z224互相关和自相关函数的定义

z2.24 互相关和自相关函数的定义 1. 简述相关函数应用于雷达测距的原理。 2. 求信号()()(2)f t t t εε=??的自相关函数。

三角函数基本概念

三角函数基本概念 1.角的有关概念 (1)从运动的角度看,角可分为正角、负角和零角.(2)从终边位置来看,可分为象限角和轴线角. (3)若α与β是终边相同的角,则β可用α表示为S ={β|β=α+k ·360°,k ∈Z }(或{β|β=α+2k π,k ∈Z }). 2.象限角 3.弧度与角度的互化 (1)1弧度的角:长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示. (2)角α的弧度数:如果半径为r 的圆的圆心角α所对弧的长为l ,那么l =rα,角α的弧度数的绝对值是|α| = l r . (3)角度与弧度的换算①1°=π 180rad ;②1 rad =?π 180 (4)弧长、扇形面积的公式:设扇形的弧长为l ,圆心角大小为α(rad),半径为r ,又l =rα,则扇形的面积为 S =12lr =12 |α|·r 2 . 4.任意角的三角函数 三角函数 正弦 余弦 正切 定义 设是一个任意角,它的终边与单位圆交于点P (x ,y ),那么 y 叫做的正弦,记作sin x 叫做的余弦,记作cos x y 叫做的正切,记作tan α 三角函数 正弦 余弦 正切 各象限符号 Ⅰ 正 正 正 Ⅱ 正 负 负 Ⅲ 负 负 正 Ⅳ 负 正 负 各象限符号 口诀 一全正,二正弦,三正切,四余弦 5.三角函数线 设角α的顶点在坐标原点,始边与x 轴非负半轴重合,终边与单位圆相交于点P ,过P 作PM 垂直于x 轴于M ,则点M 是点P 在x 轴上的正射影.由三角函数的定义知,点P 的坐标为(cosα,sinα),即P(cosα,sinα),其中cosα=OM ,sinα=MP ,单位圆与x 轴的正半轴交于点A ,单位圆在A 点的切线与α的终边或其反向延长线相交于点T ,则tanα=AT .我们把有向线段OM 、MP 、AT 叫做α的余弦线、正弦线、正切线.

三角函数的基本概念与诱导公式

三角函数的概念、基本关系式及诱导公式 一、角的相关概念 1、按旋转方向的不同形成_________,___________,___________ 2、终边位置的不同形成__________,__________,____________ 例如:第一象限角的集合________________ 终边在y 轴上角的集合_________________ 终边在x 轴上角的集合_________________ 3、终边相同的角的集合________________ 4、注意第一象限角、锐角的不同,钝角与第二象限角的不同 5、已知α是第二象限的角,则 2 α是第几象限的角? 二、弧度制与角度制: 1、弧度制的定义:圆周上弧长等于_______的弧所对的圆心角的大小为1弧度(1rad ) 2、 3602=π 180=π _______1=rad rad _______1= 弧度制与角度制的换算_________________________________ 3、扇形的弧长、面积公式 ____________________________________________ 例1、已知一扇形周长为)0(>C C ,当扇形中心角为多少弧度时,它的面积最大? 例2、扇形中心角为 120,则扇形面积与其内切圆的面积之比为_____________ 三、任意角的三角函数: 1、定义:设α是一个任意角,α的终边上任一点),(y x P O 为坐标原点,则 )(022y x r r OP +=>=则 r y = αsin r x =αcos x y =αtan y r =αcsc _____sec =α _____cot =α 实质是____________________ 2、三角函数的符号___________________________ 3、特殊角的三角函数值: ___________________________________________________________ 四、单位圆与三角函数线: 1、第Ⅰ、Ⅱ、Ⅲ、Ⅳ象限的角的三角函数线 2、三角函数线的应用——用来解决三角不等式

三角角的概念及任意角的三角函数

三角角的概念及任意角 的三角函数 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

课题 § 角的概念及任意角的三角函数 内容归纳 一.知识精讲 ㈠角的概念和弧度制 1.角:一条射线绕着端点从一个位置旋转到另一个位置所成的 图形。其中顶点,始边,终边称为角的三要素。角可以是任 意大小的。 2.角按其旋转方向可分为:正角,零角,负角。 3.在直角坐标系中讨论角:①角的顶点在原点,始边在x 轴的 非负半轴上,角的终边在第几象限,就说这个角是第几象限 的角。(注意前提条件,否则不能从终边的位置来判断某角 属于第几象限)。⑵若角的终边在坐标轴上,就说这个角不 属于任何象限,它叫象限界角。 4.与α角终边相同的角的集合:{}Z k k ∈+?=,360αββ 注:①终边相同的角不一定相等,但相等的角的终边一定相 同; ②终边相同的角有无数多个,它们相差 360的整数倍。 5.正确理解角:“ 90~0间的角”指的是: 900<≤θ;“第 一象限的角”,“锐角”,“小于 90的角”,这三种角的 集合分别表示为: {} Z k k k ∈+?<

