南京大学物理化学每章典型例题

南京大学物理化学每章典型例题
南京大学物理化学每章典型例题

第一章 热力学第一定律与热化学

例题1 1mol 理想气体于27℃ 、101325Pa 状态下受某恒定外压恒温压缩到平衡,再由该状态恒容升温到97 ℃ ,则压力升到。求整个过程的W 、Q 、△U 及△H 。已知该气体的C V ,m 恒定为? ?K -1

解题思路:需先利用理想气体状态方程计算有关状态: (T 1=27℃, p 1=101325Pa ,V 1)→(T 2=27℃, p 2=p 外=?,V 2=?) →(T 3=97℃, p 3=,V 3= V 2)

例题2水在 -5℃ 的结冰过程为不可逆过程,计算时要利用0℃ 结冰的可逆相变过程,即 H 2O (l ,1 mol ,-5℃ ,θ

p

s ,1 mol ,-5℃,θ

p )

↓△H 2 ↑△H 4

H 2O (l ,1 mol , 0℃,θp )(s ,1 mol ,0℃,θ

p ) ∴ △H 1=△H 2+△H 3+△H 4

例题3 在 时,使 5.27 克的甲醇(摩尔质量为32克) 在弹式量热计中恒容燃烧,放出 的热量。忽略压力对焓的影响。

(1) 计算甲醇的标准燃烧焓 θ

m c H ?。

(2) 已知时 H 2O(l) 和CO 2(g)的标准摩尔生成焓分别为- kJ·mol -1

、- kJ·mol -1

计算CH 3OH(l)的θ

m f H ?。

(3) 如果甲醇的标准蒸发焓为 ·mol -1

,计算CH 3OH(g) 的θ

m f H ?。

解:(1) 甲醇燃烧反应:CH 3OH(l) +

2

3

O 2(g) → CO 2(g) + 2H 2O(l) Q V =θ

m c U ?=- kJ/32)mol =- kJ·mol -1

Q p =θ

m c H ?=θ

m c U ?+

∑RT v

)g (B

= (--×××10-3

)kJ·.mol -1

=- kJ·mol -1

(2) θm c H ?=θm f H ?(CO 2) + 2θm f H ?(H 2O )-θ

m f H ? [CH 3OH(l)] θ

m f H ?[CH 3OH (l)] =θ

m f H ? (CO 2) + 2θ

m f H ? (H 2O )-θ

m c H ?

= [-+2×(--(- ] kJ·mol -1

=- kJ·mol -1

(3) CH 3OH (l) →CH 3OH (g) ,θ

m vap ΔH

= kJ·.mol -1

θm f H ?[CH 3OH (g)] =θ

m f H ?[CH 3OH (l)] +θm

vap H ?

= (-+kJ·.mol

-1

=- kJ·mol -1

第二章 热力学第二定律

例1. 1mol 理想气体从300K ,100kPa 下等压加热到600K ,求此过程的Q 、W 、U 、H 、

S 、G 。已知此理想气体300K 时的S m =·K -1·mol -1,c p ,m = J·K -1·mol -1。

解:W =-p V =-p (V 2-V 1) =-pV 2+pV 1= -nRT 2+ nRT 1= nR (T 1-T 2) =1mol×·K -1

·mol -1

×(300K -600K)= -

U = n c V ,m (T 2-T 1) =1mol× 6506J

H = n c p ,m (T 2-T 1) =1mol×·K -1·mol -1×(600K -300K)= 9000J Q p =

H =9000J

S = n c p ,m ln(T 2/T 1) =1mol×·K -1·mol -1×ln(600K/300K)

= ·K -1

·mol -1

由 S m (600K)=S m (300K)+S =+J·K -1

·mol -1

=·K -1

·mol -1

TS =n (T 2S 2-T 1S 1)

=1mol×(600K×·K -1

·mol -1

-300K×·K -1

·mol -1

)

=57474J

G =

H -TS =9000J -57474J =-48474J 。

例2:l mol 单原子理想气体由始态(273K ,p )经由下列两个途径到达终态( T 2,p /2):(l)可逆绝热膨胀;(2)反抗p /2的外压绝热膨胀.试分别求出T 2,W ,S m 和G m .并回答能否由G m 来判断过程的方向? 已知S (298K)=100J ·K -1

·mol -1

解:(1)可逆绝热膨胀过程

Q r = Q = 0 J

S = 0 J·K -1(可逆过程为恒熵过程)

Θ 单原子理想气体的绝热系数 =,利用绝热可逆公式

667

.1667.111)2/(273K )(2112--?==θθγ

γp p p p T T = 207K

∴W =U =nC V,m (T 2 - T 1) =1mol× ×·K -1

·mol -1

)×(207K - 273K)= J H =nC P,m (T 2 - T 1) =1mol× ×·K -1

·mol -1

)×(207K - 273K)= J G = H - (TS ) =H - (T 2S 2 - T 1S 1)=H - S (T 2- T 1)

= J - 100 J·K -1

×(207K -273K) = 5228 J

过程为非恒温过程,不能用G 来判断过程的方向。 (2) 恒外压绝热膨胀过程,利用Q =0,U =W 建立方程求出T 2。

Θ U = n C V ,m (T 2 - T 1) = n ×R )×(T 2 - T 1)

W = - p 外(V 2 - V 1)= - p 2(V 2 - V 1)= - nR [T 2 - (T 1/ p 1) p 2] = - nR (T 2 - T 1/2)

∴ n ×R )×(T 2 - T 1) = - nR (T 2 - T 1/2) T 2 = = ×273K = K

W=U =nC V ,m (T 2 - T 1) =1mol××·K -1

·mol -1

)× = J

12,21ln ln

T T

nC p p nR S m p +=? 1

θθK J )273218.4

ln 8.31452.52/ln 314581(-???+??=p p . = J·K -1

H =nC p ,m (T 2 - T 1) =1mol× ×·K -1

·mol -1

)× 273K)= -1135J G = H - (TS ) =H - [T 2 S -+ (T 2-T 1)S 1]

= -1135 J - [×·K -1

+ - 273K)×100J·K -1

]

= 4079 J

过程为非恒温过程,不能用G 来判断过程的方向。

例3 水的蒸汽压与温度之间可用如下关系式表示: lg (p /Pa) =-A /T +B 若已知水在77℃时的饱和蒸汽压为,求: (1)常数A ,B 的值以及水的摩尔蒸发焓;

(2)在多大外压下水的沸点可以改变为101℃;(共8分)

解:(1) 给出的关系式实际上为克-克方程的不定积分式。题目只给出一个温度下的蒸汽压,代入方程无法求解。所以必须考虑其他条件或常识,即水在100℃时的饱和蒸汽压为,代入自然就可得到A,B 。至于

vap H m

可用与A 的关系计算:

vap H m

= -×AR

亦可用克-克方程的定积分式计算。

(2) 外压压力即为101℃时的水的饱和蒸汽压。

例4:苯的正常沸点为353K ,摩尔汽化焓为?mol -1

, 现将353K ,标准压力下的1摩尔液态苯向真空等温蒸发为同温同压的苯蒸汽(设为理想气体)。

A .计算该过程苯吸收的热量和做的功;

B .求过程的 G 和S ;

C .求环境的熵变;

D .可以使用何中判据判断过程的性质。

A .因真空蒸发, p 环=0

?=-=∴0dV p W 环 Q =ΔU =ΔH -Δ(pV )

压力变化不大时,压力对凝聚系统的焓、熵影响不大,所以ΔH 1=0、ΔS 1=0。 又理想气体恒温ΔH 3=0 ,所以

ΔH =ΔH 1+ΔH 2+ΔH 3=ΔH 2= n Δvap H m

则 Q =n Δvap H m - p Δ(V g -V l )= n Δvap H m - p ΔV g ≈ n Δvap H m - nRT

= 1×30770 J - 1mol× J·K -1·mol -1

×353K = 27835J

B. ΔS =ΔS 1+ΔS 2+ΔS 3=ΔS 2+ΔS 3= (ΔH 2/T )+ nR ln(p 1/p 2)

= (30770J/353K)+1×·K -1

×ln100kPa)

= ·K -1

ΔG =ΔH - T ΔS = 30770J - 353K×·K -1

=

C. 环境熵变 :设系T =环T

ΔS 环= -Q 系/T 环= -27835J/353K = J·K -1

D . 可用熵判据判断过程的性质,此过程

ΔS 隔=ΔS 系+ΔS 环= ·K -1+·K -1)= ·K -1

> 0 故为不可逆过程。

第三章 多组分系统热力学

例1:已知甲苯的摩尔质量为 9210-3

kg·mol -1

,沸点为,平均摩尔气化焓为 ·mol -1

;苯的摩尔质量为 78

10-3

kg·mol -1

,沸点为,平均摩尔气化焓为 ·mol -1

。有一含苯 100g 和

甲苯 200g 的理想液态混合物,在, kPa 下达气液平衡。求

(1) 时苯和甲苯的饱和蒸气压; (2) 平衡时液相和气相的组成;

(3) 由两组分物质形成该理想液态混合物时的混合焓和混合熵。 解: (1) 求p *

(苯)和p *

(甲苯),可由克-克方程:

真空等温蒸发 ΔH 、ΔS

ΔH 3、ΔS 3 (3)

(1) ΔH 1、ΔS 1

苯 (l) 1 mol 353K ,p

苯 ( l ) 1 mol 353 K p = k Pa

苯 ( g ) 1 mol 353 K ,p

苯 (g ) 1 mol 353 K p = kPa

(2) ΔH 2、ΔS 2

2112*1

*

2

)(ln T RT T T H p p m -=

?

