糖、异麦芽糖和其它低聚

糖;还有一部分葡萄糖分解反应生成

5-羟甲基糠醛,有机酸和有色物质等非

糖物质。在淀粉酸水解的过程中。这三

方面反应同时发生,其反应程度取决于

淀粉的质量,浓度和糖化的工艺条件。

在糖化过程中,这三种化学反应的

关系,可用简单图解表示如图1.1

复合反应:葡萄糖分子间经1-6糖苷键结合成龙胆二糖(有苦味)、异麦芽糖和其他低聚糖(合称复合低聚糖)。

分解反应:葡萄糖→羟甲基糠醛→有机酸、色素等。

㈠淀粉的水解反应

1.淀粉水解过程

淀粉分子里没有醛基。所以无还原性,不能发生银镜反应。但淀粉在酸(HCl或 H

2

SO4)或淀粉酶催化作用下能发生水解,生成葡萄糖。

(C

6H

10

O

5

)n(淀粉)+nH

2

O→(C

6

H

10

O

5

)x(糊精)→C

12

H

22

O

11

(麦芽糖)→nC

6

H

12

O

6

(葡萄糖)

2.影响酸水解的因素

酸的种类

主要因素浓度

水解温度

㈡葡萄糖的复合反应极其影响因素[8]

复合反应:在淀粉的酸糖化过程中,水解生成的葡萄糖受酸和热的影响,葡萄糖分子之间通过糖苷键相聚合,生成二糖、三糖及其他低聚糖。

影响复合反应的因素:

1.淀粉浓度的影响(用DE值表示葡萄糖纯度)

2.酸的影响:

㈢葡萄糖的分解反应及其影响因素

葡萄糖→ 5'-羟甲基糠醛→乙酰丙酸、蚁酸、色素物质;

影响因素:浓度、温度、pH值;

1.1.2

2

CO3

盐酸

蒸汽糖化

图1.2 酸法糖化工艺流程图

淀粉水解糖用于谷氨酸发酵是作为培养基的碳源,只求制备符合谷氨酸发酵要求的水解糖液,不必精制提纯葡萄糖。其工艺过程是将淀粉加水调成一定浓度的淀粉乳,然后用盐酸为催化剂,升温进行糖化,制得糖液,再将糖液进行中和、脱色、过滤以除去主要杂质。一般工艺流程如下[3]:

淀粉→调浆→过筛→加酸→进料→糖化→放料→冷却→中和→脱色→压滤→糖液

1.2味精生产的初步设计

味精发酵生产工艺是利用淀粉为原料,酸水解制糖后,通过微生物发酵、等电点沉淀提取生产味精的,其工艺流程图如下:

图1.3 味精生产工艺流程图

本方案采用谷氨酸发酵制味精,目前谷氨酸发酵主要采用糖质原料。在使用糖质原料时,葡萄糖在谷氨酸产生菌的各种酶系作用下,经酵解途径(EMP)、磷酸乙糖途径(HMP

和水。其总反应式为:

途径)、三磷酸(TCA环)、乙醛酸循环等途径生成谷氨酸、CO

2

C6H12O6 +NH3 +1.5O2 →C5H9O4 + CO2 + H2O

谷氨酸发酵生产菌种主要有棒状杆菌属、短杆菌属、小杆菌属及节杆菌属的细菌。除节杆菌外,其他三属中有许多菌种适用于糖质原料的谷氨酸发酵。这些细菌都是需氧微生物,都需要以生物素为生长因子。我国谷氨酸发酵生产所用菌种有北京棒状杆菌

)、FM-8207、AS1.299、7338;钝齿棒状杆菌AS1.542、7251及B9;天津短杆菌(T

13

6

FM-415、U-9等菌株。这些菌株的斜面培养一般采用由蛋白陈、牛肉膏、氯化钠等组成,pH为7.0~7.2的琼脂培养基,32O C培养24h,冰箱保存备用。本课题中使用的是北京棒杆菌AS1.299。由斜面试管保藏的原菌出发,经过若干次扩大培养繁殖达到一定数量

的种子量。一般的扩大培养工艺流程为:试管斜面原菌→试管斜面活化培养→三角瓶摇床培养(一级种子)→种子罐培养(二级种子)。本实验中只需培养至一级种子即可。

图1.4 谷氨酸生物合成途径

谷氨酸提取工艺的选择原则:应当是工艺简单,操作方便,提取收率高,产品纯度高,劳动强度小,设备简单,造价低,使用的原材料,药品廉价,来源容易。同时还要减少环境污染等。

谷氨酸提取有等电点法、离于交换法、金属盐沉淀法、盐酸盐法和电渗析法,以及将上述方法结合使用的方法。本实验采用等电点法提取谷氨酸。

等电点法是谷氨酸提取方法中最简单的方法,由于设备简单、操作简便、投资少等优点,为广泛采用。等电点法提取谷氨酸是谷氨酸发酵液不经除菌或除菌、不经浓缩或浓缩处理、在常温或低温下加盐酸调至谷氨酸的等电点pH 3.22,使谷氨酸呈饱和状态结晶析出。此法的理论基础是利用谷氨酸的两性解离和等电点性质。在常温下等电点母液

含谷氨酸1.5~2%,一次提取收率较低,仅60%~70%。

常温等电点法的工艺流程[6]

发酵液

↓加盐酸调至PH4.0~4.5(出现晶核为准)

育晶2~4h

↓加盐酸调至PH3.5~3.8

育晶2h

↓加盐酸调至PH3.0~3.2

育晶2h

↓冷却降温

搅拌16~20h

沉淀2~4h

↓离心分离

↓ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄↓

湿谷氨酸结晶上清液

第2章实验部分

2.1实验材料

北京棒杆菌AS1.299

无水葡萄糖北京赢海精细化工厂

磷酸二氢钾北京益利精细化学品有限公司

碘北京益利精细化学品有限公司

脲北京益利精细化学品有限公司

盐酸北京北化精细化学品有限公司

无水乙醇北京北化精细化学品有限公司

无水碳酸钠天津佳兴化工玻璃仪器有限公司

氯化钠河北省保定化学试剂厂

硫酸亚铁天津市化学试剂三厂

硫酸锰天津市化学试剂三厂

硫酸镁天津市化学试剂一厂

茚三酮试剂、茚三酮水溶液、6mg/mL谷氨酸标准品溶液、0.1 mol/l 磷酸缓冲液

2.2实验仪器设备

全自动机械搅拌不锈钢发酵罐镇江东方生物工程设备技术公司

空气压缩机宁波市鄞州展翅无油空压机有限公司

空气压缩机储气罐台州市富芳压缩机有限公司

电热恒温水浴锅北京长安科学仪器厂

数显恒温水浴锅国华电器有限公司

循环水式多用真空泵郑州长城科工贸有限公司

分光光度计上海第三分析仪器厂

净化工作台苏州净化设备有限公司

多功能食品搅拌器广东顺德市科顺塑料电器实业有限公司

上皿电子天平上海精科天平

立式压力蒸汽灭菌器江阴滨江医疗设备厂

台式电动离心机山东鄞城华鲁电热仪器有限公司

增力电动搅拌器江苏金坛医药仪器厂

恒温震荡器常州国华电器有限公司

数显水浴恒温震荡器常州国华电器有限公司

生物显微镜、移液管、容量瓶、天平、玻璃棒、三角瓶、烧杯等

2.3实验方法与步骤

(一)菌种的扩大培养

在大规模的发酵生产中,需要将选育出的优良菌种经过多次扩大培养,让它们达到一定数量以后,再进行接种。谷氨酸发酵时使用AS1.299菌种。

发酵的过程分为:斜面活化→二级摇瓶种子→二级罐种子→发酵。

1 斜面菌种的培养

斜面菌种:

①培养基成分:葡萄糖 0.1%、蛋白胨 1.0%、氯化钠 0.5%、琼脂 2.0~2.5%、PH 7.0~

7.2

②培养基总量:6支试管 30mL (为了方便可配100mL)

③培养条件: 30~32o C、 18~24 h

2 一级种子培养:

①培养基成分:葡萄糖 2.5%、尿素 0.5%、硫酸镁 0.04%、磷酸二氢钾 0.1%、玉米浆 2.5~3.5%(按质增减)、硫酸亚铁、硫酸锰各2ppm、PH 7.0

②培养基总量: 10mL (配成100mL分两个三角瓶培养)

③培养条件: 30~32 o C、12h,摇床培养

④注意事项:取样做平板检查,确认无杂菌及噬菌体方可接入二级种子,一级种子贮存于4 o C的冰箱中待用。接种量 1.0%。

3 二级种子培养:

①培养基成份:水解糖 2.5%、玉米浆 2.5%、磷酸二氢钾 0.1%、硫酸镁 0.04%、尿素 0.5%、硫酸亚铁、硫酸锰各 2ppm、PH 6.5~6.8

②培养基总量: 70mL(配成200mL分两个三角瓶培养)

③培养条件:32 o C、7~8h、摇床培养

④注意事项:接种量 0.8~1.0%

(二)淀粉酸解法制糖工艺[5]

淀粉糖化工艺是根据淀粉水解反应和葡萄糖复合反应及分解反应的规律完成的。选择合理的工艺条件,限制复合反应和分解反应,使其达到最低彻程度。

将玉米淀粉加水调成粉浆使其浓度为16波美度,并用碳酸钠调pH值至6.2~6.4,将粉浆温度调至85~90摄氏度,保温约20分钟左右,用碘液检查,呈棕红色成橙黄色即液化完全。再将粉浆温度调至100摄氏度,保持5分钟以便杀灭液化酶。然后将粉浆温度降至55~60摄氏度用盐酸调pH值至1.8,加糖化酶保温。用无水酒精检查糖化终点,无白色反应时即结束糖化,将糖化液加热至100摄氏度灭酶。用碳酸钠调整水解糖液的pH值为4.6~4.8。中和温度一般在80摄氏度左右。然后加入0.3%的活性炭,搅拌均匀,使糖液脱色,脱色时间应不少于30分钟。脱色完毕,将糖液过滤,即得水解糖液。

