分离与富集应用方案

分离与富集应用方案
分离与富集应用方案

方案

一DMF-H2O精馏分离时蒸馏水中二甲基胺的除去

1工作原理及流程1.1工作原理DMF蒸馏回收系统工作原理:主要是利用DMF回收废液中各成分(主要是水与DMF)的沸点也即挥发性的不同(常压下DMF沸点152.8℃、水100℃),通过控制系统各个操作过程的温度,形成气液分离,将水及其他杂质逐一从DMF回收废液中分离出来,从而达到提纯回收DMF的目的。

1.2系统主要构成

(1)脱水塔(2)精馏塔(3)蒸发器(4)再沸器(5)冷凝器(6)脱酸和脱胺装置(7)真空泵等。

1.3工作流程首先是废水的排放收集过程,第二步就是废水的处理过程,第三步是DMF 的回收过程

2废水的产生与排放

塔顶蒸馏冷凝水的产生与排放

如果排放将对环境造成影响,现在大多数的合成革企业,已经采取用罐装回收的办法,将该废水重新利用于湿法生产线作为补充用水,基本防止了污染的发生。

吹脱法去除废水中二甲胺的原理

在碱性条件下,将大量空气与废水接触,使废水中游离的二甲胺被吹出。以达到去除废水中二甲胺的目的。此法也叫二甲胺解析法.解析速率与温度、气液比有关。

二甲胺的水溶液显碱性,其溶解度的大小受溶液的pH值影响(CH3)2NH+H2O—(CH3)2NH2++OH-,如果增加溶液的碱性,左移,溶解度下降。加碱量太小无法彻底脱出二甲胺,太大不仅会对设备造成腐蚀还会使成本上升,且加大废水后续处理的难度。

温度也会影响二甲胺的溶解度,温度上升,气体在水中的溶解度下降。

气液比越小,泛点气速越小。在其他因素一定时,随着液体喷淋量的增大,填料层的持液量增加而空隙率减少,从而使开始发生液泛的空塔气速变小在吹脱过程中适当增大气量以减少二甲胺在液体表面的分压,显著增加二甲胺传质效率,提高二甲胺去除率。

NaOH浓度的影响温度的影响气液比的影响

吹脱出的二甲胺的处理方法和结果

二甲胺极易被水吸收,稳态吸收就能达到很好的效果,吸收率可达95%。

二甲胺极易与盐酸反应生成盐酸二甲胺。

(CH3)2NH+HCl— (CH3)2NH·HCl

因为此吸收属于化学反应,所以吸收速率与吸收率很高。二甲胺的吸收率达到100%。二甲胺-一氧化碳法由二甲胺与一氧化碳在甲醇钠作用下,直接反应而得。反应条件是1.5-2.5MPa 和110-150℃。粗品经精馏制得成品。

二含氟废水处理工艺

处理方法

沉淀法

指投加化学药品形成氟化物沉淀或氟化物被吸附于所形成的沉淀物中而共沉淀,然后分离固

体沉淀物即可除去氟化物。

吸附法

含氟废水流经接触床,通过与床中固体介质进行离子交换或化学反应,去除氟化物。

硫酸铝(明矾)沉淀法加明矾除去氟化物是一种共沉淀现象,该过程中氟化物随氢氧化铝的沉淀而被除去。最佳处理的pH为6~7.

石灰沉淀法直接加石灰是沉淀高浓度氟离子的经典技术。在水中投加石灰后,就造成氟化钙的沉淀。

吸附法

含氟废水流经接触床,通过与床中固体介质进行特殊或常规的离子交换或化学反应可去除氟化物。由于接触过程的基本机理是离子交换或表面反应,因此这类方法之适用于低浓度含氟废水或经其他方法处理后氟化物浓度降至10~20mg/L的废水。接触床吸附介质包括羟基磷灰石(合成羟基磷灰石及经加工后的骨头或骨灰等)、离子交换树脂和活性矾土等。

1)离子交换树脂

天然和合成沸石离子交换树脂经测定证明对除去氟化物有效。交换剂用铝盐进行预处理和再生。深入的研究表明,氧化物的去除归因于沉淀与交换柱中的氧化铝。

另一项中试研究结果表明,强碱阴离子交换树脂(通过氢化物循环再生)能有效地处理氟化钠溶液。

2)羟基磷灰石吸附

废水通过一工业规模的合成羟基磷灰石接触床,氟化物浓度从12~13mg/L降至0.5~0.7mg/L。但该装置因化学药剂耗费高且接触床磨损严重,很少应用。

矾土吸附

市政水处理厂一直用接触床或活性矾土柱去除氟化物。矾土即活性氧化铝,白色球状多孔性颗粒,对氟有很强的吸附性,主要用于高氟地区饮用水的除氟。活性矾土的再生可用氢氧化钠、硫酸、盐酸和明矾等。

然而,利用传统化学混凝沉淀法除去含氟废水中的氟离子的技术仍存在有许多缺点:

1、由于常用的含钙化合物为粉状,例如:CaO及Ca(OH)2等,在添加到废水的过程中,容易引起粉尘扬起,不只有害操作人员的健康,且容易造成加料过程的不便。

2、在常温状况下,含钙化合物通常是难溶于水的,因此,一般需同时配合加热程序,以提高含钙化合物在水中的溶解度。导致处理成本的增加。通常省去加热处理,代之以增加含钙化合物的加料量,因而容易造成加料过量的问题,且使得处理后的污泥不具利用价值。

3、所产生的大量CaF2污泥饼,约只含20~40%的CaF2,其他都是水分及Ca(OH)2。因此,CaF2纯度低和含水率高是导致污泥饼没有回收再利用价值的主要原因。

三柿霜的提取

柿饼的出霜步骤

两个步骤:

第一步柿饼的可溶性糖类物质随着水分外渗至表面。需要在密闭的条件下进行,生产中通常采取堆捂等措施。

第二步表面的水分蒸发散失之后,残留的糖分凝结成为固体。需要有低温且干燥的条件,在生产当中就是把堆捂的柿饼摊琼在通风的地方即可。

柿饼出霜的过程不仅是糖类物质随水分渗透在饼面并且结晶的过程,同时也存在糖分的转化过程,即庶糖水解成为葡萄糖以及果糖等单糖,之后果糖等单糖又在酸性条件下转化为甘露醇。指出了影响柿饼出霜的相关因素:

温度:在4°C的时候稀饼的出霜效果十分显著

含水量:半成品的柿饼的含水量在(40 土2)%的范围内出霜的效果也十分显著;