任意角三角函数的概念教学设计

“任意角三角函数的概念”教学设计 陶维林 (江苏南京师范大学附属中学,210003) 一.内容和内容解析 三角函数是一个重要的基本初等函数,它是描述周期现象的重要数学模型.它的基础主要是几何中的相似形和圆,研究方法主要是代数中的图象分析和式子变形,三角函数的研究已经初步把几何与代数联系起来.它在物理学、天文学、测量学等学科中都有重要的应用,它是解决实际问题的重要工具,它是学习数学中其他学科的基础. 角的概念已经由锐角扩展到0°~360°内的角,再扩充到任意角,相应地,锐角三角函数概念也必须有所扩充.任意角三角函数概念的出现是角的概念扩充的必然结果.比较锐角三角函数与任意角三角函数这两个概念,共同点是,它们都是“比值”,不同点是锐角三角函数是“线段长度的比值”,而任意角三角函数是直角坐标系中“坐标与长度的比值,或者是坐标的比值”.正是由于“比值”这一与在角的终边上所取点的位置无关的特点,因此,可以用角的终边与单位圆的交点的坐标(或坐标的比值)来表示任意角的三角函数,这是概念的核心.这样定义,不仅简化了任意角三角函数的表示,也为后续研究它的性质带来了方便. 从锐角三角函数到任意角三角函数类似于从自然数到整数扩充的过程,产生了“符号问题”.因此,学习任意角三角函数可以与锐角三角函数相类比,借助锐角三角函数的概念建立起任意角三角函数的概念. 任意角三角函数概念的重点是任意角的正弦、余弦、正切的定义.它们是本节,乃至本章的基本概念,是学习其他与三角函数有关内容的基础,具有根本的重要的作用.解决这一重点的关键,是学会用直角坐标系中,角的终边上的点的坐标来表示三角函数.因为正切函数并不独立,最主要的是正弦函数与余弦函数. 任意角三角函数自然具有函数的一切特征,有它的定义域,对应法则以及值域.任意角三角函数的定义域是实数集(或它的子集),这是因为,在建立弧度制以后,角的集合与 实数集合间建立了一一对应关系,从这个意义上说,“角是实数”,三角函数是定义在实数集上的函数.各种不同的三角函数定义了不同的对应法则,因而可能有不同的定义域与值域.任意角三角函数概念是核心概念,它是解决一切三角函数问题的基点.无论是研究三角函数在各象限中的符号、特殊角的三角函数值,还是同角三角函数间的关系,以及三角函数的性质,等等,都具有基本的重要的意义. 在建立任意角三角函数这个定义的过程中,学生可以感受到数与形结合,以及类比、运动、变化、对应等数学思想方法.

上海教材三角函数的概念、性质和图象

三角函数的概念、性质和图象 复习要求(以下内容摘自《考纲》) 1. 理解弧度的意义,并能正确进行弧度和角度的换算. 2. 掌握任意角的三角函数的定义、三角函数的符号、特殊角的三角函数值、三角函数的性质、同角三角函数的关系式与诱导公式,了解周期函数和最小正周期的意义.会求y =A sin(ωx +?)的周期,或者经过简单的恒等变形可化为上述函数的三角函数的周期,能运用上述三角公式化简三角函数式,求任意角的三角函数值与证明较简单的三角恒等式. 3. 了解正弦、余弦、正切、余切函数的图象的画法,会用“五点法”画正弦、余弦函数和函数y =A sin(ωx +?)的简图,并能解决与正弦曲线有关的实际问题. 4.正弦函数、余弦函数的对称轴,对称点的求法。 5.形如y x y y x y cos sin cos sin -=+=或 的辅助角的形式,求最大、最小值的总题。 6.同一问题中出现y x y x x x cos sin ,cos sin ,cos sin ?-+,求它们的范围。如求y x y x y cos sin cos sin ?++=的值域。 7.已知正切值,求正弦、余弦的齐次式的值。 如已知求,2tan =x 4cos cos sin 2sin 22++?+y y x x 的 8 正弦定理:)R R C c swinB b A a 为三角形外接圆的半径(2sin sin === C B A c b a s i n :s i n :s i n ::= 余弦定理:A ab c b a cos 2222-+=,…ab a c b A 2cos 2 22-+= 可归纳为表9-1. 表9-1 三角函数的图象三、主要内容及典型题例 三角函数是六个基本初等函数之一,三角函数的知识包括三角函数的定义、图象、性质、

自相关函数和平均幅度差函数

基音是指浊音时声带振动所引起的周期,基音周期是指声带振动频率的倒数。 基音提取的主要困难: (1)声门激励信号并不是一个完全周期的序列 (2)声门共振峰有时会影响激励信号的谐波结构 (3)语音信号是准周期的,受共振峰结构、噪声的影响。 (4)基音周期变化范围大 为此提出了各种各样的基音检测算法,如自相关函数(ACF)法、峰值提取算法(PPA)、平均幅度差函数(AMDF)法、并行处理技术、倒谱法、SIFT、谱图法、小波法等等。 此算法比较适合于噪声环境下的基音提取。但通常情况下基音频率大于基音周期的自相关峰时,单独使用自相关函数会导致半倍和双倍基音的提取误差。 自相关函数提供了一种获取周期信号周期的方法。在周期信号周期的整数倍上,它的自相关函数可以达到最大值,因此可以不考虑起始时间,而从自相关函数的第一个最大值的位置估计出信号的基音周期,这使自相关函数成为信号基音周期估计的一种工具。 语音信号是非平稳的信号,所以对信号的处理都使用短时自相关函数。短时自相关函数是在信号的第N个样本点附近用短时窗截取一段信号,做自相关计算。