一. 具体工艺要点如下:

1、调浆:淀粉乳浓度 10.5~12 波美(干淀粉含量 18~21%)

2、过筛:

3、加酸:HCl用量是干淀粉的 0.5~0.8%、PH 1.5左右

4、进料:进料压力为 0.02~0.03MPa,使淀粉乳越过糊化的温度,玉米淀粉糊化温度为55~62.5o C

5、糖化:

表1-1淀粉水解反应时间与压力的关系

6、放料:提前放料,以免水解过头

7、以上注意事项:尽量缩短辅助时间,掌握糖化终点控制糖化时间,用无水酒精检测糖化程度,无沉淀产生为止。 8、冷却: 80o C 以下

9、中和:加碳酸钠中和,碱液浓度不宜太浓,加碱的速度要慢,边加边搅拌边测PH ,直到PH4.6~4.8为止,PH 一定要正确。 注意:纯碱应事先溶于一倍的热水中。

10、脱色:活性炭 用量是淀粉量1~4% 脱色的温度 70o C PH 5.0以下,时间(搅拌) 30 min 以上 11、压滤: 60~70o C

注:一时的糖液不用可加热 至60o C 贮存,糖液贮存器一定要保持清洁,防止杂菌生长。

二.葡萄糖含量测定实验步骤

1、I 2溶液的标定。移取25.00mL I 2溶液于250mL 锥形瓶中,加100mL 蒸馏水稀释,用已标定好的Na 2S 2O 3标准溶液滴定至草黄色,加入2mL 淀粉溶液,继续滴定至蓝色刚好消失,即为终点。计算出I 2溶液的浓度。

2、含量测定。取5%葡萄糖注射液准确稀释100倍,摇匀后移取25.00mL 于锥形瓶中,准确加入I 2标准溶液25.00mL ,慢慢滴加0.2mol/L

NaOH ,边加边摇,直至溶液呈淡黄色。加碱的速度不能过快,否则生成的NaIO 来不及氧化C 6H 12O 6,使测定结果偏低。将锥形瓶盖好小表皿放置10~15分钟,加2mol/L HCl 6mL 使成酸性,立即用Na 2S 2O 3溶液滴定,至溶液呈浅黄色时,加入淀粉指示剂3mL ,继续滴至蓝色消失,即为终点。记下滴定读数。 3.计算

C 6H 12O 6%(W/V) ==

10000

.25200026

12632232222????-?O H C V V O S Na O S Na I I )浓度浓度(2

(三)谷氨酸发酵实验步骤 1 谷氨酸发酵

(1)发酵罐用培养基的制备:水解糖2.5%,尿素0.6%,玉米浆0.6%,磷酸二氢钾

0.17%,氯化钾0.03%,硫酸镁0.06%,硫酸锰2 ppm,pH6.7~7.0。

(2)接种与发酵。将培养好的成熟种子接种于上述发酵培养基中,接种量为1%~2% (视种子质量而定)

发酵温度控制:0~16h为32~34o C, 16h后为34~36o C。

发酵液pH控制:0~12 h为7.1~7.4,12~28 h为7.1~7.3,28h后适当降低,

一般为7.0以下,发酵结束前为6.4~6.7。可用流尿调节,发酵过程流加尿素4~5次,

每次0.6%~0.4%,最后一次0.3%~0.2%。总尿(含初尿)为发酵液的2.5%~3.0%。

发酵时间控制:40h。

2 谷氨酸的检测

(1)检验谷氨酸的存在

取一支试管加入稀释50倍的发酵液1 mL,再加0.5mL0.%茚三酮水溶液,混匀,在

沸水浴中加热1~2分钟,观察颜色由无色是否变为紫红色。

(2)谷氨酸含量的测定

发酵结束后,将发酵液经3000r pm离心20min,收获离心上清夜,用蒸馏水进

行n倍稀释。准确吸取离心稀释液1ml置50ml容量瓶中,并用蒸馏水稀释至刻度,

混匀。再准确吸取2ml稀释液于试管中,加入茚三酮试剂8ml,盖上试管铝帽,沸水

中煮沸20min,冷却后于570nm处测其消光值(以蒸馏水作空白)。

查标准曲线得谷氨酸含量再乘以稀释倍数(n)即为发酵液中谷氨酸的含量(mg/ml)。

(3)标准曲线的绘制

标准品溶液浓度为1、2、3、4、5、6mg/ml,分别吸取1ml置于50 ml容量瓶中,

以同样的操作步骤制得不同浓度的标准品溶液。以谷氨酸浓度为横坐标,以消光值为纵

坐标,绘制标准曲线。

3提取谷氨酸操作要点[7]:

①将放罐的发酵液先测定放罐体积、PH、谷氨酸含量和温度,开搅拌。若放罐的发

酵液的温度高,应先将发酵液冷却到25~30o C和消泡后再开始调PH。

②用盐酸调到PH5.0(视发酵液谷氨酸含量高低而定)

③当PH达到4.5时,应放慢加酸速度,在此期间应注意观察晶核形成的情况,若

观察有晶核出现应停止加酸,搅拌育晶2~4。若发酵不正常,产酸低于4%,虽调到PH4.0,

仍无晶核出现,可适当将PH降至3.5~3.8左右,搅拌2h,以利于晶核的形成,或适当

加一点晶种刺激起晶。

④搅拌育晶2h后,继续缓慢加酸,耗时4~6h,调至PH3.0~3.2,停酸复查PH,

搅拌2h后,开大冷水降温,使温度尽可能低。

⑤到等电点PH后,继续搅拌16h以上,停搅拌静置沉淀4h,关闭冷却水,将上层菌体液放至近谷氨酸层面时,用真空将谷氨酸表层菌体和细谷氨酸抽到另一容器里回收。取出底部谷氨酸,离心甩干,水洗谷氨酸,可改善谷氨酸的质量和色泽。

(四)谷氨酸制味精[8]

一谷氨酸的中和与除铁

1 中和的工艺条件

①投料比

湿谷氨酸:水=1:2

湿谷氨酸:纯碱=1:0.3~0.34

湿谷氨酸:活性炭=1:0.01

②中和温度:夏天60o C左右,冬天65o C左右。

③中和PH值要求:中性在PH6.96值时,谷氨酸的溶解度最大,生成的谷氨酸一钠最多,呈鲜味。但生产上中和液的PH控制中6.4左右。

④中和液的浓度: 21~23波美

⑤配比依据:

水量的控制: 适当为宜

碱的用量: 100g谷氨酸需要36.1g纯碱

⑥操作要点: 先在不锈钢桶内按上述配比加入蒸馏水和活性炭,加热升温至65o C 左右,开动搅拌,然后按当量中和方法将谷氨酸与纯碱,缓慢加入,使中和液始终保持PH6.4左右,温度60~65o C,直至中和结束。

注意事项:

①中和升温问题中和时先将水加热到65o C左右,温度太高,谷氨酸钠在水溶液中易引起失水,生成焦谷氨酸钠,影响产品质量。

②谷氨酸质量问题一定要用水洗去残留在谷氨酸表面的离子和菌体,离心分离要甩干,要求谷氨酸的纯度在92%以上。

③碱的质量要求要求纯碱的纯度高,质量好。

2 谷氨酸中和液除铁、锌

硫酸钠除铁、锌的工艺要求:

①待中和液的温度降至50o C以下,复测中和液PH在6.4左右,(PH5.5~9试纸测),加入硫化钠含量为10~12%的硫化钠,除尽铁、锌质

②加硫化碱后,搅拌片刻让其自然沉淀8h以上。

③将上清液用真空抽入脱色桶,进行下道工序脱色。

注意事项:

①硫化碱的质量要求

②加硫化碱要适量硫化碱用量不宜太多或太少,否则将出现不沉淀。

③加硫化碱的温度要严格控制在50o C以下,次过程有硫化氢生成。

④测定除铁是否彻底的方法:

取加过硫化碱的中和液于烧杯中,滴入二滴硫化碱溶液,若无黑色沉淀生成,说明铁已除尽。

用5%硫酸亚铁溶液与脱过铁的中和液进行反应,如果出现黑色反应,说明铁已除尽。

3 谷氨酸中和液的脱色[6]

粉末活性炭的脱色操作除铁后的中和液用谷氨酸回调PH6.2~6.4,蒸汽加热

60o C,使谷氨酸全部溶解,再加入适量活性炭脱色,转入下道工序。

4 谷氨酸中和液的浓缩与结晶[6]

(1)谷氨酸中和液的浓缩

①常压蒸发液体在一个大气压下,加热使溶液汽化而达到浓缩。温度为溶液的沸点。谷氨酸水溶液长时间受热,会引起失水而生成焦谷氨酸钠,一般不采用常压蒸发。

②减压蒸发既可以缩短浓缩时间,又可避免谷氨酸钠的脱水环造成破坏。

(2)谷氨酸中和液的结晶

结晶的操作过程为:浓缩→起晶→整晶→育晶→养晶

结晶操作方法:将脱色液放人真空浓缩锅内,真空度保持在80kPa以上,温度控制在65以下。当锅内液体浓度达到 32波美度时,即开搅拌机,关掉蒸汽,用真空吸入晶种,进行起晶,然后将所得晶液在离心机内进行离心分离。

5 味精的分离和干燥[7]

(1)味精的分离

一般采用三足式离心机分离。为了保证分离出来的晶粒表面光洁度,在离心分离过程中当母液离开晶体后,用少许50o C热水喷淋晶体。根据晶粒大小,控制分离时间和含水量,结晶味精含水量在1%以下,粉末含水量在5%以下。

(2)味精的干燥

将结晶味精于80o C干燥,然后过8、12、20、30目的筛,其中12、20、30目的可作为成品99°味精。大片的可打碎成粉拌人食盐,作为粉状味精。过细的作为小结晶味精或当晶种用。