出霜时间和温度:柿饼的水分含量会有降低,因为糖类物质随神饼水分向外渗透而析出,因此升高温度能加快水分移出的速率。

PH值pH值相对稳定,出霜的过程是在酸性条件下完成的

盛装材料纸质材料透气性良好,利于棉饼表面的水分蒸发,就可以促进糖类物质的析出,所以有利于柿霜形成。

摆放方式单层松散的摆放比双层紧密摆放出的霜率提高了20%-25%,真空包装并不能够提高棉饼的出霜量,反而会有减少的趋势。

柿皮半成品的稀饼与椅皮相间放置的时候,二者的质量应比小于4:1,且当神皮含水量小于4,3%时,能促进柿饼出霜量

相对封闭、保持空气流通和低温等条件均有利于形成柿霜,柿饼摆放的形式对出霜的效果也有一定影响,当其保持一定间距摆放时出霜效果较好。柿饼出霜是制作柿饼过程中水分从内部向外扩散,可溶性糖类物质随着渗透并结晶析出,是总糖含量增加的过程。柿饼的pH值大概稳定在5. 62,呈现酸性。在出霜的过程中伴随有果糖转化、葡萄糖含量增加、蔗糖水解以及甘露醇生成等现象。

用柿霜加工成的产品见于报道的只有柿霜糖。其中工艺流程:

①收霜-②溶霜-③熬制-④冷却-⑤成型-⑥干燥-7 包装

操作要点:

①收霜:一批柿饼可于当年12月和第二年2月两次收霜。方法是:将柿饼经过敲打,就可以振落表层柿霜。

②溶霜将收集的柿霜按1:5加水浸泡,使其溶解。在浸泡期间,每2小时搅拌一次,共要搅拌3次,而后放置过夜,第二天,用细纱布过滤取上层清液,残液用3倍水量继续浸泡4h,过滤后,取上清液,过滤后生下的固体再加2倍水量浸泡2h,过滤,取上清液即可。把3次滤过的清液在到一起浓缩即可。

③熬制:在一开始用急火将其烧开,蒸发当中的水分大量,等到其中固体含量达到65%的时候,改用文火,继续熬到固体达到70%的时候,关火起锅即可。

④冷却、成型和干燥:冷却上述糖液到室温即可,呈率红色,粘稠状。然后,把冷却的糖液倒进模具中,放在阴凉通风的环境中瞭干,颜色变成白色,粘性降低,塑性增加,取下糖块,继续放于帘上避免阳光干燥,当中水量小于5%时,质地醉脆。

⑤包装:用纸包,装盒,外面再包裹一层,避免返潮

产品特点:乳黄色,入口即化,质地细腻,甜而不腻,有清凉感强。

四从碎米中提取蛋白粉蛋白粉性质微溶于水,不溶于乙醇、乙醚及氯仿

溶剂法提取:使用的溶剂有,(SDS,十六烷基三甲基溴化铵);弱酸;氢键破坏剂(尿素);脂肪酸盐;碱液(NaOH溶液、KOH溶液);还原剂(巯基乙醇)。大米蛋白以食用为目的提取时,用碱液最为广泛。

碱法提取:大米蛋白质接近80 %左右为碱溶性米谷蛋白,稀碱可以使大米中紧密的淀粉质结构变得疏松,碱对大分子的米谷蛋白有降解作用,从而使大米淀粉颗粒中的蛋白质溶出而被分离。

优势:工艺简单、成本低、得到产品色泽质地比较好。

缺陷:对氨基酸有破坏作用,抽出物中淀粉含量高,抽提液固比大,等电点沉淀需消耗大量酸、脱盐纯化难度大等

酶法提取:利用蛋白酶对大米蛋白的降解和修饰作用,使其变成可溶性的肽而被提取出来。

优势:反应条件温和、蛋白质多肽链可水解为短肽链、溶解性好、反应的液固比小、降低能量消耗。

缺陷:工艺不成熟、对酶活性要求高、成本高、所得产品蛋白质纯度不高、产品色泽较深。复合提取法:采用碱、酶两步法分步提取大米蛋白。

由于单纯使用碱法或酶法提取会出现这样或那样的问题。人们开始考虑采用复合提取法,既保证产品的产量和产率,又尽可能的降低成本。该方法先用碱法提取部分蛋白,然后采用碱性蛋白酶对残渣轻微水解,以提高蛋白质的溶解性,进行蛋白质二次提取。

分析化学中常用的分离和富集方法教案

第8章 分析化学中常用的分离和富集方法 教学目的:学习各种常用分离和富集方法的原理、特点及应用,掌握复杂体系的 分离与分析;分离法的选择、无机和有机成分的分离与分析。 教学重点:掌握各种常用分离和富集方法的原理、特点及应用。 教学难点:萃取分离的基本原理、实验方法和有关计算。 8.1 概述 干扰组分指样品中原有杂质(溶解)或加入试剂引入的杂质,当杂质量少时可加掩蔽剂消除干扰,量大或无合适掩蔽剂时可采用分离的方法。 分离完全的含义:(1)干扰组分少到不干扰;(2)被测组分损失可忽略不计。 完全与否用回收率表示 100?分离后测得的量回收率=%原始含量 对回收率的要求随组分含量的不同而不同: 含量(质量分数) 回收率 1%以上 >99.9% 0.01-1% >99% 0.01%以下 90-95% 常用的分离方法:沉淀、挥发和蒸馏、液-液萃取、离子交换、色谱等。 8.1.1沉淀分离法 1.常量组分的分离(自己看书:5分钟) (1) 利用生成氢氧化物 a. NaOH 法 b. NH3法(NH 4+存在) c. 有机碱法 六次(亚)甲基四胺 pH =5-6 d. ZnO 悬浮液法 pH =6 (2) 硫化物沉淀 (3) 有机沉淀剂 2.痕量组分的共沉淀分离和富集 (1) 无机共沉淀分离和富集 a. 利用表面吸附进行共沉淀 CuS 可将0.02ug 的Hg 2+从1L 溶液中沉淀出 b. 利用生成混晶 (2) 有机共沉淀剂 灼烧时共沉淀剂易除去,吸附作用小,选择性高,相对分子质量大,体积也大,分离效果好。 a. 利用胶体的凝聚作用进行共沉淀:辛可宁,丹宁,动物胶b. 利用形成离子缔合物进行共沉淀:甲基紫,孔雀绿,品红,亚甲基蓝c. 利用“固体萃取剂”进行共沉淀。 8.1.2挥发和蒸馏分离法 挥发法:选择性高 As 的氢化物,Si 的氟化物,As 、Sb 、Sn 、Ge 的氯化物 蒸馏法:N -NH 4+-NH 3↑(酸吸收) 利用沸点不同,进行有机物的分离和提纯。 8.2 液-液萃取分离法 8.2.1萃取分离法的基本原理 萃取:把某组分从一个液相(水相)转移到互不相溶的另一个液相(有机相)的过程。 反萃取:有机相→水相

磁性纳米材料在重金属分离富集方法中的应用

目录 摘要......................................................I Contrast..................................................I 前言....................................................II 第一章纳米材料 (1) 1.1纳米材料简介 (1) 1.2纳米材料的特性 (2) 第二章纳米磁性材料 (3) 2.1磁性功能材料的磁学性质及表征方法 (5) 2.2磁性纳米粒子的制备 (5) 2.2.1共沉淀法 (5) 2.2.2高温分解法 (6) 2.2.3球磨法 (6) 2.2.4溶胶—凝胶法 (6) 2.2.5水热法与溶剂热法 (6) 第三章重金属离子的检测及分离富集方法 (6) 3.1重金属的检测方法 (7) 3.1.1原子发射光谱法 (7) 3.1.2电感耦合等离子质谱法 (7) 3.1.3原子荧光光谱法 (7) 3.1.4原子吸收光谱法 (8)

