水泥厂脱硫脱硝项目培训资料

水泥厂脱硫脱硝项目培训资料
水泥厂脱硫脱硝项目培训资料

水泥厂

脱硫脱硝升级改造项目

xxxxxxxx

xxxxx

目录

1.SNCR脱硝系统主要设备介绍 (1)

1.1.脱硝集成分配柜介绍 (1)

1.1.1.脱硝集成柜内部氨水系统介绍 (1)

1.1.2.脱硝集成柜内部压缩空气系统介绍 (2)

1.2.脱硝喷枪环管介绍 (3)

1.2.1.脉冲阀穿线管 (4)

1.2.2.氨水环管 (4)

1.2.3.压缩空气环管 (5)

1.3.SNCR启动及停止步骤 (7)

1.3.1.系统启动步骤 (7)

1.3.2系统停止步骤 (8)

2.氨法脱硫系统主要设备介绍 (8)

2.1.脱硫集成分配柜介绍 (8)

2.1.1.脱硫集成柜内部氨水系统介绍 (9)

2.2.脱硫喷枪环管介绍 (10)

2.2.1.氨水环管 (10)

2.2.2.压缩空气环管 (11)

2.3.氨法脱硫启动及停止步骤 (12)

2.3.1.系统启动步骤 (12)

2.3.2系统停止步骤 (13)

3.脱硫脱硝喷枪介绍 (14)

3.1.产品特点 (14)

3.2.喷枪 (14)

3.3.喷枪拆卸 (15)

4.问题处理 (15)

5.使用注意事项 (16)

1.SNCR脱硝系统主要设备介绍

SNCR脱硝系统主要由集成分配柜、喷枪环管、脱硝喷枪三部分组成。

1.1.脱硝集成分配柜介绍

集成分配柜内部包括氨水管道、压缩空气管道、气动调节阀、电磁流量计、远传压力变送器、就地压力表、手动阀门、气动三联件、电磁阀。

集成分配柜放置于C5出口烟道上层平台,原2#窑两台脱硝分配柜之间。

1.1.1.脱硝集成柜内部氨水系统介绍

集成柜氨水进口管道为DN25的不锈钢管道,管道上部装有一个DN25的不锈钢球阀,脱硝系统投运前,应现场确认此阀门是否处于开启状态,如未开启,应及时打开。

集成柜内部的氨水管道分为两路,一路氨水管道是去分解炉出口烟道上部的氨水环管,另外一路氨水管道是去C5A、C5B出口烟道上部的氨水环管。

每路氨水管道上部都装有一个氨水流量气动调节阀组,调节阀组由3个手动阀门与一个气动调节阀组成。气动调节阀出现问题,无法正常使用时,可开启旁路上部的手动阀门,保证脱硝系统能够正常运行。

每路氨水管道上部还装有一个就地压力表及一个远传压力变送器。

注意:这两路氨水管道最大的区别之处在于,去分解炉出口上部环管的氨水管道上部装有一个电磁流量计,能够在运行画面上直接看到此路氨水流量,去C5出口上部环管的氨水管道上部没有电磁流量计,但可以根据氨区氨水泵出口的流量计来换算出此流量。

注:C5出口氨水流量数值已经换算做在运行画面上,可直接观察。

1.1.

2.脱硝集成柜内部压缩空气系统介绍

压缩空气接于原2#脱硝系统压缩空气管道上部,压缩空气管道为DN15的镀锌钢管,钢管上部装有两个手动阀门,集成柜内部管道上部装有一个,外部管道上部装有一个。

压缩空气管道是为气动调节阀服务的,脱硝系统投运前,首先应确保压缩空气管道上部的两个手动阀门处于开启状态。

需要重点关注的地方是压缩空气管道上部的气动三联件,系统投运前应把压缩空气的压力调整到0.25-0.28MPa,此压力范围能确保气动调节阀处于最佳工作状态。另需注意压缩空气的含水量,含水量过大会导致调节阀调节不灵敏。如气动三联件损坏,应及时更换,确保压缩空气的干燥。

脱硝集成分配柜

1.2.脱硝喷枪环管介绍

喷枪环管位于分解炉出口烟道(C5入口烟道)、C5A和C5B出口烟道上部,喷枪环管由4道管道组成,按照由外到内的顺序分别是:脉冲阀穿线管(镀锌管DN25)、氨水管道(不锈钢304,DN20)、喷吹压缩空气管道(镀锌管DN25)、雾化压缩空气管道(镀锌管DN25)。

1.2.1.脉冲阀穿线管

穿线管内部穿有电缆(8x1),管内的电缆一端与现场的电磁阀控制箱连接,一端与喷吹压缩空气管道上部的电磁阀连接。现场的电磁阀控制箱可以手动来设定喷吹压缩空气管道上部的电磁阀的启动时间,启动时间间隔。目前现场已经设定完成,设定方式为:脉冲宽度10s,脉冲间隔120s,脉冲周期120s。分解炉的套管喷吹由一个控制箱控制,C5A和C5B的套管喷吹由另外一个控制箱控制。这两个箱子都安装在分解炉出口喷枪环管附近的钢结构立柱上。