得 5482.0K 15.373K 15.353mol K 8.3145J )K 15.353K 15.373(mol J 1003.30kPa 325.101)(ln 1113*=????-??=---苯p

p *

(苯)=

同理 2850.0K 15.373K 15.383mol K 8.3145J )K 15.383K 15.373(mol J 10874.33kPa 325.101)(ln 1113*-=????-??=---甲苯p

p *

(甲苯)=

(2) 液相组成及气相组成可由拉乌尔定律求得:

p (总) = p *(苯) x (苯)+p *(甲苯) {1-x (苯)}

x (苯) = { p (总) - p *(甲苯)} / { p *(苯) - p *(甲苯)}

= / =

x (甲苯)=1 - x (苯) = 1- = y (苯)= p *(苯)x (苯)/ p (总) = × = y (甲苯)=1- y (苯)=1 - =

(3) △mix H = 0

n (苯)=100g/(78g·mol -1)= n (甲苯)=200g/(92g·mol -1)=

△mix S =

∑-B

B

B x n R ln = - R [n (苯)ln x (苯) + n (甲苯) ln x (甲苯)]

= - J·mol -1

·K -1

××+× mol = J·K -1

例2. 1kg 纯水中,溶解不挥发性溶质B 2.22g ,B 在水中不电离,假设此溶液具有稀溶液的性质。已知B 的摩尔质量为111.0g·mol -1

, 水的K b =·mol -1

·kg,vap H m

(H 2O) =

kJ · mol -1

为常数,该溶液的密度近似为1 kg·dm -3

。试求:

(1) 此溶液的沸点升高值。 (2) 此溶液在25℃ 时的渗透压。

(3) 纯水和此溶液25℃时的饱和蒸气压。已知纯水100℃的饱和蒸气压为101325Pa 。

解:(1) b B =(2.22g/111.0 g·mol -1

)/1kg=·kg -1

T b =K b b B =·mol -1·kg×·kg -1 =

(2) c B ≈b B ≈·kg -1

×1 kg·dm -3

=·dm -3

= c B RT =×1000 mol·m -3

×·K -1

·mol -1

×=

(3) 已知T =时水饱和蒸气压p =101325Pa ,利用克-克方程求T ’=时的饱和蒸气压p ’: ln(p ’/p )= -[Δvap H m (H 2O)/R ](1/T ’-1/T )

ln(p ’/101325Pa)=-(40670 J·mol -1

/·K -1

·mol -1

)×(1/-1/ p ’=3747Pa

x A = n A /(n A + n B )=(1000/18)mol/[(1000/18)+111)]mol =

此溶液的饱和蒸气压=p A = p ’x A = 3747Pa×=3745Pa

第四章 相平衡

例1:(NH 4)2SO 4-H 2O 所组成的二组分系统,在-℃时有一个低共熔点,此时冰、(NH 4)2SO 4(s)和浓度为%(质量分数,下同)的(NH 4)2SO 4水溶液平衡共存。在℃时(NH 4)2SO 4饱和溶液(浓度为%)沸腾。

(1) 试绘出相图示意图。 (2) 分析各组分存在的相平衡。

(3) 含30%的(NH 4)2SO 4水溶液冷却能否得到纯固体(NH 4)2SO 4?若不能,如何得到纯固体

(NH 4)2SO 4?

(4) 1kg 含%的(NH 4)2SO 4水溶液在何温度下能得到最多的纯固体(NH 4)2SO 4,计算出最多能得到的(NH 4)2SO 4的量。

解:(1) 相图和各相组成如下

H 2O

(NH 4)2SO 4

t / ℃

%(质量)

(3) 不能。可通过加热蒸发使硫酸铵的浓度增大至超过%(或%)即可.

(4) 冷却到接近-19.1℃时能得到最多的纯固体。设固体量为W s ,利用杠杆规则则有, -(1kg -W s)= (100-W s W s=0.218kg

例2: 对MnO-FeO 二组分系统,已知MnO 和FeO 的熔点分别为1785℃和1370℃;在1430℃时,含有40%和70%FeO(质量%)两固溶体间发生转熔变化,与其平衡的液相组成为85%FeO ;在1200℃,两个固溶体的组成为36%FeO 和74%FeO 。

(1) 试绘制出该系统的相图;

(2) 指出个区域和三相线对应的相态和自由度;

(3) 当一含74%FeO 的二相组分系统,由1650℃缓慢冷至1100℃时,作出冷却曲线,简

述其相态的变化。

(4) 当一含74%FeO 的二相组分系统,由1650℃缓慢冷至无限接近1430℃,试分析此时

各相的组成和质量。假设系统的总质量为1kg 。

解:(1) 系统相图如下

1200

130014001500

1600

1700

1800D

B

A

f

e

d

c

b

a

V

IV

VI

I III

II

I MnO

FeO

% FeO (质量)

t /℃

图 MnO-FeO 系统的液-固恒压相图和a 点的步冷曲线

(2) 各区相态:

I :固溶体 II :固溶体+固溶体 III :固溶体 IV :溶液+ 固溶体 V :溶液+固溶体 VI :溶液 三相线ABD :固溶体 + 固溶体 + 溶液 自由度F =C +1-P =3-P :

单相区P =1,F =2;两相区P =2,F =1;三相线P =3,F =0

(3) 由相图可看出相态变化如下:

1650℃??→?溶液1508℃(溶液+ 固溶体)????→?两相平衡

1430℃(固溶体 + 溶液 + 固溶体)??

?????→?+β

固溶体溶液1410℃(溶液+固溶体)??

??→?β固溶体1290℃????????→?+β

α固溶体固溶体1100℃(固溶体 +固溶体)

(4) 当一含74% FeO 的二组分系统,由1650℃缓慢冷至无限接近1430℃,存在固溶体a

和溶液两相,其组成分别接近40%和85% FeO ,设其质量分别为M s ,M l ,根据杠杆规则,则有 M s ×AC=M l ×CD

即 M s ×可得 M s =1kg× / =0.244kg M l =1kg- M s =1kg- 0.244kg = 0.756kg 其中固溶体含FeO :M s ×=0.244kg×=0.098kg MnO: 0.244kg-0.098kg=0.146kg 其中溶液含 FeO :M l ×=0.756kg×=0.643kg MnO: 0.756kg-0.643kg=0.113kg

第五章 电化学

例1: 25℃时,电池Zn(s) | ZnCl 2 (b =·kg -1

) | AgCl(s) | Ag(s) 的电动势E =,(E /T )p = -×10-4

V·K -1

。已知θE (Zn 2+

/Zn)=, θ

E (AgCl/Ag,Cl -

)=。

(1) 写出电池反应。

(2) 求上述反应的平衡常数θ

K 。

(3) 求电解质溶液ZnCl 2的平均活度系数。 (4) 求上述反应在定浓条件下,在恒压无其他功的反应器中进行或在电池中可逆地进行时吸放的热量各为多少?

解:(1) 电极反应:

Zn(s) →Zn 2+ + 2e —

AgCl(s) + e —→ Ag(s) + Cl —

电池反应: Zn(s) + 2AgCl(s) →2 Ag(s) + ZnCl 2(2ZnCl a )

(2) θK = exp(zF θE /RT ) = exp[2×96500×+/]= ×1033

(3)

])(4ln[2ln 23θ3θZnCl θ2b b F RT E F RT E E ±-=-

=γα

3

θ3ZnCl 2

???

??==±±±

b b a a γΘ,而b b b b b b 3

/13/12/14])2([)(=?==-

+

-+±ννν,

代入 =+-2)lg(4×γ±3

×

γ± =

(4) 可逆电池 Q r = zFT ( E /T )p = 2×96500××(-×10-4) J·mol -1

= -23136J·mol -1

非电池反应:

Q p = Δr H = Δr G +T Δr S = Δr G +Q r = -zFE + Q r = [-2×96500×+(-23136)] J·mol -1

= -219031J·mol -1

例题2:(1) 25℃时,将某电导池充以·dm -3

KCl , 测得其电阻为;若换以·dm -3

醋酸溶液,则电阻为3942。 已知 m ol·dm -3

KCl 的电导率KCl

= S·m -1

, 醋酸的极限摩尔

电导

HAc

= S·m 2

·mol -1

. 计算该醋酸溶液的电离度和标准电离常数.

(2) 可以将煤的燃烧反应 C(石墨) + O 2 CO 2设计成电池。 已知25℃、θ

p 时,C(石墨)的燃烧焓为 -·mol -1

;C(石墨)、CO 2(g)、O 2(g)的标准摩尔熵分别为、和·mol -1

·K -1

。 (a) 求该电池的标准电动势θ

E ;

(b) 若25℃时,CO 2的压力为101325Pa,, 电池电动势E =, 求此时氧的压力。 (c) 试将反应设计成电池(电解质为氧化物), 并写出电极反应。

解:(1)

HAC KCl

KCl HAC R R

=κκ同一电导池Θ 08244

.003907.0/10221.3/ mol m S 10221.3Ω

2.394m mol 414.2Ω78.23m S 289.1 3

HAc HAc 1

233

1HAc HAc KCl KCl HAc HAc

=?==???=????==???