第3章结果分析

3.1水解糖液质量标准

作为谷氨酸发酵的水解糖液必须具备以下条件:

①严格控制淀粉的质量,对霉烂、变质的淀粉,一定要经过再精制处理后使用。

②根据发酵初糖浓度的要求,正确控制淀粉乳浓度高低,既使糖液浓度符合发酵要求,又尽可能降低粉浆浓度,以提高糖液的纯度。

③糖液中不含糊精,因为它不能被谷氨酸菌利用,它的存在会使发酵过程泡沫增加,容易逃液,引起杂菌污染的可能。

④糖液要清,色泽要浅,保持一定的透光度。

⑤糖液要新鲜,尽可能现做现用,放置时间不宜过长,以免发酵变质,降低糖液的营养成分或产生其它抑制物。

⑥若淀粉中蛋白质含量高,当糖液中和过滤时除去不彻底,培养基中含蛋白质及其水解产物时,会使发酵液产生大量泡沫,造成逃液和杂菌的危险。

⑦水解糖液的质量指标:

色泽:浅黄、杏黄色,透明液糊精反应:无。还原糖含量:18%左右。

DE 值:90%以上。透光率:60%以上。pH4.6~4.8。

3.2种子的质量要求及其影响因素[4]

一成熟种子的质量要求:镜检细胞整齐、健壮、革兰氏染色无杂菌,无红色碎片,呈“八”字形分裂。

二影响因素

1 培养基构成

种子培养基要求含有丰富的氮源,足够的生物素,少量的碳源,以利于菌体生长。如果、糖分过多,菌体代谢活动旺盛,产生有机酸,使pH降低,菌种容易衰老。

2 温度

幼龄菌对温度变化敏感,应避免温度过高和波动过大。

3 pH值

零小时时pH值不宜过高,培养结束pH值不宜过低,pH上升后有所下降时,培养时间已接近结束。

4 溶解氧

长菌阶段对氧要求比发酵时低,溶氧水平过高,抑制长菌。

5 接种量

种量过少,菌体增长缓慢,适应期长,培养时间长,影响种子活力。但种量过大,易引起污染。一般种量以1%左右为宜。

6 培养时间

培养时间不宜太长,掌握对数生长期作为种子接入发酵罐。

3.3发酵过程现象:

由于产谷氨酸的菌种能够将尿素分解而提供铵离子,因此采用流加尿素的方法。发酵初期,菌体生长迟滞,约2~4h后即进人对数生长期,代谢旺盛,糖耗快,这时必须流加尿素以供给氮源井调节培养液的pH值至7.5~8.0,同时保持温度为30~32o C。本阶段主要是菌体生长,几乎不产酸,菌体内生物素含量由丰富转为贫乏,时间约12h。随后转人谷氨酸合成阶段,此时菌体浓度基本不变,糖与尿素分解后产生的a一酮戊二酸和氨主要用来合成谷氨酸。这一阶段应及时流加尿素以提供氨及维持谷氨酸合成最适pH7.2~7.4,需大量通气,并将温度提高到谷氨酸合成最适温度34~37o C。发酵后期,菌体衰老,糖耗慢,残糖低,需减少流加尿素量。当营养物质耗尽、谷氨酸浓度不再增加时,及时放罐,发酵周期约为40h。

3.4异常发酵现象及其处理

由于谷氨酸发酵是一系列复杂的生化反应过程,影响因素很多,所产生的异常现象也是多样的。在分析现象寻找原因时,应根据各方面现象和生化检测参数联系起来综合分析。下面就一些常见的洋厂异常发酵现象及其处理方法见下表。

表4-1 异常发酵现象及其处理方法[1]

3.5脱色工艺条件:

(1)温度对粉末活性炭脱色效果的影响一般谷氨酸钠溶液的脱色温度以50~60o C为宜。

(2)PH值对粉末活性炭脱色的影响中和液脱色PH仍保持在6以上为宜,一般为PH6.2~6.4

(3)活性炭的用量一般活性炭用量按投谷氨酸量的3%左右。

(4)脱色时间的影响脱色时间长,有利于吸附作用,适当的搅拌也是必要的。实践证明加炭10min和30min,后者透光率可提高5%以上。

第4章总结

1.淀粉酸水解理论基础

水解原理:(C6H10O5)n + nH2O n(C6H12O6)

其工艺过程是将淀粉加水调成一定浓度的淀粉乳,然后用盐酸为催化剂,升温进行糖化,制得糖液,再将糖液进行中和、脱色、过滤以除去主要杂质。工艺流程如下:

淀粉→调浆→过筛→加酸→进料→糖化→放料→冷却→中和→脱色→压滤→糖液

2 利用10L发酵罐对发酵工艺中比较重要的工艺参数---搅拌和通气进行了研究。研究发现,在较低的搅拌转速下,仅仅提高通气量并不能解决发酵过程中菌体生长所遇到的溶氧不足的问题;而在高的搅拌转速下,搅拌所产生巨大的剪切力严重影响了菌体的生长,也不利于次生代谢产物的形成;适当高的搅拌和较高的通气量,不仅对菌体的生长有利,而且也有利于谷氨酸的生成。利用10L发酵罐,确定了谷氨酸较优的发酵工艺条件:搅拌转速, 600rpm:通气量,1.5vvm-1;培养温度,34o C;发酵周期为40h。

致谢

本文从拟定题目到定稿,历时数月。在本论文完成之际,首先要向我的导师钟正伟老师致以诚挚的谢意。在论文的写作过程中,钟正伟老师给了我许许多多的帮助和关怀。钟正伟老师以其严谨求实的治学态度、高度的敬业精神、兢兢业业、孜孜以求的工作作风和大胆创新的进取精神对我产生重要影响。钟正伟老师学识渊博、治学严谨,待人平易近人,在钟正伟老师的悉心指导中,我不仅学到了扎实的专业知识,也在怎样处人处事等方面收益很多;同时他对工作的积极热情、认真负责、有条不紊、实事求是的态度,给我留下了深刻的印象,使我受益非浅。在此我谨向钟正伟老师表示衷心的感谢和深深的敬意。

同时,我要感谢我们学院给我们授课的各位老师,正是由于他们的传道、授业、解惑,让我学到了专业知识,并从他们身上学到了如何求知治学、如何为人处事。我也要感谢我的母校承德石油高等专科学校,是她提供了良好的学习环境和生活环境,让我的大学生活丰富多姿,为我的人生留下精彩的一笔。

另外,我还要特别感谢马积贺和张烨同学对我的无私帮助,使我得以顺利完成论文。感谢我的同窗同学们和我宿舍的好友,在我毕业论文写作中,与他们的探讨交流使我受益颇多;同时,他们也给了我很多无私的帮助和支持,我再次深表谢意。

最后,向我的亲爱的家人和亲爱的朋友表示深深的谢意,他们给予我的爱、理解、关心和支持是我不断前进的动力。学无止境,明天,将是我终身学习另一天的开始。

杜莎

2006年6月18日

参考文献

[1]梅乐和编著生化生产工艺学北京科学出版社 1999 45~57

[2]张克旭主编氨基酸发酵工艺学北京:中国轻工业出版社 1998 13~16

[3]尤新主编淀粉糖品生产与应用手册北京国轻工业出版社 1997 67~84

[4]俞俊堂,唐孝宣,生物工艺学,上海:华东理工大学出版社,1991,下册

[5]陈卓贤主编味精生产工艺学中国轻工业出版社 1990.11 23~86

[6]张克旭主编味精生产问答北京:中国轻工业出版社,1989 32~46

[7]于信令主编,味精工业手册, 1995.4,580~587。

[8]冯德荣,尚雪芹等(1993), 食品与发酵工业.93(2), 33~37.

[9]张灿丽,曹北斗(1995发酵科技通讯 23(2),38~39.

谷氨酸生产工艺

生物工程专业综合实训 (2016 年 11 月

谷氨酸生产工艺 摘要: 谷氨酸做为一种人体所必须的氨基酸,在生命的生理活动周期中具有很大的作用。不仅参与各种蛋白质的合成,组成人体结构,还做为味精可以给我们带来味蕾上的享受。现代生产谷氨酸的工艺主要是利用微生物发酵提取而来。不同的发酵方法和不同的发酵条件会造成产量的很大不同。本次谷氨酸的生产工艺,主要是掌握发酵方法和发酵条件的控制,还有各种仪器的使用方法。通过测得的数据来观察菌种的生长变化,同时谷氨酸发酵工艺各个工段的原理和使用方法。关键词:谷氨酸;发酵;工艺;等电点。

引言 谷氨酸是一种酸性氨基酸,是生物机体内氮代谢的基本氨基酸之一,在代谢上具有重要意义。不论在食品、化妆品还是医药行业,谷氨酸都有很大的用途。 谷氨酸在生物体内的蛋白质代谢过程中占重要地位,参与动物、植物和微生物中的许多重要化学反应。医学上谷氨酸主要用于治疗肝性昏迷,还用于改善儿童智力发育。食品工业上,味精是常用的仪器增鲜剂,其主要成分是谷氨酸钠盐。过去生产味精主要用小麦面筋(谷蛋白)水解法进行,现改用微生物发酵法来进行大规模生产。不论在食品、化妆品还是医药行业,谷氨酸都有很大的用途。 谷氨酸钠俗称味精,是重要的鲜味剂,对香味具有增强作用。谷氨酸钠广泛用于食品调味剂,既可单独使用,又能与其它氨基酸等并用。用于食品内,有增香作用。甘氨酸具有甜味,和味精协同作用能显着提高食品的风味。谷氨酸作为风味增强剂可用于增强饮料和食品的味道,不仅能增强食品风味,对动物性食品有保鲜作用。