1.2.2.氨水环管

氨水环管上部有氨水进口管道接口,就地压力表安装接口,喷枪金属软管安装接口。分解炉出口烟道上部的氨水环管上部开有10个喷枪金属软管安装接口,分别对应10根喷枪,C5A和C5B的氨水环管上部各开有5个喷枪金属软管安装接口,分别对应5根喷枪。每个连接在环管上部的金属软管前都装有一个手动球阀,系统启动前,手动球阀必须处于开启状态,否则不能启动氨水泵。

注意:集成柜外部到分解炉氨水环管接口的氨水管道上部装有一

个手动球阀,此球阀装在氨水环管进水口处,正常情况下阀门处于开启状态,严禁关闭;集成柜外部到C5A和C5B氨水环管接口的氨水管道上部各装有一个手动球阀,此球阀装在C5出口烟道上部平台,正常情况下阀门处于开启状态,严禁关闭。

1.2.3.压缩空气环管

雾化压缩空气管道上部有压缩空气进口管道接口,喷枪金属软管安装接口。分解炉出口烟道上部的压缩空气环管上部开有10个喷枪金属软管安装接口,分别对应10根喷枪,C5A和C5B的压缩空气环管上部各开有5个喷枪金属软管安装接口,分别对应5根喷枪。

每个连接在环管上部的金属软管前都装有一个手动球阀,喷枪插入烟道后,应及时开启手动阀门,确保压缩空气在喷枪内流通。不喷氨水时,压缩空气可以起到冷却喷枪的作用,防止喷枪损坏;喷入氨水时主要起到雾化氨水的作用。

喷枪雾化的压缩空气现场就近接入,分解炉出口烟道上部的压缩空气环管单独一个接口,C5A和C5B的压缩空气环管单独一个接口。分解炉出口上部环管的喷枪的雾化空气压力一般调节在0.3MPa,C5A 和C5B上部的喷枪的雾化空气压力一般调节在0.24MPa。压缩空气的压力可通过调压阀组上部的调压阀来调节。分解炉出口烟道上部的压缩空气环管由一个调压阀组控制,C5A和C5B的压缩空气环管各由一个调压阀组控制。

注:喷枪套管的压缩空气喷吹环管与喷枪雾化的压缩空气环管共用一个压缩空气接口,但喷枪套管的压缩空气不经过调压阀组。

分解炉出口烟道上部

C5出口烟道上部

1.3.SNCR启动及停止步骤

1.3.1.系统启动步骤

1、拧开焊接在烟道壁板上部的喷枪套管封盖;

2、把喷枪插入烟道内,并固定拧紧,确保喷枪玻璃视镜水平朝上;

3、打开环管上部喷枪压缩空气手动阀门;

4、打开环管上部喷枪氨水手动阀门;

5、打开套管喷吹压缩空气管道上部的手动阀门;

6、调节喷枪雾化压缩空气压力至0.3MPa(分解炉出口)、0.24MPa (C5A、C5B);

7、打开氨区氨水泵入口及出口手动阀门;

8、打开压缩空气管道上部手动阀门;

9、现场确认气动三联件上部的压缩空气压力表数值是否在

0.25-0.28MPa,如不在此范围内,手动调节至此压力范围;

10、打开气动调节阀前后的手动阀门,关闭旁路手动阀门;

11、打开去分解炉氨水管道上部的手动阀门;

12、打开去C5A、C5B氨水管道上部的手动阀门;

13、联系中控启动脱硝系统。

1.3.2系统停止步骤

系统短时间停运

1.关闭氨水泵,不需要把喷枪从烟道中抽出,但压缩空气阀门不能关闭,确保有压缩空气给喷枪冷却,避免高温烧坏喷枪或则物料堵塞喷枪。

系统长时间停运

1.关闭氨水泵;

2.喷枪从烟道中抽出,旋挂在外部套管内,关闭压缩环管上部的压缩空气阀门;

3.用喷枪套管封盖堵上喷枪套管。

2.氨法脱硫系统主要设备介绍

氨法脱硫系统主要由集成分配柜、喷枪环管、脱硫喷枪三部分组成。

2.1.脱硫集成分配柜介绍

集成分配柜内部包括氨水泵、氨水管道、氨水回流管道、电动调

节阀、电磁流量计、电动阀门、远传压力变送器、就地压力表、手动阀门、篮式过滤器。

集成分配柜放置于2#窑脱硝氨区,原2#脱硝泵右侧。

2.1.1.脱硫集成柜内部氨水系统介绍

集成柜氨水进口管道为DN25的不锈钢管道,管道连接在原脱硫氨水管道上部的一个球阀上,管道上部除了原装有的一个DN32不锈钢球阀外,又新装了一个DN25的不锈钢球阀。