短时自相关函数有以下重要性质: ①如果{s(n)}是周期信号,周期是P,则R(τ)也是周期信号,且周期相同,即R(τ)=R(P+τ)。 ②当τ=0时,自相关函数具有最大值;当τ=0+p+2P+3P+…处周期信号的自相关函数达到极大值。 ③自相关函数是偶函数,即R(τ)=R(-τ)。 短时自相关函数法基音检测的主要原理是利用短时自相关函数的第二条性质,通过比较原始信号和它移位后的信号之间的类似性来确定基音周期,如果移位距离等于基音周期,那么,两个信号具有最大类似性。在实际采用短时自相关函数法进行基音检测时,使用一个窗函数,窗不动,语音信号移动,这是经典的短时自相关函数法。窗口长度N的选择至少要大于基音周期的两倍,N越大,短时自相关函数波形的细节就越清楚,更有利于基音检测,但计算量较大,近年来由于高速数字信号处理器(DSP)的使用,从而使得这一算法简单有效,而不再采用结构复杂的快速傅里叶变换法、递归计算法等; N越小,误差越大,但计算量较小。 自相关函数在基音周期处表现为峰值,这些峰值点之间的间隔的平均值就是基音周期

-高中三角函数知识点复习总结

第四章 三角函数 一、三角函数的基本概念 1.角的概念的推广 (1)角的分类:正角(逆转) 负角(顺转) 零角(不转) (2)终边相同角:)(3600Z k k ∈+?=αβ (3)直角坐标系中的象限角与坐标轴上的角. 2.角的度量 (1)角度制与弧度制的概念 (2)换算关系:8157)180(1) (180'≈==οο ο π π弧度弧度 (3)弧长公式:r l ?=α 扇形面积公式:22 1 21r lr S α== 3.任意角的三角函数 y x x y x r r x y r r y = ===== ααααααcot tan sec cos csc sin 注:三角函数值的符号规律“一正全、二正弦、三双切、四余弦” 二、同角三角函数的关系式及诱导公式 (一) 诱导公式: α±? 2 k )(Z k ∈与α的三角函数关系是“立变平不变,符号 看象限”。如: ()?? ? ??--??? ??+απαπαπ25sin ;5tan ,27cos 等。 (二) 同角三角函数的基本关系式:①平方关系1 cos sin 22 =+αα; α ααα22 22tan 11cos cos 1tan 1+=?= +②商式关系 α α α tan cos sin =;αααcot sin cos =③倒数关系1cot tan =αα;1sec cos ;1csc sin ==αααα。 (三) 关于公式1cos sin 22 =+αα的深化

() 2 cos sin sin 1ααα±=±; α ααcos sin sin 1±=±; 2 cos 2 sin sin 1α α α+=+ 如: 4cos 4sin 4cos 4sin 8sin 1--=+=+;4cos 4sin 8sin 1-=- 注:1、诱导公式的主要作用是将任意角的三角函数转化为ο0~ο90角的三角函数。 2、主要用途: a) 已知一个角的三角函数值,求此角的其他三角函数值(①要注意题设中角的范围,②用三角函数的定义求解会更方便); b) 化简同角三角函数式; 证明同角的三角恒等式。 三、两角和与差的三角函数 (一)两角和与差公式 ()βαβαβαsin cos cos sin sin ±=± ()β αβαβαsin sin cos cos cos μ=± ()β αβ αβαtan tan 1tan tan tan μ±= ± (二)倍角公式 1、公式βαα cos sin 22sin = cos 2α= 2 2cos 1α + sin 2α= 2 2cos 1α - ααααα2222sin 211cos 2sin cos 2cos -=-=-= α αα2tan 1tan 22tan -= α α ααα sin cos 1cos 1sin 2 tan -= += )sin(cos sin 22?ααα++=+b a b a )sin ,(cos 2 2 2 2 b a a b a b += += ?? 注: (1)对公式会“正用”,“逆用”,“变形使用”。(2)掌握“角的演变”规律(3)将公式和其它知识衔接起来使用。(4)倍角公式揭示了具有倍数关系的两个角的三角函数的运算规律,可实现函数式的降幂的变化。 2、两角和与差的三角函数公式能够解答的三类基本题型: (1)求值 ①“给角求值”:给出非特殊角求式子的值。仔细观察非特殊角的特点,找出和特殊角之间的关系,利用公式转化或消除非特殊角 ②“给值求值”:给出一些角得三角函数式的值,求另外一些角得三角函数式的值。找出已知角与所求角之间的某种关系求解 ③ “给值求角”:转化为给值求值,由所得函数值结合角的范围求出角。 ④ “给式求值”:给出一些较复杂的三角式的值,求其他式子的值。将已知式或所求式进行化简,再求之 三角函数式常用化简方法:切割化弦、高次化低次 注意点:灵活角的变形和公式的变形, 重视角的范围对三角函数值的影响,对角的范围要讨论

自相关与互相关函数

相关函数 1.自相关函数 自相关函数是信号在时域中特性的平均度量,它用来描述信号在一个时刻的取值与 另一时刻取值的依赖关系,其定义式为 (2.4.6) 对于周期信号,积分平均时间T为信号周期。对于有限时间的信号,例如单个脉 冲,当T趋于无穷大时,该平均值将趋于零,这时自相关函数可用下式计算 (2.4.7) 自相关函数就是信号x(t)和它的时移信号x(t+τ)乘积的平均值,它是时移变量τ的函数。 例如信号的自相关函数为 若信号是由两个频率与初相角不同的频率分量组成,即 ,则

