6-土壤地球化学找矿

地球化学心得

勘查地球化学心得体会--兼浅谈广东化探找金矿 王立强 广东省地质局七一九地质大队地质勘查所 1前言 目前,化探找金逐步被人们重视,在地质找矿中的效果也逐渐明显,成为寻找各种类型金矿床比较快速、经济、有效的重要手段。在区域普查中,通过查明区域地球化学异常,可迅速指出找矿远景区;在详查及勘探阶段,通过岩石地球化学异常的研究,可直接发现金矿床或矿体,更好地发挥化探在地质找矿工作中的作用。但是金在地壳内部的本底含量极低,即使是金矿体中的金含量一般亦仅为n×10-6~10n×10-6,仅凭肉眼无法将之直接区分出来,因此以对样品(水系沉积物、土壤、岩石等>进行定量分析为主要工作手段的化探方法,在当今金矿勘查中发挥了极其重要的作用。 中国地球化学的发展主要是借鉴了前苏联和西方的研究思路,前苏联的勘察地球化学主要依靠对土壤进行金属测量,但采样点布置较稀疏,而西方国家主要采用水系沉积物测量,但是主要用于研究,两者优缺点都有。80年代以来,金分析技术目臻成熟,当时Au分析的检出限低于或等于0.3×10-6,准确度、精密度在一定程度上能满足区域化探的要求,因而全国区域化探找金空前繁荣,特别是谢学锦先生提出的“区域化探全国扫面计划”建议,将我国的勘察地球化学推进到快速发展的崭新阶段。随着时代发展,金分析技术逐步进步,中国勘察地球化学也得到了长足的进步,三十年以来已完成1:500万和1:1 000万比例尺的39种元素或氧化物的全国地球化学图,使中国拥有了最引人瞩目的全国规模地球化学数据库,使中国化探走在了世界前列。而广东化探找金始于1974年,主要为以1:20万水系沉积物测量为主要工作方法的区域化探扫面,不过因为受金分析技术的影响,当时找金主要从金的伴生元素如As、Cu、Pb等入手,其难度不言而喻,但广东各地质单位的前辈在这种艰难条件下提交了大

土壤地球化学测量工作设计说明书

土壤地球化学测量工作设计说明书 1.1项目概况 1.1.1项目来源 (略) 1.1.2工作周期、成果提交时间 (略) 1.2 目标任务 通过开展1∶10000土壤地球化学测量扫面,圈定并评价地球化学异常。通过综合分析,优选地球化学异常和找矿靶区,为进一步工作指出找矿方向和提供本区基础地球化学资料。 1.3工作区概况 (略) ********矿区拐点坐标表表1

2、以往工作程度 2.1区域地质、物化探工作 (略) 2.2矿区化探工作程度 1991~1993年,***************在*************开展了1∶5万水系沉积物地球化学测量工作,在矿区内圈定了T4号水系沉积物异常区。 2.3以往工作存在的问题 通过以往化探工作,虽然在在矿区内圈定了T4号水系沉积物异常区。并在异常区内发现了5条含矿构造破碎蚀变带,但限于投入少,工作程度低,因此对预查区的化探异常尚不能进行准确定位。急提高化探工作程度,准确圈定化探异常范围,为寻找金多金属矿床提供更准确的基础地球化学资料。 3、地质矿产及地球化学特征 3.1工作区地质概况 (略) 3.1.1矿区地质特征 (略) 3.1.2地层及岩性 (略)

3.1.3构造 (略) 3.1.4岩浆岩 (略) 3.1.5围岩蚀变 (略) 3.1.6矿体地质特征 (略) 3.2地球化学景观特征 土壤主要为黄壤、黄粘土。土壤发育,A、B、C层位清晰、明显,一般厚0.5~2.0米,B层较发育。综上所述,区内物理、化学风化较强烈,淋滤作用不明显,土壤层发育,适宜开展土壤地球化学测量工作 4 工作部署 4.1工作部署原则 根据本次土壤测量工作的目的和任务,从工作区实际出发,参照2003年1月1日颁布实施的《铜、铅、锌、银、镍、钼矿地质勘查规范》及其他有关规范和技术方法的要求,在前期地质工作的基础上,运用现代成矿理论,采用有效找矿手段在本区开展土壤测量工作。 本次土壤测量工作总体部署的基本原则主要以矿区已发现的5条(Ⅳ、Ⅷ、Ⅸ、Ⅹ、Ⅺ)含矿构造破碎蚀变带为重点目标,在综合分析已有的地质、物化探资料的基础上,遵循“由浅入深、由稀到密、

1 5万土壤地球化学测量规范

中华人民共和国地质矿产行业标准 土壤地球化学测量规范 DZ/T 0145-94 1 主题内容与适用范围 1.1本标准规定了土壤地球化学测量工作中主要方法、技术要求和规则。 1.2本标准适用于金属矿产地质勘查。铀矿、地热、非金属矿产地质勘查的土壤测量工作也可参照执行。 2 引用标准 GB/T 14496 地质矿产地球化学勘查名词术语 DZ/T 0011 地球化学普查规范(比例尺1:50000) DZ/T 0075 地球化学勘查图图式,图例及用色标准 3 总则 3.1 土壤地球化学测量(简称土壤测量),是以上壤为采样对象所进行的地球化学勘查工作。3.2 土壤地球化学测量主要用于矿产地质勘查的详查阶段,也可用于在区域调查、普查阶段中水系沉积物测量无法进行的地区。 3.3 土壤地球化学测量可用于找矿以及各类异常和矿化点的查证、评价,也可为地质填图提供信息。 3.4 区域调查和普查的土壤测量方法,其主要技术要求,按化探区域调查和化探普查的规范执行。 3.5 用于金属矿产地质勘查的土壤测量应选择在残坡积层发育地区进行。 4 工作设计 4.1 资料收集 编写土壤测量的工作设计前,—般应收集和分析以下资料: a.测区的地理和交通、生活情况以及测地资料; b.测区及外围地质特征,矿产、矿床类型和成矿规律,矿床氧化淋失程度等特点; c.测区及外围以往地质、物探、化探、遥感等的工作程度和工作成果; d.测区的地形、地貌、水文、气象,第四纪覆盖物(尤其是土壤)的类型,植被特征,人工污染情况等有关资料; e.表生作用对指示元素的影响及表生赋存状态。 4.2 方法有效性与技术试验 4.2.1 野外踏勘 编写设计前应对测区进行必要的现场踏勘工作、取得第一手资料,以了解所收集资料方法技术的有效性,其内容包括: a.检查核对所搜集资料的可靠程度; b.确定试验地点和测区的有效范围; c.实地考察工区的交通、生活及工作条件。 4.2.2 设计前的技术试验 4.2.2.1 有前人工作过的测区或邻区,设计时其主要技术指标和方案可参照前人的工作成果。如果认为资料不足,可补作部分技术试验。