一、谷氨酸简介 谷氨酸一种酸性氨基酸。分子内含两个羧基,化学名称为α-氨基戊二酸。谷氨酸是里索逊1856年发现的,为无色晶体,有鲜味,微溶于水,而溶于盐酸溶液,等电点3.22。大量存在于谷类蛋白质中,动物脑中含量也较多。谷氨酸在生物体内的蛋白质代谢过程中占重要地位,参与动物、植物和微生物中的许多重要化学反应。医学上谷氨酸主要用于治疗肝性昏迷,还用于改善儿童智力发育。食品工业上,味精是常用的仪器增鲜剂,其主要成分是谷氨酸钠盐。过去生产味精主要用小麦面筋(谷蛋白)水解法进行,现改用微生物发酵法来进行大规模生产。 谷氨酸是生物机体内氮代谢的基本氨基酸之一,在代谢上具有重要意义。L -谷氨酸是蛋白质的主要构成成分,谷氨酸盐在自然界普遍存在的。多种食品以及人体内都含有谷氨酸盐,它即是蛋白质或肽的结构氨基酸之一,又是游离氨基酸,L型氨基酸美味较浓。 L-谷氨酸又名“麸酸”或写作“夫酸”,发酵制造L-谷氨酸是以糖质为原料经微生物发酵,采用“等电点提取”加上“离子交换树脂”分离的方法而制得。 谷氨酸产生菌主要是棒状类细菌,这类细菌中含质粒较少,而且大多数是隐蔽性质粒,难以直接作为克隆载体,而且此类菌的遗传背景、质粒稳定尚不清楚,在此类细菌这种构建合适的载体困难较多。需要对它们进行改建将棒状类细菌质粒与已知的质粒进行重组,构建成杂合质粒。受体菌选用短杆菌属和棒杆菌属的野生菌或变异株,特别是选用谷氨酸缺陷型变异株为受体,便于从转化后的杂交克隆中筛选产谷氨酸的个体,用谷氨酸产量高的野生菌或变异菌作为受体效果更好。供体菌株选择短杆菌及棒杆菌属的野生菌或变异株,只要具有产谷氨酸能力都可选用, 但选择谷氨酸产量高的菌株作为供体效果最好。这样就可以较容易地在棒状类细菌中开展各项分子生物学研究。有了合适的载体及其转化系统后,就可通过DNA体外重组技术进行谷氨酸产生菌的改造。这对以后谷氨酸发酵的低成本、大规模、高质量有较大的发展空间。

谷氨酸的发酵工程

谷氨酸发酵过程控制 【摘要】谷氨酸是构成蛋白质的20种常见α氨基酸之一。作为谷氨酰胺、脯氨酸以及精氨酸的前体。谷氨酸的质量受到发酵的条件、菌种、温度、pH、接种量和种龄等因素的影响。如果控制不好这些因素整个发酵过程发酵液受污染、出现菌体的生长缓慢和代谢产物的积累很少、发酵周期延长甚至所得产品不是最终产品。本文通过综述发酵培养基、培养条件的控制及发酵过程温度、pH、接种量和种龄的控制,以及消泡等多方面因素,来提控制高谷氨酸发酵过程的参数来提高发酵的质量以些方法。 【关键词】谷氨酸、发酵、控制 1.谷氨酸概述 谷氨酸学名:2-氨基-5-羧基戊酸。构成蛋白质的20种常见α氨基酸之一。作为谷氨酰胺、脯氨酸以及精氨酸的前体。L-谷氨酸是蛋白质合成中的编码氨基酸,哺乳动物非必需氨基酸,在体内可以由葡萄糖转变而来。D-谷氨酸参与多种细菌细胞壁和某些细菌杆菌肽的组成。符号:E。 1.1谷氨酸用途 1)下游产品开发 将有一定反应活性的双功能基试剂氯乙醇和L—谷氨酸直接酯化保护羧基,用三光气活化成其相应的N—羧酸酐,可直接得到侧链具有一定反应活性的聚L—氯乙基谷氨酸酯。谷氨酸可生产许多重要下游产品如L—谷氨酸钠、L—苏氨酸、聚谷氨酸等。 2)食品业 谷氨酸是在食品工业中应用较多的氨基酸。谷氨酸钠俗称味精,是重要的鲜味剂,对香味具有增强作用。谷氨酸钠广泛用于食品调味剂,既可单独使用,又能与其它氨基酸等并用。用于食品内,能显着提高食品的风味和有增香作用。谷氨酸作为风味增强剂可用于增强饮料和食品的味道,不仅能增强食品风味,对动物性食品有保鲜作用。 3)日用化妆品等 谷氨酸为世界上氨基酸产量最大的品种。如:N—酰基谷氨酸钠系列产品是由谷氨酸缩合而成的性能优良的阴离子表面活性剂,广泛用于化妆品、香皂、牙膏、香波、泡沫浴液、洗洁净等产品中。谷氨酸作为营养药物可用于皮肤和毛发。用于生发剂,能被头皮吸收,预防脱发并使头发新生,对毛乳头、毛母细胞有营养

(完整版)谷氨酸发酵

1)生物素营养缺陷型 ?作用机制:生物素是脂肪酸生物合成最初反应的关键酶乙酰CoA羧化酶的辅酶,参与 了脂肪酸的合成,进而影响脂肪酸的合成.当磷脂合成量少到正常的1/2左右时,细胞变形,Glu向膜外泄漏. ?控制关键:使用该类突变株必须限制发酵培养基中生物素亚适量(5-10 g/L).在发酵 初期(0-8小时),细胞正常生长,当生物素耗尽后,在菌的再次倍增时,开始出现异常形态细胞,即完成了细胞从生长型到积累型转换. 2)油酸营养缺陷型 ?作用机制:油酸营养缺陷型丧失了合成油酸的能力,通过控制油酸使磷脂合成量减少 到正常量的1/2左右. ?控制关键:保证在培养基中油酸亚适量,完成细胞从生长型到生产型的转换. (3)添加表面活性剂 ?添加表面活性剂(如吐温60)或不饱和脂肪酸(C16-18),也能造成细胞渗漏,积累谷氨 酸. ?机理:两者在脂肪酸合成时对生物素有拮抗作用,导致磷脂合成不足,形成不完整的细 胞膜. ?关键:控制好脂肪酸或表面活性剂的时间和浓度,必须在药剂加入后,在这些药剂存在 下进行分裂,形成产酸型细胞. (4)添加青霉素 ?机理:青霉素抑制谷氨酸生产菌细胞壁后期的合成,细胞膜在失去保护,在渗透压的作 用下受损,向外泄露谷氨酸. ?控制关键:一般在进入对数生长期的早期(3-6小时)添加.添加青霉素后倍增的菌体不 能合成完整的细胞壁,完成细胞功能的转换. 谷氨酸发酵强制控制工艺 ?为了稳产,克服培养基原料中某些成分不易控制带来的影响,在谷氨酸发酵时可采取 “强制控制”的方法,如:“高生物素高吐温”或“高生物素高青霉素”的方法. ?控制方法:在发酵培养基中预先配加一定量(过量)的纯生物素,大大地削弱每批原料 中生物素含量变化的影响,高生物素、大接种量能促进菌体迅速增殖.再在菌体倍增的早期加入相对高的吐温或青霉素,形成产酸型细胞.固定其它条件,确保高产稳产。谷氨酸发酵 ? 1.适应期:尿素分解出氨使pH上升.糖不利用.2-4h. 措施:接种量和发酵条件控制使适应期缩短. ? 2.对数生长期:糖耗快,尿素大量分解使pH上升,氨被利用pH又迅速下降.溶氧急剧 下降后维持在一定水平.菌体浓度迅速增大,菌体形态为排列整齐的八字形.不产酸.12h. 措施:及时供给菌体生长必须的氮源及调节pH,在pH7.5-8.0时流加尿素;维持温度30- 32℃ ? 3.菌体生长停止期:谷氨酸合成. 措施:提供必须的氨及pH维持在7.2-7.4.大量通**,控制温度34-37 ℃. ? 4.发酵后期:菌体衰老,糖耗慢,残糖低. 措施:营养物耗尽酸浓度不增加时,及时放罐. 发酵周期一般为30h. 二、谷氨酸发酵的生化过程

年产2万吨谷氨酸发酵生产的初步设计

年产2万吨谷氨酸发酵生产的初步设计

第一章总论 一、设计项目: (1)设计课题:年产2万吨谷氨酸发酵工厂的初步设计 (2)厂址:某市 (3)重点工段:糖化 (4)重点设备:糖化罐 二、设计范围: (1)厂址选择及全厂概况介绍(地貌、资源、建设规模、人员);(2)产品的生产方案、生产方法、工艺流程及技术条件的制定;(3)重点车间详细工艺设计、工艺论证、设备选型及计算;(4)全厂的物料衡算; (5)全厂的水、电、热、冷、气的衡算; (6)车间的布置和说明; (7)重点设备的设计计算; (8)对锅炉、电站、空压站等提出要求及选型; (9)对生产和环境措施提出可行方案。 三、要完成的设计图纸: (1)全厂工艺流程图一张; (2)重点车间工艺流程图一张; (3)重点车间设备布置立面图一张;

(4)重点车间设备布置平面图一张; (5)重点设备装配图一张。 四、设计依据: (1)批准的设计任务书和附件可行性报告,以及可靠的设计基础资料。 (2)我国现行的有关设计和安装的设计规范和标准 (3)广东轻工职业技术学院食品系下达的毕业设计任务书 五、设计原则: (1)设计工作要围绕现代化建设这个中心,为这个中心服务。首先要有加速社会主义四个现代化早日实现的明确指导思想,做到精心设计,投资省,技术新,质量好,收效快,收回期短,使设计工作符合社会主义经济建设的总原则。 (2)要学会查阅文献,收集设计必要的技术基础资料,要善于从实际出发去分析研究问题,加强技术经济的分析工作。(3)要解放思想,积极采用技术,力求设计上具有现实性和先进性,在经济上具有合理性,尽可能做到能提高生产率,实现机械化和自动化,同时兼顾社会和环境的效益。 (4)设计必须结合实际,因地制宜,体现设计的通用性和独特性相结合,工厂生产规模、产品品种的确定,要适应国民经济的需求,要考虑资金的来源,建厂的地点、时间、三废综合

