lab5_贪心算法设计与应用

lab5_贪心算法设计与应用
lab5_贪心算法设计与应用

实验五贪心算法设计与应用

一.基本原理的概括

贪心法是一种算法设计技术,通常用于求解最优化问题。

通过一系列选择步骤来构造问题的解,每一步都是对当前部分解的一个扩展,直至获得问题的完整解。所做的每一步选择都必须满足:

1)可行的:必须满足问题的约束。

2)局部最优:当前所有可能的选择中最佳的局部选择。

3)不可取消: 选择一旦做出,在后面的步骤中就无法改变了。

要注意的是,贪心法不能保证总能得到最优解(一系列的局部最优选择不能保证最后得到整体最优解)

二.该类算法设计与实现的要点

贪心算法往往效率高,一般时间复杂性为多项式阶。贪心算法一般较简单,其关键和难点在于贪心选择策略的确定,以及证明相应的贪心算法确实可求出最优解。

三.实验目的和要求

理解贪心算法的基本原理,掌握贪心算法设计的基本方法及其应用;

四.实验内容

(一)加油问题(Problem Set 1702):

1.问题描述

一个旅行家想驾驶汽车从城市A到城市B(设出发时油箱是空的)。给定两个城市之间的距离dis、汽车油箱的容量c、每升汽油能行驶的距离d、沿途油站数n、油站i离出发点的距离d[i]以及该站每升汽油的价格p[i],i=1,2,…,n。设d[1]=0

要花最少的油费从城市A到城市B,在每个加油站应加多少油,最少花费为多少?

2.具体要求

Input

输入的第一行是一个正整数k,表示测试例个数。接下来几行是k个测试例的数据,每个测试例的数据由三行组成,其中第一行含4个正整数,依次为A和B两个城市之间的距离d1、汽车油箱的容量c(以升为单位)、每升汽油能行驶的距离d2、沿途油站数n (1<=n<=200);第二行含n个实数d1, d2,…, d n,表示各油站离出发点的距离(d1=0);

第三行含n个实数p1, p2,…, p n,表示各油站每升汽油的价格。同一行的数之间用一个空格隔开。

Output

对于每个测试例输出一行,含一个实数,表示从城市A到城市B所要花费的最少油费(输出的结果精确到小数点后一位)。若问题无解,则输出“No Solution”。

3.代码如下:

#include

#define MAX 20

void look(float dis[],float pir[],int n,int d2,int oil)//dis距离起点距离,pir油价

{

int i,j,k;

float pirce=0.0,c1=0,x,c2;

for(j=0;j<=n;j++)

{

{

if(pir[i]

{

k=i;

c2=(dis[k]-dis[j])/d2;

if(c2>=oil)

{

x=oil-c1;

}

else

{

x=c2-c1;

if(x<0)

{

x=0;

}

}

pirce=pirce+pir[j]*x;

break;

}

}

c1=c1+x-((dis[j+1]-dis[j])/d2);

}

printf("%.1f",pirce);

}

void main()

{

int k,i,j,n[MAX],c[MAX],d1[MAX],d2[MAX],length[MAX],flag[MAX];

float A[MAX][MAX],B[MAX][MAX];

printf("输入测试例个数:\n");

scanf("%d",&k);

for(i=0;i

{

printf("输入第%d个数据:\n",i+1);

flag[i]=0;

scanf("%d %d %d %d",&d1[i],&c[i],&d2[i],&n[i]);

length[i]=c[i]*d2[i];

for(j=0;j

{

scanf("%f",&A[i][j]);

}

A[i][n[i]]=d1[i]*1.0;

{

scanf("%f",&B[i][j]);

}

B[i][n[i]]=0.0;

printf("\n");

for(j=n[i];j>0;j--)

{

if(A[i][j]-A[i][j-1]>length[i])

{

flag[i]=1;

}

}

if(flag[i]==1)

{

printf("第%d次结果:",i+1);

printf("NO solution!\n");

}

else

{

printf("第%d次结果:",i+1);

printf("最少油费:");

look(A[i],B[i],n[i],d2[i],c[i]);

}

printf("\n");

printf("\n");

}

}

(二)黑白点的匹配(Problem Set 1714):

1.问题描述

设平面上分布着n个白点和n个黑点,每个点用一对坐标(x, y)表示。一个黑点b=(xb,yb)支配一个白点w=(xw, yw)当且仅当xb>=xw和yb>=yw。若黑点b支配白点w,则黑点b和白点w可匹配(可形成一个匹配对)。在一个黑点最多只能与一个白点匹配,一个白点最多只能与一个黑点匹配的前提下,求n个白点和n个黑点的最大匹配对数。

2.具体要求

Input

输入的第一行是一个正整数k,表示测试例个数。接下来几行是k个测试例的数据,每个测试例的数据由三行组成,其中第一行含1个正整数n(n<16);第二行含2n个实数xb1, yb1,xb2, yb2,…, xb n, yb n,(xb i, yb i),i=1, 2, …, n表示n个黑点的坐标;第三行含2n个实数xw1, yw1,xw2, yw2,…, xw n, yw n,(xw i, yw i),i=1, 2, …, n表示n个白点的坐标。

同一行的实数之间用一个空格隔开。

Output

对于每个测试例输出一行,含一个整数,表示n个白点和n个黑点的最大匹配对数。

3.代码如下:

#include "iostream.h"

#include "math.h"

struct point

{

double x,y;

};

void sort(point *a,int n)

{

int i,j;point p;

for(i=1;i<=n;i++)

{

for(j=i+1;j

{

if(a[i].x>a[j].x||(a[i].x==a[j].x&&(a[i].y>a[j].y)))

{

p=a[i];

a[i]=a[j];

a[j]=p;