注意:脱硫系统投运前,应现场确认上部提到的两个阀门状态,如未开启,应及时打开,否则不能启动脱硫系统。

氨水管道进入集成柜后分为两路,每一路氨水管道都装有一台氨水泵,这两台氨水泵是一用一备,系统运行时只需启动一台氨水泵。如泵运行过程中出现故障,可切换另外一台氨水泵运行。

每台氨水泵前装有手动球阀,泵后装有止回阀和手动球阀,集成柜内部的两条氨水管道最终汇合。汇合后的氨水管道分为两路,一路通往C2氨水环管,另外一路汇合到氨水泵入口管道上部作为回流管道。

注意:脱硫系统投运前,应现场确认泵前后的手动阀门状态,如未开启,应及时打开,否则不能启动脱硫系统。

通往C2氨水环管的管道上部装有手动球阀、篮式过滤器、电磁流量计、电动球阀、远传的压力变送器。

注意:电动球阀已与氨水泵做连锁,点击启动系统时,电动球阀会先开启,电动球阀开启后,氨水泵才会启动。篮式过滤器前的手动

球阀在脱硫系统启动前,一定打开,否则不能启动脱硫系统。

回流管道上部装有手动球阀、就地的压力表、电动调节阀。脱硫系统运行前,须先打开电动调节阀前后的手动球阀,给定电动调节阀3%的开度,方可后续启动氨水泵。

脱硫集成柜

2.2.脱硫喷枪环管介绍

喷枪环管位于C2A和C2B出口烟道上部,喷枪环管由2圈管道组成,按照由外到内的顺序分别是:氨水管道(不锈钢304,DN20)、雾化/喷吹压缩空气管道(镀锌管DN25)。

2.2.1.氨水环管

氨水环管上部有氨水进口管道接口,就地压力表安装接口,喷枪金属软管安装接口。C2A和C2B的氨水环管上部各开有8个喷枪金属

软管安装接口,分别对应8根喷枪。每个连接在环管上部的金属软管前都装有一个手动球阀,系统启动前,手动球阀必须处于开启状态,否则不能启动氨水泵。

脱硫氨水管道从氨区出来后,沿窑钢结构一直爬升到最顶层平台,氨水管道到达最顶层平台后一分为二,分别去往C2A、C2B氨水环管。

注意:每一路去往C2氨水环管的氨水管道上部装有一个手动球阀,正常情况下阀门处于开启状态,严禁关闭。

2.2.2.压缩空气环管

这一圈压缩空气环管有两个作用,它的主要作用是给喷枪供应雾化压缩空气,辅助作用是用来喷吹焊接在壁板上部的喷枪外护管。C2处烟气温度不是很高,不容易结皮,所以此辅助功能一般情况下不使用,只有插入喷枪前才会用此功能吹扫一下喷枪外护套管。

压缩空气管道上部有压缩空气进口管道接口,喷枪金属软管安装接口。C2A和C2B的压缩空气环管上部各开有8个喷枪金属软管安装接口,分别对应8根喷枪。

注意:每个连接在环管上部的金属软管前都装有一个手动球阀,喷枪插入后,应及时开启手动阀门。不喷氨水时,压缩空气可以冷却喷枪,防止喷枪损坏,喷入氨水时起到雾化氨水的作用。

压缩空气现场就近接入,C2A和C2B的压缩空气环管共用一个接口。C2A和C2B上部的喷枪的雾化空气压力一般调节在0.24MPa,压缩空气的压力可通过调压阀组上部的调压阀来调节。C2A和C2B的压缩空气环管各由一个调压阀组控制。

注:喷枪套管的压缩空气与喷枪雾化的压缩空气都接于压缩空气环管上部,喷枪套管喷吹的压缩空气经过调压阀组。

C2出口烟道上部

2.3.氨法脱硫启动及停止步骤

2.3.1.系统启动步骤

1、拧开焊接在烟道壁板上部的喷枪套管封盖;

2、把喷枪插入烟道内,并固定拧紧,确保喷枪玻璃视镜水平朝

上;

3、打开环管上部喷枪压缩空气手动阀门;

4、打开环管上部喷枪氨水手动阀门;

5、调节喷枪雾化压缩空气压力至0.24MPa(C2A、C2B);

6、打开C2A、C2B氨水环管进口管道上部的手动阀门;

7、打开氨区集成柜内部泵入口及出口手动阀门;

8、打开篮式过滤器前的手动球阀;

9、打开集成柜氨水进口管道上部的手动球阀;

10、打开回流管道上部的电动调节阀前后手动球阀,给定电动调节阀3%开度;

11、联系中控启动脱硫系统。

2.3.2系统停止步骤

因窑运行过程中,烟气中硫的含量存在不确定性,为保证硫排放不超标,停运脱硫系统时,只需关闭脱硫氨水泵即可,不需要把喷枪从烟道中抽出,但压缩空气阀门不能关闭,确保有压缩空气给喷枪冷却,避免喷枪损坏或则物料堵塞喷枪。