发酵工艺流程

发酵工艺标准操作流程 (SOP) 一生产前准备 每次生产前按品种配方将所需原料称重准备齐全,并确认生产原料库存量,保证原料库存量足够下次生产所需、 二生产前检查 1检查蒸汽、压缩空气、冷却水进出的管路就是否畅通,所有阀门就是否良好,并关闭所有阀门、 2检查电路、控制柜、开关的状态,确保控制柜运行正常、 3检查空压机油表油表及轴承、三角带、气缸等就是否正常,确保空压机运行正常、 4检查发酵罐搅拌减速机的油量及密封轴降温水就是否正常、 三总过滤器灭菌 当蒸汽总管路上的压力为0、2-0、25MPa时,打开总过滤器进气阀输入蒸汽,同时打开出气阀的跑分阀、排气阀、排污阀,当三个阀均排出蒸汽时,调整进气阀、排污阀,稳定总过滤器压力0、15-0、2MPa,此时打开压力表下跑分,计时灭菌2-2、5小时、灭菌结束后启动空压机,当空气输入管道压力大于总过滤器压力时,关闭蒸汽阀,打开空气阀,将空气出入总过滤器,然后调整进气阀与排污阀,稳定总过滤器压力在0、15-0、2MPa,保持通气在15-20小时,当出气阀跑分与排污阀放出的空气为干燥空气时,完成灭菌、 四分过滤器灭菌 1当蒸汽管路压力为0、2-0、25MPa时,打开蒸汽过滤器的进气阀与排污阀,当蒸汽管路中无蒸汽凝结液后,再将蒸汽输入空气管路,然后打开分过滤器的进气阀、排污阀及出气阀上的跑分,当所有阀门均有蒸汽排出后,调整进气与排污阀,就是压力稳定在0、11-0、15MPa,计时灭菌30-35分钟、灭菌结束后,关闭蒸汽过滤器进出气阀、排污阀,并立即将空气输入预过滤器,使空气通过预过滤器进入到分过滤器,再调整分过滤器排污阀使压力稳定在0、11-0、15MPa,备用、

2m3谷氨酸发酵罐设计

江西科技师范学院 生物工程专业《化工原理课程设计》说明书 题目名称2m3 产谷氨酸发酵罐的设计 专业班级2009 级生物工程(1)班 学号 学生姓名唐盼阙素云周婷 指导教师常军博士 2011 年10 月31 日

目录 一、设计方案的确定1 谷氨酸的生产工艺流程1 生产原料1 发酵菌株1 培养基的制备2 二、发酵罐主体设计计算2 发酵罐主要条件及主要技术指标2 罐体选型、几何尺寸的确定、罐体主要部件尺寸的设计计算3发酵罐的选型3 发酵罐容积的确定 3 发酵罐装液量的确定3 冷却装置的设计3 罐体选料4 罐体壁厚4 封头壁厚计算5 夹套直径5 挡板的设计5 搅拌器的设计5 搅拌器的计算5 搅拌轴功率的计算 6 管道设计8 通风管管径计算8 进出物料管8 冷却水进出口管径 8 管道接口8 仪表接口8 三、其他附件选型9 四、附录及图纸10 附录1计算结果汇总表10 附录2计算结果汇总表10 五、总结11 六、参考文献及资料12

一、设计方案的确定 谷氨酸的生产工艺流程 谷氨酸的生产主要包括以下工作:谷氨酸发酵的原料处理和培养基的配制; 子培养;发酵工艺条件的控制;谷氨酸提取;谷氨酸的精制。 发酵法生产谷氨酸的工艺流程如下: 图1 谷氨酸生产工艺流程图 生产原料 谷氨酸生产时发酵原料的选择原则:首先考虑菌体生长繁殖的营养;考虑到有利于谷氨酸的大量积累;还要考虑原料丰富,价格便宜;发酵周期短,产品易提取等因素。目前谷氨酸生产上多采用尿素为氮源,采用分批流加,以生物素为生长因子。国内大多数厂家用淀粉为发酵原料,主要有玉米、小麦、甘薯、大米等,其中甘薯的淀粉最为常用。少数厂家用糖蜜为发酵原料,主要有甘蔗糖蜜、甜菜糖蜜。 发酵菌株 现有谷氨酸生产菌分属于棒状杆菌属、短杆菌属、小杆菌属及节杆菌属。目前工业上应用的谷氨酸产生菌有谷氨酸棒状杆菌、乳糖发酵短杆菌、散枝短杆菌、黄色短杆菌、噬氨短杆菌等。目前国内各味精厂所使用的谷氨酸生产菌主要有(1)纯齿棒状杆菌及其 (2)天津短杆菌T613及其诱变株FM-415、CMTC6282、诱变株B9、B9-17-36、F-263等菌株; S9114等菌株;(3)北京棒杆菌及其诱变株D110等菌株。本实验选择北京棒杆菌。

谷氨酸发酵车间的物料衡算

工艺计算 生产方法:以工业淀粉为原料、双酶法糖化、流加糖发酵,低温浓缩、等电提取。主要技术指标: 淀粉液化工艺参数: 糖化工艺参数:

培养基配方: 灭菌各参数:

一、谷氨酸发酵车间的物料衡算 首先计算生产1000kg 纯度为100%的味精需耗用的原材料以及其他物料量。 (一)、发酵液量 设发酵液初糖和流加高浓糖最终发酵液总糖浓度为180kg/ ,则发酵液量为: )(0.8% 124%99%95%601801000 3 1m V =????= 式中 180——发酵培养基终糖浓度(kg/) 60%——糖酸转化率 95%——谷氨酸转化率 99%——除去倒罐率1%后的发酵成功率 124%——味精对谷氨酸的精制产率 (二)、发酵液配制需水解糖量,以纯糖计算: )(136017011kg V G =?= (三)、二级种液量: ) (4.0%53 12m V V == (四)、二级种子培养液所需水解糖量: )(164022kg V G == 式中 40——二级种液含糖量(kg/) (五)、生产1000kg 味精需水解糖总量: )(137616136021kg G G G =+=+= (六)、耗用淀粉原料量: 理论上,100kg 淀粉转化生成葡萄糖量为111kg ,故耗用淀粉量为: )(6.1572%)111%5.98%80(G kg G =??÷=淀粉 式中 80%—淀粉原料含纯淀粉量 98.5%—淀粉糖化转化率 (七)、液氨耗用量: 二级种液耗液氨量:2.4V 2=0.96(kg ) 发酵培养基耗液氨量:20V 1=160(kg ) 共耗液氨量:160+0.96=161.0(kg ) (八)、磷酸氢二钾耗量:

谷氨酸发酵生产工艺

目录1.谷氨酸发酵生产工艺简介 1.1工艺流程 1.2工艺参数 1.3工艺要求 2串级控制系统特点与分析 2.1串级系统特点 2.2串级控制结构框图及分析 3控制方案 3.1总体方案 3.2系统放图 3.3待检测点的控制系统流程图 4仪表的选型 4.1热交换器 4.2仪表清单 5控制算法选择 5.1控制规律 5.2调节器正反作用的选择 6总结 7参考文献 附图

串级控制系统-----两只调节器串联起来工作,其中一个调节器的输出作为另一个调节器的给定值的系统。 例:加热炉出口温度与炉膛温度串级控制系统 1. 基本概念即组成结构

串级控制系统采用两套检测变送器和两个调节器,前一个调节器的输出作为后一个调节器的设定,后一个调节器的输出送往调节阀。 前一个调节器称为主调节器,它所检测和控制的变量称主变量(主被控参数),即工艺控制指标;后一个调节器称为副调节器,它所检测和控制的变量称副变量(副被控参数),是为了稳定主变量而引入的辅助变量。 整个系统包括两个控制回路,主回路和副回路。副回路由副变量检测变送、副调节器、调节阀和副过程构成;主回路由主变量检测变送、主调节器、副调节器、调节阀、副过程和主过程构成。 在该反应中,主要控制的指标是釜温。但由于测量元件的测量滞后,以及由于测量套管插入其内,在套管的外表面有反应发生,很容易造成釜温的假象。因此在升温-恒温控制的过程中需要热水和冷水的交换切换,以便使谷氨酸发酵充分反应,提高产品质量。 主、副变量,主、副控制器(调节器),主、副对象,主、副检测变送器,主、副回路。 作用在主、副对象上的干扰分别为一、二次干扰 系统特点及分析 * 改善了过程的动态特性,提高了系统控制质量。 * 能迅速克服进入副回路的二次扰动。 * 提高了系统的工作频率。 * 对负荷变化的适应性较强 串级控制系统的特点:

谷氨酸发酵

谷氨酸发酵 目前工业上应用的谷氨酸产生菌有谷氨酸棒状杆菌、乳糖发酵短杆菌、散枝短杆菌、黄色短杆菌、噬氨短杆菌等。我国常用的菌种有北京棒状杆菌、纯齿棒状杆菌等。 谷氨酸除用于制造味精外,还可以用来治疗神经衰弱以及配制营养注射液等。我国的谷氨酸发酵虽然在产量、质量等方面有了较大的提高,但与国外先进水平相比还存在一定差距。主要表现在:设备陈旧,规模小,自控水平、转化率和提取率低,易受噬菌体污染,废水污染问题尚未完全解决等。 一、菌种的选育 主要通过基因突变、基因工程、细胞工程得到优良的菌种。 可以从自然界中先分离出相应的菌种,再用物理或化学的方法使菌种产生突变,从突变个体中筛选出符合生产要求的优良菌种。 在谷氨酸发酵中,如果能够改变细胞膜的通透性,使谷氨酸不断地排到细胞外面,就会大量生成谷氨酸。研究表明,影响细胞膜通透性的主要因素是细胞膜中的磷脂含量。因此,对谷氨酸产生菌的选育,往往从控制磷脂的合成或使细胞膜受损伤入手,以提高细胞膜对谷氨酸的通透性,如生物素缺陷型菌种的选育。 1.谷氨酸生产菌的生化特征 1. α-酮戊二酸氧化能力微弱: α-酮戊二酸脱氢酶丧失或活性低. 2. 谷氨酸脱氢酶活性强. 3. 还原性辅酶Ⅱ(NADPH+H+)进入呼吸链能力缺陷或微弱. 4. 异柠檬酸裂解酶活力微弱. 5. 不利用谷氨酸. 6. 耐高糖耐高谷氨酸 . 7. CO2固定能力强. 8 .解除谷氨酸反馈抑制. 9. 具有向胞外分泌谷氨酸的能力. 2.谷氨酸产生菌 棒杆菌属:北京棒杆菌 钝齿棒杆菌 谷氨酸棒杆菌 短杆菌属:黄色短杆菌 产氨短杆菌 小杆菌属:嗜氨小杆菌 节杆菌属:球形节杆菌 3.共同点: 1. α-酮戊二酸氧化能力微弱: α-酮戊二酸脱氢酶丧失或活性低. 2. 谷氨酸脱氢酶活性强. 3. 还原性辅酶Ⅱ(NADPH+H+)进入呼吸链能力缺陷或微弱. 4. 异柠檬酸裂解酶活力微弱. 5. 不利用谷氨酸.