勘查地球化学习题集答案

地球化学找矿习题集 一、填空题 1.地球化学找矿具有对象的微观化,分析测试技术是基础,擅于寻找隐伏矿体和准确率高、速度快、成本低。的特点。 2.地球化学找矿的研究物质主要是岩石、土壤、水系沉积物、水、气体和生物。 3.地球化学找矿的研究对象是地球化学指标(或物质组成)。 4.应用地球化学解决地球表层系统物质与人类生存关系。 5.应用地球化学研究方法可以分为现场采样调查评价研究与实验研究。 6.元素在地壳的分布是不均匀的,不均匀性主要表现在空间和时间两方面。 7.克拉克值在0.1%以下的元素称为微量元素,其单位通常是ppm(或10-6)。 8.微量元素的含量不影响地壳各部分基本物理、化学性质,但是在特定的条件下,可以富集而形成矿床。 9.戈尔德施密特根据元素的地球化学亲和性,将元素分为亲铁元素、亲硫(亲铜)元素、亲氧(亲石)元素、亲气元素和亲生物元素。 10.元素迁移的方式主要有化学-物理化学迁移、机械迁移和生物-生物化学迁移。 11.热液矿床成矿过程中,成晕元素主要呈液相迁移,迁移方式主要有渗透迁移和扩散迁移两种。 12.影响元素沉淀的原因主要有PH变化、Eh变化、胶体吸附、温度变化和压力变化。 13.地壳中天然矿物按阴离子分类,常见有含氧化合物、硫化物、卤化物和自然元素。 14.地球化学异常包括异常现象、异常范围、异常值三层含义。 15.地球化学省实质是以全球地壳为背景的规模巨大的一级地球化学异常。 16.地壳元素的丰度是指地壳中化学元素的平均含量,又称为克拉克值。 17.地壳中元素的非矿物赋存形式包括超显微非结构混入物、类质同象结构混入物、胶体或离子吸附和与有机质结合。

地质勘查常用标准汇编3-08土壤地球化学测量规范

3—8 土壤地球化学测量规范 (DZ/T 0145-94) 1 主题内容与适用范围 1.1 本标准规定了土壤地球化学测量工作中主要方法、技术要求和规则。 1.2 本标准适用于金属矿产地质勘查。铀矿、地热、非金属矿产地质勘查的土壤测量工作也可参照执行。 2 引用标准 GB/T 14496 地质矿产地球化学勘查名词术语 DZ/T 0011 地球化学普查规范(比例尺1:50 000) DZ/T 0075 地球化学勘查图图式,图例及用色标准 3 总则 3.1 土壤地球化学测量(简称土壤测量),是以土壤为采样对象所进行的地球化学勘查工作。 3.2 土壤地球化学测量主要用于矿产勘查的详查阶段,也可用于在区域调查、普查阶段中水系沉积物测量无法进行的地区。 3.3 土壤地球化学测量可用于找矿以及各类异常和矿化点的查证、评价,也可为地质填图提供信息。 3.4 区域调查和普查的土壤测量方法,其主要技术要求,按化探区域调查和化探普查的规范执行。 3.5 用于金属矿产地质勘查的土壤测量应选择在残坡积层发育地区进行。 4 工作设计 4.1 资料收集 编写土壤测量的工作设计前,一般应收集和分析以下资料: 地质矿产部1995-01-27批准1995-12-01实施 ·929·

a. 测区的地理和交通、生活情况以及测地资料; b. 测区及外围地质特征,矿产、矿床类型和成矿规律,矿床氧化淋失程度等特点; c. 测区及外围以往地质、物探、化探、遥感等的工作程度和工作成果; d. 测区的地形、地貌、水文、气象,第四纪覆盖物(尤其是土壤)的类型,植被特征,人工污染情况等有关资料; e. 表生作用对指示元素的影响及表生赋存状态。 4.2 方法有效性与技术试验 4.2.1 野外踏勘 编写设计前应对测区进行必要的现场踏勘工作、取得第一手资料,以了解所收集资料方法技术的有效性,其内容包括: a. 检查核对所收集资料的可靠程度; b. 确定试验地点和测区的有效范围; c. 实地考察工区的交通、生活及工作条件。 4.2.2 设计前的技术实验 4.2.2.1 有前人工作过的测区或邻区,设计时其主要技术指标和方案可参照前人的工作成果。如果认为资料不足,可补作部分技术试验。 4.2.2.2 前人未工作过的地区、特殊景观、为寻找特殊矿种、特殊矿产类型为目的的地区,必须开展技术实验。试验内容包括:采样层位(深度),采样介质,样品加工方案,指示元素及指标,采样布局,采样网度和方法等。 4.2.2.3 技术试验的一般要求 a. 试验剖面应布置在主要的、有代表性的矿床和覆盖物地段。每条剖面的两端必须各有3—-5个点落在背景地段上。 b. 采样层位(深度)和加工方案试验,一般选择在揭露过矿体的探槽或浅井上(见附录A)。如果地表工程不理想或没有工程,可以用一般剖面方法,按不同深度采样。指示元素和测网试验一般与层位和粒度在同一剖面进行。剖面数量不得少于三条。 ·930·

