材料的形貌、机械性能和热性能研究

材料的形貌、机械性能和热性能研究
材料的形貌、机械性能和热性能研究

常用材料力学性能.

常用材料性质参数 材料的性质与制造工艺、化学成份、内部缺陷、使用温度、受载历史、服役时间、试件尺寸等因素有关。本附录给出的材料性能参数只是典型范围值。用于实际工程分析或工程设计时,请咨询材料制造商或供应商。 除非特别说明,本附录给出的弹性模量、屈服强度均指拉伸时的值。 表 1 材料的弹性模量、泊松比、密度和热膨胀系数 材料名称弹性模量E GPa 泊松比V 密度 kg/m3 热膨胀系数a 1G6/C 铝合金-79 黄铜 青铜 铸铁 混凝土(压 普通增强轻质17-31 2300 2400 1100-1800

7-14 铜及其合金玻璃 镁合金镍合金( 蒙乃尔铜镍 塑料 尼龙聚乙烯 2.1-3.4 0.7-1.4 0.4 0.4 880-1100 960-1400 70-140 140-290 岩石(压 花岗岩、大理石、石英石石灰石、沙石40-100 20-70 0.2-0.3 0.2-0.3 2600-2900 2000-2900 5-9 橡胶130-200 沙、土壤、砂砾钢

高强钢不锈钢结构钢190-210 0.27-0.30 7850 10-18 14 17 12 钛合金钨木材(弯曲 杉木橡木松木11-13 11-12 11-14 480-560 640-720 560-640 1 表 2 材料的力学性能 材料名称/牌号屈服强度s CT MPa 抗拉强度b CT

MPa 伸长率 5 % 备注 铝合金LY12 35-500 274 100-550 412 1-45 19 硬铝 黄铜青铜 铸铁( 拉伸HT150 HT250 120-290 69-480 150 250 0-1 铸铁( 压缩混凝土(压缩铜及其合金 玻璃

材料性能参数

材料物理性能参数 表征材料在力、热、光、电等物理作用下所反映的各种特性。常用的材料物理性能参数有内耗、热膨胀系数、热导率、比热容、电阻率和弹性模量等。 内耗材料本身的机械振动能量在机械振动时逐渐消耗的现象。其基本度量是振动一个周期所消耗的能量与原来振动能量之比。测量内耗的常用方法有低频扭摆法和高频共振法。内耗测量多用于研究合金中相的析出和溶解。 热膨胀系数材料受热温度上升1℃时尺寸的变化量与原尺寸之比。常用的有线膨胀系数和体膨胀系数两种。热膨胀系数的测量方法主要有:①机械记录法;②光学记录法;③干涉仪法;④X射线法。材料热膨胀系数的测定除用于机械设计外,还可用于研究合金中的相变。 热导率单位时间内垂直地流过材料单位截面积的热量与沿热流方向上温度梯度的负值之比。热导率的测量,一般可按热流状态分为稳态法和非稳态法两类。热导率对于热机,例如锅炉、冷冻机等用的材料是一个重要的参数。 比热容使单位质量的材料温度升高1℃时所需要的热量。比热容可分为定压比热容cp 和定容比热容cV。对固体而言,cp和cV的差别很小。固体比热容的测量方法常用的有比较法、下落铜卡计法和下落冰卡计法等。比热容可用于研究合金的相变和析出过程。 电阻率具有单位截面积的材料在单位长度上的电阻。它与电导率互为倒数,通常用单电桥或双电桥测出电阻值来进行计算。电阻率除用于仪器、仪表、电炉设计等外,其分析方法还可用于研究合金在时效初期的变化、固溶体的溶解度、相的析出和再结晶等问题。 弹性模量又称杨氏模量,为材料在弹性变形范围内的正应力与相应的正应变之比(见拉伸试验)。弹性模量的测量有静态法(拉伸或压缩)和动态法(振动)两种。它是机械零部件设计中的重要参数之一。

金属材料机械性能代号

名称代号单位意义 比例极限σp Mpa材料在受力拉伸过程中,应力与应变保持正比关系的最大应变值屈服点σs Mpa材料在受力过程中,开始产生显著塑性变形的最小应力值 屈服强度σ0.2Mpa 材料在受力过程中,所产生的塑性变形达到测定长度的0.2%时的应力值 抗拉强度σb Mpa材料在拉伸过程中,从开始到散裂时所达到的最大应力值 抗压强度σbc Mpa材料在拉伸过程中,从开始到断裂期间内所达到的最大应力值 抗弯强度σbb Mpa 在与轴线(材料)相垂直的力作用下,材料呈现弯曲直至破坏时所到达的最大应力值 延伸率δ%材料在拉断后,其测定部分的塑性伸长与原来测定部分长度的百分比 断面收缩率ψ%材料在拉断后,其断裂处横截面积的缩减量与原来的横截面积的百分比 扭转比例极限J p Mpa材料在扭转过程中的规定比例极限值 扭转屈服强度J0.3Mpa 材料在扭转过程中,所产生的部分残余剪应变量达到测定量的0.3%时的计算剪应力 扭转强度Jb Mpa材料在扭转过程中,达到断裂时的最大扭矩计算而得的最大剪应力 σ-1光滑试样承受对称弯曲应力时,在重复或交变情况下,于规定周期 次数内不发生断裂所承受的最大应力 J-1光滑试样承受对称扭转应力时,在重复或交变情况下,于规定周期 次数内不发生断裂所承受的最大应力 HB硬度表示材料抵抗物体压入其表面的能力 HRC HRB HRA用于硬度极高的材料(如硬质合金钢) HV锥式硬度 HS当工件最终表面不允许留下任何痕迹(如钢球或金刚石压痕)时, 如如轧辊辊身和辊径处,采用HS 冲击韧性A k 试样在一次摆锤冲击弯曲试验中冲折时所消耗的功除以试样断裂处原横截面积所得的商 金属材料机械性能代号 Mpa 疲劳极限 HB>450或试样过小,改用洛式硬度(HR)。分别用HRA、HRB 、HRC三种标度表示:标度C用于硬度很高的材料(如:淬火 钢);标度B用于硬度较低的材料(如:退火钢、铸铁) 硬度Mpa