3.2重金属离子的分离富集方法 (8) 3.2.1固相萃取 (8) 3.2.2共沉淀法 (8) 3.2.3液—液萃取法 (8) 3.2.4离子交换分离法 (9) 总结与展望 (10) 参考文献 致谢

磁性纳米材料在重金属分离富集方法中的应用 摘要:随着人类生产生活活动的进一步发展,人类在提高生产力和生产水平的过程中也带来了了环境污染。其中重金属对人类生命健康的危害不容小觑,因此如何有效分离检测重金属成为当今人类急需攻克的难题。磁性纳米材料是最近新兴的一种具有特殊性质的纳米材料,它可有效用于重金属的检测与分离富集,因此备受科学家们的关注。本文重点从以下三个方面将行了介绍: 1、纳米材料的分类及其性质 2、磁性功能材料的磁学性质及表征方法和磁性纳米材料的制备 3、重金属离子的检测及分离富集方法 关键词:纳米材料、磁性纳米材料、重金属离子、检测、富集 Contrast: With the fast development of human production and life activities, environmental pollution also comes out.The affection of heavy metals on human life and health hazards should not be underestimated, so how effective separation and detection of heavy metals becomes an urgent need to overcome the problem of mankind. Magnetic nano-materials is a recently emerging nano-materials with special properties, it can be useful for detection and separation and enrichment of heavy metals, which gets scientists' much attention. This article focuses on the following three aspects will introduce the line: 1.Classification and properties of nano-materials. 2.Prepared magnetic properties, magnetic materials and functional characterization and magnetic nano-materials. 3.The method of detection and separation and enrichment of heavy metal ions. I

分离富集思考题

第10章分析化学中常用的分离和富集方法 【思考题解答】 1. 在分析化学中,为什么要进行分离富集?分离时对常量和微量组分的回收率要求如何? 答:在定量分析,对于一些无法通过控制分析条件或采用掩蔽法来消除干扰,以及现有分析方法灵敏度达不到要求的低浓度组分测定,必须采用分离富集方法。换句话说,分离方法在定量分析中可以达到消除干扰和富集效果,保证分析结果的准确性,扩大分析应用范围。 在一般情况下,对常量组分的回收率要求大于99.9%,而对于微量组分的回收率要求大于99%。样品组分含量越低,对回收率要求也降低。2.常用哪些方法进行氢氧化物沉淀分离?举例说明。 答:在氢氧化物沉淀分离中,沉淀的形成与溶液中的[OH-]有直接关系。因此,采用控制溶液中酸度可使某些金属离子彼此分离。在实际工作中,通常采用不同的氢氧化物沉淀剂控制氢氧化物沉淀分离方法。常用的沉淀剂有: a. 氢氧化钠:NaOH是强碱,用于分离两性元素(如Al3+,Zn2+,Cr3+)与非两性元素,两性元素的含氧酸阴离子形态在溶液中,而其他非两性元素则生成氢氧化物胶状沉淀。 b. 氨水法:采用NH4Cl-NH3缓冲溶液(pH8-9),可使高价金属离子与大部分一、二金属离子分离。 c. 有机碱法:可形成不同pH的缓冲体系控制分离,如pH5-6六亚甲基胺-HCl缓冲液,常用于Mn2,Co2+,Ni2+,Cu2+,Zn2+,Cd2+与Al3+, Fe3+,Ti(IV)等的分离。 d. ZnO悬浊液法等:这一类悬浊液可控制溶液的pH值,如ZnO悬浊液的pH值约为6,可用于某些氢氧化物沉淀分离。 3. 某矿样溶液含有等离子,加入NH4Cl和氨水后,哪些离子以什么形式存在于沉淀中?哪些离子以什么形式存在于溶液中?分离是否完全? 答:NH4Cl与NH3构成缓冲液,pH在8-9间,因此溶液中有Ca2+, Mg2+,Cu(NH3)42-、Zn(NH3)42+等离子和少量Mn2+,而沉淀中有Fe(OH)3,Al(OH)3和Cr(OH)3和少量Mn(OH)2沉淀。试液中Fe3+,A13+,Cr3+可以与Ca2+,Mg2+,Cu2+和Zn2+等离子完全分开,而Mn2+分离不完全。 4.如将上述矿样用Na2O2熔融,以水取,其分离情况又如何? 答:Na2O2即是强碱又是氧化剂,Cr3+、Mn2+分别被氧化成CrO42-

常用的分离和富集方法

第十章常用的分离和富集方法 1.试说明定量分离在定量分析中的重要作用。 答:在实际的分析工作中,遇到的样品往往含有各种组分,当进行测定时常常彼此发生干扰。不仅影响分析结果的准确度,甚至无法进行测定,为了消除干扰,较简单的方法是控制分析条件或采用适当的掩蔽剂,但在有些情况下,这些方法并不能消除干扰,因此必须把被测元素与干扰组分分离以后才能进行测定。所以,定量分离是分析化学的主要内容之一。 2.何谓回收率?在回收工作中对回收率要求如何? 答:回收率是用来表示分离效果的物理量,回收率越大,分离效果越好,一般要求R A>90~95%即可。 3.何谓分离率?在分析工作中对分离率的要求如何? 答:分离率表示干扰组分B与待测组分A的分离程度,用表示S B/A,S B/A越小,则R B越小,则A与B之间的分离就越完全,干扰就消除的越彻底。通常,对常量待测组分和常量干扰组分,分离率应在0.1%以下;但对微量待测组分和常量干扰组分,则要求分离率小于10-4%。 4.有机沉淀剂和有机共沉淀剂有什么优点。 答:优点:具有较高的选择性,沉淀的溶解度小,沉淀作用比较完全,而且得到的沉淀较纯净。沉淀通过灼烧即可除去沉淀剂而留下待测定的元素。 5.何谓分配系数、分配比?二者在什么情况下相等? 答:分配系数:是表示在萃取过程中,物质进入有机溶剂的相对大小。 分配比:是该物质在有机溶剂中存在的各种形式的浓度之和与在水中各存在形式的浓度之和的比值,表示该物质在两相中的分配情况。 当溶质在两相中仅存在一种形态时,二者相等。 6.为什么在进行螯合物萃取时控制溶液的酸度十分重要? 答:在萃取过程中,溶液的酸度越小,则被萃取的物质分配比越大,越有利于萃取,但酸度过低则可能引起金属离子的水解,或其他干扰反应发生,应根据不同的金属离子控制适宜的酸度。 7.解释下列各概念:交联度,交换容量,比移值。 答:交联度:在合成离子交换树脂的过程中,将链状聚合物分子相互连接而形成网状结构的过程中,将链状聚合物分子连接而成网状结构的过程称为交联。 交换容量:表示每克干树脂所能交换的相当于一价离子的物质的量。是表征树脂交换能力大小的特征参数,通常为3~6 mmol/g。 比较值R f:表示某组分再滤纸上的迁移情况。 8.在离子交换分离法中,影响离子交换亲和力的主要因素有那些? 答:离子亲和力的大小与离子所带电荷数及它的半径有关,在交换过程中,价态愈高,亲和力越大,对于同价离子其水化半径越大,(阳离子原子序数越大)亲和力越小。 9.柱色谱、纸色谱、薄层色谱和离子交换色谱这几种色谱分离法的固定相和流动相各是什么?试比较它们分离机理的异同。