}

}

}

}

double dis(point pointw,point pointb)

{

double dist;

dist=sqrt(pow((pointb.x-pointw.x),2)+pow((pointb.y-pointw.y),2));

return dist;

}

int main()

{

int i,j,n,k;

cin>>n;

point *pointw=new point[n];

point *pointb=new point[n];

int *b=new int[n];

for(i=1;i<=n;i++)

cin>>pointb[i].x;

for(i=1;i<=n;i++)

cin>>pointb[i].y;

for(i=1;i<=n;i++)

cin>>pointw[i].x;

for(i=1;i<=n;i++)

cin>>pointw[i].y;

sort(pointw,n);

for(i=1;i<=n;i++)

b[i]=1;

int count=0;

for(i=1;i<=n;i++)

{

double mindis=32767;

double Min=mindis;

for(j=1;j<=n;j++)

{

if(b[j]!=0&&pointb[j].x>=pointw[i].x&&pointb[j].y>=pointw[i].y)

{

if(mindis>dis(pointw[i],pointb[j]))

{

mindis=dis(pointw[i],pointb[j]);

k=j;

}

}

}

if(mindis

{

b[k]=0;

count++;

cout<

}

}

cout<<"最大匹配数:"<

return 0; }

算法设计与分析实验报告贪心算法

算法设计与分析实验报告 贪心算法 班级:2013156 学号:201315614 姓名:张春阳哈夫曼编码 代码 #include float small1,small2; int flag1,flag2,count; typedefstructHuffmanTree { float weight; intlchild,rchild,parent; }huffman; huffmanhuffmantree[100]; void CreatHuffmanTree(intn,int m) { inti; void select(); printf("请输入%d个节点的权值:",n); for(i=0;i

printf("\n"); for(i=0;i

《计算机算法设计与分析》习题及答案

《计算机算法设计与分析》习题及答案 一.选择题 1、二分搜索算法是利用( A )实现的算法。 A、分治策略 B、动态规划法 C、贪心法 D、回溯法 2、下列不是动态规划算法基本步骤的是( A )。 A、找出最优解的性质 B、构造最优解 C、算出最优解 D、定义最优解 3、最大效益优先是(A )的一搜索方式。 A、分支界限法 B、动态规划法 C、贪心法 D、回溯法 4. 回溯法解旅行售货员问题时的解空间树是( A )。 A、子集树 B、排列树 C、深度优先生成树 D、广度优先生成树 5.下列算法中通常以自底向上的方式求解最优解的是(B )。 A、备忘录法 B、动态规划法 C、贪心法 D、回溯法 6、衡量一个算法好坏的标准是( C )。 A 运行速度快 B 占用空间少 C 时间复杂度低 D 代码短 7、以下不可以使用分治法求解的是( D )。 A 棋盘覆盖问题 B 选择问题 C 归并排序 D 0/1背包问题 8. 实现循环赛日程表利用的算法是(A )。 A、分治策略 B、动态规划法 C、贪心法 D、回溯法 9.下面不是分支界限法搜索方式的是(D )。 A、广度优先 B、最小耗费优先 C、最大效益优先 D、深度优先 10.下列算法中通常以深度优先方式系统搜索问题解的是(D )。 A、备忘录法 B、动态规划法 C、贪心法 D、回溯法

11.备忘录方法是那种算法的变形。( B ) A、分治法 B、动态规划法 C、贪心法 D、回溯法 12.哈夫曼编码的贪心算法所需的计算时间为(B )。 A、O(n2n) B、O(nlogn) C、O(2n) D、O(n) 13.分支限界法解最大团问题时,活结点表的组织形式是(B )。 A、最小堆 B、最大堆 C、栈 D、数组 14.最长公共子序列算法利用的算法是(B)。 A、分支界限法 B、动态规划法 C、贪心法 D、回溯法 15.实现棋盘覆盖算法利用的算法是(A )。 A、分治法 B、动态规划法 C、贪心法 D、回溯法 16.下面是贪心算法的基本要素的是(C )。 A、重叠子问题 B、构造最优解 C、贪心选择性质 D、定义最优解 17.回溯法的效率不依赖于下列哪些因素( D ) A.满足显约束的值的个数 B. 计算约束函数的时间 C.计算限界函数的时间 D. 确定解空间的时间 18.下面哪种函数是回溯法中为避免无效搜索采取的策略(B ) A.递归函数 B.剪枝函数 C。随机数函数 D.搜索函数 19. (D)是贪心算法与动态规划算法的共同点。 A、重叠子问题 B、构造最优解 C、贪心选择性质 D、最优子结构性质 20. 矩阵连乘问题的算法可由( B )设计实现。 A、分支界限算法 B、动态规划算法 C、贪心算法 D、回溯算法 21. 分支限界法解旅行售货员问题时,活结点表的组织形式是( A )。

算法设计与分析课后部分习题答案

算法实现题3-7 数字三角形问题 问题描述: 给定一个由n行数字组成的数字三角形,如图所示。试设计一个算法,计算出从三角形的顶至底的一条路径,使该路径经过的数字总和最大。编程任务: 对于给定的由n行数字组成的数字三角形,编程计算从三角形的顶至底的路径经过的数字和的最大值。数据输入: 有文件input.txt提供输入数据。文件的第1行是数字三角形的行数n,1<=n<=100。接下来的n行是数字三角形各行的数字。所有数字在0-99之间。结果输出: 程序运行结束时,将计算结果输出到文件output.txt中。文件第1行中的数是计算出的最大值。 输入文件示例输出文件示 例 input.txt output.txt 5 30 7 3 8 8 1 0 2 7 4 4 4 5 2 6 5 源程序: #include "stdio.h" voidmain() { intn,triangle[100][100],i,j;//triangle数组用来存储金字塔数值,n表示行数 FILE *in,*out;//定义in,out两个文件指针变量 in=fopen("input.txt","r"); fscanf(in,"%d",&n);//将行数n读入到变量n中