??=∴-∞----ΛΛακκΛR c R c

K = ( c / θ

c )α2/(1-α) =× / (1- = ×10-5

(2) (a) r

H = ,

r

S = J·K -1

r

G = r

H - T r

S = --× J·K -1/1000

= - kJ E = (-

r

G )/zF = 394380J/ (4×96500C) =

(b) 若E = V, p (CO 2)=

E = θE - (RT/z

F ) ln {[p (CO 2)/θp ] / [p (O 2)/ θp ]}

即 = - 4)lg [101325Pa /p (O 2)]

则 p (O 2)=21359Pa

(c) 设计的(燃料)电池为: C(石墨) | 氧化物电解质(熔融物) | O 2 | Pt

负极: C + 2 O 2- CO 2 + 4e -

正极: O 2 + 4e - 2O 2-

电池反应: C(s) + O 2(g) CO 2(g)

第六章 化学动力学

例题1:乙醛热分解CH 3CHO → CH 4+CO 是不可逆反应,在518℃及恒容条件下,有数据:

初始压力(纯乙醛) 100秒后系统总压

求(1)乙醛分解的反应级数;(2)计算518℃时的速率常数;(3)实验测得在538℃时的速率常数是518℃时的两倍,计算该反应的活化能。 解:

设甲醛为A ,因为是恒温恒容反应,可用压力代替浓度进行有关计算。

A → CH 4 + CO

t =0 p A0 0 0 总压p =p A0 t =t p A p A0-p A p A0-p A 总压p =2p A0-p A 所以 p A =2p A0-p

(1) 可用多种方法求解。比较简单的是积分法。假设为级数n =1, 则 k =ln(p A0/p A )/t =ln[p A0/(2p A0-p )]/t 代入数据:

k 1=ln[(2×-]/100s=-1

k 2=ln[(2×-]/100s=-1

速率常数相差太多,可否定为一级反应。

假设为二级反应,则 k =(p A -1-p A0-1

) t 代入数据得:

k 1=[(2× kPa -1/100s = kPa -1·s -1

k 2=[(2× kPa -1/100s = kPa -1·s -1

速率常数非常接近,所以可认为是二级反应。

用n 级反应的压力与时间式代入建立一个方程,用尝试法求n 亦可。

(2) 速率常数 k =(k 1+k 2)/2 = kPa -1·s -1

。 (3) E a =RT 1T 2ln(k ’/k )/( T 2-T 1)

=×××ln2/20)J·mol -1

=186 kJ·mol -1

例题2:有下列反应

A(g)

B(g) + C(g)

k 1k 2

式中k 1和k 2分别是正向和逆向基元反应的速率常数,它们在不同温度时的数值如下:

温度/K

300 310 k 1/s -1 ×10-3

×10-3

k 2/(s·p )-1

×10-7

×10-6

(1) 计算上述可逆反应在300K 时的平衡常数K p 和K 。 (2) 分别计算正向反应与逆向反应的活化能E 1和E 2。 (3) 计算可逆反应的反应焓ΔH 。

(4)在300K时,若反应容器中开始时只有A,其初始压力p0为θp,问系统总压p’, 达到θp时所需时间为多少?(可适当近似)。

解:(1) K p=k1/k2=×10-3s-1/×10-7(s·p)-1=2000 p

K=K p /p =2000

(2) E1=RTT’ln(k1’/k1)/( T’-T’)= [×300×310×ln/(310-300)]J·mol-1

=J·mol-1

E2=RTT’ln(k2’/k2)/( T’-T’)

= [×300×310×ln×10-6/×10-7)/(310-300)]J·mol-1

=J·mol-1

(3) ΔH= E1-E2= 0

(4) A(g) = B(g) + C(g)

t=0 θp p=θp

t=t’ p Aθp-p Aθp-p A p=2θp-p A即p A=2θp-p

速率方程

-d p A /d t = k1 p A-k2(θp-p A)2≈k1 p A( ∵ p k2<

积分得

t=ln(p A0/p A)/k1=ln[θp/(2θp-p)]/t =ln[θp/(2θp-θp]/×10-3s-1=198s

例题3:已知反应 NO2(g) =NO(g) + (1/2)O2(g) 以NO2的消耗速率表示的反应速率常数与温度的关系为

ln(k/dm3·mol-1·s-1)=-12884K/T +

(1)试求反应的级数,活化能E a及指前因子A。

(2) 若在400 ℃时将压力为26664Pa的NO2(g)通入反应器中,使之发生分解反应,试计算反应器的压力达到31997Pa时所需时间。

解: (1) 速率常数k的单位为dm3·mol-1·s-1,所以反应为2级。与阿累尼乌斯方程的对数式 ln (k/ dm3·mol-1·s-1)= -E a/RT + ln(A/ dm3·mol-1·s-1) 对比,可得

E a=12884K×R=12884K×·K-1·mol-1=·mol-1

A= exp dm3·mol-1·s-1=×108 dm3·mol-1·s-1

注:代入两种温度分别计算k,再算E a亦可。

(2)400 ℃时的速率常数: ln(k/dm3·mol-1·s-1)=-12884K/ +=

k=·mol-1·s-1

设NO2(g)=A, 对于二级反应,反应时间与浓度的关系如下t=(1/c A-1/c A0)/k

需知道浓度,可通过压力进行计算:

NO2(g) = NO(g) + (1/2)O2(g)

t=0 p0=26664Pa 0 0

t=t 26664Pa-p x p x (1/2) p x总压p=26664Pa+p x/2=31997Pa

所以p x=10666Pa

c A=(26664-10666)Pa/RT=15998Pa/RT,c A0=26664Pa/RT

t=(1/c A-1/c A0)/k=RT(1/15998Pa-1/26664Pa)/k

=·K-1·mol-1××(1/15998Pa-1/26664Pa)/ ×10-3m3·mol-1·s-1 )

例题4:.有一平行反应

ln ()k k Ea R T T 212111=--

在500K 时,k 1、k 2分别为和。求(1) A 转化90%所需要的时间;(2)求总反应的表观活化能。

已知两平行反应的活化能E 1、E 2分别为20kJ·mol -1和26 kJ·mol -1

。 解:本题需掌握一级平行反应的规律才容易做。

(1) A 的转化率x 与时间的关系如下:

t = -ln(1-x )/(k 1+k 2) =-ln(1-/+=

(2) E =(k 1 E 1+k 2 E 2)/ (k 1+k 2)=×20+×26) kJ·mol -1

/+ = kJ·mol -1

第七章 胶体化学

例题1:混合等体积的 mo1·dm -3

KI 和 mo1·dm -3

AgNO 3溶液所得的溶胶。

(1) 试写出胶团结构式; (2) 指明电泳方向; (3) 比较MgSO 4,Na 2SO 4,CaCl 2电解质对溶胶的聚沉能力并简述原因。(6分)

解:(1)-x -

x K

(2) 胶粒带负电,往正极移动

(3) 聚沉能力为: Na 2SO 4 < MgSO 4< CaCl 2

因为胶粒带负电,反离子起聚沉作用,其价数越高,聚沉能力越大,故Ca 2+

、Mg 2+

> Na +。又因与胶粒带同种电荷的离子能削弱反离子作用,高价强于低价,即聚沉能力有SO 4

2-< Cl -

,因此可得到上面的聚沉能力次序。

例题2:在浓度为10 mol·m -3的20cm 3 AgNO 3溶液中,缓慢滴加浓度为15 mol·m -3

的KBr

溶液10cm 3

,以制备AgBr 溶胶。

(1) 写出AgBr 溶胶的胶团结构表达式,指出电泳方向。

(2) 在三个分别盛10cm 3

AgBr 溶胶的烧杯中,各加入KNO 3、K 2SO 4、K 3PO 4 溶液使其聚沉,

最少需加电解质的数量为: mol·m -3的KNO 3 cm 3 ; mol·m -3的K 2SO 4 ; cm 3 ;×10-3 mol·m

-3

的K 3PO 4 cm 3

;计算各电解质的聚沉值以及它们的聚沉能力之比。

(3) 293K 时,在两极距离为35cm 的电泳池中施加的电压为188V ,通电40min 15s ,测得AgBr 溶胶粒子移动了3.8cm 。问该溶胶的ξ电势为多大?已知293K 时分散介质的相对介

电常数εr =80,粘度ρ=×10-3 Pa·s ,真空介电常数ε0=×10-12F·m -1

。(10分)