味精的生产工艺流程简介教程文件

1味精的生产工艺流程简介 味精的生产一般分为制糖、谷氨酸发酵、中和提取及精制 等4个主要工序。 1.1液化和糖化 因为大米涨价,目前大多数味精厂都使用淀粉作为原材 料。淀粉先要经过液化阶段。然后在与B一淀粉酶作用进入糖 化阶段。首先利用一淀粉酶将淀粉浆液化,降低淀粉粘度并 将其水解成糊精和低聚糖,应为淀粉中蛋白质的含量低于原来 的大米,所以经过液化的混合液可直接加入糖化酶进入糖化阶 段,而不用像以大米为原材料那样液化后需经过板筐压滤机滤 去大量蛋白质沉淀。液化过程中除了加淀粉酶还要加氯化钙, 整个液化时间约30min。一定温度下液化后的糊精及低聚糖在 糖化罐内进一步水解为葡萄糖。淀粉浆液化后,通过冷却器降 温至60℃进入糖化罐,加入糖化酶进行糖化。糖化温度控制在60℃左右,PH值4.5,糖化时间18-32h。糖化结束后,将糖化罐加热至80 85℃,灭酶30min。过滤得葡萄糖液,经过压滤 机后进行油水分离(一冷分离,二冷分离),再经过滤后连续消 毒后进入发酵罐。 1.2谷氨酸发酵发酵 谷氨酸发酵过程消毒后的谷氨酸培养液在流量监控下进入谷氨酸发酵罐,经过罐内冷却蛇管将温度冷却至32℃,置入 菌种,氯化钾、硫酸锰、消泡剂及维生素等,通入消毒空气,经一

段时间适应后,发酵过程即开始缓慢进行。谷氨酸发酵是一个 复杂的微生物生长过程,谷氨酸菌摄取原料的营养,并通过体 内特定的酶进行复杂的生化反应。培养液中的反应物透过细胞 壁和细胞膜进入细胞体内,将反应物转化为谷氨酸产物。整个 发酵过程一般要经历3个时期,即适应期、对数增长期和衰亡期。每个时期对培养液浓度、温度、PH值及供风量都有不同的 要求。因此,在发酵过程中,必须为菌体的生长代谢提供适宜的生长环境。经过大约34小时的培养,当产酸、残糖、光密度等指标均达到一定要求时即可放罐。 1.3 谷氨酸提取与谷氨酸钠生产工艺 该过程在提取罐中进行。利用氨基酸两性的性质,谷氨酸 的等电点在为pH3.0处,谷氨酸在此酸碱度时溶解度最低,可经长时间的沉淀得到谷氨酸。粗得的官司谷氨酸经过于燥后分 装成袋保存。 1.4谷氨酸钠的精制 谷氨酸钠溶液经过活性碳脱色及离子交换柱除去C a 、 Mg 、F e 离子,即可得到高纯度的谷氨酸钠溶液。将纯净的 谷氨酸钠溶液导入结晶罐,进行减压蒸发,当波美度达到295 时放入晶种,进入育晶阶段,根据结晶罐内溶液的饱和度和结 晶情况实时控制谷氨酸钠溶液输入量及进水量。经过十几小时 的蒸发结晶,当结晶形体达到一定要求、物料积累到80%高度时,将料液放至助晶槽,结晶长成后分离出味精,送去干燥和筛

谷氨酸发酵知识完全总结

谷氨酸的性质及基本介绍 147.12926 1.538 主要用途简介: (一)食品工业:谷氨酸钠俗称味精,是重要的鲜味剂,对香味具有增强作用。 (二)日用化妆品:谷氨酸作为营养药物可用于皮肤和毛发。 N—酰基谷氨酸钠系列产品是由谷氨酸缩合而成的性能优良的阴离子表面活性剂,广泛用于化妆品、香皂、牙膏、香波、泡沫浴液、洗洁净等产品中。 焦谷氨酸钠(味精脱水生成的产物)具有极强的吸湿性,能保持皮肤湿润,防止干燥,并增强皮肤和毛发的柔软和弹力。日本己有以谷氨酸钠(或谷氨酸)为原料生产的高级人造革、化妆品和洗涤剂等产品。 (三)医药行业:谷氨酸作有较高的营养价值,医学上主要用于治疗肝性昏迷,还用于改善儿童智力发育。 (四)农业:谷氨酸与某些激素配合,可制成柑桔增甜剂;还可作为微肥的载体,在氮磷钾基本满足的条件下,作为叶面喷洒的微肥具有投入少、效益高等特点。 谷氨酸钠既是西红柿保护性杀菌剂,又是防治果树腐烂病的特效杀菌剂。 氨基酸铜是目前生产上良好的杀菌剂,有机铜比无机铜的应用效果好。 特殊说明: (一)谷氨酸晶体为白色结晶或结晶性粉末,味微酸。 (二)吸湿性温度50℃,其临界湿度在90%以上。

谷氨酸生产水平与市场分析 生产水平: 谷氨酸棒状杆菌-生物素敏感型高产菌株:采用生物素亚适量工艺,发酵32h,产酸达140g/L以上,糖酸转化率达62%以上,国内同类研究的领先水平。 谷氨酸棒状杆菌-谷氨酸温度敏感型突变株:在最佳发酵条件下,发酵24h,产酸达到160g/L,糖酸转化率达72%,国际同类研究的先进水平。 市场分析: 我国味精工业的产量稳居世界第一位,2007年全国味精产量达190万吨。味精工厂的味精平均销售价格为7,800元/吨,成本为7,000元/吨。按照上述产量计算,我国味精工业中纯味精的总产值约150亿元,加上相当于上述总值30%的副产品(主要是饲料蛋白、化肥、液态肥料)的产出,我国味精工业年生产总值约为200亿元人民币。 从市场需求来看,2007年国内谷氨酸年产量约190万吨,国内人均消费味精仅1kg,与日本、香港、台湾、东南亚等国家及地区的味精消费水平(1.5kg)相比,还是较低的。味精综合开发利用的效益显著,通过提高产酸率,吨味精成本可降低500元左右,其生产成本将低于日本的味精生产成本,具备了参与国际市场的竞争力,可以抓住机遇扩大味精出口量。同时在国内可降低味精销售价格,刺激国内市场消费。

氨基酸工艺学

1、味精是L-谷氨酸单钠的商品名称,含有一分子的结晶水,其分子式为NaC5H8O4N·H2O 2、国内味精厂所使用的谷氨酸生产菌株主要有北京棒杆菌AS1.299、钝齿杆菌AS1.542 和天津短杆菌T 6-13三类。 3、谷氨酸发酵中,谷氨酸产生菌只有一条生物合成途径中,生成谷氨酸的前体物为α-酮戊二酸。而在赖氨酸发酵中,存在两条不同的生物合成途径,即二氨基庚二酸途径和α-氨基己二酸途径 4、谷氨酸制味精过程中,中和操作时一般应先加谷氨酸后加碱,否则会发生消旋化,生成DL- 谷氨酸钠。 5、在谷氨酸发酵中,溶解氧的大小对发酵过程有明显的影响。若通气不足,会生成乳酸或琥珀 酸,若通气过量,会生成ɑ-酮戊二酸 6、从发酵液中提取赖氨酸,目前一般采用离子交换方法。影响提取得率最大的是菌体和钙离子 7、谷氨酸的晶型分为α-型结晶和β-型结晶两种,等电点提取谷氨酸时,首先必须形成一定数量 的晶核,然后才能进行育晶。谷氨酸起晶有自然起晶和加晶种起晶两种方法。 8在谷氨酸发酵中,生成谷氨酸的主要酶有谷氨酸脱氢酶(GHD)、转氨酶(AT)和谷氨酸合成酶(GS)三种。 9、L–谷氨酸在水溶液中的等电点是3.22,L–赖氨酸的等电点是6.96 10、在谷氨酸发酵过程中,对生物素的要求是亚适量,而在赖氨酸发酵生产中要求生物素过量。 11、游离的赖氨酸具有很强的呈盐性,因此,一般工业制造产品是以赖氨酸盐酸盐形式存在,其化学性质相当稳定。 二、单项选择题(共10小题,每小题2分,共20分) 得分评卷人 1、下列菌株中,_C_属于赖氨酸产生菌。 A.Hu7251 B.FM84-415 C.AS1.563 D.WTH-1 2、下列哪种氨基酸发酵是在供氧不足的条件下产酸最高?(D ) A.精氨酸B.赖氨酸C.苏氨酸D.亮氨酸 3、谷氨酸发酵产酸期的最适温度一般为(C )。 A.30℃~32℃B.32℃~34℃C.34℃~37℃D.38℃~40℃ 4、在谷氨酸(AS1.299菌)发酵中后期,为有利于促进谷氨酸合成,pH值维持在___C__范围为好。A.pH6.2~6.4 B.pH6.8~7.0 C.pH7.0~7.2 D.pH7.3~7.6