地球化学找矿方法在野外地质中的应用研究

地球化学找矿方法在野外地质中的应用研究 地球化学找矿是当前重要的矿产勘查方法,是近些年来在矿产勘查中发展的一种战略性的找矿方法。本文首先简要阐述了地球化学找矿方法概念及其主要任务,然后对其在野外地质中的应用进行了分析。 标签:地球化学找矿地质矿体 1地球化学找矿方法概念及其主要任务 地球化学找矿就是以地质学、地球化学为理论基础,通过现代分析测试技术与计算技术为手段,对大自然中的岩石、土壤、水系沉积物、水、气等天然物质进行系统取样分析,对分析数据进行处理与研究,通过发现异常找到矿床的一门学科。 地球化学找矿方法通过发现异常,评价远景区,圈定找矿有利靶区,寻找工业矿藏,特别是寻找深部矿体,盲矿体等隐伏矿体特别有效。同时,这种方法还可以为农业、环保、医疗等领域的发展提供资料。 2地球化学找矿方法在野外地质中的应用 2.1野外地质采样方法 在野外地质采样部署时,首先要选择样品的分布形式,同时考虑样品间的距离。样品分布主要有规则测网、不规则测网和系统剖面三种形式。规则测网是指样品按一定测线和测点来采取。样品在测区范围内,基本上呈网格状均匀分布。测线方向一般要求垂直于異常的延伸方向(控矿构造方向)。测线的间距原则上要使得至少有两条测线通过异常。测网布置后,至少要有2—3个样品落在异常范围之内。如按方形网、矩形网、菱形网布点;规则测网是指样品并不严格按照一定的线、点间距来采取,以能满足研究问题的需要为原则;系统剖面是使所采集的样品分布于测区一系列的剖面上。剖面间距并无严格要求,以能追索异常,反映异常特征的变化规律为原则。各剖面的方向要尽量垂直于矿体(带),并不要求剖面之间必须互相平行。沿系统剖面采集样品,不仅适用于地表,也适用于地下垂直剖面,如在钻孔中采取岩芯作样品。 为保障野外采集的样品分析结果的准确性,各类元素在地质体中的真实含量。在采样时,要充分考虑到采样点的地形地貌特征、植被发育特征、气候条件等环境因素。譬如水系沉积物地球化学找矿方法在采样时,地形、地貌、水系的发育特征,水的流速,流量都将影响水系沉积物中元素的变化。 2.2样品采集标准 采样对象选取地表基岩(包括浅井与探槽中的基岩)、岩芯、坑道中的岩石,

土壤地球化学测量规范(附件)

附录A(规范性附录) 地球化学普查水系沉积物测量记录卡 图幅名称(或地区):采样日期:年月日 记录:采样:审核:第页 22

记录卡填写说明1 地球化学普查水系沉积物测量记录卡填写说明 A 主标识符:C2。规定:岩石为1;水系沉积物为2;土壤为4。 B 样品号:N7。图幅名拼音代码+采样大格编号+小格代码+小格样号,如:MP234B1。该样品号中:MP-茅坪幅代码;234-大格号;B-小格号;1,B小格第一个样号)。 C 原始样号:被重复采样的样品号 D 图幅代号:N10。1:50000地形图图幅号,如H49E007008 E 横坐标: N8。统一确定为高斯6度带,记录带号+横坐标精确到m。如20428303 F 纵坐标: N7。高斯6度带精确到m。如3395158 G海拔高程:N4。采样点高程坐标,以米为单位。从地形图等高线或通过GPS直接读取。 H 水系级别:C1。记录:1 、一级水系;2、二级水系;3、三级水系。 I 采样部位:C1。采样点位于水系的位置,用代码表示:1:河底;2:水线附近;3:河漫滩上;4:水塘入口处 J 样品组分:C3。记录3位数:分别代表样品中粗砂(第1位)、细砂(第2位)和淤泥及有机物(第3位)含量。此三项为样品的沉积物组分,以编码方式分级填写,分为:0:无;1:少量(<30%);2:中量(30~70%);3:大量(>70%),三者之和不能超过100%。K 样品颜色:C2。1、灰黑色;2、灰色;3、褐色;4、灰黄色;5、红色;6、砖红色;7、灰绿色。 L 地质时代:C4。记录所控汇水域内地质时代。记录地质时代符号。沉积地层按出露情况适当并层;侵入岩记录主要侵入期。 M 岩石类型:C4。填写该点所控制汇水面积内占优势的基岩类型,参见“区域地球化学勘查规范”附录B表B2。 N 矿化蚀变:C1。记录矿化蚀变程度。0、无;1、弱;2、中等;3、强烈。 O 地貌类型:C1。1、平原-准平原;2、低山-丘陵;3、山地-峡谷;4、高山-深谷;5、高原;6、高寒山地;7、盆地;8、沼泽洼地;9、岩溶石山。 P 植被:C1。0,无;1,稀疏,浅薄,覆盖度<1/3;2,中等,覆盖度在1/3~2/3间;3,茂密,浓厚,覆盖度>2/3。 Q 岩溶类型:C1。指在岩溶区采样位置的岩溶类型(非岩溶区不填)。编码为:1:峰丛峰林洼地;2:峰丛峰林谷地;3:岩溶平原;4:岩溶穹窿盆地;5:岩溶石山及丘陵。 R 污染:C1。指采样点上游汇水域存在的污染源:0,无;1,矿山采冶;2,工业生产;3,居民生活。 S GPS文件号:N6。指采样点某GPS坐标数据转存入计算机内的批次文件。要求以GPS 手持机编号后四位数+录入的第n批数(n为两位数)。每批坐标存点宜在500个以内。 T GPS ID号:N3。GPS手持机对采样点自动定点形成的顺序号码。该号码与采样号一一对应,不可更改。如采样点上重复自动定点,宜自行保存不得删除;或采样点被遗忘自动定点,亦不得手动添加补充,均待转录计算机后再据记录资料做删除或添加补充处理。U 标记位置:记录书写采样点标记的具体位置。标记须清楚明显。

环境地球化学知识点教程文件

环境地球化学知识点

概念题 绪论(1/6) 环境问题由于人类活动或自然活动作用于人们周围的环境所引起的环境质量变化,以及这种变化反过来对人类生产、生活和健康产生的影响。 环境容量人类生存和自然环境在不致受害的前提下,环境可能容纳污染物质的最大负荷量。 环境要素构成人类环境整体的各个独立的、性质不同的而又服从整体演化规律的基本因素。 环境背景值在未受人类活动干扰的情况下,各环境要素(大气、水、土壤、生物、光、热等)的物质组成或能量分布的正常值。 环境质量在一具体环境内,环境的某些要素或总体对人类或社会经济发展的适宜程度。 环境质量评价按照一定的评价标准和评价方法对一定区域范围内的环境质量进行说明、评定和预测。 第一章岩石圈环境地球化学(0/0) 第二章土壤环境地球化学(1/9) 土壤覆盖在地球陆地表面和浅水水域底部,具有肥力,能够生长植物的疏松物质表层。