分离富集技术在岩矿分析中的应用

分离富集技术在岩矿分析中的应用 在岩矿分析过程中,现代仪器分析技术发挥着非常重要的作用,可以说是推动岩矿分析快速发展的主要动力源泉,然而,在岩矿分析过程中,依然有很多问题存在。如岩矿分析中如何对测试样品进行分离富集,便是其中的重要工作内容。在分离富集技术下,能够大大改善样品的检出限,同时,对提高测定的精准度有着非常重要的作用。下文,笔者结合自己的工作实践,对岩矿分析过程中分离富集技术的应用展开详细分析。 标签:离子;分离;富集;岩矿分析;应用 1经典法的改进几新方法的开发应用 随着科学技术的不断发展,在岩矿分析过程中,分离富集技术也有了很大发展,如沉淀、萃取,电沉积以及挥发蒸馏和离子交换吸附等技术发展很快,并在逐步的进行提高,并基于此基础,有许多先进的分离富集技术被逐渐开发出来,同时,分离富集剂的使用也越来越广泛。 1.1沉淀、吸附 1.1.1经典沉淀、吸附的改进 目前为止,沉积分离基体元素(共沉淀富集痕量元素)应用还较为普遍,如样品熔块儿通过水浸,并利用碱熔进行分解的过程中,便可进行沉淀分离。倘若将三乙醇安加入到浸取液内,便可有效提升沉淀的选择性,因此被普遍应用于稀土元素痕量测定过程之中。随着分离富集技术的不断发展,沉淀,吸附技术也有了很大的发展。 1.1.2负载沉淀、吸附 在硅胶,碳粉以及吸附树脂、泡沫塑料、纤维素上进行有机、无机沉淀吸附剂的负载,在吸附某些离子上,发挥着重要的作用。这些负载的沉淀吸附剂,将其本身所具有的作用充分的体现出来,不仅使试剂的剂量大幅减少,同时,其接触面积不断扩大,能够在单体吸附作用的前提下,使得分离富集效果大大增强,促进相关操作工作的开展,有的在色谱法以及柱滤法中有着广泛的应用。 1.1.3沉淀浮选 通过该技术,待测元素是通过胶状沉淀进行吸附,或者将有机试剂和无机试剂在进行pH值调节之后加入其中,待测元素与之发生反应,并形成沉淀,接着将表面活性剂加入其中,将小气泡(惰性气体)加入其中,进而上浮沉淀,使之停留在表面。通过这种技术对样品进行分离富集,不仅应用的试剂非常少,而且效率非常高,对于大体积的试液有着良好的应用效果。

分析化学第六版第十一章 分析化学中常用的分离及答案

第十一章分析化学中常用的分离和富集方法 一、选择题 1.用PbS作共沉淀载体,可从海水中富集金。现配制了每升含0.2μg Au3+的溶液10 L, 加入足量的Pb2+,在一定条件下,通入H2S,经处理测得1.7μg Au。此方法的回收率为( ) A、80% B、85% C、90% D、95% 2.含有Ca2+、Zn2+、Fe3+混合离了的酸性溶液,若以Fe(OH)3形式分离Fe3+,应选用的试剂是( ) A.浓NH3水B.稀NH3水C.NH3-NH4Cl D.NaOH 3.用NH3-NH4Cl沉淀Fe3+,使它与Mg2+分离,为分离完全,应使( ) A.NH4Cl浓度小一些,NH3浓度大一些B.NH4Cl浓度大一些,NH3浓度小一些 C.NH4Cl、NH3浓度均大一些D.NH4Cl 、NH3浓度均小一些 4.为使Fe3+、Al3+、与Ca2+、Mg2+分离,应选用( ) A.NaOH B.NH3-NH4Cl C.Na2O2D.(NH4)2CO3 5.下列各组混合溶液中,能用过量NaOH溶液分离的是( ) A.Pb2+-Al3+ B.Pb2+-Co2+ C.Pb2+-Zn2+ D.Pb2+-Cr3+ 6.下列各组混合溶液,能用pH≈9的氨性缓冲溶液分离的是( ) A.Ag+-Co2+ B.Fe2+-Mg2+ C.Ag+-Mg2+ D.Cd2+-Cr3+ 7.含量为10.00mg的Fe3+试液,在浓HCl中用等体积的乙醚萃取,已知Fe3+-乙醚萃取体系的分配比为99,当用等体积的乙醚2次萃取后,残留于水中的Fe3+的量(mg)为( ) A.1.0 B.0.10 C.0.010 D.0.0010 8.属于阳离子交换树脂的是( ) A.RNH3OH B.RCOOH C.RNH2CH3OH D.RN(CH3)3OH 9.下列树脂属于阴离子交换树脂的是( ) A.RNH3OH B.ROH C.RSO3H D.RCOOH 10.下列各类树脂中,最易与H+起交换作用的是( ) A.R=NH2+Cl-B.RONa C.RSO3Na D.RCOONa 11.萃取的本质可表述为 A.金属离子形成络合物的过程B.金属离子形成离子缔合物的过程 C.络合物进入有机相的过程D.将物质由亲水性变成疏水性的过程 12.水溶液中的Ni2+之所以能被丁二酮肟-CHCl3萃取,是因为在萃取过程中发生了下列何种变化A.Ni2+形成了离子缔合物B.溶液酸度降低了C.Ni2+形成的产物的质量增大了 D.Ni2+形成的产物中引入了疏水基团 13.在pH=2.0,EDTA存在下,用双硫腙-CHCl3萃取Ag+。今有含Ag+溶液100ml,每次用20ml 萃取剂萃取2次,已知萃取率为89%,其分配比为 A.100 B.80 C.10 D.50

分离与富集

人胎盘组织造血干/祖细胞的分离富集 【摘要】为了探索从胎盘组织中分离富集造血干/祖细胞(HSPC)的标化流程,采用机械法加胶原酶消化法制备人胎盘组织单个细胞悬液,用羟乙基淀粉(6% HES)法从中分离出单个核细胞(MNC),再经免疫磁珠分选法分选出CD34-、CD34+CD38-、CD34+CD38+ 3个细胞亚群,用流式细胞术对各阶段分选细胞进行表型分析并计算分选细胞的富集度和回收率。结果表明:机械法加胶原酶消化法制备的人胎盘组织单个细胞悬液中单个核细胞(MNC)数达(12.30±3.51)×108,与脐血初始样品所含的MNC数(8.86±5.38)×108 比较差异无统计学意义,而其CD34+细胞所占百分率[(3.93±2.31)%]则明显高于脐血[(0.44±0.29)%]。胎盘组织单个细胞悬液经6% HES分离后MNC和CD34+细胞的回收率分别为(45.3±11.7)%和(51.1±9.8)%;MNC经免疫磁珠分选后,其CD34+细胞的纯度和回收率分别为(73.4±14.1)%和(52.7±11.7)%。结论:本实验所建立的"机械法加胶原酶消化法-HES分离MNC-MACS分选目标细胞"的分离纯化方法可从胎盘组织获得高丰度、高富集度、高活性的HSPC,为进一步研究胎盘HSPC提供了比较经济、效果较好的分离富集方案。【关键词】