金属材料力学性能

金属材料力学性能 Prepared on 24 November 2020

常见的金属材料力学性能一. 金属材料相关概念 任何机械零件或工具,在使用过程中,往往要受到各种形式的外力作用。这就要求金属材料必须具有一种承受机械载荷而不超过许可变形或不被破坏的能力;这种能力就是金属材料的力学性能。诸如金属材料的强度、刚度、硬度、塑性和韧性等特征就是用来衡量金属材料在外力下表现出来的力学性能的指标。 强度 强度是指金属材料在静载荷作用下抵抗变形和断裂的能力。一般用单位面 积所承受的作用力表示,符号为σ,单位为MPa。 工程中常用的强度指标有屈服强度和抗拉强度。屈服强度是指金属材料在外力作用下,产生屈服现象时的应力,或开始出现塑性变形时的最低应力值,用σs表示。抗拉强度是指金属材料在拉力作用下,被拉断前所承受的最大应力值,用σb表示。 对于大多数机械零件,工作时不允许产生塑性变形,所以屈服强度是零件强度设计的依据;对于因断裂而失效的零件,则用抗拉强度作为其设计的依据。 刚度 刚度是指金属材料在外力载荷作用下抵抗弹性变形的能力。对于机械零件要求较高的尺寸稳定性时,需要考虑刚度指标。 硬度 硬度是指材料表面抵抗比它更硬的物体压入的能力。

几种常用金属材料力学性能一览表 注:1.上表中材料的强度数值仅供参考,在不同的热处理工艺及环境下其对应的强度值不同。 二.材料的失效与许用应力 通常将材料的强度极限与屈服极限统称为材料的极限应力,用σu 表示。对于脆性材料强度极限为其唯一强度指标;对于塑性材料,其屈服应力小于强度极限,通常以屈服应力作为极限应力。 为了机械零件使用的安全性,对于机械构件要有足够的强度储备。因此,实际是使用的最大应力值必须小于材料的极限应力。最大使用应力称为许用应力,用[σ]表示。许用应力与极限应力的关系如下: [σ]= σu n , σu ={ σs σb 式中,n 为大于1的因数,称为安全因数。对于塑性材料n 为,σu=σ s ;对于脆性材料n 为,σu=σb 。 强度条件 σmax =(F A )max ≤[σ] 式中,F ,机械零件所承受的最大载荷作用力,单位N ;

全球最先进动态热机械分析仪DMA

全球最先进动态热机械分析仪 MICOFORCE 米力光 动态热机械分析仪DMA可以测量的材料范围非常的宽。如:弹性体、热塑性塑料、热固性流体、复合材料、涂料和胶粘剂、陶瓷、金属等。特别是高分子材料方面应用最为广泛,由于其粘弹本质,其机械性能具有温度和频率的依赖性。DMA测量的材料性能包括:模量、阻尼、玻璃化温度、软化温度、固化速率和固化度、粘度、凝胶点、吸声性和抗冲击性、蠕变、应力松弛等性能。橡胶动态热机械分析仪DMA,复合材料动态热机械分析仪DMA,金属动态热机械分析仪DMA,陶瓷动态热机械分析仪DMA.橡胶动态热机械分析仪可以用于聚氨酯、生胶, 母胶和混炼胶、天然橡胶、丁腈橡胶、未硫化橡胶、硫化橡胶、环保油丁苯橡胶、充芳烃油丁苯橡胶、锡偶联溶聚丁苯橡胶、塑性丁苯橡胶、反式异戊橡胶釜内合金TPIR、乳聚丁苯橡胶ESBR、溴化丁基橡胶BIIR、和子午线轮胎的动态弹性模量 BOSE Electroforce DMA是目前国际上动态力和静态力最高的、变范围应最宽、温度范围最大的材料动态热机械分析仪,适用于塑料、橡胶、复合材料、纤维、陶瓷、金属、食品、医药、轮胎、航空航天特种材料等众多高端科研领域。BOSE 公司是世界500强公司,采用了全世界最先进的电磁驱动技术,把静态力和动态力做到最高,使得仪器拥有无与伦比的驱动控制能力和测试精度,测试数据重复性特别好。 通过dma测试,可以得到材料的动态模量、损耗角、阻尼等动态粘弹性能,考察材料的动态性能随温度、频率、时间的依赖关系,了解材料的组成和内部结

构信息,指导材料配方设计和新材料研发。由于材料动态力学测试的目的是要考察试样的微观内部结构和组成对材料实际宏观应用性能的影响,因此一款高性能和高精度的动态力学分析仪是十分必要的,而dma则是您的最佳选择! 由于Electroforce3550的动态力高,因此,除了常规的塑料树脂类材料测试外,还擅长测试各种金属、橡胶、弹性体、高强度复合材料、金属陶瓷等的动态拉伸、压缩、剪切等动态力学性能。 主要特点: 力值高,不仅满足常规聚合物塑料测试,更满足橡胶弹性体、金属陶瓷等各类材料的动态测试需要,最高力值15KN. 应变大,高应变范围,适合弹性体的动态拉伸应变、疲劳动态测试,,最大位移50mm. 一个电机控制,动态测试更稳定,性能更强大。 可配置各种脉冲动态载荷,例如轮胎脉冲、三角波、矩形波等类型的载荷,模拟实际力学状态。 世界500强制造,质量可靠。 技术参数: 动态力最高15000N,静态力高达10000N; 应变范围达50mm; 低温-150°C,高温可达1500摄氏度;