土壤圈覆盖于地球陆地表面和浅水域底部土壤所构成的一种连续体或覆盖层及其相关的生态环境系统。 成土过程地壳表面的岩石风化体及其搬运的沉积体,受其所处环境因素的作用,形成具有一定剖面形态和肥力特征的土壤的历程。 土壤酸度土壤酸性表现的强弱程度,以pH表示。 植物营养植物体从外界环境中吸取其生长发育所需的养分,用以维持其生命活动。 土壤污染进入土壤的污染物积累到一定程度,引起土壤质量下降、性质恶化的现象。 土壤净化污染物在土壤中,通过挥发、扩散、吸附、分解等作用,使土壤污染物浓度逐渐降低,毒性减少的过程。 土壤质量评价单一环境要素的环境现状评价,是根据一定目的和原则,按照一定的方法和标准,对土壤是否污染及污染程度进行调查、评估的工作。土壤中微量元素动植物体内含量很少、需要量很少的必需元素。 第三章水圈环境地球化学(2/11) 水圈地球表面或接近地球表面各类水体的总称。

土壤地球化学测量标准

uz中华人民共和国地质矿产行业标准nZ/T 0145一 94 土壤地球化学测量规范 1995一01一27发布 1995一12一01实施 中华人民共和国地质矿产部发布 中华人民共和国地质矿产行业标准 1 主题内容与适用范围 1.1 本标准规定了土壤地球化学测量工作中主要方法、技术要求和规则. 1.2 本标准适用于金属矿产地质勘查。铀矿、地热、非金属矿产地质勘查的土壤测量工作也可参照执行。 2 引用标准 UB/T 14496 地质矿产地球化学勘查名词术语 DZ/T 0011 地球化学普查规范(比例尺 1:50 000) DZ/T 0075 地球化学勘查图图式,图例及用色标准 3 总则 3.1 土壤地球化学测量(简称土壤Nii量),是以土壤为采样对象所进行的地球化学勘查工作。 3.2 土壤地球化学测量主要用于矿产地质勘查的详查阶段,也可用于在区域调查、普查阶段中水系沉积物测量无法进行的地区. 3.3 土壤地球化学测量可用于找矿以及各类异常和矿化点的查证、评价,也可为地质填图提供信息。 3.4 区域调查和普查的土壤测量方法.其主要技术要求,按化探

区域调查和化探普查的规范执行。 3.5 用于金属矿产地质勘查的土壤测觉应选择在残坡积层发育地区进行。 4 工作设计 4.1 资料收集 编写土壤测量的工作设计前,一般应收集和分析以下资料 : a. 测区的地理和交通、生活情况以及测地资料; b. 测区及外围地质特征,矿产、矿床类型和成矿规律,矿床氧化淋失程度等特点; c. 测区及外围以往地质、物探、化探、遥感等的工作程度和工作成果; d. 测区的地形、地貌、水文、气象,第四纪覆盖物(尤其是土壤)的类型植被特征,人工污染情况等 有关资料; e. 表生作用对指示元素的影响及表生赋存状态。 4.2 方法有效性与技术试验 4.2.1 野外踏勘 编写设计前应对测区进行必要的现场踏勘工作、取得第一手资料,以了解所收集资料方法技术的有效性,其内容包括: a. 检查核对所搜集资料的可靠程度; b. 确定试验地点和测区的有效范围; c. 实地考察工区的交通、生活及工作条件。

河南庙岭_小南沟_赵岭构造蚀变岩型金成矿带地质地球化学模式

第30卷第6期物 探 与 化 探 Vol .30,No .6 2006年12月 GE OPHYSI CAL &GE OCHE M I CAL EXP LORATI O N Dec .,2006  河南庙岭—小南沟—赵岭构造蚀变岩型 金成矿带地质地球化学模式 崔 来 运 (河南省地质调查院,河南郑州 450007) 摘要:河南庙岭—小南沟—赵岭金成矿带是受马超营断裂带控制的次级成矿带。通过系统总结该成矿带的地质特征、矿床特征,对元素进行聚类分析、因子分析,系统总结地球化学特征,按照С.В.格里戈良(1975)热液矿床原生晕元素分带序列的计算方法,得出微量元素水平和垂直分带特征,建立了地质地球化学找矿模式,为该地区找矿工作提供找矿思路。 关键词:地质地球化学模式;构造蚀变岩型金成矿带;河南;庙岭—小南沟—赵岭 中图分类号:P632 文献标识码:A 文章编号:1000-8918(2006)06-0505-04 自上个世纪80年代中期以来,豫西出现了寻找构造蚀变岩型金矿高潮,尤其是在熊耳山—外方山 地区,相继发现了大麻园、虎沟、上宫、瑶沟、北岭、庙岭等规模不等的金矿数10处,金矿床严格受断裂构造控制,并形成了数条NE —NNE 金成矿带,其中庙岭—小南沟—赵岭金成矿带(图1)就是其中之一。笔者参加了规模较大的小南沟、赵岭、九仗沟等金矿床的评价工作和深部找矿靶区定位预测工作,本文中以小南沟、九仗沟金矿床研究为基础,进而建立庙 岭—小南沟—赵岭金成矿带的地质地球化学模式。 1 区域成矿地质背景 河南庙岭—小南沟—赵岭金成矿带位于华北板 块南缘,马超营断裂带(A 型陆内俯冲带[1] )之北 侧。马超营断裂带是熊耳群火山活动的中心[1] ,它控制了熊耳山、外方山地区的火山分布与形成,构成了本区重要的金的矿源层;在马超营断裂带波及范围内,形成了规模不等、期次繁多、 类型复杂的岩浆 图1 庙岭—小南沟—赵岭金成矿带地质概况 收稿日期:2006-02-07