长时间停窑,不投运脱硫系统,建议把喷枪从烟道中抽出,悬挂在烟道外部。

3.脱硫脱硝喷枪介绍

3.1.产品特点

3.2.喷枪

喷枪外观

现场安装完的喷枪

3.3.喷枪拆卸

4.问题处理

1、氨水压力过大或流量加不上去,达不到目标值

可能原因及处理方法:

1)管道或喷枪有堵塞,需进行清理;

2)压缩空气压力过大(压缩空气压力不能大于氨水压力),调整压缩空气压;

2、压缩空气压力过小,且调整调节阀也不起作用

可能原因:原空气管道供应气体压力不足,检查压缩空气主管道内的压力,保证大于0.4Mpa;

3、脱硝效率不够,氨水耗量较大

可能原因:

喷枪有部分堵塞或损坏,导致喷射量分布不均,覆盖面积不够,

重新拔出喷枪进行检查雾化效果是否良好、一致。

5.使用注意事项

1、水泥窑运行时,如果喷枪未使用,请及时取出悬挂于烟道外面,并且用套帽堵住喷枪套筒。喷枪悬挂时请注意放置好喷枪,防止掉落,损坏喷枪氨水进口玻璃视镜,促使喷枪尾部漏氨水,影响喷枪的正常使用和现场操作人员的身体健康。

2、水泥窑未运行时,喷枪可以放置在烟道中不取出,但是喷枪内的压缩空气必须开启,防止喷枪堵塞,影响喷枪的下一次使用;如果现场操作人员方便,尽量将喷枪取出,悬挂到适当的位置,并且用套帽堵住喷枪套筒。

3、喷枪使用过程中,轻拿轻放,保证喷枪完好,增加喷枪的使用寿命。

4、定期检查喷枪套筒是否堵塞,巡检工每两天需检查一次喷枪是否正常工作,如果堵塞采用压缩空气反吹或者人工导通。

5、喷射系统开启前,请保证压力不要过大,以免使喷枪视镜由于压力过大而压碎,影响喷枪的正常使用。

6、巡检工巡检时应观察喷枪玻璃视镜内部的浮球是否处于浮动状态,如浮球不动,应抽出喷枪检查处理,查看喷枪是否堵塞。如喷枪堵塞,应清除内部杂质,保证喷枪内部氨水畅通。

水泥脱硝注意的问题

脱硝是“十二五”期间,我国大气环保治理的重点。随着我国水泥工业的迅猛发展,水泥生产排放的氮氧化物总量位居行业第三,影响大气环境质量,成为水泥工业可持续发展的制约因素。至20121637条,许多技术性能并不先进的水泥生产线排放的氮氧化物浓度或总量远远没有达到政策形势的要求。水泥行业应强制脱硝是必然。但鉴于当前的经济态势或水泥价格行情,以及脱硝需要较大的资金投入及增加运行成本,水泥生产企业的脱硝资金和运行成本上升压力也是制约该行业脱硝迅速展开不利因素。 目前,全国各地的水泥窑炉脱硝采用烟气脱硝技术—选择性非催化还原(Selective Non-Catalytic Reduction,简称SNCR),采用SNCR烟气脱硝技术是一个非常有效的降低NOx 排放量的途径。在国家新的水泥工业大气排放标准出台前,辽宁省的辽阳市暂定NOx排放指标为320mg/Nm3,并已在辽宁中北水泥4000t/d、辽宁银盛水泥集团等多条水泥窑炉进行了SNCR脱硝应用。 为响应辽宁省辽阳市“十二五”期间主要污染物减排工作的实施,沈阳信成科技有限公司于12年5月6日与辽宁中北水泥(现属亚泰集团)签订了4000t/d水泥窑炉SNCR脱硝总包合同。工程于7月份开工,于10月初调试正常,并取得验收合格证书。调试结果说明,系统可连续稳定的运行,性能指标达到设计要求。使多家企业实现了氮氧化物低排放的环保达标企业,将使得信成科技公司为辽阳市的蓝天工程贡献出一份力量。 经过了辽宁中北水泥公司等脱硝示范工程建设,我们总结了一些实践经验,希望可以和广大的业内人士一起分享,减少在脱硝工程实施过程当中的产生的一些问题。首先,对SNCR 脱硝工艺流程做一个说明:还原剂(氨水)由专用罐车运输,通过卸氨模块从氨水罐车转移到储罐内。储罐的加注管线和排气管通过柔性软管与罐车连接。加注管线主要用来为储罐注液,排气管将加注过程中的多余压力通过返回罐车释放,避免氨气逸出污染环境。氨水输送泵(一用一备)在压力为10bar条件下向SNCR系统提供氨水,脱硝需要的氨水量由SNCR系统给料分配柜内的流量控制阀进行控制。氨水用量是由氮氧化合物控制器的输出数据设定的。氮氧化物控制器的输入数据是从检测仪表对烟气分析的实际NOx值。NOx 控制器所需的氨水来自氨水输送管道,流量由氨水电磁流量计检测,气动调节阀控制。所有氨水量被平均分配到每个喷嘴,由流量计控制以保证合理分配,压力由压力变送器控制。氨水通过喷射点尽可能均匀地分布在整个烟道截面。该技术是用氨水或尿素等还原剂喷入炉内与NOx进行选择性反应,不用催化剂,因此必须在高温区加入还原剂。还原剂喷入分解炉温度为850℃~1100℃的区域,在此温度下还原剂迅速热分解成NH3 ,并与烟气中的NOX进行SNCR反应生成N2 ,该方法主要以分解炉为反应器。辽宁中北水泥公司4000T/d新型干法水泥生产线脱硝采用的方法即为SNCR法,使用氨水作为还原剂。目前系统运行稳定,效果良好,脱硝效率可以达到60%以上。这套脱硝系统以200~320kg/h的氨水耗量喷入到分解炉内,经十支在同一平面等间距的十支喷枪进入烟道,在高温环境860℃下,氨水分解成氨基,与NOx产生化学反应,生成氮气和水,达到脱硝的效果。 经过信成科技公司多条水泥生产线的总包SNCR脱硝工程建设,得出很多宝贵的经验,为了达到工程设备的设计合理、方便工程施工及安装、运行指标达到要求、水泥企业方便维护、系统能长期稳定运行,在整套工程设备的设计及建设中总结出以下需要注意的问题: 1. 还原剂的存储能力。一般在系统设计时需要考虑一周(7天)的用量。根据各厂的氨水采购渠道的不同,储量需要相应调整,如果氨水供货充足,并且运输条件也相对较好,能及时补充氨水的耗量的情况下可以减少储存量。反之则需要增加氨水的储量。另外,氨水的耗量与窑系统实际NOx的排放浓度及排放目标值有直接关系,不能笼统而言,尽可能地按实际情况计算并配置氨水储存罐的尺寸。建议如能及时补充还原剂,应减少储存量,因为储存量大,使用时间过长则使氨水中的氨气析出,容易造成周边环境污染,影响生命健康。 2. 卸氨模块排空问题。卸氨装置的设计一定要充分考虑排空问题,不能简单地安装一