CD34抗原;造血干细胞;胎盘;免疫磁珠细胞分选;脐血【材料和方法】 造血干/祖细胞(hematopoietic stem/ progenitor cells,HSPC)存在于人骨髓、动员的外周血和脐血等组织中。新近,有学者提出人胎盘组织中含有比脐血更为丰富的造血干细胞;人胎盘组织中CD34+ HSPC的百分率是脐血的8.8倍,并且人胎盘组织中免疫细胞成分较少,极有希望成为今后HSPC 的新来源。从人胎盘组织分离出高活性、高丰度的HSPC是对其进行相关生物学特性等研究的前提,目前尚无有关人胎盘组织HSPC分离的优化方案可循。本研究旨在建立从胎盘组织中分离、 纯化HSPC的标化流程,为今后人胎盘组织HSPC的深入研究打下良好的基础。 主要试剂 胶原酶(collagenase Ⅳ)、羟乙基淀粉(hydroxyethyl starch,HES)为Sigma公司产品。RPMI 1640、新生牛血清(FCS)购自于Gibco公司。荧光标记单克隆抗体 CD38-FITC、CD34-PE及CD34绝对计数试剂盒为Becton Dickinson公司产品。免疫磁珠细胞分选试剂盒购自Miltenyi Biotec公司。

常用的分离和富集方法

第十一章 常用的分离和富集方法 【教学目标】 1.学习各种常用分离和富集方法的原理、特点及应用 2.掌握复杂体系的分离与分析 3.了解分离法的选择、无机和有机成分的分离与分析 【重点难点】 掌握各种常用分离和富集方法的原理、特点及应用 【课时安排】计划4课时 【教学内容】共五节 第一节 概述 一、回收率 100 分离后测得的量回收率=%原始含量 对回收率的要求(随组分含量的不同而不同): 含量(质量分数) 回收率 1%以上 >99.9% 0.01-1% >99% 0.01%以下 90-95% 常用的分离方法:沉淀、挥发和蒸馏、液-液萃取、离子交换、色谱等。 8.1.1沉淀分离法 1.常量组分的分离(自己看书:5分钟) (1) 利用生成氢氧化物 a. NaOH 法 b. NH3法(NH 4+存在) c. 有机碱法 六次(亚)甲基四胺 pH =5-6 d. ZnO 悬浮液法 pH =6 (2) 硫化物沉淀 (3) 有机沉淀剂 2.痕量组分的共沉淀分离和富集 (1) 无机共沉淀分离和富集 a. 利用表面吸附进行共沉淀 CuS 可将0.02ug 的Hg 2+从1L 溶液中沉淀出 b. 利用生成混晶 (2) 有机共沉淀剂 灼烧时共沉淀剂易除去,吸附作用小,选择性高,相对分子质量大,体积也大,分离效果好。 a. 利用胶体的凝聚作用进行共沉淀:辛可宁,丹宁,动物胶b. 利用形成离子缔合物进行共沉淀:甲基紫,孔雀绿,品红,亚甲基蓝c. 利用“固体萃取剂”进行共沉淀。 8.1.2挥发和蒸馏分离法 挥发法:选择性高 As 的氢化物,Si 的氟化物,As 、Sb 、Sn 、Ge 的氯化物

分析化学中常用的分离富集方法

分析化学中常用的分离富集方法 思考题 11-1 在分析化学中,为什么要进行分离富集?分离时对常量和微量组分的回收率要求如何?答:在定量分析,对于一些无法通过控制分析条件或采用掩蔽法来消除干扰,以及现有分析方法灵敏度达不到要求的低浓度组分测定,必须采用分离富集方法。换句话说,分离方法在定量分析中可以达到消除干扰和富集效果,保证分析结果的准确性,扩大分析应用围。在一般情况下,对常量组分的回收率要求大于99.9%,而对于微量组分的回收率要求大于99%。样品组分含量越低,对回收率要求也降低。 11-2 常用哪些方法进行氢氧化物沉淀分离?举例说明。 答:在氢氧化物沉淀分离中,沉淀的形成与溶液中的[OH-]有直接关系。因此,采用控制溶液中酸度可使某些金属离子彼此分离。在实际工作中,通常采用不同的氢氧化物沉淀剂控制氢氧化物沉淀分离方法。常用的沉淀剂有: a 氢氧化钠:NaOH是强碱,用于分离两性元素(如Al3+,Zn2+,Cr3+)与非两性元素,两性元素的含氧酸阴离子形态在溶液中,而其他非两性元素则生成氢氧化物胶状沉淀。 b 氨水法:采用NH4Cl-NH3缓冲溶液(pH8-9),可使高价金属离子与大部分一、二金属离子分离。 c 有机碱法:可形成不同pH的缓冲体系控制分离,如pH5-6六亚甲基胺-HCl缓冲液,常用于Mn2+,Co2+,Ni2+,Cu2+,Zn2+,Cd2+与Al3+,Fe3+,Ti(IV)等的分离。 d ZnO悬浊液法等:这一类悬浊液可控制溶液的pH值,如ZnO悬浊液的pH值约为6,可用于某些氢氧化物沉淀分离。 11-3 某矿样溶液含Fe3+,A13+,Ca2+,Mg2+,Mn2+,Cr3+,Cu2+和Zn2+等离子,加入NH4C1和氨水后,哪些离子以什么形式存在于溶液中?哪些离子以什么方式存在于沉淀中?分离是否完全? 答:NH4Cl与NH3构成缓冲液,pH在8-9间,因此溶液中有Ca2+,Mg2+,,Cu(NH3)42-、Zn(NH3)42+等离子和少量Mn2+,而沉淀中有Fe(OH)3,Al(OH)3和Cr(OH)3和少量Mn(OH)2沉淀。试液中Fe3+,A13+,Cr3+可以与Ca2+,Mg2+,Cu2+和Zn2+等离子完全分开,而Mn2+分离不完全。 11-4 如将上述矿样用Na2O2熔融,以水浸取,其分离情况又如何? 答:Na2O2即是强碱又是氧化剂,Cr3+、Mn2+分别被氧化成CrO42-和MnO4-。因此溶液有AlO22-,ZnO22-,MnO4-和CrO42-和少量Ca2+,在沉淀中有:Fe(OH)3,Mg(OH)2和Cu(OH)2和少量Ca(OH)2或CaCO3沉淀。Ca2+将分离不完全。