轴的常用材料及其机械性能

轴的常用材料及其机械性能 轴的材料种类很多,选用时主要根据对轴的强度、刚度、耐磨性等要求,以及为实现这些要求而采用的热处理方式,同时考虑制造工艺问题加以选用,力求经济合理。 轴的常用材料是优质碳素钢35、45、50,最常用的是45和40Cr钢。对于受载较小或不太重要的钢,也常用Q235或Q275等普通碳素钢。对于受力较大,轴的尺寸和重量受到限制,以及有某些特殊要求的轴,可采用合金钢,常用的有40Cr、40MnB、40CrNi 等。 球墨铸铁和一些高强度铸铁,由于铸造性能好,容易铸成复杂形状,且减振性能好,应力集中敏感性低,支点位移的影响小,故常用于制造外形复杂的轴。 特别是我国研制成功的稀土-镁球墨铸铁,冲击韧性好,同时具有减摩、吸振和对应力集中敏感性小等优点,已用于制造汽车、拖拉机、机床上的重要轴类零件,如曲轴等。 根据工作条件要求,轴都要整体热处理,一般是调质,对不重要的轴采用正火处理。对要求高或要求耐磨的轴或轴段要进行表面处理,以及表面强化处理(如喷丸、辐压等)和化学处理(如渗碳、渗氮、氮化等),以提高其强度(尤其疲劳强度)和耐磨、耐腐蚀等性能。 在一般工作温度下,合金钢的弹性模量与碳素钢相近,所以只为了提高轴的刚度而选用合金钢是不合适的。 轴一般由轧制圆钢或锻件经切削加工制造。轴的直径较小时,可用圆钢棒制造;对于重要的,大直径或阶梯直径变化较大的轴,多采用锻件。为节约金属和提高工艺性,直径大的轴还可以制成空心的,并且带有焊接的或者锻造的凸缘。 对于形状复杂的轴(如凸轮轴、曲轴)可采用铸造。 轴的常用材料及其机械性能(MPa)

各种发动机曲轴材料及热处理

金属材料机械性能检测

金属材料机械性能检测 抗拉强度(tensile strength) 试样拉断前承受的最大标称拉应力。 抗拉强度是金属由均匀塑性变形向局部集中塑性变形过渡的临界值,也是金属在静拉伸条件下的最大承载能力。对于塑性材料,它表征材料最大均匀塑性变形的抗力,拉伸试样在承受最大拉应力之前,变形是均匀一致的,但超出之后,金属开始出现缩颈现象,即产生集中变形;对于没有(或很小)均匀塑性变形的脆性材料,它反映了材料的断裂抗力。符号为RM,单位为MPA。 试样在拉伸过程中,材料经过屈服阶段后进入强化阶段后随着横向截面尺寸明显缩小在拉断时所承受的最大力(Fb),除以试样原横截面积(So)所得的应力(σ),称为抗拉强度或者强度极限(σb),单位为N/mm2(MPa)。它表示金属材料在拉力作用下抵抗破坏的最大能力。计算公式为: σ=Fb/So 式中:Fb--试样拉断时所承受的最大力,N(牛顿);So--试样原始横截面积,mm2。 抗拉强度(Rm)指材料在拉断前承受最大应力值。 当钢材屈服到一定程度后,由于内部晶粒重新排列,其抵抗变形能力又重新提高,此时变形虽然发展很快,但却只能随着应力的提高而提高,直至应力达最大值。此后,钢材抵抗变形的能力明显降低,并在最薄弱处发生较大的塑性变形,此处试件截面迅速缩小,出现颈缩现象,直至断裂破坏。钢材受拉断裂前的最大应力值称为强度极限或抗拉强度。 单位:kn/mm2(单位面积承受的公斤力) 抗拉强度:Tensile strength. 抗拉强度=Eh,其中E为杨氏模量,h为材料厚度 目前国内测量抗拉强度比较普遍的方法是采用万能材料试验机等来进行材料抗拉/压强度的测定! 屈服强度(yield strength) 屈服强度:是金属材料发生屈服现象时的屈服极限,亦即抵抗微量塑性变形的应力。对于无明显屈服的金属材料,规定以产生0.2%残余变形的应力值为其屈服极限,称为条件屈服极限或屈服强度。大于此极限的外力作用,将会使零件永久失效,无法恢复。如低碳钢的屈服极限为207MPa,当大于此极限的外力作用之下,零件将会产生永久变形,小于这个的,零件还会恢复原来的样子。 yield strength,又称为屈服极限,常用符号δs,是材料屈服的临界应力值。

(重)常见材料的力学性能

附录常用材料的力学及其它物理性能 一、玻璃的强度设计值 f g(MPa) JGJ102-2003表5.2.1 二、铝合金型材的强度设计值 (MPa) GB50429-2007表4.3.4 三、钢材的强度设计值(1-热轧钢材) f s(MPa) JGJ102-2003表5.2.3 四、钢材的强度设计值(2-冷弯薄壁型钢) f s(MPa) 五、材料的弹性模量E(MPa) JGJ102-2003表5.2.8、JGJ133-2001表5.3.9

六、 材料的泊松比υ JGJ102-2003表5.2.9、JGJ133-2001表5.3.10、GB50429-2007表4.3.7 七、 材料的膨胀系数α(1/℃) JGJ102-2003表5.2.10、JGJ133-2001表5.3.11、GB50429-2007表4.3.7 八、 材料的重力密度γg (KN/m ) JGJ102-2003表5.3.1、GB50429-2007表4.3.7 九、 板材单位面积重力标准值(MPa ) JGJ133-2001表5.2.2 十、 螺栓连接的强度设计值一(MPa) JGJ102-2003表B.0.1-1

十一、螺栓连接的强度设计值二(MPa) 十二、焊缝的强度设计值(MPa) JGJ102-2003表B.0.1-3

十三、不锈钢螺栓连接的强度设计值(MPa) JGJ102-2003表B.0.3 十四、楼层弹性层间位移角限值 GB/T21086-2007表20 十五、部分单层铝合板强度设计值(MPa)JGJ133-2001表5.3.2

十六、铝塑复合板强度设计值(MPa) JGJ133-2001表5.3.3 十七、蜂窝铝板强度设计值(MPa) JGJ133-2001表5.3.4 十八、不锈钢板强度设计值(MPa) 附录常用材料的力学及其它物理性能十九、玻璃的强度设计值 f g(N/mm2) 二十、铝合金型材的强度设计值 f a(N/mm2)