烟气脱硝装置( SCR)技术

烟气脱硝装置( SCR)技术 一、SCR装置运行原理如下: 氨气作为脱硝剂被喷入高温烟气脱硝装置中,在催化剂的作用下将烟气中NOx 分解成为N2和H2O,其反应公式如下: 4NO + 4NH3 +O2 →4N2 + 6H2O NO +NO2 + 2NH3 →2N2 + 3H2O 一般通过使用适当的催化剂,上述反应可以在200 ℃~450 ℃的温度范围内有效进行, 在NH3 /NO = 1的情况下,可以达到80~90%的脱硝效率。 烟气中的NOx 浓度通常是低的,但是烟气的体积相对很大,因此用在SCR装置的催化剂一定是高性能。因此用在这种条件下的催化剂一定满足燃煤锅炉高可靠性运行的要求。 二、烟气脱硝技术特点 SCR脱硝技术以其脱除效率高,适应当前环保要求而得到电力行业高度重视和广泛的应用。在环保要求严格的发达国家例如德国,日本,美国,加拿大,荷兰,奥地利,瑞典,丹麦等国SCR脱硝技术已经是应用最多、最成熟的技术之一。根据发达国家的经验, SCR脱硝技术必然会成为我国火力电站燃煤锅炉主要的脱硝技术并得到越来越广泛的应用。 图1为SCR烟气脱硝系统典型工艺流程简图。

三、SCR脱硝系统一般组成 图1为SCR烟气脱硝系统典型工艺流程简图, SCR系统一般由氨的储存系统、氨与空气混合系统、氨气喷入系统、反应器系统、省煤器旁路、SCR旁路、检测控制系统等组成。 液氨从液氨槽车由卸料压缩机送人液氨储槽,再经过蒸发槽蒸发为氨气后通过氨缓冲槽和 输送管道进人锅炉区,通过与空气均匀混合后由分布导阀进入SCR反应器内部反应, SCR反应器设置于空气预热器前,氨气在SCR 反应器的上方,通过一种特殊的喷雾装置和烟气均匀分布混合,混合后烟气通过反应器内催化剂层进行还原反应。