第11章分离和富集方法练习答案

第11章分析化学中常用的分离和富集方法 思考题 1.分离方法在定量分析中有什么重要性?分离时对常量和微量组分的回收率要求如何? 答:在定量分析,对于一些无法通过控制分析条件或采用掩蔽法来消除干扰,以及现有分析方法灵敏度达不到要求的低浓度组分测定,必须采用分离富集方法。换句话说,分离方法在定量分析中可以达到消除干扰和富集效果,保证分析结果的准确性,扩大分析应用范围。 在一般情况下,对常量组分的回收率要求大于99.9%,而对于微量组分的回收率要求大于99%。样品组分含量越低,对回收率要求也降低。 2.在氢氧化物沉淀分离中,常用的有哪些方法?举例说明。 答:在氢氧化物沉淀分离中,沉淀的形成与溶液中的[OH-]有直接关系。因此,采用控制溶液中酸度可使某些金属离子彼此分离。在实际工作中,通常采用不同的氢氧化物沉淀剂控制氢氧化物沉淀分离方法。常用的沉淀剂有:A.氢氧化钠:NaOH是强碱,用于分离两性元素(如Al3+,Zn2+,Cr3+)与非两性元素,两性元素的含氧酸阴离子形态在溶液中,而其他非两性元 素则生成氢氧化物胶状沉淀。 B.氨水法:采用NH4Cl-NH3缓冲溶液(pH8-9),可使高价金属离子与大部分一、二金属离子分离。 C.有机碱法:可形成不同pH的缓冲体系控制分离,如pH5-6六亚甲基胺-HCl缓冲液,常用于Mn2,Co2+,Ni2+,Cu2+,Zn2+,Cd2+与Al3+,Fe3+,Ti(IV)等的分离。 D.Z nO悬浊液法等:这一类悬浊液可控制溶液的pH值,如ZnO悬浊液的pH值约为6,可用于某些氢氧化物沉淀分离。 3.某矿样溶液含Fe3+,A13+,Ca2+,Mg2+,Mn2+,Cr3+,Cu2+和Zn2+等离子,加入NH4C1和氨水后,哪些离子以什么形式存在于溶液中?哪些离子以什么方式存在于沉淀中?分离是否完全? 答:NH4Cl与NH3构成缓冲液,pH在8-9间,因此溶液中有Ca2+,Mg2+,,Cu (NH3)42-、Zn(NH3)42+等离子和少量Mn2+,而沉淀中有Fe(OH)3,Al(OH)

分离与富集

分离与富集 读书报告 题名:共沉淀分离富集法的应用与新进展姓名:樊红霞 指导老师:陈建荣 学院:化学与生命科学学院 专业:分析化学 班级:10级 学号:2010210638 成绩:

共沉淀分离富集法的应用与新进展 姓名:樊红霞学号:2010210638 专业:分析化学 摘要:对共沉淀分离富集法的应用与新进展进行了综述。近年来,由于其与固体进样分析仪器的结合而得到了迅速发展,从自然水样到高纯和其它特殊材料曲分析,从空属元素到非空属乃至有机物的测定,越来越多、越来越好的有机和无机的共沉淀体系正被研究和广泛应用。关键词:共沉淀;分离;富集;进展 引言 沉淀法是一种传统的分离富集方法,但共沉淀法能在60年代迅速发展得益于Luke C L 的技能:在溶液中加入沉淀剂和一点点金属(称为载体)离子共沉淀溶液中的痕量金属元素,另一方面得益于其与具有高选择性的固体进样仪器的结合,使富集倍数极大提高而被应用于超痕量分析,近年来又与流动注射分析结合克服了耗时多的缺点。科学技术的发展对共沉淀方法提出了更高要求,新型沉淀剂的研究,两种或数种沉淀剂的联合使用以及传统沉淀剂与其他分离富集技术的联用等方面的研究非常活跃。另外由于其操作相对简便,实验条件容易满足,经济可行,正在被广泛应用于材料物质的改性方面,利用共沉淀合成纳米材料已见报道。因此探索新型高选择性共沉淀剂和将理论与经验规律结合,寻找特定的沉淀剂和与之相配的载体离子以及寻求简单、快速的共沉淀技术是最新的发展动向。 1新共沉淀捕集剂的研究与应用[1] Luke C L等最初使用的沉淀剂主要是金属氢氧化物和二乙基硫代氨基甲酸盐,研究了它们共沉淀痕量金属离子的实验条件。而后30年间,大多数研究致力于开发新的共沉淀捕集剂,以适应各种式样中不同组分的分离富集并达到尽可能高的回收率。 1.1新的金属氢氧化物和其它无机共沉淀捕集剂 金属氢氧化物作为共沉淀剂捕集剂以其不需要有机试剂、易于离心分离以及回收率高等优点而得到广泛应用,最早使用和用的最多的是Fe(OH)3、Al(OH)3、Mg(OH)2,进入80年代以后,新的无机共沉淀捕集剂不断涌现,日本学者在这方面处于领先地位,Yoshimura W等对Zr(OH)4、Harada Y等对La(OH)3、Ueda J等对Hf(OH)4做了较多研究。日本学者还对Be(OH)2、Ga(OH)3、Y(OH)3、Sn(OH)4作为共沉淀捕集剂进行了应用研究。其它的无机共沉淀捕集剂还有GaPO4、碱式碳酸锌、BaSO4、AlPO4等。以上这些新的无机氢氧化物共沉淀捕集剂大多以稀有元素作为载体离子,比起以前的无机捕集剂具有以下优点:

第十一章 常用分离富集方法

第八章 分析化学中常用的分离和富集方法 1. 0.020 mol/L Fe 2+溶液,加NaOH 进行沉淀时,要使其沉淀达99.99%以上。试问溶液中的pH 至少应为多少?若考虑溶液中除剩余Fe 2+外,尚有少量FeOH + (β=1×104),溶液的pH 又至少应为多少?已知16sp 108-?=K 。 解: 30.9H mol/L 100.2% 01.0020.0108][OH ]][OH [Fe 1) (516sp 22=??=??=?=--- -+p K () 34 .9H mol/L 1021.22 1044104104][OH 0104-][OH 104][OH 10 8][OH ] [OH 10110.01%0.020]][OH [Fe 2)(510 2 6610-6216 2-4sp 22=??=??+?+ ?= ?=??-??=???+?? =----- ------+p K 2. 若以分子状态存在99%以上时可通过蒸馏分离完全,而允许误差以分子状态存在1%以下,试通过计算说明在什么酸度下可挥发分离甲酸和苯酚? 解: 74 .5H mol/L 1084.1]H [%110 ]H [] H []H []H [%195.7H mol/L 1011.1]H [% 9910]H [] H []H []H [%9995 .974.3674 .3HCOOH a,89.95 OH H C a,OH H C a,HCOOH a,5656=??=?=+=+=??=?=+=+==-+-++++-+-++++p K p K pK pK 以分子状态存在,则甲酸以分子状态存在,则苯酚 因此可挥发分离甲酸和苯酚的酸度为5.74-7.95 3. 某纯的二元有机酸H 2A ,制备为纯的钡盐,称取0.3460 g 盐样,溶于100.0 mL 水中,将溶液通过强酸性阳离子交换树脂,并水洗,流出液以0.09960 mol/L NaOH 溶液20.20 mL 滴至终点,求有机酸的摩尔质量。 解:

化学中常用的分离和富集方法

分析化学中常用的分离和富集方法 1.在分析化学中,为什么要进行分离富集?分离时对常量和微量组分的回收率要求如何? 答:在定量分析,对于一些无法通过控制分析条件或采用掩蔽法来消除干扰,以及现有分析方法灵敏度达不到要求的低浓度组分测定,必须采用分离富集方法。换句话说,分离方法在定量分析中可以达到消除干扰和富集效果,保证分析结果的准确性,扩大分析应用范围。在一般情况下,对常量组分的回收率要求大于99.9%,而对于微量组分的回收率要求大于99%。样品组分含量越低,对回收率要求也降低。 2.常用哪些方法进行氢氧化物沉淀分离?举例说明。 答:在氢氧化物沉淀分离中,沉淀的形成与溶液中的[OH-]有直接关系。因此,采用控制溶液中酸度可使某些金属离子彼此分离。在实际工作中,通常采用不同的氢氧化物沉淀剂控制氢氧化物沉淀分离方法。常用的沉淀剂有: a 氢氧化钠:NaOH是强碱,用于分离两性元素(如Al3+,Zn2+,Cr3+)与非两性元素,两性元素的含氧酸阴离子形态在溶液中,而其他非两性元素则生成氢氧化物胶状沉淀。 b 氨水法:采用NH4Cl-NH3缓冲溶液(pH8-9),可使高价金属离子与大部分一、二金属离子分离。 c 有机碱法:可形成不同pH的缓冲体系控制分离,如pH5-6六亚甲基胺-HCl缓冲液,常用于Mn2+,Co2+,Ni2+,Cu2+,Zn2+,Cd2+与Al3+,Fe3+,Ti(IV)等的分离。 d ZnO悬浊液法等:这一类悬浊液可控制溶液的pH值,如ZnO悬浊液的pH值约为6,可用于某些氢氧化物沉淀分离。 3.某矿样溶液含Fe3+,A13+,Ca2+,Mg2+,Mn2+,Cr3+,Cu2+和Zn2+等离子,加入NH4C1和氨水后,哪些离子以什么形式存在于溶液中?哪些离子以什么方式存在于沉淀中?分离是否完全? 答:NH4Cl与NH3构成缓冲液,pH在8-9间,因此溶液中有Ca2+,Mg2+,,Cu(NH3)42-、Zn(NH3)42+等离子和少量Mn2+,而沉淀中有Fe(OH)3,Al(OH)3和Cr(OH)3和少量Mn(OH)2沉淀。试液中Fe3+,A13+,Cr3+可以与Ca2+,Mg2+,Cu2+和Zn2+等离子完全分开,而Mn2+分离不完全。 4.如将上述矿样用Na2O2熔融,以水浸取,其分离情况又如何? 答:Na2O2即是强碱又是氧化剂,Cr3+、Mn2+分别被氧化成CrO42-和MnO4-。因

现代分离富集技术的发展

现代分离富集技术的发展 目录 (1) 前言 (2) 第一章气相色谱法(GC) (3) 1.1 气-固吸附色谱柱 (3) 1.2 气-液分配色谱柱 (3) 第二章高效液相色谱法(HPLC) (4) 2.1液固吸附色谱法(LSC) (4) 2.2液液分配色谱法(LLC) (4) 2.3化学键合相色谱法(BPC) (5) 2.4离子交换色谱法(IEC) (6) 2.5空间排阻色谱法(SEC) (6) 2.6手性色谱法 (7) 第三章薄层色谱法(TLC) (10) 结论 (12) 参考文献 (13)

前言 当前,虽然高分辨和可自动的分析测试仪器不断的发展和完善,对各类样品中多元素的快速定量测定起到了巨大的作用。但在实际工作中,由于很多样品组成复杂,待测元素含量低,就不能得到高质量的结果,甚至无法进行测量[1-3]。 多年来,对分离富集技术已进行了大量的研究,开发和应用。目前进展的特点可归纳为: 1.经典的分离富集集数的改进提高,新的分离富集技术的开发应用; 2.新的分析试剂研制和应用,旧的分析试剂开发新的用途; 3.分离富集集数与测量方法相结合形成连用方法; 4.由进样器,分离富集器,检测器和计算机等零部件组成性能良好的,多用途的,自动的心的分析仪器。

第一章气相色谱法(GC) 气相色谱法是进入50年代以后, 在柱层析的基础上发展起来的一种新型的仪器分析方法[4]。气相色谱法是以气体为流动相的柱色谱分离技术。按固定相分为气-固色谱和气-液色谱;按分离原理分为吸附色谱和分配色谱;按柱子粗细分为填充柱色谱和毛细管柱色谱。 气相色谱法的特点有以下四点: 1.高效能:一般填充柱的理论塔板数可达数千,毛细管柱可达一百多万。 2.高选择性:可以使一些分配系数很接近的以及极为复杂、难以分离的物质,获得满意的分离。 3.高灵敏度:可以检测10-11~10-13 g物质,适合于痕量分析。 4.分析速度快:通常一个试样的分析可在几分钟到几十分钟内完成[5]。 气相色谱柱是由柱管和填充剂组成,柱管又分为填充柱和毛细管柱。填充柱多为2-4米柱长,2-6毫米内径;毛细管柱多为几十米到几百米柱长,0.1-0.5毫米内径。填充剂分为两种,气-固吸附色谱柱中使用的固体吸附剂和气-液分配色谱柱中的载体和固定液。 1.1 气-固吸附色谱柱 在气-固吸附色谱柱中固定相分为三种:吸附剂、分子筛和高分子多孔微球。吸附剂如硅胶、碱性Al2O3和活性炭等[6]。 1.2 气-液分配色谱柱[7] 在气-液分配色谱柱中载体的作用是承载固定液,要求其具有比表面积大、无吸附性、化学惰性、热稳定性好且具有一定的机械强度等性质。常见的载体分为硅藻土类和非硅藻土类,硅藻土类是具有一定粒度的多孔性固体微粒,非硅藻土类包括玻璃微球,石英微球,氟塑载体,含氟化合物。对于载体的处理方法主要是钝化以减弱其吸附性,分为酸洗、碱洗和硅烷化。对于固定液有四点要求:(1)操作柱温下固定液呈液态(易于形成均匀液膜)。(2)操作条件下固定液热稳定性和化学稳定性好。(3)固定液的蒸气压要低(柱寿命长,检测本底低)。(4)固定液对样品应有较好的溶解度及选择性。