各种氨基酸的生产工艺

各种氨基酸的生产工艺 1、谷氨酸 (1)等电离交工艺方法一一从发酵液中提取谷氨酸,即将谷氨酸发酵液降温并用硫酸调PH值至谷氨酸等电点(pH3.0- 3.2),温度降到10 以下沉淀,离心分离谷氨酸,再将上清 液用硫酸调pH至1.5上732强酸性阳离子交换树脂,用氨水调上清液pH10进行洗脱,洗 脱下来的高流分再用硫酸调pH1.0返回等电车间加入发酵液进行等电提取,离交车间的上柱后的上清液及洗柱水送去环保车间进行废水处理。 该工艺方法的缺点是:废水量大,治理成本高,酸碱用量大。 ⑵连续等电工艺一一将谷氨酸发酵液适当浓缩后控制40 C左右,连续加入有晶种的等电罐中,同时加入硫酸,控制等电罐中PH值维持在3.2左右,温度40 C进行结晶。 该工艺方法废的优点是:水量相对较少;缺点是:氨酸提取率及产品质量较差。 (3) 发酵法生产谷氨酸的谷氨酸提取工艺——谷氨酸发酵液经灭菌后进入超滤膜进行 超滤,澄清的谷氨酸发酵液在第一调酸罐中被调整pH值为3.20?3.25,然后进入常温的 等电点连续蒸发降温结晶装置进行结晶,分离、洗涤,得到谷氨酸晶体和母液,将一部分母液进入脱盐装置,脱盐后的谷氨酸母液一部分与超滤后澄清的谷氨酸发酵液合并;另一部分在第二调酸罐中被调整 pH值至4.5?7,蒸发、浓缩、再在第三调酸罐中调pH值至 3.20?3.25后,进入低温的等电点连续蒸发降温结晶装置,使母液中的谷氨酸充分结晶出来,低温的等电点连续蒸发降温结晶装置排出的晶浆被分离、洗涤,得到谷氨酸晶体和二次母液。 (4) 水解等电点法 发酵液-一浓缩(78.9kPa , 0.15MPa 蒸汽)----盐酸水解(130 C, 4h ) 一过滤-- ---滤液脱色-----浓缩-----中和,调pH至3.0-3.2 ( NaOH或发酵液) 一-低温放置, 析晶---- 谷氨酸晶体 此工艺的优点:设备简单、废水量减少、生产成本低、酸碱用量省 ⑸低温等电点法 发酵液-----边冷却边加硫酸调节PH4.0-4.5----- 加晶种,育晶2h-----边冷却边加硫酸 调至pH3.0-3.2——冷却降温——搅拌16h——4 C 静置4h——离心分离—— --谷氨酸晶体 此工艺的优点:设备简单、废水量减少、生产成本低、酸碱用量省 ⑹直接常温等电点法 发酵液-----加硫酸调节PH4.0-4.5----- 育晶2-4h----- 加硫酸调至pH3.5-3.8------ 育 晶2h------加硫酸调至pH3.0-3.2------ 育晶2h------冷却降温------搅拌16-20h------ 沉淀2-4h ------- 谷氨酸晶体 此工艺的优点:设备简单、操作容易、生产周期短、酸碱用量省。 2、L-亮氨酸 (1) 浓缩段原料:蒸汽将一次母液通入浓缩罐内,通入蒸汽,温度120度,气压-0.09Mpa ,浓缩时间6h,结晶。 终点产物:结晶液(去一次中和段) (2 ) 一次中和段辅料:硫酸,纯水结晶液进入一次中和罐,通入硫酸,纯水,温度80,中和时间4h,过滤

谷氨酸发酵控制

一简述甜菜糖蜜添加吐温发酵的机理!!! 吐温是一种表面活性剂,它是在菌体细胞不饱和脂肪酸合成的过程中,作为抗代谢物具有抑制作用,对生物素具有拮抗作用。通过拮抗脂肪酸的生物合成,达到控制磷脂合成,导致磷脂合成不足。结果形成磷脂合成不足的不完全的细胞膜,提高了谷氨酸向膜外漏出的渗透性。 二简述甘蔗糖蜜添加青霉素流加糖发酵的机理!!! 添加青霉素可抑制谷氨酸生产菌细胞壁的后期合成,主要抑制糖肽转肽酶,影响细胞壁肽聚糖的生物合成。因为青霉素的结构与革兰氏阳性的谷氨酸菌所特有的糖肽的D-Ala-D-Ala末端结构类似,因而它取代合成糖肽的底物而和酶的活性中心结合,是五肽末端的丙氨酸不能被肽酶移去,谷氨酸桥一头无法与它前面的丙氨酸相接,因此交联不能形成,网状的结构连接不起来,糖肽的合成就不能完成,于是菌体内的尿二磷和N-乙酰胞壁酸便大量的积累,青霉素与转肽酶相结合,形成了青霉素的酶,结果形成不完全的细胞壁,导致形成不完全的细胞膜。由于青霉素合成细胞壁后期生物合成,是细胞膜处于无保护的状态,又由于膜内外的渗透压差,进而导致细胞膜的物理损伤,形成不完全的细胞膜,失去渗透障碍物,增大了谷氨酸向胞外分泌的渗透能力。 三简述温度敏感突变株发酵生产谷氨酸的机理!!! 谷氨酸温度敏感突变株的突变位置是在决定与谷氨酸分泌有密切关系的细胞膜结构基因上,发生碱基的转换或者颠换,一个碱基被另一

个碱基所置换,这样为该基因所指导的酶在高温下失活,导致细胞膜某些结构的改变,当控制培养温度为最适温度时,菌体正常的生长,当温度提高到一定的程度时,菌体便停止生长且大量的产酸。而它仅需通过控制物理的方式就可以完成谷氨酸生产菌由生长型细胞向产酸型细胞的转变。 四简述谷氨酸发酵培养基对发酵的影响及控制措施!!! 影响因素及控制措施如下: 1.生物素 谷氨酸在发酵的过程中,前期:菌体的生殖期,一定量的生物素是菌体增殖期所必须的一般在5ug/L,而在产物合成期,要控制生物素的浓度,一般在0.5ug/g,以保证产物的正常合成。 2. 碳源 谷氨酸产生菌均不能利用淀粉,只能利用葡萄糖、蔗糖、麦芽糖等;有些菌种能利用醋酸、乙醇、正烷烃等作碳源。淀粉水解糖的质量对发酵影响很大。一般还原性的糖的浓度控制在125—150g/L。 3 碳氮比 碳氮比对谷氨酸发酵影响很大,在发酵的不同阶段,控制碳氮比以促进以生长阶段向产酸阶段转化,在长菌阶段,如氨根离子过量会抑制菌体生长,在产酸阶段,如氨根离子不足,a-酮戊二酸不能还原并氨基化,而积累a-酮戊二酸,谷氨酸生成量少。 一般发酵工业碳氮比为100:(0.2~2.0),谷氨酸的碳氮比为100:(15~30),当碳氮比在100:11以上才开始累积谷氨酸。

谷氨酸发酵

第一章文献综述 1.1谷氨酸简介 谷氨酸在生物体内的蛋白质代谢过程中占有重要地位,参与动物、植物和微生物中的许多重要化学反应。目前,我国许多工厂采用多种方法来提高谷氨酸产率,如选育高产菌种、改进发酵工艺、搞好发酵控制、引进微机控制、增加控制参数等。这些方法对于提高谷氨酸产率非常有效。 谷氨酸是生产味精的主要原料,随着发酵法生产谷氨酸技术的发展,我国味精生产始于1923年,至今已有80多年历史,随着科学技术的不断进步,味精生产技术也在不断变革,由创建之初的以面筋、豆粕为原料水解法生产工艺,改变为现在以淀粉为原料发酵法生产工艺,发酵法生产工艺从1964年在上海味精厂首次投入生产以来,发酵法生产谷氨酸的生产技术进步较大,尤其是近几年随着菌种的突破以及新技术,新设备的应用进展更快,进入九十年代,尤其九五年后,技术进步较快,目前行业最好水平时(仅少数厂家)制糖收率99%以上,发酵产酸11-12%,转化率59-62%,提取收率96-98%精制收率96%,与80年代比较全行业平均制糖收率提高了10%,发酵产酸率提高了117%,转化率提高了43%,提取收率提高了20%,精制收率提高了8.8%,综合技术指标淀粉消耗下降了166%

1.2谷氨酸的生产工艺流程 1.2.1液化和糖化 因为大米涨价, 目前大多数味精厂都使用淀粉作为原材料。淀粉先要经过液化阶段。然后再与β- 淀粉酶作用进入糖化阶段。首先利用α- 淀粉酶将淀粉浆液化, 降低淀粉粘度并将其水解成糊精和低聚糖, 应为淀粉中蛋白质的含量低于原来的大米, 所以经过液化的混合液可直接加入糖化酶进入糖化阶段, 而不用像以大米为原材料那样液化后需经过板筐压滤机滤去大量蛋白质沉淀。液化过程中除了加淀粉酶还要加氯化钙,整个液化时间约30min。一定温度下液化后的糊精及低聚糖在糖化罐内进一步水解为葡萄糖。淀粉浆液化后, 通过冷却器降温至60℃进入糖化罐, 加入糖化酶进行糖化。糖化温度控制在60℃左右, pH 值4.5, 糖化时间18~32h。糖化结束后, 将糖化罐加热至80~85℃, 灭酶30min。过滤得葡萄糖液, 经过压滤机后进行油水分离( 一冷分离, 二冷分离) , 再经过滤后连续消毒后进入发酵罐。 1.2.2谷氨酸发酵