解:(1) AgNO 3过量,为稳定剂,胶团结构为

[(AgBr)m n Ag +·(n -x )NO 3- ]x + ·x NO 3-

胶粒带正电,电泳时向负极移动。

(2) KNO 3 的聚沉值: ·dm -3× / (10+ cm 3 = mol·dm -3

K 2SO 4的聚沉值: mol·dm -3× / (10+ cm 3 = ×10-3 mol·dm -3

K 3PO 4 的聚沉值; mol·dm -3× / (10+ cm 3 = ×10-4 mol·dm -3

聚沉能力之比 KNO 3:K 2SO 4:K 3PO 4

胶粒

胶团 胶核

= (1/:(1/×10-3):(1/×10-4) =1::535

(3) 由公式u=E=V/l) 得

= ul V = ul r0 V = 2415s) × ××10-3Pa·s/ (80××10-12F·m-1×188V) =

南京大学《物理化学》每章典型例题

第一章 热力学第一定律与热化学 例题1 1mol 理想气体于27℃ 、101325Pa 状态下受某恒定外压恒温压缩到平衡,再由该状态恒容升温到97 ℃ ,则压力升到。求整个过程的W 、Q 、△U 及△H 。已知该气体的C V ,m 恒定为? ?K -1 。 解题思路:需先利用理想气体状态方程计算有关状态: (T 1=27℃, p 1=101325Pa ,V 1)→(T 2=27℃, p 2=p 外=,V 2=) →(T 3=97℃, p 3=,V 3= V 2) 例题2水在 -5℃ 的结冰过程为不可逆过程,计算时要利用0℃ 结冰的可逆相变过程,即 H 2O (l ,1 mol ,-5℃ ,θ p ) s ,1 mol ,-5℃,θ p ) ↓△H 2 ↑△H 4 H 2O (l ,1 mol , 0℃,θp )(s ,1 mol ,0℃,θ p ) ∴ △H 1=△H 2+△H 3+△H 4 例题3 在 时,使 5.27 克的甲醇(摩尔质量为32克) 在弹式量热计中恒容燃烧,放出 的热量。忽略压力对焓的影响。 (1) 计算甲醇的标准燃烧焓 θ m c H ?。 (2) 已知时 H 2O(l) 和CO 2(g)的标准摩尔生成焓分别为- kJ·mol -1 、- kJ·mol -1 , 计算CH 3OH(l)的θ m f H ?。 (3) 如果甲醇的标准蒸发焓为 ·mol -1 ,计算CH 3OH(g) 的θ m f H ?。 解:(1) 甲醇燃烧反应:CH 3OH(l) + 2 3 O 2(g) → CO 2(g) + 2H 2O(l) Q V =θ m c U ?=- kJ/32)mol =- kJ·mol -1 Q p =θ m c H ?=θ m c U ?+ ∑RT v )g (B = (--×××10-3 )kJ·.mol -1

物理化学经典习题(配南大傅献彩)

物理化学经典习题 一、填空题 1.硫酸与水可形成三种水合盐:H 2SO 4·H 2O 、H 2SO 4·2H 2O 、H 2SO 4 ·4H 2O 。常压下将一定量的H 2SO 4溶于水中,当达三相平衡时,能与冰、 H 2SO 4水溶液平衡共存的硫酸水合盐的分子中含水分子的数目是 。 2.Na +、H +的还原电极电势分别为 –2.71V 和 –0.83V ,但用Hg 作阴极电解 NaCl 溶液时,阴极产物是Na –Hg 齐,而不是H 2,这个现象的解释是 。 3.在稀亚砷酸溶液中通入过量的硫化氢制备硫化砷溶液。其胶团结构式为 。注明紧密层、扩散层、胶核、胶粒、胶团。 4.在两个具有0.001mAgNO 3溶液的容器之间是一个AgCl 多孔塞,在多孔塞两端放两个电极,接通直流电源后,溶液将向 极方向流动。 5. 反应 A ?→?1k B (Ⅰ) ; A ?→?2 k D (Ⅱ)。已知反应(Ⅰ)的活化能大于反应(Ⅱ)的活化能,加入适当催化剂 改变获得B 和D 的比例。 6.等温等压(298K 及p ?)条件下,某一化学反应在不做非体积功条件下进行,放热40.0 kJ·mol -1,若该反应通过可逆电池来完成,吸热 4.00 kJ·mol -1,则该化学反应的熵变为 。

7.若稀溶液表面张力γ与溶质浓度c的关系为γ0–γ =A + B ln c(γ0为纯溶剂表面张力,A、B为常数),则溶质在溶液表面的吸附量Γ与浓度c的关系为。 1O2(g) ═ H2O(l) 的8.298.2K、101.325kPa下,反应H2(g) + 2 (?r G m–?r F m)/ J·mol-1为。 二、问答题 1.为什么热和功的转化是不可逆的? 1O2(g) ═ H2O(g),2.在绝热钢筒中进行一化学反应:H2(g) + 2 在反应自发进行。问此变化中下述各量哪些为零,哪些大于零,哪些小于零?Q,W,?U,?H,?S和?F。 3.对单组分体系相变,将克拉贝龙方程演化为克-克方程的条件是什么? 4.为什么有的化学反应速率具有负温度系数,即温度升高反应速率反而下降? 5.为什么说,热化学实验数据是计算化学平衡常数的主要基础? 三、计算题 1.苯在正常沸点353K下的?vap H m?= 30.77 kJ·mol-1,今将353K及p?下的1molC6H6(l)向真空等温蒸发为同温同压下的苯蒸气(设为理想气体)。

南京大学《物理化学》(上学期)每章典型例题.doc

第一章 热力学第一定律与热化学 例题1 1mol 理想气体于27℃ 、101325Pa 状态下受某恒定外压恒温压缩到平衡,再由该状态恒容升温到97 ℃ ,则压力升到1013.25kPa 。求整个过程的W 、Q 、△U 及△H 。已知该气体的C V ,m 恒定为20.92J ?mol -1 ?K -1。 解题思路:需先利用理想气体状态方程计算有关状态: (1mol, T 1=27℃, p 1=101325Pa ,V 1)→(1mol, T 2=27℃, p 2=p 外=?,V 2=?) →(1mol, T 3=97℃, p 3=1013.25kPa ,V 3= V 2) 例题2 计算水在 θp ,-5℃ 的结冰过程的△H 、△S 、△G 。已知θ)(,,2l O H m p C ,θ )(,,2s O H m p C 及 水在 θ p ,0℃的凝固焓θm con H ?。 解题思路:水在 θp ,-5℃ 的结冰过程为不可逆过程,计算时要利用θp ,0℃结冰的可逆相变过程,即 H 2O (l ,1 mol ,-5℃ ,θp 2O (s ,1 mol ,-5℃,θp ) ↓△H 2,△S 2, △G 2 ↑△H 4,△S 4, △G 4 H 2O (l ,1 mol , 0℃,θ p H 2O (s ,1 mol ,0℃,θ p ) △H 1=△H 2+△H 3+△H 4=θ)(,,2l O H m p C (273K-268K )+θ m con H ?+θ )(,,2s O H m p C (268k-273K) △S 1=△S 2+△S 3+△S 4=θ)(,,2l O H m p C ln(273/268)+ θm con H ?/273+θ )(,,2s O H m p C ln(268/273) △G 1=△H 1-T 1△S 1 例题3 在 298.15K 时,使 5.27 克的甲醇(摩尔质量为32克) 在弹式量热计中恒容燃烧,放出 119.50kJ 的热量。忽略压力对焓的影响。 (1) 计算甲醇的标准燃烧焓 θ m c H ?。 (2) 已知298.15K 时 H 2O(l) 和CO 2(g)的标准摩尔生成焓分别为-285.83 kJ·mol -1 、- 393.51 kJ·mol - 1,计算CH 3OH(l)的θ m f H ?。 (3) 如果甲醇的标准蒸发焓为 35.27kJ·mol - 1,计算CH 3OH(g) 的θ m f H ?。

物理化学-相平衡习题汇总

第5章 相平衡 复习、讨论 基本内容: ? 相:体系内部物理性质和化学性质完全均匀的一部分。气相、液相、固相 ? 相数:体系内相的数目Φ≥1 ? 相图:描述多相体系状态随浓度、温度、压力等变量的改变而发生变化的图 形 ? 均相体系:只有一相的体系Φ=1 ? 多相体系:含多相的体系Φ>1 ? 凝聚体系:没有(或不考虑)气相的体系 ? 物系点:相图中表示体系总组成的点 ? 相点:表示某一个相的组成的点 ? 液相线:相图中表示液相组成与蒸气压关系的曲线 ? 气相线:相图中表示气相组成与蒸气压关系的曲线 ? 步冷曲线:冷却过程温度随时间的变化曲线T-t ? 独立组分数:C = S - R - R',S 为物种数,R 为体系中各物种之间独立的化学 平衡关系式个数,R’为浓度和电中性限制条件的数目。对于浓度限制条件,必须是某个相中的几种物质的浓度之间存在某种关系时才能作为限制条件。C=1单组分体系,C=2二组分体系。若没有化学变化:C=S ;含单质的体系且R ’=0:C=N ;含单质的体系且S>N :R = S – N 。 ? 自由度:确定平衡体系状态所需要的独立强度变量的数目f ≥0 ? 最低(高)恒沸点:对拉乌尔定律正(负)偏差很大的双液系的T —x 图上 的最低(高)点。恒沸点时气相组成与液相相同,具有纯物质的性质,一定压力下恒沸混合物的组成为定值(f*=C-Φ+1=1-2+1=0)。 ? 最低(高)恒沸混合物:最低(高)恒沸点对应的混合物。恒沸物是混合物 而不是化合物 ? 会溶温度(临界溶解温度):部分互溶双液系相图上的最低点或最高点 ? 转熔温度:不稳定化合物分解对应的温度 ? 共轭层:部分互溶双液系相图上的帽形区内溶液为两层 ? 相律:平衡体系中相数、独立组分数与变量数之间的关系f = C - Φ + n ? 杠杆规则:液相的物质的量乘以物系点到液相点的距离,等于气相的物质的 量乘以物系点到气相点的距离。B n B B n n l ×(X B -x B )=n g ×(y B -X B ) 单组分体系相图(p-T):水、CO 2、C 二组分体系相图(T-x):