金属材料化学元素及机械性能

GG25 HT250 C Si Mn P S (參考) % Hardness HB 30 - ≥250 - 180-225 GG20 HT200 C Si Mn P S (參考) ~~~1≤≤ 0,2%. N/mm2 Tensile-Str. N/mm2 Elongation A5 % Hardness HB 30 - ≥200 - - ASTM A126B C Si Mn P S Cr Ni Mo - - - ≤≤- - - 0,2%. N/mm2 Tensile-Str. N/mm2 Elongation A5 % Hardness HB 30 - ≥214 - - GGG40 EN-GJS-400-15 EN-JS1030 GB/T 1348 QT400-15 C Si Mn P S (參考) ~~3 ≤≤≤ 0,2%. N/mm2 Tensile-Str. N/mm2 Elongation A5 % Hardness HB 30≥250 ≥400 ≥15 130~180 EN-GJS-400-18 EN-JS1025 GB/T 1348 QT400-18 C Si Mn P S (參考) ~~≤≤≤ 0,2%. N/mm2 Tensile-Str. N/mm2 Elongation A5 % Hardness HB 30≥250 ≥400 ≥18 130~180 ASTM A536 65-45-12C Si Mn P S (參考) % Hardness HB 30≥310 ≥448 ≥12 -

ASTM A536 60-40-18 C Si Mn P S (參考) ~~≤≤≤ 0,2%. N/mm2 Tensile-Str. N/mm2 Elongation A5 % Hardness HB 30 ≥275 ≥414 ≥18 - ASTM A395 65-45-15 C Si Mn P S Cr Ni Mo ≥3≤-≤----0,2%. N/mm2 Tensile-Str. N/mm2 Elongation A5 % Hardness HB 30≥310 ≥450 ≥15 156~201 65Mn GB/T 711 C Si Mn P S Cr Ni Cu ~~~≤≤≤≤≤ 0,2%. N/mm2 Tensile-Str. N/mm2 Elongation A5 % Hardness HB 30 ≥430 ≥735 ≥9 ≤229 Q235A C Si Mn P S Cr Ni Mo ~≤~≤≤- 0,2%. N/mm2 Tensile-Str. N/mm2 Elongation A5 % Reduc. Area % ≥235 375~500 26 - 閥門常用材料標準

材料的力学性能

材料的力学性能 mechanical properties of materials 主要是指材料的宏观性能,如弹性性能、塑性性能、硬度、抗冲击性能等。它们是设计各种工程结构时选用材料的主要依据。各种工程材料的力学性能是按照有关标准规定的方法和程序,用相应的试验设备和仪器测出的。表征材料力学性能的各种参量同材料的化学组成、晶体点阵、晶粒大小、外力特性(静力、动力、冲击力等)、温度、加工方式等一系列内、外因素有关。材料的各种力学性能分述如下: 弹性性能材料在外力作用下发生变形,如果外力不超过某个限度,在外力卸除后恢复原状。材料的这种性能称为弹性。外力卸除后即可消失的变形,称为弹性变形。表示材料在静载荷、常温下弹性性能的一些主要参量可以通过拉伸试验进行测定。 拉伸试样常制成圆截面(图1之a)或矩形截面(图1之b)棒体,l为标距,d为圆形试样的直径,h和t分别为矩形截面试样的宽度和厚度,图中截面形状用阴影表示,面积记为A。长度和横向尺寸的比例关系也有如下规定:对于圆形截面试样,规定l=10d或l=5d;对于矩形截 面试样,按照面积换算规定或者。试样两端的粗大部分用以和材料试验 机的夹头相连接。试验结果通常绘制成拉伸图或应力-应变图。图2为低碳钢的拉伸图,横坐标表示试样的伸长量Δl(或应变ε=Δl/l),纵坐标表示载荷P(或应力σ=P/A)。图中的曲线从原点到点p为直线,pe段为曲线,载荷不大于点e所对应的值时,卸载后试样可恢复原状。反映材料弹性性质的参量有比例极限、弹性极限、弹性模量、剪切弹性模量和泊松比等。 比例极限应力和应变成正比例关系的最大应力称为比例极限,即图中点p所对应的应力,以σp表示。在应力低于σp的情况下,应力和应变保持正比例关系的规律叫胡克定律。载荷超过点p对应的值后,拉伸曲线开始偏离直线。 弹性极限试样卸载后能恢复原状的最大应力称为弹性极限,即图中点e所对应的应力,以σe表示。若在应力超出σe后卸载,试样中将出现残余变形。比例极限和弹性极限的测试值敏感地受测试精度的影响,并不易测准,所以在有关标准中规定,对于拉伸曲线的直线部分产生规定偏离量(用切线斜率的偏差表示)的应力作为"规定比例极限"。对于弹性

机械材料的力学性能(正式版)

文件编号:TP-AR-L3658 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 机械材料的力学性能(正 式版)

机械材料的力学性能(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 材料在常温、静载作用下的宏观力学性能。是确 定各种工程设计参数的主要依据。这些力学性能均需 用标准试样在材料试验机上按照规定的试验方法和程 序测定,并可同时测定材料的应力-应变曲线。 对于韧性材料,有弹性和塑性两个阶段。 弹性阶段的力学性能有: ①比例极限 应力与应变保持成正比关系的应力最高限。当应 力小于或等于比例极限时,应力与应变满足胡克定 律,即应力与应变成正比。 ②弹性极限

弹性阶段的应力最高限。在弹性阶段内,载荷除去后,变形全部消失。这一阶段内的变形称为弹性变形。绝大多数工程材料的比例极限与弹性极限极为接近,因而可近似认为在全部弹性阶段内应力和应变均满足胡克定律。 ③弹性模量 弹性阶段内,纵向应力与纵向应变的比例常数(E )。 ④剪切弹性模量 弹性阶段内,剪应力与剪应变的比例常数 (G )。 ⑤泊松比 横向应变与纵向应变之比(ν)。上述3种弹性常数之间满足G=E/2(1+v)。塑性阶段的力学性能有:

金属材料力学性能代 含义

金属材料力学性能代号含义 名称代号单位含义 抗拉强度σb MPa 或 N/mm^2材料试样受拉力时,在拉断前所承受的最大应力.抗压强度σbc MPa 或 N/mm^2材料试样受压力时,在压坏前所承受的最大应力.抗弯强度σbb MPa 或 N/mm^2材料试样受弯曲力时,在破坏前所承受的最大应力.抗剪强度τMPa 或 N/mm^2材料试样受剪力时,在剪断前所承受的最大剪应力. 抗扭强度τb MPa 或 N/mm^2材料试样受扭转力时,在扭断前所承受的最大剪应力 屈服点σs MPa 或 N/mm^2材料试样在拉伸过程中,负荷不增加或开始有所降低而变形继续发生的现象称为屈服. 屈服时的最小应力称为屈服点和屈服极限. 屈服强度σ0.2MPa 或 N/mm^2材料试样在拉伸过程中, 负荷不增加或开始有所降低而变形继续发生的现象称为屈服. 对某些屈服现象不明显的金属材料, 测定屈服点比较困难,为便于测量,通常按其产生永久变形量等于试样原长0.2%时的应力称为屈服度或条件屈服强度. 弹性极限σcσc 材料能保持弹性变形的最大应力. 真实弹性极限难以测定, 实际规定按永久变形为原长的0.005%时的应力值表示. 比例极限σp MPa 或 N/mm^2在弹性变形阶段, 材料所承受的和应变能保持正比的最大应力,称比例极限. σp与σc两数值很接近,一般常互相通用. 弹性模量E MPa 或 N/mm^2在比例极限的范围内, 应力与应变成正比时的比例常数,衡量材料刚度的指标. E=σ/ε ε——试样纵向线应变. 切变模量G MPa 或 N/mm^2在比例极限的范围内, 应力与应变成正比时的比例常数,衡量材料刚度的指标. G=τ/γ γ——试样切应变. 泊松比μ在弹性范围内, 试样横向线应变与纵向线应变的比值. μ=|ε/ε'| ε'= -με, ε'——试样横向线应变.

机械设计常用材料特性

1、45——优质碳素结构钢,是最常用中碳调质钢。 主要特征: 最常用中碳调质钢,综合力学性能良好,淬透性低,水淬时易生裂纹。小型件宜采用调质处理,大型件宜采用正火处理。 应用举例: 主要用于制造强度高的运动件,如透平机叶轮、压缩机活塞。轴、齿轮、齿条、蜗杆等。焊接件注意焊前预热,焊后消除应力退火。 2、Q235A(A3钢)——最常用的碳素结构钢。 主要特征: 具有高的塑性、韧性和焊接性能、冷冲压性能,以及一定的强度、好的冷弯性能。 应用举例: 广泛用于一般要求的零件和焊接结构。如受力不大的拉杆、连杆、销、轴、螺钉、螺母、套圈、支架、机座、建筑结构、桥梁等。 3、40Cr——使用最广泛的钢种之一,属合金结构钢。 主要特征: 经调质处理后,具有良好的综合力学性能、低温冲击韧度及低的缺口敏感性,淬透性良好,油冷时可得到较高的疲劳强度,水冷时复杂形状的零件易产生裂纹,冷弯塑性中等,回火或调质后切削加工性好,但焊接性不好,易产生裂纹,焊前应预热到100~150℃,一般在调质状态下使用,还可以进行碳氮共渗和高频表面淬火处理。 应用举例:调质处理后用于制造中速、中载的零件,如机床齿轮、轴、蜗杆、花键轴、顶针套等,调质并高频表面淬火后用于制造表面高硬度、耐磨的零件,如齿轮、轴、主轴、曲轴、心轴、套筒、销子、连杆、螺钉螺母、进气阀等,经淬火及中温回火后用于制造重载、中速冲击的零件,如油泵转子、滑块、齿轮、主轴、套环等,经淬火及低温回火后用于制造重载、低冲击、耐磨的零件,如蜗杆、主轴、轴、套环等,碳氮共渗处即后制造尺寸较大、低温冲击韧度较高的传动零件,如轴、齿轮等。 4、HT150——灰铸铁 应用举例:齿轮箱体,机床床身,箱体,液压缸,泵体,阀体,飞轮,气缸盖,带轮,轴承盖等 5、35——各种标准件、紧固件的常用材料 主要特征: 强度适当,塑性较好,冷塑性高,焊接性尚可。冷态下可局部镦粗和拉丝。淬透性低,正火或调质后使用 应用举例: 适于制造小截面零件,可承受较大载荷的零件:如曲轴、杠杆、连杆、钩环等,各种标准件、紧固件 6、65Mn——常用的弹簧钢 应用举例:小尺寸各种扁、圆弹簧、座垫弹簧、弹簧发条,也可制做弹簧环、气门簧、离合器簧片、刹车弹簧、冷卷螺旋弹簧,卡簧等。 7、0Cr18Ni9——最常用的不锈钢(美国钢号304,日本钢号SUS304) 特性和应用: 作为不锈耐热钢使用最广泛,如食品用设备,一般化工设备,原于能工业用设备

金属材料机械性能的指标及意义

金属材料机械性能的指标及意义 材料在一定温度条件和外力作用下,抵抗变形和断裂的能力称为材料的力学性能。锅炉、压力容器用材料的常规力学性能指标主要包括:强度、硬度、塑性和韧性等。 (1)强度强度是指金属材料在外力作用下对变形或断裂的抗力。强度指标是设计中决定许用应力的重要依据,常用的强度指标有屈服强度σS或σ0.2(国外用Re表示)和抗拉强度σb(国外用Rm表示),高温下工作时,还要考虑蠕变极限σn和持久强度σD。 (2)塑性塑性是指金属材料在断裂前发生塑性变形的能力。塑性指标包括:伸长率δ,即试样拉断后的相对伸长量;断面收缩率ψ,即试样拉断后,拉断处横截面积的相对缩小量;冷弯(角)α,即试件被弯曲到受拉面出现第一条裂纹时所测得的角度。 (3)韧性韧性是指金属材料抵抗冲击负荷的能力。韧性常用冲击功Ak和冲击韧性值αk表示。Αk值或αk 值除反映材料的抗冲击性能外,还对材料的一些缺陷很敏感,能灵敏地反映出材料品质、宏观缺陷和显微组织方面的微小变化。而且Ak对材料的脆性转化情况十分敏感,低温冲击试验能检验钢的冷脆性。 表示材料韧性的一个新的指标是断裂韧性δ,它是反映材料对裂纹扩展的抵抗能力。 (4)硬度硬度是衡量材料软硬程度的一个性能指标。硬度试验的方法较多,原理也不相同,测得的硬度值和含义也不完全一样。最常用的是静负荷压入法硬度试验,即布氏硬度(HB)、洛氏硬度(HRA、HRB、HRC)、维氏硬度(HV),其值表示材料表面抵抗坚硬物体压入的能力。而肖氏硬度(HS)则属于回跳法硬度试验,其值代表金属弹性变形功的大小。因此,硬度不是一个单纯的物理量,而是反映材料的弹性、塑性、强度和韧性等的一种综合性能指标。 在断裂力学基础上建立起来的材料抵抗裂纹扩展断裂的韧性性能称为断裂韧性。(Kic,Gic) 常用的35CrMo在850℃油淬,550℃回火后,机械性能如下: σb≥980MPa;σs≥835 MPa;δ5≥12%;ψ≥45%;AK≥63J; 而高级优质的35CrMoA的性能应该更加优良稳定。