生物素对谷氨酸发酵的影响及控制

生物素对谷氨酸发酵的影响及控制摘要: 阐述生物素对谷氨酸在发酵过程中的影响和控制生物素的用量来提高谷氨酸的产量,以及生物素测定方法的介绍。 关键词:生物素谷氨酸影响测定方法发酵 1生物素对谷氨酸生产的影响 1.1谷氨酸的生物合成途径 谷氨酸生物合成的主要途径:葡萄糖经糖酵解(EMP途径)和磷酸戊糖途径(HMP途径)生成丙酮酸,再被氧化成乙酰辅酶A(乙酰COA),然后进入三羧酸循环,生成α-酮戊二酸,α-酮戊二酸在谷氨酸脱氢酶的催化及NH4+的存在条件下,经还原氨基化反应生成谷氨酸。 1.2 生物素对谷氨酸生物合成途径的影响 生物素对谷氨酸生物合成途径有下列几方面的影响[1]: (1)生物素对糖酵解速度的影响 生物素在糖酵解过程中,主要影响糖酵解速度,而不是EMP途径与HMP途径的比率。在生物素充足条件下,糖降解速度远远超过丙酮酸的氧化速度,打破了糖降解速度与丙酮酸氧化速度之间的平衡,丙酮酸趋于生成乳酸,引起了乳酸的溢出。只有在生物素限量的情况下,糖降解速度与丙酮酸氧化速度才趋于平衡。 (2)生物素对NAD及NADH2含量的影响 在生物素缺乏菌中,葡萄糖氧化能力降低,特别是醋酸、琥珀酸的氧化能力显著减弱。在生物素缺乏菌中,NAD及NADH2含量减少到l/2-1/4。 (3)生物素对乙醛酸循环的影响 乙醛酸循环的关键酶是异柠檬酸裂解酶,该酶受葡萄糖、琥珀酸阻遏,为醋酸所诱导。葡萄糖为原料发酵生产谷氨酸时,在生物素亚适量条件下,异柠檬酸裂解酶几乎没有活性。原因在于丙酮酸氧化能力下降,醋酸生成速度减慢,为醋酸所诱导形成的异柠檬酸裂解酶很少。再者,由于该酶受琥珀酸阻遏,在生物素亚适量条件下,因氧化能力降低而积累的琥珀酸就会反馈抑制该酶活性,并阻遏该酶的生成,乙醛酸循环基本上是封闭的,代谢流向沿异柠檬酸→α-酮戊二酸→谷氨酸的方向高效率地移动。 (4)生物素对氮代谢的影响 生物素限量时,几乎没有异柠檬酸裂解酶,琥珀酸氧化力弱,苹果酸和草酰乙酸脱羧反应停滞,同时由于完全氧化降低的结果,使ATP的形成减少,蛋白质合成活动停滞。在铵离子适量条件下,生成积累谷氨酸,且生成的谷氨酸也不会通过转氨作用生成其他氨基酸。在生物素充足条件下,异柠檬酸裂解酶、琥珀酸氧化力、丙酮酸氧化力、蛋白质合成、乙醛酸循环比例、草酰乙酸和苹果酸脱羧反应都不断加大,导致谷氨酸量减少,通过转氨作用生

谷氨酸的发酵和提取工艺综述

综述:谷氨酸的发酵与提取工艺 第一部分谷氨酸概述 谷氨酸非人体所必需氨基酸,但它参与许多代谢过程,因而具有较高的营养价值,在人体内,谷氨酸能与血氨结合生成谷氨酰胺,解除组织代谢过程中所产生的氨毒害作用,可作为治疗肝病的辅助药物,谷氨酸还参与脑蛋白代谢和糖代谢,对改进和维持脑功能有益。另外,众所周知的谷氨酸钠盐即味精有很强烈的鲜味,是重要的调味品。 1996、1997、1998年味精年产量分别为55.0万吨、56.64万吨、59.03万吨。尽管如此,我国人均年消耗味精量还只有400g左右,而台湾省已达2000g。因此,中国将是世界上最大的潜在味精消费市场,也就是说,味精生产会稳步发展。这也意味着谷氨酸的生产不断在扩大[1]。 谷氨酸生产走到今天就生产技术而言已有了长足进步,无论是规模还是产能都今非昔比,与此同时各厂家还在追求完美, 这是行业进步的动力,也是生存之所需。实际上生产工艺是与时俱进的,没有瑕疵的工艺是不存在的。如:配方及提取方法现在是多种多样,有单一用纯生物素的,也有用甘蔗糖蜜加纯生物素的, 还有加玉米浆干粉或麸皮水解液及豆粕水解液等等;提取方法有:等电-离交、等电-离交-转晶、连续等点-转晶等等[2]。 本综述简述谷氨酸生产的流程及发酵机制,着重介绍谷氨酸的提取工艺。 第二部分谷氨酸生产原料及其处理 谷氨酸发酵的主要原料有淀粉、甘蔗糖蜜、甜菜糖蜜、醋酸、乙醇、正烷烃(液体石蜡)等。国内多数谷氨酸生产厂家是以淀粉为原料生产谷氨酸的,少数厂家是以糖蜜为原料进行谷氨酸生产的,这些原料在使用前一般需进行预处理。 (一)糖蜜的预处理 谷氨酸生产糖蜜预处理的目的是为了降低生物素的含量。因为糖蜜中特别是甘蔗糖蜜中含有过量的生物素,会影响谷氨酸积累。故在以糖蜜为原料进行谷氨酸发酵时,常常采用一定的措施来降低生物素的含量,常用的方法有以下几种:(1)活性炭处理法; (2)水解活性炭处理法;(3)树脂处理法。 (二)淀粉的糖化 绝大多数的谷氨酸生产菌都不能直接利用淀粉,因此,以淀粉为原料进行谷氨酸生产时,必须将淀粉质原料水解成葡萄糖后才能供使用。可用来制成淀粉水解糖的原料很多,主要有薯类、玉米、小麦、大米等,我国主要以甘薯淀粉或大米制备水解糖。 淀粉水解的方法有三种:①酸解法;②酶解法;③酸酶(或酶酸)结合法。 1.酸解法用酸解法生产水解糖,其工艺流程如下: 原料(淀粉、水、盐酸)调浆→糖化→冷却→中和→脱色→过滤除杂→糖液2.酶解法先用α-淀粉酶将淀粉水解成糊精和低聚糖,然后再用糖化酶将糊精和低聚糖进一步水解成葡萄糖的方法,称为酶解法。 与淀粉的酸解相比,酶解法具有以下一些优点:①酶解反应条件比较温和。细菌α-淀粉酶是在pH6.0~7.0、温度85~90℃条件下,将淀粉液化成能溶解于水的糊精和低聚糖;而糖化酶是在pH4.0~4.5、温度58—60℃条件下,完成糖化反应的。②由于酶的作用专一性强,因此水解过程中很少有副反应发生。③淀粉乳

年产5万吨谷氨酸发酵工厂设计开题报告综述

本科毕业设计(论文)开题报告 题目:年产5万吨谷氨酸工厂发酵设计 开题报告 课题类型:工业设计 学生姓名:刘少年 学号:3100402209 专业班级:生物工程102 学院:生物与化学工程学院 指导教师:李松 开题时间:2014年3 月 2014年月日

一、本课题的研究意义、研究现状和发展趋势 引言:谷氨酸为无色晶体或结晶性粉末,分为α、β两种晶型,通常β型稳定。分子式:COOCCH(NC2)CH2CH2COOH分子结构如下所示: 谷氨酸是生物机体内氮代谢的基本氨基酸之一,在代谢上具有重要意义。L一谷氨酸是蛋白质的主要构成成分,谷氨酸盐在自然界普遍存在。多种食品以及人体内都含有谷氨酸盐,它既是蛋白质或肤的结构氨基酸之一又是游离氨基酸,L型氨基酸美味较浓。谷氨酸(2一氨基戊二酸)有左旋体、右旋体和外消旋体。左旋体,即L一谷氨酸,是一种鳞片状或粉末状晶体,呈微酸性,无毒。微溶于冷水,易溶于热水,几乎不溶于乙醚、丙酮及冷醋酸中,也不溶于乙醇和甲醇。在200℃时升华,247℃一249℃分解,密度为1.538沙衬,旋光度+37一 +38.9(25℃)。谷氨酸的用途广泛,它本身作为药品,能治疗肝昏迷症,也可用来生产味精、食品添加剂、香料和用于生物化学的研究[1]。

1.1研究目的及意义 谷氨酸发酵是通气发酵,也是我国目前通气发酵产业中,生产厂家最多,产品产量最大的产业。该生产工艺和设备具有很强的典型性,本论文对味精发酵生产工艺及主要设备作简要介绍,以期有助于了解通气发酵工艺及主要设备的有关知识。本设计是年产量为20000吨的味精厂,重点是产品的物料衡算,热量衡算,同时工艺流程及设备选型等设计。本设计的重点车间为发酵工艺车间,重点设备为糖化,煮沸,发酵设备。 该论文设计的目的是从生产实际出发,确保生产的各个环节中使用较少的人力、物力、财力取得较大的经济效益。此为本设计的指导思想,亦是本设计最主要的特点。同时本设计从节约用地出发,充分利用厂房设备来安排产品,对于那些类型不相同,生产设备,生产条件十分相同,甚至是用同一厂房,设备来生产不同产品。 1.2谷氨酸用途 1.食品行业 应用较多的是制成谷氨酸钠。谷氨酸钠俗称味精,是重要的鲜味剂,对香味具有增强作用。谷氨酸钠广泛用于食品调味剂,既可单独使用,又能与其它氨基酸等并用,用于食品内,有增香作用。在食品中浓度为0.2%一0.5%,每人每天允许摄入量(ADI)为0一120微克/千克(以谷氨酸计)。在食品加工中一般用量为0.2一1.5克/公斤。谷氨酸 作为风味增强剂可用于增强饮料和食品的味道,不仅能增强食品风味,对动物性食品有保鲜作用。

相关文档
最新文档