脱硫脱硝方案

35t/h流化床锅炉除尘脱硫 技术方案 河北智鑫环保设备科技有限公司 编制时间:二〇二〇年四月二日

第一部分 技 术 方 案 双减法脱硫+SNCR脱硝 河北智鑫环保设备科技有限公司 企业简介 河北智鑫环保设备科技有限公司;坐落于永年县临名关镇岳庄村西中华北大街路东,占地60000余M2.注册资金2000万元。是一家级科研、设计、研发、生产、安装于一体的专业性烟气治理的知名环保企业,企业员工266人,其中设计人员58名,工程管理人员35名,下设八个施工队,豪华舒适的科研办公大楼,高标准的厂区绿化设计与优雅景观融为一体,体现典型江南园林风格造型。洁净明亮的员工公寓,让员工舒心快乐。现代化的加工厂房,面积超过二万平米,采用大量自动化数控设备技术生产的各类环保产品、品种齐全、质优价廉。公司获国家环保高科技企业、河北省高新技术企业、河北省十大环保骨干企业、河北省十大环保创新企业、河北省十大循环资源利用企业、产品荣获国家环境保护产品认定证书、国家重点新产品证书、被评为2015年中国环境保护重点实用技术示范工程,获中华人民共和国国家知识产权局颁发的二十项实用新型专利证书、五项发明专利。河北省环境保护产品认定证书,尤其是脱硫除尘装置、静电除尘器、脉冲袋式除尘器、陶瓷多管除尘器、WCR型高效除尘器获得了年度国家级新产品。我公司是河北省环境保护厅、河北省环境保护产业协会理事单位,具有河北省环境工程设计专业资质、河北省环境

工程专业施工资质,河北省环境保护产业协会会员企业,并获河北省环境保护产品 资质认证,同时作为国家环境保护重点新产品获得全面推广,2014、2015年连续柒年在环境治理污染中成绩显着,被河北省环境保护产业评为优秀单位、多年来四十 余人次获河北省环境保护产业先进个人。 企业非常注重企业文化的发展和精神文明建设,在树立品牌文化的同时,营造和谐企业环境!为丰富职工的业余文化生活,企业设立了篮球场,网球场,兵乓球室, KTV多功能厅、阅览室等。每年派出技术人员到全国各地同行业进行考察,全面提高企业的凝聚力和吸引力,把我们的产品在同行业做的更先进做的更完善。 由于公司产品遍及全国各地,每年都有来自全国各地的客户莅临公司考察,完善的综合服务体系,给客户留下深刻印象。大大提升了企业的知名度和信誉度。 企业宣传通过环保设备网、阿里巴巴、马可波罗、有色网、造纸网、冶金网等网络大力宣传企业及产品。 公司以科技为先导,在立足环保市场的基础上不断创新,自行研制生产的脱硝 氧化还原装置、电除尘器、脉冲袋式除尘器、WCR型高效湿式除尘器,设计新 颖、结构独特,本公司设计的电袋组合除尘后串除尘脱硝工程技术特别对初始 浓度10000~25000mg/Nm3的高浓度烟气治理尤为理想,已成功应用于国内众多 家企业,经环保监测部门检测,除尘效率达到%、脱硫效率达到99%、脱 硝效率达到96%,完全能解决当前低热量高含硫的劣质燃料燃烧不完全、治理难的问题,特别是针对各种沸腾炉、循环流化床锅炉、粉燃料炉、各种工业锅炉烟气治理效果尤为明显。随着科学技术的不断进步,客户对高效产品的需求量不断增加,公司在新产品研究方面倾注大量精力、人力、物力、财力,终于在新产品研制方面取得了质的飞跃,使产品更加规范、性能更加优良。尤其是我公司历经多年研制开发,成功打造出新一代WCR型系列高效领先除尘脱硫脱硝脱汞一体化装置,已分别在河北省、陕西省、河南省、云南省、内蒙古自治区、黑龙江省、山东省、山西省、湖北省、广西省、辽宁省、江西省、江苏省、浙江省、北京市、天津市、上海市、重庆市、甘肃省、青海省等近千余家企业装置成功使用。对于各种的工业炉型、所产生的颗粒、SO 2 、 NO X 脱除效果较为明显,实测工业锅炉、工业锅炉烟气排放浓度<30 mg/m3,SO 2 含量 <50mg/m3,NO X 含量<100mg/m3,低于国家环保排放指标,被国家环保部门作为重点

脱硫脱硝工艺总结

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 脱硫脱硝工艺总结 大纲:脱硫脱硝的发展趋势常见脱硫工艺常见脱硝工艺常见脱硫脱硝一体化工艺0 脱硫脱硝的发展趋势目前,脱硫脱硝行业的主要收入来源是在电站锅炉领域;钢铁行业将全面展开脱硫脱硝是必然趋势,其在脱硫脱硝行业市场中的占有率将会大幅提升;全国水泥企业将进行环保整改,因此未来脱硝产业在水泥行业也将有很好的市场前景。 总之,电站锅炉是现在脱硫脱硝的主体,钢铁行业和水泥行业是未来新的增长点。 1 常见脱硫工艺通过对国内外脱硫技术以及国内电力行业引进脱硫工艺试点厂情况的分析研究,目前脱硫方法一般可划分为燃烧前脱硫、燃烧中脱硫和燃烧后脱硫等 3 类。 其中燃烧后脱硫,又称烟气脱硫(Flue gas desulfurization,简称 FGD),在 FGD 技术中,按脱硫剂的种类划分,可分为以下五种方法:以 CaCO3(石灰石)为基础的钙法,以 MgO 为基础的镁法,以 Na2SO3 为基础的钠法,以 NH3 为基础的氨法,以有机碱为基础的有机碱法。 世界上普遍使用的商业化技术是钙法,所占比例在 90%以上。 按吸收剂及脱硫产物在脱硫过程中的干湿状态又可将脱硫技术分为湿法、干法和半干(半湿)法。 湿法 FGD 技术是用含有吸收剂的溶液或浆液在湿状态下脱硫和 1/ 28