地球化学找矿的标志研究

地球化学找矿的标志研究 围山城金银多金属成矿带位于河南省桐柏山区秦岭造山带,有着多个不同的构造环境,且有各自独立的建造特征和构造地层地体,经过多次聚合而成为一块复杂的构造带,围山城金银多金属矿带包括破山银矿(伴Au/ Pb /Zn)、银洞岭银矿( 伴Au/ Pb/ Zn) 和银洞坡金矿(伴Ag) 3个特大型Au/Ag多金属矿床。 一、矿带地质背景 桐柏山区坐落于河南省的南部,属于秦岭造山带的一部分,其地质构造复杂、成矿条件优越,蕴藏了大量矿床。桐柏山区重要的断裂构造有商丹断裂带、桐柏断裂、瓦穴子断裂和朱夏断裂;从桐柏断裂向北依次分布着秦岭群、信阳群、二郎坪群(含大栗树组、张家大庄组、刘山岩组等)、宽坪群和歪头山组。图1 桐柏(A)及围山城金银成矿带(B)地质简图(略) 围山城金银多金属成矿带位于吴城盆地的西侧,南阳盆地的东侧和二郎坪弧后盆地内,长大于20 km。矿带内由东向西依次分布朱庄金矿点、南小沟银矿点、银洞岭大型银多金属矿床、魏沟银矿点、江庄银矿点、架家冲银矿点、张庄金矿点、银洞坡大型金矿床、郭老庄银矿点、破山特大型银矿床和夏老庄金银矿点(图1略) 。 矿带内露出的地层主要是上元气界歪头山组( Pt3w ),其次是大栗树组( Pt3d ) (图1略) [1] 。歪头山组地层以云母石英片岩、变碳质绢云片岩、粒岩,大理岩、夹斜长角闪片岩为主,并含有少量的石英岩;以金银丰度高、碳质含量高等特征区别于其它地层。矿区内的主要褶皱构造是河前庄背斜,其由大栗树组地层与歪头山组地层组成,主体走向变化在90°~120°之间。 二、矿带成矿作用地球化学特征 为了更深入的了解围山城金银多金属矿带上覆大栗树组和歪头山组岩浆岩的微量元素和成矿元素的地球化学特征,研究其分布规律,对矿带进行钻孔岩芯采集了基岩光谱样品,测定指标为Ag、Pb、Au、Cu、Zn、As、Mo、Sb、Co、Cd、Ni。矿带内具体微量元素在地质体中的含量变化特征见表1。 (1)矿带内的Ag的含量明显高于地壳丰度的平均含量,在歪头山组的上、中和下部的含量最高,为地壳丰度的33.2—48.25倍,同时也高出了也高出了其他的地质体几倍到几十倍,Ag在商丹断裂带与大栗树组的含量稍低,在老湾岩的含量最低。

成都市土壤元素地球化学背景

成都市土壤元素地球化学背景 四川省地质矿产勘查局区调队朱礼学刘志祥陈斌邮编610213 国土资源部成都岩矿测试中心李小英邮编610081 摘要:本文扼要介绍了成都市辖区环境背景及土壤环境地球化学背景的调查方法,重点介绍了成都市土壤第一环境、第二环境地球化学元素的背景值及元素分布特征,地球化学分区,首次揭示本区土壤的地球化学背景。 关键词:成都市,土壤,地球化学背景。 成都市位处四川省中部,四川盆地西部,成都平原腹地,地跨东经1020 55'—1050 53'北纬300 6'—310 26',东西长192km,南北宽148km,幅原12900多平方公里,境内有平原、台地、丘陵、山地等多种地貌,海拔387—5364m,气候属于亚热带湿润季风气候区,是四川省工农业、政治、经济文化中心,随着社会的进步与发展,资源与环境日渐成为人们关注的热点,土壤与水、大气、阳光一样是万物生长之源,其环境背景及现状倍受人们关注。由中国地调局部署,四川地勘局实施的国土资源大调查项目“成都平原多目标地球化学调查”首次揭示了成都市土壤环境地球化学背景值及元素分布特征。 一、成都市土壤环境背景 成都市辖区北西部为龙门山区,南东为龙泉山区,腹地为平原,平原与山地间分布有浅丘台地,龙门山区为浅覆盖深切割区或基岩裸露区. 龙泉山区为浅切割、浅覆盖地区,平原区为深覆盖地区,全区覆盖及切割特征见图1。 除龙门山基岩裸露区外,全市土壤是以第四系、第三系、侏罗系、白垩系母岩为基础发育而成的。主要有水稻土、紫色土、黄土、棕壤等主要土壤类型(图2)。 全市土地农业综合分区可划分为五大区: Ⅰ.近郊平原、浅丘粮、油副食品区;Ⅱ.中部平原农、牧、渔区;Ⅲ.中部丘陵粮、果(经作林、枚区);Ⅳ.远郊中低山林、土特产区,Ⅴ.远郊高山水源涵养区(图3)。 二、土壤环境元素地球化学背景调查方法 不同地球化学景观区,土壤成土母质、成土作用、覆盖厚度、农业土壤利用存在着较大差异。地球化学背景的影响因素亦较为复杂,用以确定本地区地球化学背景的样品的采集深度、层位、采集密度、样品分析介质的粒度等应力求一个科学的、经济可行的、易于实施的模式。经国土资源部物化探研究所(河北廊坊)周国华等人研究评估(2000年)认为:本地区土壤第二环境浅层采集深度0—0.2m ,第一环境(深层)深度在0.8m以下,分析样土壤粒度平原区过干筛-20目,低山丘陵区紫色土-40目,土壤样品中地球化学元素的分布能较好地反映采样区的土壤环境地球化学背景。 (一)采样方法技术 平原区采样深度1.50—1.80m,丘区紫色土地区采样深度0.40—0.80m,龙门山区0.80m以