动态热机械分析测试

动态热机械分析测试 一、实验目的 1.熟悉动态力学分析仪(DMA)的的使用方法和工作原理,了解不同样品的测试方法和 手段。 2.通过聚合物PP 动态模量和力学损耗与温度关系曲线的测定,了解线性非结晶聚合物不 同的力学状态。 3.掌握玻璃化转变温度Tg 的求取并根据曲线得出一些结论,分析材料的热力学性质。 二、实验原理 动态热机械分析仪是研究物质的结构及其化学与物理性质最常用的物理方法之一,分析表征力学松弛和分子运动对温度或频率的依赖性,主要用于评价高聚物材料的使用性能、研究材料结构与性能的关系、研究高聚物的相互作用、表征高聚物的共混相容性、研究高聚物的热转变行为等。主要包括:①高聚物的玻璃化转变以及熔融行为;②高聚物的热分解或裂解以及热氧化降解;③新的或未知高聚物的鉴别;④释放挥发物的固态反应及其反应动研究;⑤高聚物的吸水性和脱水性研究,以及对水、挥发组分和灰分等的定量分析;⑥高聚物的结晶行为和结晶度;共聚物和共混物的组成、形态以及相互作用和共混相容性的研究。 所谓动态力学是指物质在交变载荷或振动力的作用下发生的松弛行为,所以DMA 就是研究在程序升温条件下测定这种行为的方法,高聚物是一种粘弹性物质,因此在交变力的作用下其弹性部分及粘性部分均有各自的反应,而这种反应又随温度的变化而改变。高聚物的动态力学行为能模拟实际使用情况,而且它对玻璃化转变、结晶、交联、相分离以及分子链各层次的运动都十分敏感,所以它是研究高聚物分子运动行为极有用的方法。 如果施加在试样上的交变应力为ζ,则产生的应变为ε,由于高聚物粘弹性的关系,其应变将滞后于应力,则ε、ζ分别以下式表示: ε=ε0exp iωt ζ=ζ0exp i(ωt+δ) 式中ε0、ζ0——分别为最大振幅的应变和应力; ω——交变力的角频率;δ——滞后相位角。 i=-1,此时复数模量:E*=ζ/ε=ζ0/ε0exp iδ=ζ0/ε0(cosδ+i sinδ)=E’+i E’’ 其中E’=ζ0/ε0 cosδ为实数模量,即模量的储能部分,而E’’=ζ0/ε0 sinδ表示与应变相差丌/2的虚数模量,是能量的损耗部分。另外还有用内耗因子Q-1 或损失角正切tanδ来表示损耗,即Q-1=tanδ=E’’/E’(或tanδ=G’’/G’, G 为切变模量)。

工程材料的机械性能

工程材料的机械性能 -----------------------作者:-----------------------日期:

工程材料 (一)工程材料的机械性能与组织结构 基本要求: 了解工程材料的分类;材料的断裂韧性和材料的高、低温机械性能。 熟悉材料的静载与动载机械性能。 掌握金属的结构与结晶的相关知识。 具体容: 1、工程材料的分类; 2、材料静载的机械性能; 3、材料动载的机械性能; 4、常用金属的晶体结构的类型; 5、金属的实际结构和晶体缺陷; 6、金属的结晶。 (二)铁碳合金 基本要求: 了解铁碳相图的相关知识。 熟悉典型铁碳合金的平衡结晶过程。

掌握钢中常存杂质元素对钢的性能的影响;钢锭种类;碳钢的分类、编号和用途。 具体容: 1、铁碳合金中的基本相; 2、铁碳合金的相图分析; 3、铁碳合金分类; 4、典型铁碳合金的平衡结晶过程分析; 5、含碳量对铁碳合金平衡组织和性能的影响; 6、钢中常存杂质元素对钢的性能的影响; 7、钢锭的种类; 8、碳钢的分类、编号和用途。 (三)金属的塑性变形与再结晶 基本要求: 了解单晶体和多晶体金属的塑性变形。 掌握塑性变形对金属的组织和性能的影响、再结晶温度的计算;金属的热加工的相关知识。 具体容: 1、单晶体和多晶体金属的塑性变形; 2、塑性变形对金属的组织和性能的影响; 3、再结晶的温度的计算; 4、材料热加工对金属组织和性能的影响。

(四)钢的热处理 基本要求: 了解钢的热处理的概念。 熟悉钢在加热时的转变、钢的冷却转变。 掌握钢的普通热处理的工艺、钢的表面热处理;热处理的缺陷及防止方法。 具体容: 1、热处理的概念; 2、钢在加热时的转变; 3、钢的冷却转变; 4、钢的退火与正火,钢的淬火,钢的回火; 5、钢的表面热处理; 6、热处理的缺陷及防止方法。 (五)合金钢 基本要求: 了解合金元素的作用及合金钢的分类。 熟悉合金钢的分类及牌号。 掌握合金结构钢的相关知识。 具体容: 1、合金元素在钢中的作用; 2、合金钢的分类及牌号;