物理化学经典例题

一、选择题 1. 下面有关统计热力学的描述,正确的是:( ) A. 统计热力学研究的是大量分子的微观平衡体系 B. 统计热力学研究的是大量分子的宏观平衡体系 C. 统计热力学是热力学的理论基础 D. 统计热力学和热力学是相互独立互不相关的两门学科B 2.在研究N、V、U有确定值的粒子体系的统计分布时,令∑ni = N,∑niεi = U, 这是因为所研究的体系是:( ) A. 体系是封闭的,粒子是独立的 B 体系是孤立的,粒子是相依的 C. 体系是孤立的,粒子是独立的 D. 体系是封闭的,粒子是相依的C 3.假定某种分子的许可能级是0、ε、2ε和3ε,简并度分别为1、1、2、3 四个这样的分子构成的定域体系,其总能量为3ε时,体系的微观状态数为:( ) A. 40 B. 24 C. 20 D. 28 A 4. 使用麦克斯韦-波尔兹曼分布定律,要求粒子数N 很大,这是因为在推出该定律时:( ). ! A、假定粒子是可别的 B. 应用了斯特林近似公式C.忽略了粒子之间的相互作用 D. 应用拉氏待定乘因子法A 5.对于玻尔兹曼分布定律ni =(N/q)·gi·exp( -εi/kT)的说法:(1) n i是第i 能级上的粒子分布数; (2) 随着能级升高,εi 增大,ni 总是减少的; (3) 它只适用于可区分的独立粒子体系; (4) 它适用于任何的大量粒子体系其中正确的是:( ) A. (1)(3) B. (3)(4) C. (1)(2) D. (2)(4) C 6.对于分布在某一能级εi上的粒子数ni,下列说法中正确是:( ) A. n i与能级的简并度无关 B.εi 值越小,ni 值就越大 C. n i称为一种分布 D.任何分布的ni 都可以用波尔兹曼分布公式求出B 7. 15.在已知温度T时,某种粒子的能级εj = 2εi,简并度gi = 2gj,则εj 和εi 上分布的粒子数之比为:( ) A. 0.5exp(εj/2kT) B. 2exp(- εj/2kT) C. ( -εj/kT) D. 2exp( 2εj/kT) C 8. I2的振动特征温度Θv= 307K,相邻两振动能级上粒子数之n(v + 1)/n(v) = 1/2的温度是:( ) A. 306 K B. 443 K C. 760 K D. 556 K B 9.下面哪组热力学性质的配分函数表达式与体系中粒子的可别与否无关:( ) 《 A. S、G、F、Cv B. U、H、P、C v C. G、F、H、U D. S、U、H、G B 10. 分子运动的振动特征温度Θv 是物质的重要性质之一,下列正确的说法是:( C ) A.Θv 越高,表示温度越高 B.Θv 越高,表示分子振动能越小 C. Θv越高,表示分子处于激发态的百分数越小 D. Θv越高,表示分子处于基态的百分数越小 11.下列几种运动中哪些运动对热力学函数G与A贡献是不同的:( ) A. 转动运动 B. 电子运动 C. 振动运动 D. 平动运动D 12.三维平动子的平动能为εt = 7h2 /(4mV2/3 ),能级的简并度为:( ) A. 1 B. 3 C. 6 D. 2 C 的转动惯量J = ×10 -47 kg·m2 ,则O2 的转动特征温度是:( ) A. 10 K B. 5 K C. K D. 8 K C ; 14. 对于单原子分子理想气体,当温度升高时,小于分子平均能量的能级上分布的粒子数:( ) A. 不变 B. 增多 C. 减少 D. 不能确定C 15.在相同条件下,对于He 与Ne 单原子分子,近似认为它们的电子配分函数 相同且等于1,则He 与Ne 单原子分子的摩尔熵是:( ) A. Sm(He) > Sm (Ne) B. Sm (He) = Sm (Ne) C. Sm (He) < S m(Ne) D. 以上答案均不成立C 二、判断题 1.玻耳兹曼熵定理一般不适用于单个粒子。(√) 2.玻耳兹曼分布是最概然分布,但不是平衡分布。(×) 3.并不是所有配分函数都无量纲。(×) 4.在分子运动的各配分函数中平均配分函数与压力有关。(√) - 5.粒子的配分函数q 是粒子的简并度和玻耳兹曼因子的乘积取和。(×) 6.对热力学性质(U、V、N)确定的体系,体系中粒子在各能级上的分布数一定。(×) 7.理想气体的混合物属于独立粒子体系。(√)

大学物理化学公式集(傅献彩 南京大学第五版)

热力学第一定律 功:δW =δW e +δW f (1)膨胀功 δW e =p 外dV 膨胀功为正,压缩功为负。 (2)非膨胀功δW f =xdy 非膨胀功为广义力乘以广义位移。如δW (机械功)=fdL ,δW (电功)=EdQ ,δW (表面功)=rdA 。 热 Q :体系吸热为正,放热为负。 热力学第一定律: △U =Q —W 焓 H =U +pV 理想气体的内能和焓只是温度的单值函数。 热容 C =δQ/dT (1)等压热容:C p =δQ p /dT = (?H/?T )p (2)等容热容:C v =δQ v /dT = (?U/?T )v 常温下单原子分子:C v ,m =C v ,m t =3R/2 常温下双原子分子:C v ,m =C v ,m t +C v ,m r =5R/2 等压热容与等容热容之差: (1)任意体系 C p —C v =[p +(?U/?V )T ](?V/?T )p (2)理想气体 C p —C v =nR 理想气体绝热可逆过程方程: pV γ=常数 TV γ-1=常数 p 1-γT γ =常数 γ=C p / C v 理想气体绝热功:W =C v (T 1—T 2)=1 1 -γ(p 1V 1—p 2V 2) 理想气体多方可逆过程:W =1 nR -δ(T 1—T 2) 热机效率:η= 2 1 2T T T - 冷冻系数:β=-Q 1/W 可逆制冷机冷冻系数:β=1 21T T T - 焦汤系数: μ J -T =H p T ???? ????=-()p T C p H ?? 实际气体的ΔH 和ΔU : ΔU =dT T U V ??? ????+dV V U T ??? ???? ΔH =dT T H P ??? ????+dp p H T ???? ? ??? 化学反应的等压热效应与等容热效应的关系:Q p =Q V +ΔnRT 当反应进度 ξ=1mol 时, Δr H m =Δr U m +∑B B γRT 化学反应热效应与温度的关系:()()()dT B C T H T H 2 1 T T m p B 1m r 2m r ? ∑??,+=γ 热力学第二定律

物理化学题库简答题(60题,6页)汇总

第四部分:简答题(60题) 第一章;气体 501压力对气体的粘度有影响吗? 答:压力增大时,分子间距减小,单位体积中分子数增加,但分子的平均自由程减小,两者抵消,因此压力增高,粘度不变。 第二章 :热力学第一定律 502说明下列有关功的计算公式的使用条件。 (1)W =-p(外)ΔV (2)W =-nRTlnV2/V1 (3))1/()(12γ---=T T nR W γ=Cp/Cv 答:由体积功计算的一般公式? -=dV p W )(外可知: (1)外压恒定过程。 (2)理想气体恒温可逆过程 (3)理想气体绝热可逆过程。 503从同一始态膨胀至体积相同的终态时,为什么理想气体的恒温膨胀功总大于绝热可逆膨胀功? 答:两过程中压力下降程度不同,理想气体恒温可逆膨胀过程中从环境吸热因此压力下降较小,而理想气体绝热可逆膨胀过程中无法从环境吸热故压力下降较大,因此理想气体恒温可逆膨胀过程所做的功总是大于绝热可逆膨胀过程所做的功。 504系统经一个循环后,ΔH 、ΔU 、Q 、W 是否皆等于零? 答:否。其中H 和U 为状态函数,系统恢复至原态后其值复原,即ΔH =0、ΔU =0。而热与功是与途径有关的函数,一般不会正好抵消而复原,除非在特定条件下,例如可逆绝热膨胀后又可逆绝热压缩回至原态,或可逆恒温膨胀后又可逆恒温压缩回至原态等。 505 25℃100KPa 下液态氮的标准摩尔生成热(298)f m H K ?$为零吗? 答:否。因为按规定只有25℃100Kpa 下最稳定的单质的标准摩尔生成热才为零。液态氮虽为单质,但在25℃100Kpa 下不能稳定存在,故其(298)f m H K ?$不等于零。只有气态氮的(298)f m H K ?$才为零。 506热力学平衡态包括哪几种平衡? 答:热平衡、力平衡、相平衡、化学平衡。 507卡诺循环包括哪几种过程? 答:等温可逆膨胀、绝热可逆膨胀、等温可逆压缩、绝热可逆压缩。 508可逆过程的特点是什么? 答:1)可逆过程以无限小的变化进行,整个过程由一系列接近平衡态的状态构成。 2)在反向的过程中,循着原来的逆过程,可以使体系和环境恢复原来的状态,无