对于正弦信号,由于,其自相关函数仍为 由此可见,正弦(余弦)信号的自相关函数同样是一个余弦函数。它保留了原信号的频率成分,其频率不变,幅值等于原幅值平方的一半,即等于该频率分量的平均功率 ,但丢失了相角的信息。 自相关函数具有如下主要性质: (1)自相关函数为偶函数,,其图形对称于纵轴。因此,不论时移方向是导前还是滞后(τ为正或负),函数值不变。 (2)当τ=0时,自相关函数具有最大值,且等于信号的均方值,即 (2.4.8)(3)周期信号的自相关函数仍为同频率的周期信号。 (4)若随机信号不含周期成分,当τ趋于无穷大时,趋于信号平均值的平方,即 (2.4.9)实际工程应用中,常采用自相关系数来度量其不同时刻信号值之间的相关程度,定义式为 (2.4.10)

当τ=0时,=1,说明相关程度最大;当τ=∞时,,说明信号x(t)与x(t+τ)之间彼此无关。由于,所以。值的大小表示信号相关性的强弱。 自相关函数的性质可用图2.4.3表示。 图2.4.3 自相关函数的性质 常见四种典型信号的自相关函数如图2.4.4所示,自相关函数的典型应用包括: (1)检测信号回声(反射)。若在宽带信号中存在着带时间延迟的回声,那么该 信号的自相关函数将在处也达到峰值(另一峰值在处),这样可根据确定 反射体的位置,同时自相关系数在处的值将给出反射信号相对强度的度量。 时间历程自相关函数图形 正 弦 波

2,三角函数的基本概念

实用文档 §4.2三角函数的基本概念 【复习目标】 1. 掌握任意角三角函数的定义,能写出各三角函数的定义域,能判断三角函数的符号; 2. 理解三角函数线的本质,能用三角函数线和单位圆解决简单的数学问题 【重点难点】 理解三角函数线的本质,能用三角函数线和单位圆解决简单的数学问题 【课前预习】 1. 已知角α的终边经过点)12,5(--P ,则sin ____,cos ___,tan ____ααα===. 2. 已知点)tan ,cos (sin ααα-P 在第一象限,则在)2,0[π内的α的取值范围 为 。 3. 已知,αβ均为第二象限角,且sin sin αβ>,则必有 ( ) A .αβ< B .tan tan αβ> C .cos cos αβ> D .cos cos αβ< 4. 填空: (1) 不等式x cos 22+≤0的解集是____________________________. (2) 函数1tan += x y 的定义域是______________________________. 【典型例题】 例1 已知角α终边上一点),3(y P -,且 y 42sin =α,求αcos 和αtan 的值.

实用文档 例2(1)若0cos sin >?θθ,则θ在 ( ) (A) 第一、四象限 (B) 第一、三象限 (C) 第一、二象限期 (D )第二、四象限 (2)若α是第二象限角,用2cos |2cos |α α-=,则2α是 ( ) (A) 第一象限 (B) 第二象限 (C) 第三象限期 (D )第四象限 例3 已知锐角α终边上一点A 的坐标为)3cos 2,3sin 2(-,求α的弧度数. 【巩固练习】 1. 已知cos sin 1αα-<-,则α是第 象限角。

5.2 三角函数的概念(解析版).docx

5.2 三角函数的概念 A 组-[应知应会] 1.(2020·周口市中英文学校高一期中)已知角α终边经过点122P ?? ? ??? ,则 cos α=( ) A . 1 2 B C D .12 ± 【参考答案】B 【解析】由于1,r OP x === ,所以由三角函数的定义可得cos x r α==,应选参考答案B . 2.(2019·渝中·重庆巴蜀中学高一期末)若cos 0θ<,cos sin θθ-=那么θ的( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角 【参考答案】C 【解析】由题意得sin cos θθ==-, 即cos sin sin cos θθθθ-=-,所以sin θcos θ 0,即sin cos θθ≤,又cos 0θ<,所以sin 0,θ<θ位于第三象限,故选C. 3.若α为第二象限角,则下列各式恒小于零的是( ) A .sin cos αα+ B .tan sin αα+ C .cos tan αα- D .sin tan αα- 【参考答案】B 【分析】画出第二象限角的三角函数线,利用三角函数线判断出sin tan 0αα+<,由此判断出正确选项. 【解析】如图,作出sin ,cos ,tan ααα的三角函数线,显然~OPM OTA ??,且MP AT <,∵0MP >,0AT <,∴MP AT <-.∴0MP AT +<,即sin tan 0αα+<.故选B. 4.若角α的终边经过点()() sin 780,cos 330P ?-?,则sin α=( ) A B . 12 C D .1 【参考答案】C 【分析】利用诱导公式化简求得P 点的坐标,在根据三角函数的定义求得sin α的值.