for(i=0;i=0;row--)//从上往下递归计算 for(int col=0;col<=row;col++) if(triangle[row+1][col]>triangle[row+1][col+1]) triangle[row][col]+=triangle[row+1][col]; else triangle[row][col]+=triangle[row+1][col+1]; out=fopen("output.txt","w"); fprintf(out,"%d",triangle[0][0]);//将最终结果输出到output.txt中 } 算法实现题4-9 汽车加油问题 问题描述: 一辆汽车加满油后可行驶nkm。旅途中有若干加油站。设计一个有效算法,指出应在哪些加油站停靠加油,使沿途加油次数最少。并证明算法能产出一个最优解。编程任务: 对于给定的n和k个加油站位置,编程计算最少加油次数。数据输入: 由文件input.txt给出输入数据。第1行有2个正整数n和k ,表示汽车加满油后可行驶nkm,且旅途中有k个加油站。接下来的1行中,有k+1个整数,表示第k个加油站与第k-1个加油站之间的距离。第

算法设计与分析课程设计报告样本

课程设计报告 课程设计名称: 算法设计与分析 系 : 三系 学生姓名: 吴阳 班级: 12软件(2)班 学号: 0311232 成绩: 指导教师: 秦川 开课时间: 年一学期 一、问题描述 1.普通背包问题

给定n种物品和一个背包。物品i的重量是Wi,其价值为Vi,背包的容量为C。选择装入的背包的物品, 使得装入背包中的物品的总价值最大, 在选择物品i装入背包时, 能够选择物品i的一部分, 而不一定要全部装入背包, 1≤i≤n。 2.0/1背包问题 给定n种物品和一个背包。物品i的重量是Wi,其价值为Vi,背包的容量为C。选择装入的背包的物品, 使得装入背包中的物品的总价值最大, 在选择物品i装入背包时, 对于每种物品i只有两种选择, 即装入背包或者不装入背包, 不能将物品装入背包多次, 也不能只装入部分的物品i。 3.棋盘覆盖问题 在一个2k x 2k个方格组成的棋盘中恰有一个方格与其它的不同称为特殊方格, 想要求利用四种L型骨牌( 每个骨牌可覆盖三个方格) 不相互重叠覆盖的将除了特殊方格外的其它方格覆盖。 二、问题分析

1.普通背包问题 对于背包问题, 若它的一个最优解包含物品j, 则从该最优解中拿出所含的物品j的那部分重量W, 剩余的将是n-1个原重物品1, 2, ······, j-1, j+1, ·····, n以及重为Wi-W的物品j 中可装入容量为C-W的背包且具有最大价值的物品。 2.0/1背包问题 如果当前背包中的物品的总容量是cw, 前面的k-1件物品都已经决定好是否要放入包中, 那么第k件物品是否放入包中取决于不等式 cw + wk <= M (其中, wk为第k件物品的容量, M为背包的容量)( 此即约束条件) 然后我们再寻找限界函数, 这个问题比较麻烦, 我们能够回忆一下背包问题的贪心算法, 即物品按照物品的价值/物品的体积来从大到小排列, 然后最优解为( 1, 1, 1......., 1, t, 0, 0, ......) , 其中0<=t<=1; 因此, 我们在确定第k个物品到底要不要放入的时候(在前k-1个物品已经确定的情况下), 我们能够考虑我们能够达到的最大的价值, 即我们能够经过计算只放入一部分的k物品来计算最大的价值。我们要确保当前选择的路径的最大的价值要大于我们已经选择的路径的价值。这就是该问题的限界条件。经过该条件, 能够减去很多的枝条, 大大节省运行时间。 3.棋盘覆盖问题 每次都对分割后的四个小方块进行判断, 判断特殊方格是否

贪心算法详解分析

贪心算法详解 贪心算法思想: 顾名思义,贪心算法总是作出在当前看来最好的选择。也就是说贪心算法并不从整体最优考虑,它所作出的选择只是在某种意义上的局部最优选择。当然,希望贪心算法得到的最终结果也是整体最优的。虽然贪心算法不能对所有问题都得到整体最优解,但对许多问题它能产生整体最优解。如单源最短路经问题,最小生成树问题等。在一些情况下,即使贪心算法不能得到整体最优解,其最终结果却是最优解的很好近似。 贪心算法的基本要素: 1.贪心选择性质。所谓贪心选择性质是指所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到。这是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法的主要区别。 动态规划算法通常以自底向上的方式解各子问题,而贪心算法则通常以自顶向下的方式进行,以迭代的方式作出相继的贪心选择,每作一次贪心选择就将所求问题简化为规模更小的子问题。 对于一个具体问题,要确定它是否具有贪心选择性质,必须证明每一步所作的贪心选择最终导致问题的整体最优解。 2. 当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质。问题的 最优子结构性质是该问题可用动态规划算法或贪心算法求解的关键特征。 贪心算法的基本思路: 从问题的某一个初始解出发逐步逼近给定的目标,以尽可能快的地求得更好的解。当达到算法中的某一步不能再继续前进时,算法停止。 该算法存在问题: 1. 不能保证求得的最后解是最佳的; 2. 不能用来求最大或最小解问题; 3. 只能求满足某些约束条件的可行解的范围。 实现该算法的过程: 从问题的某一初始解出发; while 能朝给定总目标前进一步do 求出可行解的一个解元素; 由所有解元素组合成问题的一个可行解; 用背包问题来介绍贪心算法: 背包问题:有一个背包,背包容量是M=150。有7个物品,物品可以分割成任意大小。要 求尽可能让装入背包中的物品总价值最大,但不能超过总容量。