物理化学经典习题

物理化学经典习题 一、填空题 1.硫酸与水可形成三种水合盐:H2SO4?H2O、H2SO4?2H2O 、H2SO4 ?4H2O。常压下将一定量的H2SO4溶于水中,当达三相平衡时,能与冰、 H2SO4水溶液平衡共存的硫酸水合盐的分子中含水分子的数目是。 2.Na+、H+的还原电极电势分别为–2.71V和–0.83V,但用Hg作阴极电解 NaCl溶液时,阴极产物是Na–Hg 齐,而不是H2,这个现象的解释是。3.在稀亚砷酸溶液中通入过量的硫化氢制备硫化砷溶液。其胶团结构式为。注明紧密层、扩散层、胶核、胶粒、胶团。 4.在两个具有0.001mAgNO3溶液的容器之间是一个AgCl多孔塞,在多孔塞两端放两个电极,接通直流电源后,溶液将向极方向流动。 5.反应 A B (Ⅰ) ; A D (Ⅱ)。已知反应(Ⅰ)的活化能大于反应(Ⅱ)的活化能,加入适当催化剂改变获得B和D的比例。 6.等温等压(298K及p?)条件下,某一化学反应在不做非体积功条件下进行,放热40.0 kJ?mol-1,若该反应通过可逆电池来完成,吸热 4.00 kJ?mol-1,则该化学反应的熵变为。 7.若稀溶液表面张力γ与溶质浓度c的关系为γ0 –γ = A + B ln c(γ0为纯溶剂表面张力, A、B 为常数),则溶质在溶液表面的吸附量Γ与浓度c的关系为。8.298.2K、101.325kPa下,反应 H2(g) + O2(g) ═ H2O(l) 的 (?rGm– ?rFm)/ J?mol-1为。 二、问答题 1.为什么热和功的转化是不可逆的? 2.在绝热钢筒中进行一化学反应:H2(g) + O2(g) ═ H2O(g),在反应自发进行。问此变化中下述各量哪些为零,哪些大于零,哪些小于零?Q,W,?U,?H,?S和 ?F。 3.对单组分体系相变,将克拉贝龙方程演化为克-克方程的条件是什么? 4.为什么有的化学反应速率具有负温度系数,即温度升高反应速率反而下降? 5.为什么说,热化学实验数据是计算化学平衡常数的主要基础? 三、计算题 1.苯在正常沸点353K下的?vapHm? = 30.77 kJ?mol-1,今将353K及p?下的1molC6H6(l)向真空等温蒸发为同温同压下的苯蒸气(设为理想气体)。 (1) 求算在此过程中苯吸收的热量Q与所做的功W; (2) 求苯的摩尔气化熵 ?vapSm? 及摩尔气化自由能 ?vapGm?; (3) 求环境的熵变 ?S环,并判断上述过程是否为不可逆过程。 2.把一定量的气体反应物A迅速引入一个温度800K的抽空容器内,待反应达到指定温度后计时(已有一部分A分解)。已知反应的计量方程为 2A(g) 2B(g) + C(g) ,反应的半衰期与起始浓度无关;t=0时,p总=1.316×104Pa ;t=10min时,p总 =1.432×104Pa ;经很长时间后,p总 =1.500×104Pa。试求: (1) 反应速率常数k和反应半衰期t1/2 ; (2) 反应进行到1小时时,A物质的分压和总压各为多少? 3.A和B能形成两种化合物A2B和AB2,A的熔点比B低,A2B的相合熔点介于A和B之间,

物理化学期末考试试题库2017(附答案与解析)汇总

1 第一章热力学第一定律 选择题 1.关于焓的性质, 下列说法中正确的是() (A) 焓是系统内含的热能, 所以常称它为热焓(B) 焓是能量, 它遵守热力学第一定律 (C) 系统的焓值等于内能加体积功(D) 焓的增量只与系统的始末态有关 答案:D 。因焓是状态函数。 2.涉及焓的下列说法中正确的是() (A) 单质的焓值均等于零(B) 在等温过程中焓变为零(C) 在绝热可逆过程中焓变为零 (D) 化学反应中系统的焓变不一定大于内能变化 答案:D 。因为焓变ΔH=ΔU+Δ(pV),可以看出若Δ(pV)<0则ΔH<ΔU。 3.与物质的生成热有关的下列表述中不正确的是() (A) 标准状态下单质的生成热都规定为零(B) 化合物的生成热一定不为零(C) 很多物质的生成热都不能用实验直接测量 (D) 通常所使用的物质的标准生成热数据实际上都是相对值 答案:A 。按规定,标准态下最稳定单质的生成热为零。 4.下面的说法符合热力学第一定律的是() (A) 在一完全绝热且边界为刚性的密闭容器中发生化学反应时,其内能一定变化 (B) 在无功过程中, 内能变化等于过程热, 这表明内能增量不一定与热力学过程无关 (C)封闭系统在指定的两个平衡态之间经历绝热变化时, 系统所做的功与途径无关 (D) 气体在绝热膨胀或绝热压缩过程中, 其内能的变化值与过程完成的方式无关 答案:C 。因绝热时ΔU=Q +W =W 。(A )中无热交换、无体积功故ΔU=Q +W =0。(B )在无功过程中ΔU=Q ,说明始末态相同热有定值,并不说明内能的变化与过程有关。(D )中若气体绝热可逆膨胀与绝热不可逆膨胀所做的功显然是不同的,故ΔU亦是不同的。这与内能为状态函数的性质并不矛盾,因从同一始态出发,经绝热可逆膨胀与绝热不可逆膨胀不可能到达同一终态。 5.关于节流膨胀, 下列说法正确的是 (A)节流膨胀是绝热可逆过程(B)节流膨胀中系统的内能变化(C)节流膨胀中系统的焓值改变(D)节流过程中多孔 塞两边的压力不断变化 答案:B 6.在实际气体的节流膨胀过程中,哪一组描述是正确的: (A )Q >0, H =0, p < 0 (B )Q =0, H <0, p >0 (C )Q =0, H =0, p <0 (D )Q <0, H =0, p <0 答案:C 。节流膨胀过程恒焓绝热且压力降低。 7.系统经一个循环后,ΔH、ΔU、Q 、W 是否皆等于零? 答:否。其中H 和U 为状态函数,系统恢复至原态后其值复原,即ΔH=0、ΔU=0。而热与功是与途径有关的函数,一般不会正好抵消而复原,除非在特定条件下,例如可逆绝热膨胀后又可逆绝热压缩回至原态,或可逆恒 温膨胀后又可逆恒温压缩回至原态等。 1. 在温度T 、容积V 都恒定的容器中,含有A 和B 两种理想气体,它们的物质的量、分压和分体积分别为nA ,pA ,VA 和nB ,pB ,VB ,设容器中的总压为p 。试判断下列公式中哪个是正确的()。 (A )A A p V n RT (B )B A B ()pV n n RT (C )A A A p V n RT (D )B B B p V n RT 答:(A )只有(A )符合Dalton 分压定律。 4. 真实气体液化的必要条件是()。 (A )压力大于C p (B )温度低于C T (C )体积等于m,C V (D )同时升高温度和压力 答:(B )C T 是能使气体液化的最高温度,温度再高无论加多大压力都无法使气体液化。