金属材料性能及国家标准

金属材料性能 为更合理使用金属材料,充分发挥其作用,必须掌握各种金属材料制成的零、构件在正常工作情况下应具备的性能(使用性能)及其在冷热加工过程中材料应具备的性能(工艺性能)。 材料的使用性能包括物理性能(如比重、熔点、导电性、导热性、热膨胀性、磁性等)、化学性能(耐用腐蚀性、抗氧化性),力学性能也叫机械性能。 材料的工艺性能指材料适应冷、热加工方法的能力。 (一)、机械性能 机械性能是指金属材料在外力作用下所表现出来的特性。 1 、强度:材料在外力(载荷)作用下,抵抗变形和断裂的能力。材料单位面积受载荷称应力。 2 、屈服点(бs ):称屈服强度,指材料在拉抻过程中,材料所受应力达到某一临界值时,载荷不再增加变形却继续增加或产生 0.2%L 。时应力值,单位用牛顿 / 毫米 2 ( N/mm2 )表示。 3 、抗拉强度(бb )也叫强度极限指材料在拉断前承受最大应力值。单位用牛顿 / 毫米 2 ( N/mm2 )表示。 4 、延伸率(δ):材料在拉伸断裂后,总伸长与原始标距长度的百分比。 5 、断面收缩率(Ψ)材料在拉伸断裂后、断面最大缩小面积与原断面积百分比。 6 、硬度:指材料抵抗其它更硬物压力其表面的能力,常用硬度按其范围测定分布氏硬度( HBS 、 HBW )和洛氏硬度( HKA 、 HKB 、 HRC ) 7 、冲击韧性( Ak ):材料抵抗冲击载荷的能力,单位为焦耳 / 厘米 2 ( J/cm2 ) . (二)、工艺性能 指材料承受各种加工、处理的能力的那些性能。 8 、铸造性能:指金属或合金是否适合铸造的一些工艺性能,主要包括流性能、充满铸模能力;收缩性、铸件凝固时体积收缩的能力;偏析指化学成分不均性。 9 、焊接性能:指金属材料通过加热或加热和加压焊接方法,把两个或两个以上金属材料焊接到一起,接口处能满足使用目的的特性。 10 、顶气段性能:指金属材料能承授予顶锻而不破裂的性能。 11 、冷弯性能:指金属材料在常温下能承受弯曲而不破裂性能。弯曲程度一般用弯曲角度α(外角)或弯心直径 d 对材料厚度 a 的比值表示, a 愈大或 d/a 愈小,则材料的冷弯性愈好。 12 、冲压性能:金属材料承受冲压变形加工而不破裂的能力。在常温进行冲压叫冷冲压。检验方法用杯突试验进行检验。 13 、锻造性能:金属材料在锻压加工中能承受塑性变形而不破裂的能力。(三)、化学性能 指金属材料与周围介质扫触时抵抗发生化学或电化学反应的性能。 14 、耐腐蚀性:指金属材料抵抗各种介质侵蚀的能力。 15 、抗氧化性:指金属材料在高温下,抵抗产生氧化皮能力。 >> 返回

机械零件常用材料.

附录A 机械零件的常用材料 机械零件的常用材料分为金属和非金属两大类。其中,金属材料应用最广,非金属材料以其独特的性能也日益显示出广阔的应用前景。金属材料包括黑色金属(钢、铸铁)和有色金属,前者应用最多。此外,近年来复合材料的研究与开发,也已成为材料科学的一个新方向。下面简要介绍机械零件的常用材料及其应用。 A.1 钢钢的品种多,性能好,是机械零件最常用的材料。 A.1.1 碳素钢碳素钢的性能主要取决于含碳量,即碳的质量百分含量。含碳量越高,钢的强度越高,塑性越低。由于碳素钢生产批量大,价格低,供应充足,一般的机械零件应优先选用。碳素钢分为碳素结构钢(GB/T 700—1988GB/T 699—1988)。前者主要用于受力不大而且基本上是承受静载荷的零件,其中以Q235、Q255较为常用。等杂质较少,其性能优于碳素结构钢,而且能同时保证钢的机械性能和化学成分,可以进行热处理,故常用于受力较大,且受变载荷或冲击载荷作用的零件。 优质碳素结构钢的牌号用两位数字表示,代表钢中碳的平均含量。如45钢,其平均含量碳为0.45%。对于含锰量较高的优质碳素结构钢,其牌号还要在含碳量数字之后加注符号“Mn ”,如40Mn 等。平均含碳量低于0.25%0.25%~0.60%母、齿轮、键、轴等零件;平均含碳量高于0.60%弹性,是弹簧、钢丝绳等零件的常用材料。 低韧性。应当指出,合金钢的性能不仅与化学成分有关,在很大程度上还取决于适当的热处理。由于合金钢价格较贵,通常只用于制造重要的或具有特殊性能要求的机械零件。 含各主要合金元素的符号及其含量,而且规定:合金元素平均含量低于1.5%时,不注含 机械设计基础

金属材料的力学性能测试题

一、填空题(60分) 1.金属材料的性能的性能包括和。 2.力学性能包括、、、、。 3.圆柱形拉伸试样分为和两种。 4.低碳钢拉伸试样从开始到断裂要经过、 、、四个阶段。 5.金属材料的强度指标主要有和。 6.金属材料的塑性指标主要有和。 7.硬度测定方法有、、。 8.夏比摆锤冲击试样有和两种。 9.载荷的形式一般有载荷、载荷和载荷三种。 10.钢铁材料的循环基数为,非铁金属循环基数为。 11.提高金属疲劳强度的方法有和 。 12.50HRC表示用“C”标尺测定的硬度值为。 13.150HRW10/1000/30表示用压头直径为的硬质合金球,在kgf试验力作用下,保持s时测得的布氏硬度值为。 14.金属材料的工艺性能包括、、

、、。 二、判断题(25分) 1.金属的工艺性能是指金属在各种加工中所表现出的性能。() 2.金属的力学性能是指在力作用下所显示的与弹性和非弹性反应相关或涉及应力-应变关系的性能。() 3.拉伸试验时,试样的伸长量与拉伸力总成正比。() 4.屈服现象是指拉伸过程中拉伸力达到Fs时,拉伸力不增加,变形量却继续增加的现象。() 5.拉伸试样上标距的伸长量与原始标距长度的百分比,称为断后伸长率,用符号A表示。() 6.现有标准圆形截面长试样A和短试样B,经拉伸试验测得δ10、δ5均为25%,表明试样A的塑性比试样B好。( ) 7.常用的硬度试验方法有布氏硬度、洛氏硬度和维氏硬度。() 8.做布氏硬度试验,当试验条件相同时,压痕直径越小,则材料的硬度越低。() 9.洛氏硬度值是根据压头压入被测材料的的深度来确定的。() 10.洛氏硬度HRC测量方便,能直接从刻度盘上读数,生产中常用于测量退火钢、铸铁和有色金属件。() 11.一般来说,硬度高的金属材料耐磨性也好。() 12.韧性是指金属在断裂前吸收变形能量的能力。() 13.金属的使用性能包括力学性能、物理性能和铸造性能。( )