算法设计与分析第2版 王红梅 胡明 习题答案

精品文档习题胡明-版)-王红梅-算法设计与分析(第2答案 1 习题)—1783Leonhard Euler,17071.图论诞生于七桥问题。出生于瑞士的伟大数学家欧拉(提 出并解决了该问题。七桥问题是这样描述的:北区一个人是否能在一次步行中穿越哥尼斯堡(现东区在叫加里宁格勒,在波罗的海南岸)城中全部岛区的七座桥后回到起点,且每座桥只经过一次,南区是这条河以及河上的两个岛和七座桥的图1.7 1.7 七桥问题图草图。请将该问题的数据模型抽象出来,并判断此问题是否有解。 七桥问题属于一笔画问题。 输入:一个起点 输出:相同的点一次步行1,经过七座桥,且每次只经历过一次2,回到起点3,该问题无解:能一笔画的图形只有两类:一类是所有的点都是偶点。另一类是只有二个奇点的图形。)用的不是除法而是减最初的欧几里德算法2.在欧几里德提出的欧几里德算法中(即法。请用伪代码描述这个版本的欧几里德算法 1.r=m-n r=0 循环直到2.m=n 2.1 n=r 2.2 r=m-n 2.3 m 输出3 .设计算法求数组中相差最小的两个元素(称为最接近数)的差。要求分别给出伪代3++描述。C码和 采用分治法// //对数组先进行快速排序在依次比较相邻的差//精品文档. 精品文档 #include using namespace std; int partions(int b[],int low,int high) { int prvotkey=b[low]; b[0]=b[low]; while (low=prvotkey)

算法设计与分析课程设计报告

压缩软件课程设计书 一、问题描述: 建立一个文本文件,统计该文件中各字符频率,对各字符进行Huffman编码,将该文件至翻译成Huffman编码文件,再将Huffman编码文件翻译成原文件。 二、算法分析及思路: 对于该问题,我们做如下分析: (1)首先得构造出哈弗曼树,我们用函数HuffmanTree(int w[],int s[],int n)设计;(2)在构建哈弗曼树的基础上,进一步实现哈弗曼编码问题,我们用函数Huffmancode(char wen[])设计; (3)实现哈弗曼编码后再进一步实现哈弗曼译码问题,我们用函数Huffmandecode()设计; (4)其中编码问题中,得进一步统计出各个字符在文件中的频率,并进行一些必要的标记,我们用函数runhuffman(char wen[])设计; (5)在译码过程中,还有必要的一步是比较原文件与译码后的文件是否相同,我们用函数compare(char wen[])设计; (6)其中的文件输入我们用到类”fstream.h”中的输入输出流,并在运行的文件夹中建立一个文件名为逍遥游的文本文件,且在逍遥游文件中输入需要编码的数据。 三、主要解决的设计问题: 1.写一个对txt文件压缩和解压的程序,使用动态编码。 2.使用Huffman编码压缩和解压时,Huffman树的存储可以直接存储树结构,也可以存储所有字符的频度或权值,然后读取时建立Huffman树; 3.使用Huffman编码压缩和解压时,注意定义压缩码的结束标记,可以使用一个特殊的字符作为结束标记,也可以在压缩码之前存储其比特长度;如果使用一个特殊字符作为结束标记,则其频度为1,需要在建立Huffman树时把它看作一个独立的字符进行建树。 4.使用Huffman编码压缩和解压时,在一个缓冲区里面收集压缩码比特流,每当收集的比特数满8时,可以把这8比特通过位操作合并成一个字节写入文件(当然也可以收集满一定数目的字节后再写入文件)。写入文件的最小信息单位为字节。 四、程序设计的流程图:

算法设计与分析考试题及答案

1.一个算法就是一个有穷规则的集合,其中之规则规定了解决某一特殊类型问题的一系列运算,此外,算法还应具有以下五个重要特性:_________,________,________,__________,__________。 2.算法的复杂性有_____________和___________之分,衡量一个算法 好坏的标准是______________________。 3.某一问题可用动态规划算法求解的显著特征是 ____________________________________。 4.若序列X={B,C,A,D,B,C,D},Y={A,C,B,A,B,D,C,D},请给出序列X 和Y的一个最长公共子序列_____________________________。 5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至少应包含___________。 6.动态规划算法的基本思想是将待求解问题分解成若干____________,先求解___________,然后从这些____________的解得到原问题的解。 7.以深度优先方式系统搜索问题解的算法称为_____________。 8.0-1背包问题的回溯算法所需的计算时间为_____________,用动态规划算法所需的计算时间为____________。 9.动态规划算法的两个基本要素是___________和___________。 10.二分搜索算法是利用_______________实现的算法。 二、综合题(50分) 1.写出设计动态规划算法的主要步骤。 2.流水作业调度问题的johnson算法的思想。