处理脱硫产物,该法具有脱硫反应速度快、设备简单、脱硫效率高等优点,但普遍存在腐蚀严重、运行维护费用高及易造成二次污染等问题。 干法 FGD 技术的脱硫吸收和产物处理均在干状态下进行,该法具有无污水废酸排出、设备腐蚀程度较轻,烟气在净化过程中无明显降温、净化后烟温高、利于烟囱排气扩散、二次污染少等优点,但存在脱硫效率低,反应速度较慢、设备庞大等问题。 半干法 FGD 技术是指脱硫剂在干燥状态下脱硫、在湿状态下再生(如水洗活性炭再生流程),或者在湿状态下脱硫、在干状态下处理脱硫产物(如喷雾干燥法)的烟气脱硫技术。 特别是在湿状态下脱硫、在干状态下处理脱硫产物的半干法,以其既有湿法脱硫反应速度快、脱硫效率高的优点,又有干法无污水废酸排出、脱硫后产物易于处理的优势而受到人们广泛的关注。 按脱硫产物的用途,可分为抛弃法和回收法两种。

锅炉SCR脱硝技术培训资料

锅炉S C R脱硝技术

220t/h锅炉SCR脱硝技术 1.反应器布置 本项目锅炉烟气NO X含量达800mg/Nm3,要求排放100 mg/Nm3,脱硝效率87.5%。SNCR脱硝工艺达不到环保要求,建议采用SCR脱硝工艺,推荐采用20孔蜂窝式催化剂,每台锅炉配置2台脱硝反应器,每台反应器内催化剂布置方式采用2+1布置,即安装2层催化剂,预留1层。每层催化剂体积初步预估21m3,三台锅炉总量约252m3。 另本项目锅炉尾部竖井交叉布置两级省煤器和三级管式空气预热器,省煤器、空气预热器交叉布置分别支承在尾部构架上,这种省煤器及空预器布置方式不便于SCR脱硝装置的设置。鉴于锅炉已开始进行安装工程,不便进行大的改动,脱硝反应器的布置及脱硝烟气的引出将结合目前锅炉的实际情况配置。 1.1脱硝烟气将由高温省煤器出口双烟道引出(此处烟气温度380℃,最佳反应 温度),向上约10米分别进入两台脱硝反应器 (W4.04mxL5.9mxH10m),经反应器后回到一级空预器入口,这样尾部竖井烟道高温省煤器和高温空预器之间需预留出烟气的进出空间约5.6米(烟道截面按4.04x1.6,烟气流速14m/s估算),需锅炉厂调整空预器和低温省煤器的安装位置,来保证脱硝烟气的进出空间。且此种反应器布置方式烟气脱硝后在空预器低温区易生成亚硫酸铵造成低温腐蚀及堵塞,建议在三级空预器上方设置蒸汽吹灰器。 1.2如锅炉低负荷运行时,高温空预器出口温度能在290℃以上,可采取将脱硝 烟气由高温空预器出口引出(如必要,也可从高温省煤器上方引出部分高温烟气来加热脱硝烟气),向上约10米分别进入两台脱硝反应器,同时将剩余省煤器、空预器安装位置平移调整到反应器出口烟道,并在三级空预器上方设置蒸汽吹灰器。 SCR烟气系统设计参数

水泥窑炉SNCR脱硝技术

水泥窑炉SNCR脱硝技术 作者:徐忠俊 单位:江苏紫光吉地达环境科技股份有限公司 来源:发布日期:2012/11/7 1. 国内水泥厂脱硝的基本状况 “十二五”期间我国氮氧化物排放总量要求达到减排10%的目标,这就需要加大对电力、水泥、冶金等行业产生的氮氧化物进行控制。水泥行业氮氧化物的排放量占全国工业排放总量的15%左右,已是居火力发电、汽车尾气之后的第三大氮氧化物排放大户。工信部582号文件关于水泥工业节能减排的指导意见,提出了具体的量化目标:到“十二五”末,氮氧化物在2009年的基础上降低25%。同时指出,新建或改扩建水泥(熟料)生产线项目必须配置脱硝装置,且脱硝效率不低于60%。因此,探讨水泥行业最佳可行的脱硝技术显得尤为迫切。 目前,新型干法水泥回转窑上常用的NOx控制技术主要有以下几种:一是优化窑和分解炉的燃烧制度;二是改变配料方案,掺用矿化剂以求降低熟料烧成温度和时间,改进熟料易烧性;三是采用低NOx的燃烧器;四是在窑尾分解炉和管道中的阶段燃烧技术。然而,即使把上述四种措施全部采用起来,事实上水泥窑的NOx排放也很难达到400mg/Nm3 以下。采用选择性非催化还原(SNCR)脱硝法或选择性催化还原(SCR)脱硝法进一步降低NOx排放的措施是一个非常有效的降低NOx排放的途径。本文主要讨论关于SNCR选择非催化还原脱硝技术在水泥厂的运用。各控制技术的脱硝效率如下表所示: 由于SCR操作温度窗口和含尘量的特殊要求,在国内外水泥生产线上极少使用,主要原因为:(1)出C1的烟气通常用于余热发电,出余热发电系统的烟气温度无法满足SCR 的温度要求;(2)窑尾框架周边基本上没有布置SCR催化剂框架的空间;(3)出C1的烟气中高浓度粉尘及其有害元素易造成催化剂破损和失效;(4)一次性投资大;烟气通过催化剂的阻力增大了窑系统的阻力;(5)催化剂每三年需要更换,运行成本高。 2. SNCR(选择性非催化还原法)脱硝技术 2.1 SNCR脱硝原理