1∶1万土壤地球化学测量工作技术要求

1/1万土壤地球化学测量工作的工作方法、技术要求及精度要求 1: 1万土壤地球化学测量工作方法及技术要求 工作区高差大,地形切割强烈,水系较发育,植被茂密,局部地区第四系覆盖较厚。适用1:1万土壤测量方法,但是在已成型的矿区或采矿区周边及人员居住密集区,尽量避开污染源。本次工作设计采样点位17786个,另外采取重分析样534件,占总工作量的3%检查样**个,占总工作量的**%。 1、野外采样技术要求 (1)、工作部署 采样密度:依据《地球化学普查规范》DZ/T0011—91、《土壤地球化学测量规范》DZ/T0145—1994标准及测区实际情况,确定采样线距200m点距20m 在村落、第四系覆盖区域适当抽稀测点密度,在岩体、构造发育地区适当加密采样点。 1 : 10000 土壤测量工作测网密度 700g,确保过40目筛网的样品原始重量达到150g。如遇有岩石露头,倒石堆、河床堆积 2 、采样布局原则 采样布局要均匀性、合理性、控制性、代表性兼顾的原则。剖面要尽量垂直于综合异常 长轴方向或地层、地质构造线走向方向;采用200X 20m线点距布设。 3 、采样点布置及编号 在每张1 : 1万地形图上,划出测线,沿测线每个采样点根据其所处的位置按上述顺序进行编号。在以上布点基础上,布置3%重分析样,样品编号规则不变,野外采集时取双样,全部样品送检编号重编,不得重复。 4 、样品采集 ①采样介质:依据规范划定景观区标准,测区属于水系发育的中山区。土壤应米集粘土、细砂等物质。 ②土壤的采样部位选择:一般采取距地表0.2 —0.5m的B层土壤或B+ C层土壤。为提高样品的代表性,样品采取以采样点为中心、在5m范围内采集3—5 个子样混合组合成一个样品作为该点样品,避免单点采样。样品重量一般不低于

硒的土壤地球化学特征

龙源期刊网 https://www.360docs.net/doc/ba10651931.html, 硒的土壤地球化学特征 作者:马强黄强闫建平 来源:《科学与技术》2018年第13期 摘要:全世界范围看,低硒或表现缺硒的土壤面积远大于高硒或硒毒土壤。高硒区有美国北部大平原和西南部10个州的局部地区、爱尔兰的3个县、中国的恩施和紫阳地区,以及哥伦比亚、委内瑞拉和以色列境内有所报道的地区。世界土壤硒含量一般在0.1~2.0mg/kg,平均0.2mg/kg。我国表层土壤硒含量范围0.006~9.130mg/kg,算术平均值为0.29mg/kg。本文介绍了硒的土壤地球化学特征,包括硒的含量分布、形态特征、影响土壤中硒含量的因素及土壤中硒的赋存形态与转化等内容。 关键词:土壤硒;含量分布;形态;影响因素;赋存形态与转化 全球40多个国家缺硒,我国72%的县市属于低硒或缺硒区。克山病是人体缺硒所致,是一种心脏肌肉坏死的疾病,主要是由于发病地区水土、食物缺少硒、铜所致。美国正常人血硒含量为0.10~0.34mg/kg,新西兰人血硒浓度仅为0.068±0.013mg/kg。我国人民血中的硒含量 非克山病病区群体总均值为0.095±0.088mg/kg,而克山病病区为0.021±0.001mg/kg。高硒非中毒地区为0.44mg/kg(0.35~0.58mg/kg),高硒中毒地区为3.2mg/kg(1.3~7.5mg/kg)。硒是组成谷胱甘肽过氧化酶的成分,能促进生长,保护心血管和心肌的健康,解除体内重金属的毒性作用,保护视器官的健全功能和视力。 1硒的分布特点 我国存在一条从东北地区的暗棕壤、黑土向西南方向经过黄土高原的褐土、黑垆土到川滇地区的棕壤性紫色土、红褐壤,再向西南延伸到西藏高原东部和南部的亚高山草甸土和黑毡土的低硒带,带内土壤硒含量均值仅0.1mg/kg,显著低于其他地区的土壤硒含量。西北方向为干旱地区富硒环境,东南方向为湿润地区富硒环境,因此中国土壤中硒分布形成了以中间低,东南和西北地区高的马鞍型趋势。 硒的剖面分布特点:①表聚性,即随着土壤深度的增加而降低,干旱、半干旱地区的土壤属于此类;②心土层聚集类,这类土壤由于心土层有黏粒或铁氧化物等聚集,从而与硒结合发生聚集,南方铁铝土和富铁土一般属于此类;③均匀分布类;④随土壤深度的增加而增加的分布类型。 2土壤中硒的形态 从世界各地土壤含硒状况中可以看出,Se(Ⅳ)为土壤中主要的硒形态,约占40%以上;以Se(Ⅵ)形态存在的硒,总量不超过10%。用不同连续分级法均发现有机结合态硒是土壤中硒的主要结合态,硒主要赋存在腐殖质和残余晶格中。

勘查地球化学复习题

《勘查地球化学》复习题 一、名词对解释与异同比较 1、变异系数与衬度系数 变异系数:地球化学指标的均方差相对于均值的变化程度,即C V=S/X*100%。 衬度系数:异常清晰度的度量,目前有多种表示方法:异常均值相对异常下限或背景值的百分比、异常峰值与异常下限的比值等三种。 前者反映了数据的相对离散程度,该值较大时也可表现出较大的衬度系数。 2、表生环境与内生环境 表生环境指氧、二氧化碳、水等充分且能自由参与、常温恒压、开放的体系,并有生物作用参与的地表或近地表环境,包括岩石圈表层、土壤圈、水圈、大气圈、生物圈等环境。 内生环境则与之相反,是一种高温、高压、还原、流体活动受限的环境。 3、同生碎屑异常与后生异常 同生碎屑异常:岩石在地表以物理风化为主时,其风化后形成的土壤中碎屑矿物与岩石的化学组成并没有发生明显改变所形成的异常。 后生异常可以发育在任何介质中。形成异常的物质通常已经在活动相(水溶液、气体、植物体及大气搬运的质点)中迁移了或远或近的距离,而在异常地点沉积下来。 4、上移水成异常与侧移水成异常 上移水成异常:土壤中的呈溶解态的离子在毛细管作用下,由深部向地表迁移,在土壤中形成的次生异常。 金属元素被地下水溶解并随着迁移很远的距离,在某种沉淀障上析出,这就形成了侧移的水成异常。 5、地球化学背景与异常 地球化学背景指未受矿化影响或无明显的人为污染的地区为背景区,在背景区内某个地球化学指标的数值特征即为背景值。与背景相对存在就是异常区,空间上如矿化地区及受到明显人为污染地区,我们常把高于背景上限的或低于背景上限的范围称为异常。 6、机械分散流与盐分散流 前者以物理风化作用形成的碎屑流为主;后者为岩屑在水介质搬运过程中溶解形成的可溶性的离子或分子为盐分散流。 7、原生晕与次生晕 前者的赋存介质主要为岩石,而后者的赋存介质为岩石的次生产物,如土壤、水系沉积物、水中可溶性物质及生物地球化学异常等。 8、非屏障植物与屏障植物 非屏障植物指植物中某元素的含量与下伏土壤中该元素的含量(可溶解吸收部分)呈线性相关,具有该元素的极大的富集能力(大于300倍)的植物。其对矿产勘查来说是最优选择的种属。 9、空间分带与成因分带 这是原生晕的两种分类方式,前者以现代方位来观察原生晕的形态,分垂直分带和水平分带;后者考虑热液成矿过程及地质体产状等,具有成因意义,分轴向、纵向及横向分带等三种。 10、相容元素与不相容元素 总分配系数大于1的元素为相容元素,而其小于1为不相容元素,即元素在固液两相间倾向于后期流