贪婪算法在排课问题中分析与应用

贪婪算法在排课问题中分析与应用 摘要:排课问题是教学管理中重要的问题,对教学质量起到十分重要的影响。随着计算机和信息技术的快速发展,通过合理的算法编制排课系统是十分合适的。本文通过排课问题算法的分析,选择贪婪算法来解决排课问题。通过实验表明,目前的算法能够很好的解决排课问题,对问题的解决的复杂度大大降低,使得排课变得十分简单和高效。 关键字:排课,贪婪算法,优先级 1、绪论 在高校日常管理中,教学计划是重要的组成部分。而教学计划的重要体现方式之一就是排课表,其在教学管理中的地位和作用不可低估,课表的管理对教学管理是起到基础和重要的作用。因此排课问题是教学管理中重要的问题,对教学质量起到十分重要的影响。 由于上课约束条件多,课表的编制十分复杂,是一个耗时耗力的工作。目前随着高校人数的越来越多,其很难用手工去编制课表,其工作时间长,工作量大和繁琐的编制过程是一般人很难驾驭的。随着计算机和信息技术的快速发展,通过合理的算法编制排课系统是十分合适的。通过计算机算法的求解来对问题进行抽象和解决。 2、排课算法算法简介 目前对于排课问题的算法较多,主要有蚁群算法、模拟退火算法、遗传算法、整数规划法和贪婪算法等。 (1)蚁群算法 蚁群算法就是将模拟蚂蚁的活动,对参数设置较少。这种算法具备较强的全局搜索能力,但其效率较低,且容易出现停滞[1]。 (2)模拟退火算法 这个算法被较多的学者用来解决排课问题,它是模拟退火的现象,对自然事物进行抽象而来。其比较适合约束条件较少的问题。如果约束条件少,其很快就能获得最优解。但这种算法的参数选择较难,且资源开销大[2]。 (3)遗传算法 遗传算法是基于自然选择和生物遗传的全局优化策略。其优点在于在非线性问题上能够表现出全局最优,可以并行处理而且算法效率相对较高[3]。 但遗传算法本身较为复杂,由于排课问题的约束条件较多,其算法的效率较低,如果排课要求十分严格的话,很有可能造成找不到解。 (4)整数规划法 整数规划法来解决排课问题计算量很大,只适合规模较小排课问题,对于规模较大的,至今都很难找到一个可行算法。 (5)贪婪算法 贪婪算法是指在解决问题的时候,不会考虑整体最优,而是采取局部最优的思想进行最优思想[4]。也就是说,该算法将解决问题分解为每一个步骤,根据其难易程度进行解决,通过满足局部最优的方式来尽可能的获得最满意的解决。虽然在某些情况下,贪婪算法并不能得到最优解,但能得到相对满意的解。 3、排课问题综述 (1)排课原则 排课问题的本质是一个优化问题,是对教师、上课课程、上课时间和上课地点等因素的优化。其目的就是将全校所开设课程在有限的时间和地点下进行合理的安排,确保教学的顺利进行,以达到最优的效果。 为了能够产出一张满意合格的排课表,在排课中要满足一些约束条件。我们将一些约束

实验三.哈夫曼编码的贪心算法设计

@ 实验四 哈夫曼编码的贪心算法设计(4学时) [实验目的] 1. 根据算法设计需要,掌握哈夫曼编码的二叉树结构表示方法; 2. 编程实现哈夫曼编译码器; 3. 掌握贪心算法的一般设计方法。 实验目的和要求 (1)了解前缀编码的概念,理解数据压缩的基本方法; (2)掌握最优子结构性质的证明方法; 】 (3)掌握贪心法的设计思想并能熟练运用 (4)证明哈夫曼树满足最优子结构性质; (5)设计贪心算法求解哈夫曼编码方案; (6)设计测试数据,写出程序文档。 实验内容 设需要编码的字符集为{d 1, d 2, …, dn },它们出现的频率为 { w 1, w 2, …, wn },应用哈夫曼树构造最短的不等长编码方案。 核心源代码 ~ #include <> #include <> #include <> typedef struct { unsigned int weight; arent==0) { @ min=i; break; } } for(i=1; i<=n; i++) { if((*ht)[i].parent==0) { ! if((*ht)[i].weight<(*ht)[min].weight) min=i; } } *s1=min; ∑=j i k k a

for(i=1; i<=n; i++) { ~ if((*ht)[i].parent==0 && i!=(*s1)) { min=i; break; } } for(i=1; i<=n; i++) { % if((*ht)[i].parent==0 && i!=(*s1)) { if((*ht)[i].weight<(*ht)[min].weight) min=i; } } *s2=min; } - eight=w[i]; (*ht)[i].LChild=0; (*ht)[i].parent=0; (*ht)[i].RChild=0; } for(i=n+1; i<=m; i++) eight=0; (*ht)[i].LChild=0; \ (*ht)[i].parent=0; (*ht)[i].RChild=0; } printf("\n哈夫曼树为: \n"); for(i=n+1; i<=m; i++) arent=i; (*ht)[s2].parent=i; 。 (*ht)[i].LChild=s1; (*ht)[i].RChild=s2; (*ht)[i].weight=(*ht)[s1].weight+(*ht)[s2].weight; printf("%d (%d, %d)\n",(*ht)[i].weight,(*ht)[s1].weight,(*ht)[s2].weight); } printf("\n"); }

算法设计与分析课程报告

算法设计与分析课程报告 第一章 算法问题求解基础 1、算法的概念:算法是指解决问题的一种方法或过程,是由若干条指令组成的有穷序列。 2、算法的特性 ① 有穷性:一个算法必须保证执行有限步之后结束; ② 确切性:算法的每一步骤必须有确切的定义; ③ 输入: 一个算法有 0 个或多个输入, 法 本身定除了初始条件; ④ 输出: 一个算法有一个或多个输出, 是毫无意义的; ⑤可行性:算法原则上能够精确地运行, 而且人们用笔和纸做有限次运算后即可完成 3、算法与程序的关系: 区别:程序可以不一定满足可终止性。但算法必须在有限时间内结束; 程序可以没有输出 ,而算法则必须有输出; 算法是面向问题求解的过程描述,程序则是算法的实现。 联系:程序是算法用某种程序设计语言的具体实现; 程序可以不满足算法的有限性性质。 4、算法描述方式:自然语言,流程图,伪代码,高级语言。 第二章 算法分析基础 1、算法复杂性分析: 算法复杂性的高低体现运行该算法所需计算机资源(时间,空间)的多少。 算法复杂性度量: 期望反映算法本身性能,与环境无关。 理论上不能用算法在机器上真正的运行开销作为标准(硬件性能、代码质量影响) 般是针对问题选择基本运算和基本存储单位,用算法针对基本运算与基本存储单 以刻画运算对象的初始情况, 所谓 0 个输入是指算 以反映对输入数据加工后的结果。 没有输出的算法