物理化学经典复习题~~~解析

第二章热力学第一定律及其应用 1.物质的量为n的纯理想气体,该气体在如下的哪一组物理量确定之后,其它状态函数方有定值。 (A) p (B) V (C) T,U (D) T, p 2. 1 mol 373 K,标准压力下的水经下列两个不同过程变成373 K,标准压力下的水气,(1) 等温等压可逆蒸发,(2) 真空蒸发这两个过程中功和热的关系为: (A) |W1|> |W2| Q1> Q2 (B) |W1|< |W2| Q1< Q2 (C) |W1|= |W2| Q1= Q2 (D) |W1|> |W2| Q1< Q2 3. 恒容下,一定量的理想气体,当温度升高时热力学能将: (A) 降低(B)增加(C) 不变(D) 增加、减少不能确定 4. 在体系温度恒定的变化中,体系与环境之间: (A) 一定产生热交换(B) 一定不产生热交换 (C) 不一定产生热交换(D) 温度恒定与热交换无关 5.ΔH =Qp , 此式适用于下列哪个过程: (A) 理想气体从106 Pa反抗恒外压105 Pa膨胀到105 Pa (B) 0℃, 105 Pa 下冰融化成水 (C) 电解CuSO4水溶液 (D) 气体从(298 K, 105 Pa) 可逆变化到(373 K, 104 Pa) 6.在100℃和25℃之间工作的热机,其最大效率为: (A) 100 % (B) 75 % (C) 25 % (D) 20 % 7.对于封闭体系,在指定始终态间的绝热可逆途径可以有: (A) 一条(B) 二条(C) 三条(D)三条以上 8.某理想气体的γ=Cp/Cv =1.40,则该气体为几原子分子气体? (A) 单原子分子气体(B) 双原子分子气体 (C) 三原子分子气体(D) 四原子分子气体 9.实际气体绝热恒外压膨胀时,其温度将: (A) 升高(B) 降低(C) 不变(D) 不确定 10.当以5 mol H2气与4 mol Cl2气混合,最后生成2 mol HCl气。若以下式为基本单元,H2(g) + Cl2(g) ----> 2HCl(g) 则反应进度ξ应是: (A) 1 mol(B) 2 mol (C) 4 mol (D) 5 mol 11.欲测定有机物燃烧热Qp,一般使反应在氧弹中进行,实测得热效应为Qv。公式Qp=Qv+ΔnRT 中的Δn为: (A) 生成物与反应物总物质的量之差(B) 生成物与反应物中气相物质的量之差 (C) 生成物与反应物中凝聚相物质的量之差(D) 生成物与反应物的总热容差 12.凝固热在数值上与下列哪一种热相等: (A) 升华热(B) 溶解热(C) 汽化热(D) 熔化热 13.在标准压力下,1mol石墨与氧气反应生成1mol二氧化碳的反应热为ΔH ,下列哪种说法是错误的? (A) ΔH 是CO2(g)的标准生成热(B) ΔH =ΔU (C) ΔH 是石墨的燃烧热(D) ΔU <ΔH 14.计算化学反应的热效应,下述说法哪些是正确的? (1) 在同一算式中必须用同一参比态的热效应数据(2) 在同一算式中可用不同参比态的热效应数据

南京大学物理化学

Electrochemistry Reference books 南京大学《物理化学》,北京大学《物理化学》 Atkins' Physical Chemistry, 7th Ed., Peter Atkins, Julio de Paula, Oxford University Press. 课件下载网址https://www.360docs.net/doc/ba4924447.html,/ 下载密码: jg4103

学习物理化学(电化学)的特点和要点 1.通过自学接受知识 2.学习严谨推理和归纳本领 3.掌握电化学的定位和特点 4.学习分析问题的方法

Physical Chemistry Thermochemistry,Electrochemistry, Photochemistry,… Colloid Chemistry,Catalysis, Computational Chemistry,…

Electrochemistry Physical Chemistry Solution electrochemistry (electrolyte solution) Equilibrium state electrochemistry Thermodynamics Solid electrochemistry Photoelectrochemistry Bioelectrochemistry Quantum Chemistry Statistical Thermodynamics

Three Characteristics of Electrochemistry 1. Long history 1. Long history 2. Wide application 2. Wide application 3. Electrochemical phenomena exist everywhere 3. Electrochemical phenomena exist everywhere

物理化学期末考试试题库-2017(附答案与解析)汇总

物理化学期末考试试题库-2017(附答案与解析)汇总 1 / 7 第一章 热力学第一定律 选择题 1.关于焓的性质, 下列说法中正确的是( ) (A) 焓是系统内含的热能, 所以常称它为热焓 (B) 焓是能量, 它遵守热力学第一定律 (C) 系统的焓值等于内能加体积功 (D) 焓的增量只与系统的始末态有关 答案:D 。因焓是状态函数。 2.涉及焓的下列说法中正确的是( ) (A) 单质的焓值均等于零 (B) 在等温过程中焓变为零 (C) 在绝热可逆过程中焓变为零 (D) 化学反应中系统的焓变不一定大于内能变化 答案:D 。因为焓变ΔH=ΔU+Δ(pV),可以看出若Δ(pV)<0则ΔH <ΔU 。 3.与物质的生成热有关的下列表述中不正确的是( ) (A) 标准状态下单质的生成热都规定为零 (B) 化合物的生成热一定不为零 (C) 很多物质的生成热都不能用实验直接测量 (D) 通常所使用的物质的标准生成热数据实际上都是相对值 答案:A 。按规定,标准态下最稳定单质的生成热为零。 4.下面的说法符合热力学第一定律的是( ) (A) 在一完全绝热且边界为刚性的密闭容器中发生化学反应时,其内能一定变化 (B) 在无功过程中, 内能变化等于过程热, 这表明内能增量不一定与热力学过程无关 (C) 封闭系统在指定的两个平衡态之间经历绝热变化时, 系统所做的功与途径无关 (D) 气体在绝热膨胀或绝热压缩过程中, 其内能的变化值与过程完成的方式无关 答案:C 。因绝热时ΔU =Q +W =W 。(A )中无热交换、无体积功故ΔU =Q +W =0。(B )在无功过程中ΔU =Q ,说明始末态相同热有定值,并不说明内能的变化与过程有关。(D )中若气体绝热可逆膨胀与绝热不可逆膨胀所做的功显然是不同的,故ΔU 亦是不同的。这与内能为状态函数的性质并不矛盾,因从同一始态出发,经绝热可逆膨胀与绝热不可逆膨胀不可能到达同一终态。 5.关于节流膨胀, 下列说法正确的是 (A) 节流膨胀是绝热可逆过程(B)节流膨胀中系统的内能变化(C)节流膨胀中系统的焓值改变(D)节流过程中多孔 塞两边的压力不断变化 答案:B 6.在实际气体的节流膨胀过程中,哪一组描述是正确的: (A )Q >0, H =0, p < 0 (B )Q =0, H <0, p >0 (C )Q =0, H =0, p <0 (D )Q <0, H =0, p <0 答案:C 。节流膨胀过程恒焓绝热且压力降低。 7.系统经一个循环后,ΔH 、ΔU 、Q 、W 是否皆等于零? 答:否。其中H 和U 为状态函数,系统恢复至原态后其值复原,即ΔH =0、ΔU =0。而热与功是与途径有关的函数,一般不会正好抵消而复原,除非在特定条件下,例如可逆绝热膨胀后又可逆绝热压缩回至原态,或可逆恒温膨胀后又可逆恒温压缩回至原态等。 1. 在温度T 、容积V 都恒定的容器中,含有A 和B 两种理想气体,它们的物质的量、分压和分体积分别为nA , pA ,V A 和nB ,pB ,VB ,设容器中的总压为p 。试判断下列公式中哪个是正确的( )。 (A )A A p V n RT = (B )B A B ()pV n n RT =+ (C )A A A p V n RT = (D )B B B p V n RT = 答:(A )只有(A )符合Dalton 分压定律。 4. 真实气体液化的必要条件是( )。 (A )压力大于 C p (B )温度低于C T (C )体积等于 m,C V (D )同时升高温度和压力 答:(B )C T 是能使气体液化的最高温度,温度再高无论加多大压力都无法使气体液化。

物理化学(上)期末试题及参考答案

一、填空题(每小题2分,共20分) 1、热力学第零定律是指: 。 2、熵与热力学概率之间的函数关系式是。 3、补全热力学函数关系式:C P= (?S/?T)P 4、一定量的单原子理想气体定压下从T1变化到T2的熵变与定容下从T1变化到T2的熵变之比为: 5、化学势的表示式中,是偏摩尔量。 6、稀溶液的依数性包括、、和。 7、反应NH4HS(s)=NH3(g)+H2S(g),在298K时测得分解压为66.66Pa,则该温度下该反应的K pΘ= ;K p= 。 8、1atm压力下水和乙醇系统的最低恒沸混合物含乙醇质量分数为0.9557,现将含乙醇50%的乙醇水溶液进行分馏,最终得到的物质为。 9、水在101.3kPa时沸点为373K,汽化热为40.67 kJ/mol(设汽化热不随温度变化);毕节学院的大气压约为85.5 kPa,则在毕节学院水的沸点为 K。 10、反应NH4HS(s)=NH3(g)+H2S(g)已达平衡;保持总压不变,往系统中充入一定量的惰性气体,平衡移动方向为。 二、选择题(每小题2分,共30分) 1、下列属于化学热力学范畴的是() (A)物质结构与性能的关系(B)化学反应速率 (C)化学变化的方向和限度(D)反应机理 2、下列关于热力学方法叙述正确的是() (A)热力学研究所得的结论不适用于分子的个体行为 (B)热力学可以解决某条件下怎样把一个变化的可能性变为现实性的问题 (C)经典热力学详细讨论了物质的微观结构 (D)经典热力学常需计算一个变化所需要的时间 3、下列函数中为强度性质的是:() (A) S (B) (?G/?p)T(C) (?U/?V)T (D) C V 4、一定量的纯理想气体,下列哪组量确定后,其他状态函数方有定值。() (A)T (B)V (C)T、U (D)T、p