三角函数基本概念和表示

第三章三角函数 第一节三角函数及概念 复习要求: 1.任意角、弧度 了解任意角的概念和弧度制,能进行弧度与角度的互化; 2.三角函数 (1)借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义; (2)借助单位圆中的三角函数线推导出诱导公式。 知识点: 1.任意角的概念 角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。一条射线由原来的位置,绕着它的端点按逆时针方向旋转到终止 位置,就形成角。旋转开始时的射线叫做角的始边,叫终边,射 线的端点叫做叫的顶点。 2.角的分类 为了区别起见,我们规定: 按逆时针方向旋转所形成的角叫正角, 按顺时针方向旋转所形成的角叫负角。如果一条射线没有做任何旋转,我们称它为零角。 3.象限角 角的顶点与原点重合,角的始边与轴的非负半轴重合。那么,角的终边(除端点外)落在第几象限,我们就说这个角是第几象限角。 (1)第一象限角的集合: |22, 2 k k k Z π απαπ ?? <<+∈ ???? (2)第二象限的集合:。 O

(3)第三象限角的集合: 。 (4)第四象限角的集合: 4.轴线角 角的顶点与原点重合,角的始边与轴的非负半轴重合。若角的终边落在坐标轴上,称这个角为轴线角。它不属于任何象限,也称为非象限角。 5.终边相同的角 所有与角α终边相同的角连同角α在内,构成的角的集合,称之为终边相同的角。记为: {} |360,S k k Z ββα==+?∈或 {} |2,S k k Z ββαπ==+∈。它们彼此相差 2()k k Z π∈,根据三角函数的定义知,终边相同的角的各种三角函数值都相等。 6.区间角 区间角是指介于两个角之间的所有角,如5| ,6 666π πππααα? ??? =≤≤ =????? ???。 7,角度制与弧度制 角度制:规定周角的1 360为1度的角,记作0 1,它不会因圆的大小改变而改变, 与r 无关 弧度制:长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1rad 或1弧度或1(单位可以省略不写)。 角有正负零角之分,它的弧度数也应该有正负零之分,如-π,-2π等等,一般地, 正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0,角的正负主要由角的旋转方向来决定。 8.角的度量 (1)角的度量制有:角度制,弧度制 (2)换算关系:角度制与弧度制的换算主要抓住180rad π=o 。

三角函数知识点汇总

1三角函数的概念 【知识网络】 【考点梳理】 考点一、角的概念与推广 1.任意角的概念:正角、负角、零角 2.象限角与轴线角: 与α终边相同的角的集合:},2|{Z k k ∈+=απββ 第一象限角的集合:{|22,}2 k k k Z π βπβπ<<+∈ 第二象限角的集合:{| 22,}2 k k k Z π βπβππ+<<+∈ 第三象限角的集合:3{|22,}2 k k k Z π βππβπ+<<+∈ 第四象限角的集合:3{| 222,}2 k k k Z π βπβππ+<<+∈ 终边在x 轴上的角的集合:{|,}k k Z ββπ=∈ 终边在y 轴上的角的集合:{|,}2 k k Z π ββπ=+∈ 终边在坐标轴上的角的集合:{|,}2 k k Z π ββ=∈ 要点诠释: 要熟悉任意角的概念,要注意角的集合表现形式不是唯一的,终边相同的角不一定相等,但相等的角终边一定相同,还要注意区间角与象限角及轴线角的区别与联系. 三角函数的概念 角的概念的推广、弧度制 正弦、余弦的诱导公式 同角三角函数的基本关系式 任意角的三角函数

考点二、弧度制 1.弧长公式与扇形面积公式: 弧长l r α= ?,扇形面积21 122 S lr r α==扇形(其中r 是圆的半径,α是弧所对圆心角的弧度数). 2.角度制与弧度制的换算: 180π=;180 10.017451()57.305718'180 rad rad rad π π = ≈=≈=; 要点诠释: 要熟悉弧度制与角度制的互化以及在弧度制下的有关公式. 考点三、任意角的三角函数 1. 定义:在角α上的终边上任取一点(,)P x y ,记r OP ==则sin y r α= , cos x r α=, tan y x α=,cot x y α=,sec r x α=,csc r y α= 2. 三角函数线:如图,单位圆中的有向线段MP ,OM ,AT 分别叫做α的正弦线,余弦线,正切线. 3. 三角函数的定义域:sin y α=,cos y α=的定义域是R α∈;tan y α=,sec y α=的定义域是 {|,}2 k k Z π ααπ≠+ ∈;cot y α=,csc y α=的定义域是{|,}k k Z ααπ≠∈. 4. 三角函数值在各个象限的符号: 考点四、同角三角函数间的基本关系式 1. 平方关系:2 2 2222sin cos 1;sec 1tan ;csc 1cot α+α=α=+αα=+α. 2. 商数关系:sin cos tan ;cot cos sin α α α= α= α α . 3. 倒数关系:tan cot 1;sin csc 1;cos sec 1α?α=αα=α?α= 要点诠释: ①同角三角函数的基本关系主要用于:(1)已知某一角的三角函数,求其它各三角函数值;(2)证明三角恒等式;(3)化简三角函数式. ②三角变换中要注意“1”的妙用,解决某些问题若用“1”代换,如2 2 1sin cos =α+α, 221sec tan tan 45=α-α== ,则可以事半功倍;同时三角变换中还要注意使用“化弦法”、消去法 及方程思想的运用. 考点五、诱导公式 1.2(),,,2k k Z πααπαπα+∈-±-的三角函数值等于α的同名三角函数值,前面加上一个把α看成锐角时原函数值所在象限的符号.