位的开销作为标准。算法复杂性C依赖于问题规模N、算法输入I和算法本身A。即C=F(N, I,A)。 第五章分治法 1、递归算法:直接或间接地调用自身的算法。 用函数自身给出定义的函数称为递归函数。 注:边界条件与递归方程是递归函数的二个要素。 实例:①阶乘函数; ② Fibonacci 数列;③ Ackerman 函数; ④排列问题; ⑤整数划分问题; ⑥ Hanoi 塔问题 优缺点:①优点:结构清晰,可读性强,而且容易用数学归纳法来证明算法的正确性, 因此它为设计算法、调试程序带来很大方便。 ②缺点:递归算法的运行效率低,无论是耗费的计算时间还是占用的存储空间都比非递归算法要多。 2、分治法的设计思想:将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。(将求出的小规模的问题的解合并为一个更大规模的问题的解,自底向上逐步求出原来问题的解) 分治法所能解决的问题一般具有以下几个特征: ①该问题的规模缩小到一定的程度就可以容易地解决; ②该问题可以分为若干个规模更小的相同问题,即该问题具有最有子结构性质; ③利用该问题分解出的子问题的解可以合并为该问题的解; ④该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题。 第六章贪心法 1、贪心算法的思想:

算法设计与分析试卷及答案

湖南科技学院二○ 年 学期期末考试 信息与计算科学专业 年级《算法设计与分析》 试题 考试类型:开卷 试卷类型:C 卷 考试时量:120 分钟 1. 用O 、Ω和θ表示函数f 与g 之间的关系______________________________。 ()()log log f n n n g n n == 2. 算法的时间复杂性为1, 1()8(3/7), 2 n f n f n n n =?=? +≥?,则算法的时间复杂性的阶 为__________________________。 3. 快速排序算法的性能取决于______________________________。 4. 算法是_______________________________________________________。 5. 在对问题的解空间树进行搜索的方法中,一个活结点最多有一次机会成为活结点的是_________________________。 6. 在算法的三种情况下的复杂性中,可操作性最好且最有实际价值的是_____情况下的时间复杂性。 7. 大Ω符号用来描述增长率的下限,这个下限的阶越___________,结果就越有价值。。 8. ____________________________是问题能用动态规划算法求解的前提。 9. 贪心选择性质是指________________________________________________________ ____________________________________________________________。 题 号 一 二 三 四 五 总分 统分人 得 分 阅卷人

算法分析与设计选修课-贪心算法应用研究

武汉理工大学 算法设计与分析论文题目:贪心算法应用研究 姓名:吴兵 学院:信息工程 专业班级:电子133 学号: 1409721303131 任课教师:张小梅

目录 摘要 (1) 1.绪论 (2) 2贪心算法的基本知识概述 (3) 2.1 贪心算法定义 (3) 2.2 贪心算法的基本思路及实现过程 (3) 2.3贪心算法的核心 (3) 2.4贪心算法的基本要素 (4) 2.5 贪心算法的理论基础 (6) 2.6 贪心算法存在的问题 (7) 3贪心算法经典应用举例 (8) 3.1删数问题 (8) 3.2 汽车加油问题 (10) 3.3会场安排问题 (12) 4.总结 (16) 5.参考文献 (17)

摘要 在求最优解问题的过程中,依据某种贪心标准,从问题的初始状态出发,直接去求每一步的最优解,通过若干次的贪心选择,最终得出整个问题的最优解,这种求解方法就是贪心算法。从贪心算法的定义可以看出,贪心法并不是从整体上考虑问题,它所做出的选择只是在某种意义上的局部最优解,而由问题自身的特性决定了该题运用贪心算法可以得到最优解。贪心算法所作的选择可以依赖于以往所作过的选择,但决不依赖于将来的选择,也不依赖于子问题的解,因此贪心算法与其它算法相比具有一定的速度优势。如果一个问题可以同时用几种方法解决,贪心算法应该是最好的选择之一。本文讲述了贪心算法的含义、基本思路及实现过程,贪心算法的核心、基本性质、特点及其存在的问题。并通过贪心算法的特点举例列出了以往研究过的几个经典问题,对于实际应用中的问题,也希望通过贪心算法的特点来解决。 关键词:贪心算法最小生成树多处最优服务次序问题删数问题

算法设计与分析实验报告

本科实验报告 课程名称:算法设计与分析 实验项目:递归与分治算法 实验地点:计算机系实验楼110 专业班级:物联网1601 学号:2016002105 学生姓名:俞梦真 指导教师:郝晓丽 2018年05月04 日

实验一递归与分治算法 1.1 实验目的与要求 1.进一步熟悉C/C++语言的集成开发环境; 2.通过本实验加深对递归与分治策略的理解和运用。 1.2 实验课时 2学时 1.3 实验原理 分治(Divide-and-Conquer)的思想:一个规模为n的复杂问题的求解,可以划分成若干个规模小于n的子问题,再将子问题的解合并成原问题的解。 需要注意的是,分治法使用递归的思想。划分后的每一个子问题与原问题的性质相同,可用相同的求解方法。最后,当子问题规模足够小时,可以直接求解,然后逆求原问题的解。 1.4 实验题目 1.上机题目:格雷码构造问题 Gray码是一个长度为2n的序列。序列无相同元素,每个元素都是长度为n的串,相邻元素恰好只有一位不同。试设计一个算法对任意n构造相应的Gray码(分治、减治、变治皆可)。 对于给定的正整数n,格雷码为满足如下条件的一个编码序列。 (1)序列由2n个编码组成,每个编码都是长度为n的二进制位串。 (2)序列中无相同的编码。 (3)序列中位置相邻的两个编码恰有一位不同。 2.设计思想: 根据格雷码的性质,找到他的规律,可发现,1位是0 1。两位是00 01 11 10。三位是000 001 011