DMA动态热机械分析仪的选型

DMA动态热机械分析仪的选择 动态热机械分析仪DMA是材料测试分析应用中应用范围最广的一种设备,像弹性体、塑料、陶瓷、建材、金属、纸张、涂料油漆等膏状体、流体等等。尤其在弹性体研究领域,DMA测试有着不可替代的作用。但是目前市面上有多种DMA,其力值范围大小、可测试频率范围高低、机架刚度等均有差异,我们在 设备选型的时候带来很多困惑-什么样的DMA才真正满足我们的应用?尤其 对于目前科研主流的阻尼性材料和轮胎领域的橡胶动态热分析仪研究,我们稍作探讨。 在DMA的重要指标里,不同DMA之间差异主要机架刚度设计、力值范围 和频率范围、位移范围、温度范围及速率控制等。 1、力值的选择:DMA不像万能材料试验机,弹性模量高的材料并不意味 着需要大力值。应根据具体情况而定。但也并不是小载荷就能满足我们的应用。载荷太小,势必被测试样也要求过小,这种试样的边界条件就会对测试结果有很大的影响,如试样的表面粗糙度、表面状态、试样形状、材料特性(纤维、晶须、颗粒复合材料)等。根据研究表明,由于橡胶材料在玻璃化转变前后的模量变化最大(有时能达到7个数量级的变化),橡胶材料需要的力值范围最大(通常建议最好5个数量级以上),尤其目前某些行业应用于阻尼减震等领域的特种硅氟橡胶,其玻璃化转变温度几乎能达到-100°C,高温耐受程度也优于常规橡胶,在 进行此类测试有时可能需要进行-120°C~120°C的大范围的温度扫描,在这个过程中其力值变化要跨越数个数量级,这就要求测试设备必须有大的力值范围。比如,最大力值为500N,最小力值应小于0.005N。所以,DMA要求的是一个力 值范围,而不是一个力值。在-0.005N到0.005N的区间,精度范围较低(各 厂家都应提供这个测试盲点范围)。而在厂家表明的力值范围内(0.005到500N),精度较高。所以我们在选择DMA的力值时,更应关注力值范围。尤其是最小力 值能达到什么样的数量级。对于橡胶、金属、复合材料等,根据我们的具体应用,可以选择100~200N左右就够用了。较小力值的DMA,由于受其最小力值限制,在测试橡胶类的宽模量样品时无法同时兼顾高低温,略显不足(目前市场上DMA 测试最小力值最好的测试最小力值能达到0.001N,像Metravib公司的DMA系列);当然更高力值的DMA会更好,但价格会贵很多。

常用金属材料的力学性能一览表

常用金属材料的力学性能 金属材料的力学性能 任何机械零件或工具,在使用过程中,往往妾受到各种形式外力的作托。如起重机上的钢索,受到悬吊物拉力的作用:柴油机上的连杆,在传递动力时.不仅受到拉力的作用,而且还受到冲击力的作用;轴类零件燮受到弯矩、扭力的作用等尊。这就要求金属材料必须具有一种弟受机械荷而不超过许可变形或不破坏的能力* 这种能力就是材料的力学性能。金属表现来的诸如弹性、强度、硬度、塑性和韧性等特征就是用来衡量金属材料材料在夕卜力作坤下表现出力学性能的指标。 111 强度 强度是扌旨金属材料在静载荷作用下抵抗变形和断裂的能力。逼度扌旨标一般用单位面积所承受的载荷即力表示,符号为6 单位为 MP 弘 工程中常用的强度指标有屈服逼度和扰拉强度。屈服逼度是指金属材料在外力作用下* 产生屈服现象时的应力,或开始岀现塑性变形吋的最低应力值,用%表示?抗竝强度是指金厲材料在拉力的作用下,被拉断前所能承受的最大应力值,用巧表示。 对于大多数机械零件.工作时不允许产生塑性变形,所以屈服强度是事件逼度设计的依据!对于因断裂而失效的零件,而用抗拉强度作为其逼度设计的依据。 1.1 2 塑性 塑性是扌旨金属材料在外力作用下产生塑性变形而不断裂的能力。 工程中常用的塑性揭标有诩长率和断面收缩率。伸长率指试样拉断后的伸长量与原来长度之比的百分率,用符号豪示*断面收縮率指试样拉断后,断面縮小的面积与原来截面积之比,用甲表示。 伸长率和断面收缩率越大,其塑性越好;反之塑性越差,良好的塑性是金属材料进行压力加工的必要条件,也是保证机械零件工作安全,不发生突然脆断的必要条件。 113 硬度 硬度是指材料表面抵抗比它更硬的物体压入的能力? 硬度的测试方法很多,生产中常埔的硬度测试方法有布氏硬度测试法和洛氏碳度试验方法两神° C- )布氏硬度试验法 布氏硬度试验法是用一直径为 D 的淬火钢球或硬质合金球作为压头,在载荷 0 的作用下压入被测试金厲表面,保持一定时间后卸载,测量金属表面形成的压痕直径乩以压痕的单位面积所承受的平均压力作为被测全属的布氏硬度值。 布氏硬度指标有 HBS 和 HBW, 前者所用压头为淬火钢球,适坤于布氏硬度值低于仍 0 的金属材料,如艮火钢、正火钢、调质钢及铸铁、有包金厲等;后者压头为硬质合金,适用于布氏硬度值为 450^650 的金属材料,如悴火钢等。 布氏硬度测试法,因压痕较尢故不宜测试成品件或薄片金属的硬度。

相关文档
最新文档