自相关函数与互相关函数 不错的材料

2.4.3 相关函数 1.自相关函数 自相关函数是信号在时域中特性的平均度量,它用来描述信号在一个时刻的取值与另一时刻取值的依赖关系,其定义式为 (2.4.6) 对于周期信号,积分平均时间T为信号周期。对于有限时间内的信号,例如单个脉冲,当T趋于无穷大时,该平均值将趋于零,这时自相关函数可用下式计算 (2.4.7) 自相关函数就是信号x(t)和它的时移信号x(t+τ)乘积的平均值,它是时移变量τ的函数。 例如信号的自相关函数为 若信号是由两个频率与初相角不同的频率分量组成,即 ,则

对于正弦信号,由于,其自相关函数仍为 由此可见,正弦(余弦)信号的自相关函数同样是一个余弦函数。它保留了原信号的频率成分,其频率不变,幅值等于原幅值平方的一半,即等于该频率分量的平均功率,但丢失了相角的信息。 自相关函数具有如下主要性质: (1)自相关函数为偶函数,,其图形对称于纵轴。因此,不论时移方向是导前还是滞后(τ为正或负),函数值不变。 (2)当τ=0时,自相关函数具有最大值,且等于信号的均方值,即 (2.4.8)(3)周期信号的自相关函数仍为同频率的周期信号。 (4)若随机信号不含周期成分,当τ趋于无穷大时,趋于信号平均值的平方,即 (2.4.9) 实际工程应用中,常采用自相关系数来度量其不同时刻信号值之间的相关程

度,定义式为 (2.4.10) 当τ=0时,=1,说明相关程度最大;当τ=∞时,,说明信号x(t)与 x(t+τ)之间彼此无关。由于,所以。值的大小表示信号相关性的强弱。 自相关函数的性质可用图2.4.3表示。 图2.4.3 自相关函数的性质 常见四种典型信号的自相关函数如图2.4.4所示,自相关函数的典型应用包括: (1)检测信号回声(反射)。若在宽带信号中存在着带时间延迟的回声,那么该信号的自相关函数将在处也达到峰值(另一峰值在处),这样可根据确定反射体的位置,同时自相关系数在处的值将给出反射信号相对强度的度量。 时间历程自相关函数图形

高中数学专题讲义-三角函数基本概念

题型一:任意角与弧度制 【例1】 下列各对角中终边相同的角是( )。 A 2π和2()2Z k k ππ-+∈ B 3π-和22 3 C 79π-和119π D 203π和1229π 【例2】 若角α、β的终边相同,则αβ-的终边在 . A.x 轴的非负半轴上 B.y 轴的非负半轴上 C.x 轴的非正半轴上 D.y 轴的非正半轴上 【例3】 当角α与β的终边互为反向延长线,则αβ-的终边在 . A.x 轴的非负半轴上 B.y 轴的非负半轴上 C.x 轴的非正半轴上 D.y 轴的非正半轴上 【例4】 时钟经过一小时,时针转过了( )。 A 6 rad π B 6 rad π - C 12 rad π D 12 rad π - 【例5】 两个圆心角相同的扇形的面积之比为1:2,则两个扇形周长的比为( ) A 1:2 B 1:4 C 1:2 D 1:8 典例分析 板块一.三角函数的基本概念

【例6】 下列命题中正确的命题是( ) A 若两扇形面积的比是1:4,则两扇形弧长的比是1:2 B 若扇形的弧长一定,则面积存在最大值 C 若扇形的面积一定,则弧长存在最小 D 任意角的集合可以与实数集R 之间建立一种一一对应关系 【例7】 一个半径为R 的扇形,它的周长是4R ,则这个扇形所含弓形的面积是( ) A. 21 (2sin1cos1)2R -? B 21 sin1cos12 R ? C 2 12 R D 2(1sin1cos1)R -? 【例8】 下列说法正确的有几个( ) (1)锐角是第一象限的角;(2)第一象限的角都是锐角; (3)小于90o 的角是锐角;(4)090o o :的角是锐角。 A 1个 B 2个 C 3个 D 4个 【例9】 已知角的顶点与坐标系原点重合,始边落在x 轴的正半轴上,则角855o 是第 ( )象限角。 A 第一象限角 B 第二象限角 C 第三象限角 D 第四象限角 【例10】 下面四个命题中正确的是( ) A.第一象限的角必是锐角 B.锐角必是第一象限的角 C.终边相同的角必相等 D.第二象限的角必大于第一象限的角 【例11】 已知角α的终边经过点(3P -,则与α终边相同的角的集合是 . A.2π2π3x x k k ?? =+∈???? Z , B.5π2π6x x k k ?? =+∈???? Z , C.5ππ6x x k k ?? =+∈???? Z , D.2π2π3x x k k ?? =-∈???? Z , 【例12】 若α是第四象限角,则180α-o 是( ) A 第一象限角 B 第二象限角 C 第三象限角 D 第四象限角 【例13】 若α与β的终边互为反向延长线,则有( )