010 110 111 101 100。n位是前n-1位的2倍个。N-1个位前面加0,N-2为倒转再前面再加1。 3.代码设计:

算法设计与分析习题解答

第一章作业 1.证明下列Ο、Ω和Θ的性质 1)f=Ο(g)当且仅当g=Ω(f) 证明:充分性。若f=Ο(g),则必然存在常数c1>0和n0,使得?n≥n0,有f≤c1*g(n)。由于c1≠0,故g(n) ≥ 1/ c1 *f(n),故g=Ω(f)。 必要性。同理,若g=Ω(f),则必然存在c2>0和n0,使得?n≥n0,有g(n) ≥ c2 *f(n).由于c2≠0,故f(n) ≤ 1/ c2*f(n),故f=Ο(g)。 2)若f=Θ(g)则g=Θ(f) 证明:若f=Θ(g),则必然存在常数c1>0,c2>0和n0,使得?n≥n0,有c1*g(n) ≤f(n) ≤ c2*g(n)。由于c1≠0,c2≠0,f(n) ≥c1*g(n)可得g(n) ≤ 1/c1*f(n),同时,f(n) ≤c2*g(n),有g(n) ≥ 1/c2*f(n),即1/c2*f(n) ≤g(n) ≤ 1/c1*f(n),故g=Θ(f)。 3)Ο(f+g)= Ο(max(f,g)),对于Ω和Θ同样成立。 证明:设F(n)= Ο(f+g),则存在c1>0,和n1,使得?n≥n1,有 F(n) ≤ c1 (f(n)+g(n)) = c1 f(n) + c1g(n) ≤ c1*max{f,g}+ c1*max{f,g} =2 c1*max{f,g} 所以,F(n)=Ο(max(f,g)),即Ο(f+g)= Ο(max(f,g)) 对于Ω和Θ同理证明可以成立。 4)log(n!)= Θ(nlogn)

证明: ?由于log(n!)=∑=n i i 1 log ≤∑=n i n 1 log =nlogn ,所以可得log(n!)= Ο(nlogn)。 ?由于对所有的偶数n 有, log(n!)= ∑=n i i 1 log ≥∑=n n i i 2 /log ≥∑=n n i n 2 /2/log ≥(n/2)log(n/2)=(nlogn)/2-n/2。 当n ≥4,(nlogn)/2-n/2≥(nlogn)/4,故可得?n ≥4,log(n!) ≥(nlogn)/4,即log(n!)= Ω(nlogn)。 综合以上两点可得log(n!)= Θ(nlogn) 2. 设计一个算法,求给定n 个元素的第二大元素,并给出算法在最坏情况下使用的比较次数。(复杂度至多为2n-3) 算法: V oid findsecond(ElemType A[]) { for (i=2; i<=n;i++) if (A[1]

贪心算法背包问题

算法设计与分析实验报告 题目:贪心算法背包问题 专业:JA V A技术xx——xxx班 学号: 姓名: 指导老师:

实验三:贪心算法背包问题 一、实验目的与要求 1、掌握背包问题的算法 2、初步掌握贪心算法 二、实验题: 问题描述:与0-1背包问题相似,给定n种物品和一个背包。物品i的重量是wi,其价值为vi,背包的容量为c。与0-1背包问题不同的是,在选择物品i装入背包时,背包问题的解决可以选择物品i的一部分,而不一定要全部装入背包,1< i < n。 三、实验代码 import java.awt.*; import java.awt.event.*; import javax.swing.*; public class er extends JFrame { private static final long serialVersionUID = -1508220487443708466L; private static final int width = 360;// 面板的宽度 private static final int height = 300;// 面板的高度 public int M; public int[] w; public int[] p; public int length; er() { // 初始Frame参数设置 this.setTitle("贪心算法"); setDefaultCloseOperation(EXIT_ON_CLOSE); setSize(width, height); Container c = getContentPane(); c.setLayout(new BoxLayout(c, BoxLayout.Y_AXIS)); setLocation(350, 150); // 声明一些字体样式 Font topF1 = new Font("宋体", Font.BOLD, 28); Font black15 = new Font("宋体", Font.PLAIN, 20); Font bold10 = new Font("宋体", Font.BOLD, 15); // 声明工具栏及属性设置 JPanel barPanel = new JPanel(); JMenuBar topBar = new JMenuBar(); topBar.setLocation(1, 1); barPanel.add(topBar); // 面板1和顶部标签属性设置 JPanel p1 = new JPanel(); JLabel topLabel = new JLabel("背包问题");