大学物理化学实验思考题答案总结

蔗糖水解速率常数的测定 1.蔗糖水解反应速率常数和哪些因素有关? 答:主要和温度、反应物浓度和作为催化剂的H+浓度有关。 2.在测量蔗糖转化速率常数时,选用长的旋光管好?还是短的旋光管好? 答:选用长的旋光管好。旋光度和旋光管长度呈正比。对于旋光能力较弱或者较稀的溶液,为了提高准确度,降低读数的相对误差,应选用较长的旋光管。根据公式(a)=a*1000/LC,在其他条件不变的情况下,L越长,a越大,则a的相对测量误差越小。 3.如何根据蔗糖、葡萄糖、果糖的比旋光度数据计算 ? 答:α0=〔α蔗糖〕Dt℃L[蔗糖]0/100 α∞=〔α葡萄糖〕Dt℃L[葡萄糖]∞/100+〔α果糖〕Dt℃L[果糖]∞/100 式中:[α蔗糖]Dt℃,[α葡萄糖]Dt℃,[α果糖]Dt℃分别表示用钠黄光作光源在t℃时蔗糖、葡萄糖和果糖的比旋光度,L(用dm表示)为旋光管的长度,[蔗糖]0为反应液中蔗糖的初始浓度,[葡萄糖]∞和[果糖]∞表示葡萄糖和果糖在反应完成时的浓度。 设t=20℃L=2 dm [蔗糖]0=10g/100mL 则: α0=66.6×2×10/100=13.32° α∞= ×2×10/100×(52.2-91.9)=-3.94° 4.试估计本实验的误差,怎样减少误差? 答:本实验的误差主要是蔗糖反应在整个实验过程中不恒温。在混合蔗糖溶液和盐酸时,尤其在测定旋光度时,温度已不再是测量温度,可以改用带有恒温实施的旋光仪,保证实验在恒温下进行,在本实验条件下,测定时要力求动作迅速熟练。其他误差主要是用旋光仪测定时的读数误差,调节明暗度判断终点的误差,移取反应物时的体积误差,计时误差等等,这些都由主观因素决定,可通过认真预习实验,实验过程中严格进行操作来避免。 乙酸乙酯皂化反应速率常数测定 电导的测定及其应用 1、本实验为何要测水的电导率? 答:因为普通蒸馏水中常溶有CO2和氨等杂质而存在一定电导,故实验所测的电导值是欲测电解质和水的电导的总和。作电导实验时需纯度较高的水,称为电导水。水的电导率相对弱电解质的电导率来说是不能够忽略的。所以要测水的电导率。 2、实验中为何通常用镀铂黑电极?铂黑电极使用时应注意什么?为什么?

南京大学物化实验系列胶体电泳速度的测定

胶体电泳速度的测定 1 实验目的 1.1 掌握凝聚法制备Fe (OH )3溶胶和纯化溶胶的方法 1.2 观察溶胶的电泳现象并了解其电学性质,掌握电泳法测定胶体电泳速度和溶胶ζ 电位的方法。 2 实验原理 溶胶是一个多相体系,其分散相胶粒的大小约在1nm ~1um 之间。由于本身的电离或 选择性地吸附择性地吸附一定量的离子以及其它原因所致,胶粒表面具有一定量的电荷;胶粒周围的介质分布着反离子。反离子所带电荷与 胶粒表面电荷符号相反,数量相等。整个溶胶体 系保持电中性。胶粒周围的反离子由于静电引力 和热扩散运动的结果形成了两部分——紧密层 和扩散层。紧密层约有一两个分子层厚。紧密吸 附在胶核去面上.而扩散层的厚度则随外界条件 (温度,体系中电解质浓度及其离子的价态等)而 改变,扩散层中的反离子符合玻兹曼分布。由于 离子的溶剂化作用,紧密层结合着一定数量的溶 剂分子,在电场的作用下,它和胶粒作为一个整 体移动,而扩散层中的反离子则向相反的电极方 向移动。这种在电场作用下分散相粒子相对于分散介质的运动称为电泳。发生相对移动的界面称为切动面,切动面与液体内部的电位差称为电动电位或ζ电位,而作为带电粒子的胶粒表面与液体内部的电位差称为质点的表面电θ ?。 胶粒电泳速度除与外加电场的强度有关外,还与ζ电位的大小有关。面ζ电位不仅与测 定条件有关,还取决于胶体粒子的性质。 ζ电位是表征胶体特性的重要物理量之一,在研究胶体性质 及其实际应用有着重要意义。胶体体的稳定性与ζ电位有直接关 系,ζ电位绝对值越大,表明胶粒荷电越多,胶粒间排斥力越大, 胶体越稳定。反之则表明胶体越不稳定。当ζ电位为零时.胶体 的稳定性最差,此时可观察到胶体的聚沉。 本实验是在一定的外加电场强度下通过测定Fe(OH)3胶粒的 电泳速度然后计算出ζ电位。实验用拉比诺维奇-付其曼U 形电泳 仪,如图2所示。活塞2、3以下盛待测的溶胶,以上盛辅助液。 在电泳仪两极间接上电位差E (V )后,在t (s )时间内溶胶 界面移动的距离为D(m),即胶粒电泳速度1()U m S - 为: D U t = 相距为l(m)的电极间的电位梯读平均值1 ()H V m - 为:

物理化学期末考试试题库-2017(附答案与解析)汇总

。 -可编辑修改- 第一章 热力学第一定律 选择题 1.关于焓的性质, 下列说法中正确的是( ) (A) 焓是系统内含的热能, 所以常称它为热焓 (B) 焓是能量, 它遵守热力学第一定律 (C) 系统的焓值等于内能加体积功 (D) 焓的增量只与系统的始末态有关 答案:D 。因焓是状态函数。 2.涉及焓的下列说法中正确的是( ) (A) 单质的焓值均等于零 (B) 在等温过程中焓变为零 (C) 在绝热可逆过程中焓变为零 (D) 化学反应中系统的焓变不一定大于内能变化 答案:D 。因为焓变ΔH=ΔU+Δ(pV),可以看出若Δ(pV)<0则ΔH <ΔU 。 3.与物质的生成热有关的下列表述中不正确的是( ) (A) 标准状态下单质的生成热都规定为零 (B) 化合物的生成热一定不为零 (C) 很多物质的生成热都不能用实验直接测量 (D) 通常所使用的物质的标准生成热数据实际上都是相对值 答案:A 。按规定,标准态下最稳定单质的生成热为零。 4.下面的说法符合热力学第一定律的是( ) (A) 在一完全绝热且边界为刚性的密闭容器中发生化学反应时,其内能一定变化 (B) 在无功过程中, 内能变化等于过程热, 这表明内能增量不一定与热力学过程无关 (C) 封闭系统在指定的两个平衡态之间经历绝热变化时, 系统所做的功与途径无关 (D) 气体在绝热膨胀或绝热压缩过程中, 其内能的变化值与过程完成的方式无关 答案:C 。因绝热时ΔU =Q +W =W 。(A )中无热交换、无体积功故ΔU =Q +W =0。(B )在无功过程中ΔU =Q ,说明始末态相同热有定值,并不说明内能的变化与过程有关。(D )中若气体绝热可逆膨胀与绝热不可逆膨胀所做的功显然是不同的,故ΔU 亦是不同的。这与内能为状态函数的性质并不矛盾,因从同一始态出发,经绝热可逆膨胀与绝热不可逆膨胀不可能到达同一终态。 5.关于节流膨胀, 下列说法正确的是 (A) 节流膨胀是绝热可逆过程(B)节流膨胀中系统的内能变化(C)节流膨胀中系统的焓值改变(D)节流过程中多孔

南京大学物理化学下册(第五版傅献彩)复习题及解答

第八章电解质溶液

第九章 1.可逆电极有哪些主要类型?每种类型试举一例,并写出该电极的还原反应。对于气体电极和氧化还原电极在书写电极表示式时应注意什么问题? 答:可逆电极有三种类型: (1)金属气体电极如Zn(s)|Zn2+ (m) Zn2+(m) +2e- = Zn(s) (2)金属难溶盐和金属难溶氧化物电极如Ag(s)|AgCl(s)|Cl-(m), AgCl(s)+ e- = Ag(s)+Cl-(m) (3)氧化还原电极如:Pt|Fe3+(m1),Fe2+(m2) Fe3+(m1) +e- = Fe2+(m2) 对于气体电极和氧化还原电极,在书写时要标明电极反应所依附的惰性金属。 2.什么叫电池的电动势?用伏特表侧得的电池的端电压与电池的电动势是否相同?为何在测电动势时要用对消法? 答:正、负两端的电势差叫电动势。不同。当把伏特计与电池接通后,必须有适量的电流通过才能使伏特计显示,这样电池中发生化学反应,溶液浓度发生改变,同时电池有内阻,也会有电压降,所以只能在没有电流通过的情况下才能测量电池的电动势。 3.为什么Weslon标准电池的负极采用含有Cd的质量分数约为0.04~0.12的Cd一Hg齐时,标准电池都有稳定的电动势值?试用Cd一Hg的二元相图说明。标准电池的电动势会随温度而变化吗? 答:在Cd一Hg的二元相图上,Cd的质量分数约为0.04~0.12的Cd一Hg齐落在与Cd一Hg固溶体的两相平衡区,在一定温度下Cd一Hg齐的活度有定值。因为标准电池的电动势在定温下只与Cd一Hg齐的活度有关,所以电动势也有定值,但电动势会随温度而改变。 4.用书面表示电池时有哪些通用符号?为什么电极电势有正、有负?用实验能测到负的电动势吗? 答:用“|”表示不同界面,用“||”表示盐桥。电极电势有正有负是相对于标准氢电极而言的。不能测到负电势。5.电极电势是否就是电极表面与电解质溶液之间的电势差?单个电极的电势能否测 量?如何用Nernst方程计算电极的还原电势?

相关文档
最新文档