常用的分离和富集方法

第十一章常用的分离和富集方法 1.试说明定量分离在定量分析中的重要作用。 答:在实际的分析工作中,遇到的样品往往含有各种组分,当进行测定时常常彼此发生干扰。不仅影响分析结果的准确度,甚至无法进行测定,为了消除干扰,较简单的方法是控制分析条件或采用适当的掩蔽剂,但在有些情况下,这些方法并不能消除干扰,因此必须把被测元素与干扰组分分离以后才能进行测定。所以,定量分离是分析化学的主要内容之一。 2.何谓回收率?在回收工作中对回收率要求如何? 答:回收率是用来表示分离效果的物理量,回收率越大,分离效果越好,一般要求R A>90~95%即可。 3.何谓分离率?在分析工作中对分离率的要求如何? 答:分离率表示干扰组分B与待测组分A的分离程度,用表示S B/A,S B/A越小,则R B越小,则A与B之间的分离就越完全,干扰就消除的越彻底。通常,对常量待测组分和常量干扰组分,分离率应在0.1%以下;但对微量待测组分和常量干扰组分,则要求分离率小于10-4%。 4.有机沉淀剂和有机共沉淀剂有什么优点。 答:优点:具有较高的选择性,沉淀的溶解度小,沉淀作用比较完全,而且得到的沉淀较纯净。沉淀通过灼烧即可除去沉淀剂而留下待测定的元素。 5.何谓分配系数、分配比?二者在什么情况下相等? 答:分配系数:是表示在萃取过程中,物质进入有机溶剂的相对大小。 分配比:是该物质在有机溶剂中存在的各种形式的浓度之和与在水中各存在形式的浓度之和的比值,表示该物质在两相中的分配情况。 当溶质在两相中仅存在一种形态时,二者相等。 6.为什么在进行螯合物萃取时控制溶液的酸度十分重要? 答:在萃取过程中,溶液的酸度越小,则被萃取的物质分配比越大,越有利于萃取,但酸度过低则可能引起金属离子的水解,或其他干扰反应发生,应根据不同的金属离子控制适宜的酸度。 7.解释下列各概念:交联度,交换容量,比移值。 答:交联度:在合成离子交换树脂的过程中,将链状聚合物分子相互连接而形成网状结构的过程中,将链状聚合物分子连接而成网状结构的过程称为交联。 交换容量:表示每克干树脂所能交换的相当于一价离子的物质的量。是表征树脂交换能力大小的特征参数,通常为3~6 mmol/g。 比较值R f:表示某组分再滤纸上的迁移情况。 8.在离子交换分离法中,影响离子交换亲和力的主要因素有那些? 答:离子亲和力的大小与离子所带电荷数及它的半径有关,在交换过程中,价态愈高,亲和力越大,对于同价离子其水化半径越大,(阳离子原子序数越大)亲和力越小。 9.柱色谱、纸色谱、薄层色谱和离子交换色谱这几种色谱分离法的固定相和流动相各是什么?试比较它们分离机理的异同。

吸附技术在铀分离富集过程中的应用研究

Advances in Material Chemistry 材料化学前沿, 2016, 4(1), 1-7 Published Online January 2016 in Hans. https://www.360docs.net/doc/ba17446631.html,/journal/amc https://www.360docs.net/doc/ba17446631.html,/10.12677/amc.2016.41001 Application Research of Adsorption Technology in Enrichment and Separation with Uranium Yan Sun, Suyan Tian, Lijuan Xiong, Di Wang, Hongwei Yang, Jun Ma* School of Chemistry and Chemical Engineering, Linyi University, Linyi Shandong Received: Mar. 29th, 2016; accepted: Apr. 11th, 2016; published: Apr. 14th, 2016 Copyright ? 2016 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.360docs.net/doc/ba17446631.html,/licenses/by/4.0/ Abstract In this paper, the application of adsorption technology in the enrichment and separation of ura-nium is reviewed. The adsorption process and mechanism of the inorganic material, biological materials and organic material were summarized. On the basis of the review, the specific research direction of uranium adsorption technology is pointed out. The results could provide reference for the development of separation and enrichment of uranium. Keywords Uranium, Adsorption, Enrichment, Separation 吸附技术在铀分离富集过程中的应用研究 孙燕,田素燕,熊丽娟,王娣,杨宏伟,马军* 临沂大学化学化工学院,山东临沂 收稿日期:2016年3月29日;录用日期:2016年4月11日;发布日期:2016年4月14日 *通讯作者。

金银分离富集技术

金银分离富集技术 沉淀、共沉淀分离富集法之无机共沉淀剂 在还原剂的存在下,如二氛化锡、抗坏血酸、亚硝酸钠、莫尔盐、卑磷酸盐等,三价金能够被还原为单质金,采用无机共沉淀剂,如啼、硒、砷、汞、氢氧化铁、硫化物等为载体,与金共沉淀而与贱金属分离。 在3-4mol几盐酸溶液中,抓化亚锡能够将三价金还原为单质金。有啼的化合物存在时,还原生成碎化金,与啼一起沉淀。其他贵金属,如铂、把、佬同时定量沉淀。锗、铱沉淀不完全。除试样中存在的硒、汞同时还原沉淀外,可与大量残金属元素分离。当有大量铜存在时,少量亚铜沾污沉淀。硝酸的存在会干扰测定,因为具有强氧化性的硝酸能够把还原出来的蹄沉淀重新溶解,失去分离富集作用。为此,在溶液中加人少量尿素,或用浓盐酸将溶液反复蒸干.以便将硝酸除去。 该法的回收率可达99.8%,对于微克量级的金也能定量沉淀。如用还原性较弱的亚硫酸和盐酸肪还原蹄时,带下的杂质更少,空白值更低,用人u198示踪检查此沉淀法富集微克量金的回收率为97%, 采用啼共沉淀法分离富集已用于滴定法,吸光光度法测定金。例如,将蹄共沉淀物进行灼烧、王水溶解,水浴蒸干,采用氢酿滴定法,可测定矿样中。.5pg 馆以上的金[71。该法可用于铜、铅阳极泥、粗铅、贵铅和秘铅合金、方铅矿、闪锌矿黄铁矿及毒砂中金的分离富集和测定。 在p为10%-25%盐酸酸度下,氮化亚锡将金(m)还原成单质金。加人硒酸后,抓化亚锡将硒还原成单质硒沉淀,与单质金共沉淀。将沉淀进行过滤、灰化,王水溶解后,再以吸光光度法分别测定金、铂、把。1-205g的铂、把,在该条件下定量沉淀。单用硒作载体共沉淀金、铂、把时,对铂、把的共沉淀不完全。当加人银、铜、砷混合接触剂能使金、铂、把定量沉淀,并与大量常见元素分离。共沉淀物中的硒、汞、佗、砷、锑等干扰元素在灼烧和燕发时除去。啼可加人碘化按于低温升至800℃灼烧lh挥发除去。金、铂、把分别用孔雀绿和DDO光度法测定。该法曾用于测定铜镍矿、炭质页岩、超基性岩等矿石中的金、铂、把。 在6mol/L HCl溶液中,在硫酸铜存在下,以氯化亚锡和次亚磷酸钠作还原

相关文档
最新文档