算法设计与分析报告 正文

实验总体要求 为避免重复与抄袭,算法分析与设计的实验只规定算法策略,具体的算法题目由学生依据现实当中的问题自行拟定,选题的难易会影响实验得分。 实验可以分组进行,组内与组间可选不同策略的不同题目(问题)、相同策略里面的不同题目、相同题目的不同解法等,尽量避免重复。完全相同的实验报告得0分,不同的重复率扣不同的分数。分组的意义在于研究与实践不同策略的不同题目的差异、不同策略里不同题目异同、相同题目不解法之间的异同与算法效率等。 所有实验都需要包含八个组成部分: (1)实验题目 要求:一句简要的话概括或抽象出所做的实验内容 (2)个人所承担的工作 要求:独立完成报告所有内容者仅填写独立完成即可,此种情况若发现报告有雷同者得0分。协作完成的,重点写自己完成的部分,其他部分可略写,为了锻炼同学们的设计与分析能力,原则上不允许算法模型、算法描述与分析、算法实现上相同。 (3)选题背景与意义 要求:描述选题的背景、针对该问题求解的算法有多少种,发展历史及研究价值等。 (4)问题描述 要求:可以实际问题的描述,也可以某类问题的抽像描述。如果是某类问题的抽象描述,需要指出它的应用场景。 (5)算法策略选择 要求:简要说出选择该策略的理由 (6)计算模型 要求:最接近程序实现中问题求解的数学模型。指明定义域和值的范围或解空间。可以有数据结构及推导或计算公式。递归模型至少有递推公式、递归的出口。如果有的话,给出必要的证明。 (7)算法描述与分析 要求:以标准的描述方式,如流程图、伪码、语言文字。对算法进行时间和空间复杂度分析。时间复杂度要求有必要的推导步骤。 (8)算法实现 要求:给出编程语言、开发环境。给出可执行的算法代码,提供必要的注释。 (9)调试分析记录 要求:软件开发调试过程中遇到的问题及解决过程;核心算法的运行时间和所需内存空间的

《算法设计与分析实用教程》习题参考解答

《算法设计与分析实用教程》参考解答 1-1 加减得1的数学游戏 西西很喜欢数字游戏,今天他看到两个数,就想能否通过简单的加减,使最终答案等于1。而他又比较厌烦计算,所以他还想知道最少经过多少次才能得到1。 例如,给出16,9:16-9+16-9+16-9-9-9+16-9-9=1,需要做10次加减法计算。 设计算法,输入两个不同的正整数,输出得到1的最少计算次数。(如果无法得到1,则输出-1)。 (1)若输入两个不同的正整数a,b均为偶数,显然不可能得到1。 设x*a与y*b之差为“1”或“-1”,则对于正整数a,b经n=x+y-1次加减可得到1。 为了求n的最小值,令n从1开始递增,x在1——n中取值,y=n+1-x: 检测d=x*a+y*b,若d=1或-1,则n=x+y-1为所求的最少次数。 (2)算法描述 // 两数若干次加减结果为1的数学游戏 #include void main() {long a,b,d,n,x,y; printf(" 请输入整数a,b: "); scanf("%ld,%ld",&a,&b); if(a%2==0 && b%2==0) { printf(" -1\n");return;} n=0; while(1) { n++; for(x=1;x<=n;x++) { y=n+1-x;d=x*a-y*b; if(d==1 || d==-1) // 满足加减结果为1 { printf(" n=%ld\n",n);return;} } } } 请输入整数a,b: 2012,19 961 请输入整数a,b: 101,2013 606

贪心算法的应用实例

贪心算法的应用实例 例2.排队问题 【题目描述】 在一个医院B 超室,有n个人要做不同身体部位的B超,已知每个人需要处理的时间为ti,(00,从而新的序列比原最优序列好,这与假设矛盾,故s1为最小时间,同理可证s2…sn依次最小。 例3.:数列极差问题 【题目描述】 在黑板上写了N个正整数做成的一个数列,进行如下操作:每一次擦去其中的两个数a 和b,然后在数列中加入一个数a×b+1,如此下去直至黑板上剩下一个数,在所有按这种操作方式最后得到的数中,最大的max,最小的为min,则该数列的极差定义为M=max-min。 编程任务:对于给定的数列,编程计算出极差M。 输入输出样例: 输入: 4 2 1 4 3 输出: 13 【算法分析】 当看到此题时,我们会发现求max与求min是两个相似的过程。若我们把求解max与min的过程分开,着重探讨求max的问题。 下面我们以求max为例来讨论此题用贪心策略求解的合理性。 讨论:假设经(N-3)次变换后得到3个数:a ,b , max'(max'≥a≥b),其中max'是(N-2)个数经(N-3)次f变换后所得的最大值,此时有两种求值方式,设其所求值分别为 z1,z2,则有:z1=(a×b+1)×max'+1,z2=(a×max'+1)×b+1所以z1-z2=max'-b≥0若经(N-2)次变换后所得的3个数为:m,a,

实验四.哈夫曼编码的贪心算法设计

实验四 哈夫曼编码的贪心算法设计(4学时) [实验目的] 1. 根据算法设计需要,掌握哈夫曼编码的二叉树结构表示方法; 2. 编程实现哈夫曼编译码器; 3. 掌握贪心算法的一般设计方法。 实验目的和要求 (1)了解前缀编码的概念,理解数据压缩的基本方法; (2)掌握最优子结构性质的证明方法; (3)掌握贪心法的设计思想并能熟练运用 (4)证明哈夫曼树满足最优子结构性质; (5)设计贪心算法求解哈夫曼编码方案; (6)设计测试数据,写出程序文档。 实验内容 设需要编码的字符集为{d 1, d 2, …, dn },它们出现的频率为 {w 1, w 2, …, wn },应用哈夫曼树构造最短的不等长编码方案。 核心源代码 #include #include #include typedef struct { unsigned int weight; //用来存放各个结点的权值 unsigned int parent,LChild,RChild; //指向双亲、孩子结点的指针 } HTNode, *HuffmanTree; //动态分配数组,存储哈夫曼树 ∑=j i k k a

typedef char *HuffmanCode; //动态分配数组,存储哈夫曼编码//选择两个parent为0,且weight最小的结点s1和s2 void Select(HuffmanTree *ht,int n,int *s1,int *s2) { int i,min; for(i=1; i<=n; i++) { if((*ht)[i].parent==0) { min=i; break; } } for(i=1; i<=n; i++) { if((*ht)[i].parent==0) { if((*ht)[i].weight<(*ht)[min].weight) min=i; } } *s1=min;

相关文档
最新文档