浅谈波函数的理解

浅谈波函数的理解 吕晓卿 2006623161 (华中师范大学物理科学与技术学院2006级基地班,武汉) [摘要]:本文主要论述微观粒子的运动状态,借助布朗运动理解微观粒子运动的不可预测性。由量子理论知道微观粒子的状态是用波函数描述的,浅谈我对波函数物理意义的理解。最后类比投硬币事件理解力学量的本征值和本征函数的意义,以及对各种测量结果的概率的计算。 [关键词]:微观粒子;波函数;概率分布;本征值;本征函数 由量子力学理论我们知道微观粒子具有波粒二象性,那应该怎样理解那既是波又是粒子的微观粒子呢?为什么量子力学量测不准呢?波函数用来描述微观粒子的状态,它的物理意义是什么?力学量算符的本征值、本征函数的理解怎样? 1.微观粒子的运动与布朗运动 19世纪末,经典物理学遇到了重重困难:黑体辐射、光电效应、原子光谱的分立性等,正是在对这一系列困难的解决中提出并建立了量子理论。人类对光的本性的认识过程:从牛顿的“微粒说”到胡克的“波动说”,德布罗意类比这一过程提出任何速度的微观粒子都具有波粒二象性。 微观粒子的波粒二象性是指微观粒子在与物质作用时呈现出粒子的“原子性”,在传播过程中表现出波动性的本质“叠加性”。微观粒子到底是个什么东西?它在空间中到底怎么运动? 事实告诉我们微观粒子在空间中任何一点都有可能出现,但它出现在哪一点又是无法预测的。对于经典粒子,我们可以根据前一时刻的运动状态来预测其下一时刻的运动状态。但对于微观粒子我们不能做到这一点,我们只能知道下一时刻它可能出现在什么位置以及出现的概率是多少。 布朗运动图 当学习微观粒子那神秘诡异的运动时,我们不妨借助我们熟知的布朗运动来理解。这两幅图片分别是氢原子电子图和布朗运动图,我们可以从中看出他们一些相似的地方。 首先,二者的共同点是运动都是杂乱无章的,电子云图中的点的密集程度表示电子在此出现的概率的大小,布朗运动图中的折点是布朗粒子曾出现的位置,但折线并不是布朗粒子的运动轨迹。他们都不像宏观物体那样有其运动的轨道。其实我们知道布朗粒子的无规则运动其实质就是它所处环境中(像液体)分子的无规则运动。其次,这两种运动我们都无法预知其下一时刻的运动状态。这一时刻出现在这里,下一时刻可能出现在任何地方,谁都不

自相关函数与偏自相关函数

自相关函数与偏自相关函数 上一节介绍了随机过程的几种模型。实际中单凭对时间序列的观察很难确定其属于哪一种模型,而自相关函数和偏自相关函数是分析随机过程和识别模型的有力工具。 1、自相关函数定义 在给出自相关函数定义之前先介绍自协方差函数概念。由第一节知随机过程{t x }中的每一个元素t x ,t = 1, 2, … 都是随机变量。对于平稳的随机过程,其期望为常数,用μ表示,即 ()t E x μ=,1,2,t =L 随机过程的取值将以 μ 为中心上下变动。平稳随机过程的方差也是一个常量 2()t x Var x σ=,1,2,t =L 2x σ用来度量随机过程取值对其均值μ的离散程度。 相隔k 期的两个随机变量t x 与t k x -的协方差即滞后k 期的自协方差,定义为: (,)[()()]k t t k t t k Cov x x E x x γμμ--==-- 自协方差序列:k γ,0,1,2,k =L 称为随机过程{t x }的自协方差函数。当k = 0 时,2 0()t x Var x γσ==。 自相关系数定义:k ρ= 因为对于一个平稳过程有:2 ()()t t k x Var x Var x σ-== 所以2 20 (,) t t k k k k x x Cov x x γγρσσγ-= = =,当 k = 0 时,有01ρ=。 以滞后期k 为变量的自相关系数列k ρ(0,1,2,k =L )称为自相关函数。因为k k ρρ-=,即(,)t k t Cov x x -= (,)t t k Cov x x +,自相关函数是零对称的,所以实际研究中只给出自相关函数的正半部分即可。

三角函数的有关概念

则21x x -的最小值是_______ 3.不等式1tan --x x 的解集是 , 4.函数2 cos 3 cos ++=x x y 的值域是 思考题: 求函数x x x x y cos sin cos sin ++=的值域 (1cos 3cos sin 2sin 22+++=x x x x y 的值域) §28 三角函数的性质(2) 【基本训练】 1.判断函数的奇偶性:①x y cos lg =__________② )2 3sin( x y +=π __________ 2.函数)4 tan(π+=x y 的对称中心是___________,函数)3 2sin(π -=x y 的对称 轴方程是___________ 3.x y 2cos =的单调递减区间为___________________;)sin(2x y -=的单调递增区间为___________________;x y tan =的单调递减区间为_____________________ 4.若)(x f 是奇函数,当0>x 时,,sin )(2x x x f -=则0

,8 π = x )1(求?; )2(求函数)(x f y =的单调减区间; 证明直线025=+-c y x 与函数)(x f y =的图象不相切 例2 求下列函数的单调区间: );3 23sin(21)1(x y -= π )4cos()2(π--=x y 例3 已知函数)0,0)(sin()(π?ω?ω≤≤>+=x x f 是R 上的偶函数,其图象关于点)0,4 3( πM 对称,且在区间]2,0[π 上是单调函数,求?和ω的值. 练习:若函数)(x f y =的图象和)4 sin(π+=x y 的图象关于点 )0,4 (π M 对称,则 )(x f 的表达式是_________________ 【课堂检测】 1.函数x y 2sin =的对称轴方程为_________, 函数)2 cos(π +=x y 的对称中 心坐标为_________ 2.求下列函数的单调区间 (1))34 sin(x y -=π ;(2))cos (sin sin )(x x x x f -= 3.已知)sin(3)sin()(θθ-++=x x x f 为偶函数,求θ的值. 【课后作业】 1.已知函数23sin cos cos ()y ωx ωx ωx R ωR =-∈∈3 x+, ,2 的最小正周期为π,且当6 πx =时,函数有最小值,(1)求()f x 的解析式;(2)求()f x 的单调递增区间。