表层土壤地球化学采样记录卡20161118_定稿

表层土壤地球化学采样记录卡 记录:采样:审核:No.

表层土壤地球化学采样记录说明 A列:为标识,基本样为1,重复样为2。 B列:为样品(袋)号,采样乡镇代码7位+采样图斑号5位+图斑内采样顺序号2位,共14位。采样图斑号不足5位,顺序号不足2位时前面补零。如:01271080000101。 C列:为图幅号,按1:50000工作图幅号填写。如:F49E002008。 D列:为横坐标,东偏值,按GPS测量实测坐标填写,精确到米。 E列:为纵坐标,北偏值,按GPS测量实测坐标填写,精确到米。 F列:为高程,按GPS测量实测值填写,精确到米。 G列:为GPSID号,采样乡镇名称拼音缩写2位+采样图斑号5位+图斑内采样顺序号2位,共9位。采样图斑号不足5位,顺序号不足2位时前面补零。如:LJ0000101(如工作区内乡镇拼音首字母有重复,需提前进行统一区分)。 H列:为样品组分,3位数(如032)。第一位粗砂,第二位细砂、粉砂,第三位粘土、有机质。每位数按含量级四分填写:0无,l少(≤33%),2中(33-67%),3多(>67%)。I列:为样品颜色,l黑色,2灰色,3褐色,4灰黄色,5红色,6棕黄色,7其它颜色。 J列:为取样截止深度,单位为厘米。 K列:为污染程度,指外来物质对土壤的可能污染,0无,l可能,2轻度,3明显污染。 L列:为水土流失及剥蚀情况,0无,l轻度,2中等,3严重。 M列:为盐渍情况:0无,l轻度,2中等,3严重。 N列:为土壤成因类型,00人工堆积(仅限城区),01残积物,02坡积物,03残坡积物,04冲积物,05冰积物,06江湖堆积物,07岩溶堆积物,08风积物,09洪积物,10沼泽沉积物,11湖积物,12坡-冲积物,13冲-洪积物。 O列:为土地利用,011水田,012水浇地,013旱地,021果园,022茶园,023其他园地,031有林地,032灌林林地,033其他林地,041天然牧草地,042人工牧草地,043其他草地,111河流水面,112湖泊水面,113水库水面,114坑塘水面,115沿海滩涂,116内陆滩涂,117沟渠,118水工建筑用地,122设施农用地,123田坎,124盐碱地,125沼泽地,126沙地,127裸地,201城市,202建制镇,203村庄,204采矿用地,205风景名胜及特殊用地(根据第二次土地调查要求,部分地类合并至201—205,其它未列出者请参照土地利用现状分类GB/T 21010-2007)。 P列:为地形地貌,01山地,02丘陵,03沟谷,04岗地,05平原,06岩溶峰丛谷地,07岩溶峰丛洼地,08岩溶孤峰平原,09滩涂,10其它。 Q列:为农作物种类,01水稻,02玉米,03甘蔗,04木薯,05花生,06蔬菜,07龙眼,08荔枝,09柑橘,10柚子,11芒果,12香蕉,13茶叶,14树林,15其它。 R列:为原始样号(GPSID号),重复采样时相对应的原采样号(GPSID号)。 S列:为灌溉,灌溉水湿润土壤的方式,1畦灌,2沟灌,3淹灌,4喷灌,5滴灌,6地下水灌溉,7其他。 T列:为照片,填照片张数。 U列:为样点,填样点数(即所有组合的样点数)。 V列:为详细描述,填写采样点附近农作物种类、养殖业种类、名特优产品、种植制度以及与生态环境相关内容,以文字记录如实填写。 W列:为标记,填写采样时所作标记位置、与采样点的距离、具体方位以及标记的实物类型,如岩石、桥墩、电线杆、房屋、树木等。 X列:为备注,填写其它未列取样特征事项以及样点变更原因、情况描述。

勘查地球化学考试及答案

《勘查地球化学》考试A卷答案 一、名词对解释与异同比较(30分,任选6个) 变异系数与衬度系数 变异系数:地球化学指标的均方差相对于均值的变化程度,即CV=S/X*100%;后者是异常清晰度的度量,目前有多种表示方法:异常均值相对异常下限或背景值的百分比;异常峰值与异常下限的比值等三种。前者反映了数据的相对离散程度,该值较大时也可表现出较大的衬度系数。 表生环境与内生环境 表生环境:指有充分的氧、二氧化碳、水等能自由参与、常温恒压、开放体系,并有生物作用参与的地表或近地表环境,包括岩石圈表层、土壤圈、水圈、大气圈、生物圈等环境;内生环境则与之相反是一种高温、高压、还原的环境,流体活动受限。 同生碎屑异常与后生异常 同生碎屑异常:岩石在地表以物理风化为主时,其风化后形成的土壤中碎屑矿物与岩石的化学组成并没有发生明显改变所形成的异常;后生异常可以发育在任何介质中。形成异常的物质通常已经在活动相(水溶液、气体、植物体及大气搬运的质点)中迁移了或远或近的距离,而在异常地点沉积下来。 上移水成异常与侧移水成异常 上移水成异常:土壤中的呈溶解态的离子在毛细管作用下,由深部向地表迁移,在土壤中形成的次生异常;金属元素被地下水溶解并随着迁移很远的距离,在某种沉淀障上析出,这就形成了侧移的水成异常。 地球化学背景与异常 地球化学背景;指未受矿化影响或无明显的人为污染的地区为背景区,在背景区内某个地球化学指标的数值特征即为背景值。与背景相对存在就是异常区,空间上如矿化地区及受到明显人为污染地区,我们常把高于背景上限的或低于背景上限的范围为异常。 机械分散流与盐分散流 前者以物理风化作用形成的碎屑流为主,后者为岩屑在水介质中搬运过程溶解形成的可溶性的离子或分子为盐分散流 原生晕与次生晕:前者的赋存介质主要为岩石,而后者的赋存介质为岩石的次生产物如土壤、水系沉积物、水中可溶性物质及生物地球化学异常等。 非屏障植物与屏障植物 非屏障植物:指植物中某元素的含量与下伏土壤中该元素的含量(可溶解吸收部分)呈线性相关,具有该元素的极大的富集能力(大于300倍)的植物。对矿产勘查来说是最优选择的种属。 二、是非判断(对-√,错-×,不一定-O)(10分) 1、背景区就是没有受到人为污染的地区(O ) 2、屏障植物是地植物异常中指示较好的指示植物(×); 3、水系沉积物的地球化学异常形态是线状的(O ) 4、元素平均含量相同的两个地质体具有同源性(O ) 5、原生晕就是赋存于岩石中的地球化学异常(√) 6、叠加晕和多建造晕具有相同的成晕成矿过程(×) 7、按勒斯特水系分级规划,一个二级水系与两个一级水系合并后属三级水系(×) 8、成矿作用可以造成比矿体大得多的原生晕(O )

岩石地球化学找矿

岩石地球化学找矿:是用岩石地球化学测量了解岩石中元素分布,总结元素分散与集中地规律,研究其与成岩成矿作用的联系,并通过发现异常与解释评价来进行找矿的。也可根据所发现的区域异常,评价各时代的地层及侵入体的含矿性。 成矿热液:沿着构造通道自深处向上进入上层围岩,由于物理化学条件的改变,促使金属组分从溶液中析出,在成矿有利部位,大量沉淀聚集,形成了矿体。同时成矿溶液还对矿体围岩产生影响,一方面是改变围岩的矿物组成和结构构造,产生近矿围岩蚀变现象,另一方面使成矿有关组分带入和围岩某些组分释出,改变围岩的元素分布,特别是改变围岩中微量元素的分布,形成原生晕。 成晕元素的迁移方式:渗透迁移,扩散迁移。气相迁移 引起含矿溶液物理化学条件的因素:1.含矿溶液进入开阔断裂带,外部压力降低,挥发物质气化逸出,造成有关物质沉淀。2.。热液随远离岩浆而冷却。3.热液与围岩相互作用,改变了溶液的成分或Ph值和Eh值。4,在近地表处氧化使络合物分解。5,与下渗的地下水相遇而起化学反应。 影响元素迁移的因素:含矿溶液的性质,构造,围岩性质, 岩石地球化学测量的应用:矿产的普查评价阶段,对有矿化,蚀变或物探,化探异常的找矿远景地段,进行岩石地球化学找矿工作,可寻找盲矿体,并对矿化蚀变带或物化探异常区的找矿远景作出评价。在普查找矿阶段,岩石地球化学找矿可用以评价地质体(岩体,地层,断裂带,蚀变岩等)的含矿性。 区域地质研究的主要方面:地层的划分与对比。沉积环境的分析。侵入体的划分,对比和成因分析。变质岩原岩类别的判断。 水系沉积物地球化学找矿的应用:了解水系沉积物中元素的分布,总结其分散,集中的规律,研究其与附近基岩中地质体的联系,通过发现异常与解释评价异常来进行找矿。 分散流和次生晕的共同点:首先:具有共同的物质来源,即都是矿体及其原生晕在表生作用下,与矿石组分有关的元素,迁移分散所形成。其次:形成作用基本相同,在形成过程中,即可有与物理风化作用有关的机械分散,又可有化学风化作用下的水成分散,而且都是以机械分散为主。第三:都是表生作用下形成的因而都受气候因素所控制。 分散流的形成有特殊之处:第一:形成分散流的物质不仅是来自地表的矿体与原生晕,也可以来自地下的盲矿体及原生晕,甚至还可以来自次生晕,进一步迁移,分散,在水系沉积物中形成分散流。第二:形成作用方面,虽然分散流,次生晕都可有机械分散和水成分散,但分散流的机械分散并不像次生晕那样由于气候变化所造成,而主要是由于水动力的冲刷,搬运,矿石物质进入水系,并在水系内进一步分散而形成分散流。第三:气候对分散流形成的控制,不仅如同次生晕那样反应在年平均温度,年降雨量方面,而且还反映在季节性气温变化和降雨量上,因为季节性气温和降雨量变化,对形成分散流物质的冲刷搬运影响很大。水系沉积地球化学找矿:适合在地形切割剧烈,水系发育的山区进行,而在地形平坦,水系不发育的地区,起应用效果受到限制,水系沉积地球化学找矿不仅能找到有成矿远景的地区,为成矿预测及基础地质研究提供资料,而且方法简单,效率高,用于大规模扫面,有利于迅速查明广大地区矿产资源远景,对找矿来说可起到战略侦察的重要作用。 化探野外工作:一个完整的化探工作包括踏勘,实验,工作设计,采样,样品加工处理,分析,资料整理,异常解释评价与验证直到提交报告的全过程,是一个有组织,有计划,有步聚调查研究的过程,涉及很多人员协同工作,不但是技术工作,也是组织管理工作。 地球化学异常的评价方法:等级评价。类比评价异常。地质,物探,化探综合评价异常。利用单矿物中微量元素区分矿与非矿。

相关文档
最新文档