波函数及其统计诠释

§15-1波函数及其统计诠释 在经典物理学中我们已经知道,一个被看作为质点的宏观物体的运动状态,是用它的位置矢量和动量来描述的。但是,对于微观粒子,由于它具有波动性,根据不确定关系,其位置和动量是不可能同时准确确定的, 所以我们也就不可能仍然用位置、动量以及轨道这样一些经典概念来描述它的运动状态了。微观粒子的运动状态称为量子态,是用波函数ψ(r, t)来描述的,这个波函数所反映的微观粒子波动性,就是德布罗意波。 在经典物理学中,我们曾经用波函数y(x, t) = a cos(ωt-kx)表示在t时刻、在空间x处的弹性介质质点离开平衡位置的位移,用波函数e(r, t) = e0 cos(k?r-ω t)和b(r, t) = b0 cos (k?r-ω t)分别表示在t时刻、在空间r处的电场强度和磁场强度。那么在量子力学中描述微观粒子的波函数ψ(r, t)究竟表示什么呢? 为了解释微观粒子的波动性,历史上曾经有人认为,微观粒子本身就是粒子,只是它的运动路径像波;也有人认为,波就是粒子的某种实际结构,即物质波包,波包的大小就是粒子的大小,波包的速度(称为群速)就是粒子的运动速度;还有人认为,波动性是由于大量微观粒子分布于空间而形成的疏密波。实验证明,这些见解都与事实相违背,因而都是错误的。 1926年玻恩(m.born, 1882-1970)指出,德布罗意波或波函数ψ(r, t)不代表实际物理量的波动,而是描述粒子在空间的概率分布的概率波。对波函数的这种统计诠释将量子概念下的波和粒子统一起来了。微观粒子既不是经典概念中的粒子,也不是经典概念中的波;或者说,微观粒子既是量子概念中的粒子,也是量子概念中的波。其量子概念中的粒子性表示它们是具有一定能量、动量和质量等粒子的属性,但不具有确定的运动轨道,运动规律不遵从牛顿运动定律;其量子概念中的波动性并不是指某个实在物理量在空间的波动,而是指用波函数的模的平方表示在空间某处粒子被发现的概率。

高中数学--三角函数的基本概念

高中数学--三角函数的基本概念 题型一:任意角与弧度制 【例1】 下列各对角中终边相同的角是( )。 A 2π和2()2Z k k ππ-+∈ B 3π-和22 3 C 79π-和119π D 203π和1229π 【例2】 若角α、β的终边相同,则αβ-的终边在 . A.x 轴的非负半轴上 B.y 轴的非负半轴上 C.x 轴的非正半轴上 D.y 轴的非正半轴上 【例3】 当角α与β的终边互为反向延长线,则αβ-的终边在 . A.x 轴的非负半轴上 B.y 轴的非负半轴上 C.x 轴的非正半轴上 D.y 轴的非正半轴上 【例4】 时钟经过一小时,时针转过了( )。 A 6 rad π B 6 rad π - C 12 rad π D 12 rad π - 【例5】 两个圆心角相同的扇形的面积之比为1:2,则两个扇形周长的比为( ) A 1:2 B 1:4 C 2 D 1:8 典例分析

【例6】 下列命题中正确的命题是( ) A 若两扇形面积的比是1:4,则两扇形弧长的比是1:2 B 若扇形的弧长一定,则面积存在最大值 C 若扇形的面积一定,则弧长存在最小 D 任意角的集合可以与实数集R 之间建立一种一一对应关系 【例7】 一个半径为R 的扇形,它的周长是4R ,则这个扇形所含弓形的面积是( ) A. 21 (2sin1cos1)2R -? B 21 sin1cos12 R ? C 2 12 R D 2(1sin1cos1)R -? 【例8】 下列说法正确的有几个( ) (1)锐角是第一象限的角;(2)第一象限的角都是锐角; (3)小于90o 的角是锐角;(4)090o o :的角是锐角。 A 1个 B 2个 C 3个 D 4个 【例9】 已知角的顶点与坐标系原点重合,始边落在x 轴的正半轴上,则角855o 是第( )象限角。 A 第一象限角 B 第二象限角 C 第三象限角 D 第四象限角 【例10】 下面四个命题中正确的是( ) A.第一象限的角必是锐角 B.锐角必是第一象限的角 C.终边相同的角必相等 D.第二象限的角必大于第一象限的角 【例11】 已知角α的终边经过点(3P -,则与α终边相同的角的集合是 . A.2π2π3x x k k ?? =+∈????Z , B.5π2π6x x k k ?? =+∈????Z , C.5ππ6x x k k ??=+∈???? Z , D.2π2π3x x k k ?? =-∈???? Z , 【例12】 若α是第四象限角,则180α-o 是( ) A 第一象限角 B 第二象限角 C 第三象限角 D 第四象限角 【例13】 若α与β的终边互为反向延长线,则有( ) A 180αβ=+o B 180αβ=-o C αβ=- D (21)180,k k Z αβ=++?∈o

相关文档
最新文档