烟气脱硫脱硝技术方案

1、化学反应原理 任意浓度的硫酸、硝酸,都能够跟烟气当中细颗粒物的酸、碱性氧化物产生化学反应, 生成某酸盐和水,也能够跟其它酸的盐类发生复分解反应、氧化还原反应,生成新酸和新盐,通过应用高精尖微分捕获微分净化处理技术产生的巨大量水膜,极大程度的提高烟气与循环 工质接触、混合效率,缩短工艺流程,在将具有连续性气、固、液多项流连续进行三次微分 捕获的同时,连续进行三次全面的综合性高精度微分净化处理。 2、串联叠加法工作原理 现有技术装备以及烟气治理工艺流程的效率都是比较偏低,例如脱硫效率一般都在98%左右甚至更低,那么,如果将三个这样工作原理的吸收塔原型进行串联叠加性应用,脱硫效率一定会更高,例如99.9999%以上。 工艺流程工作原理 传统技术整治大气环境污染,例如脱硫都是采用一种循环工质,那么,如果依次采用三种化学性质截然不同的循环工质,例如稀酸溶液、水溶液和稀碱溶液进行净化处理,当然可以十分明显的提高脱除效率,达到极其接近于百分百无毒害性彻底整治目标。 1、整治大气环境污染,除尘、脱硫、脱氮、脱汞,进行烟气治理,当然最好是一体 化一步到位,当然首选脱除效率最高,效价比最高,安全投运率最高,脱除污染因子最全 面,运行操作最直观可靠,运行费用最低的,高效除尘、脱硫、脱氮、脱汞一体化高精尖 技术装备。 2、高效除尘、脱硫、脱氮、脱汞一体化高精尖技术装备,采用最先进湿式捕获大化 学处理技术非选择性催化还原法,拥有原创性、核心性、完全自主知识产权,完全国产化,发明专利名称《一种高效除尘、脱硫、脱氮一体化装置》,发明专利号。 3、吸收塔的使用寿命大于30年,保修三年,耐酸、耐碱、耐摩擦工质循环泵,以及 其它标准件的保修期,按其相应行业标准执行。 4、30年以内,极少、甚至可以说不会有跑、冒、滴、漏、渗、堵现象的发生。 5、将补充水引进到3#稀碱池入口,根据实际燃煤含硫量和烟气含硝量调整好钠碱量 以及相应补充水即可正常运行。 6、工艺流程: 三个工质循环系统的循环工质,分别经过三台循环泵进行加压、喷淋。 (1)可以采用废水的补充水进入进行第三级处理的稀碱池,通过第三级循环泵或者称 为稀碱泵,进行第三次微分捕获微分净化处理,然后溢流至中水池。 (2)从稀碱池溢流来的稀碱水自流进入中水池,经过第二级循环泵或者称为中水泵的 加压循环,进行第二次微分捕获微分净化处理的喷淋布水。 (3)从中水池溢流来的中水进入稀酸池,第一级循环泵或者称为稀酸泵泵出的循环工 质,在进行第一级微分捕获微分净化处理循环过程当中,在稀酸池经过处理,成为多元酸, 通过补充水和澄清水保持两个循环系统工作。

脱硫脱硝工艺概述

石灰石-石膏湿法脱硫工艺概述 烟气脱硫采用技术为石灰石-石膏湿法烟气脱硫工艺。脱硫剂采用石灰石粉(CaCO3), 石灰石由于其良好的化学活性及低廉的价格因素而成为目前世界上湿法脱硫广泛采用的脱硫剂制备原料。SO2与石灰石浆液反应后生成的亚硫酸钙, 就地强制氧化为石膏,石膏经二级脱水处理可作为副产品外售。 本设计方案采用传统的单回路喷淋塔工艺,将含有氧化空气管道的浆池直接布置在吸收塔底部, 塔内上部设置三层喷淋层和二级除雾器。从锅炉来的原烟气中所含的SO2与塔顶喷淋下来的石灰石浆液进行充分的逆流接触反应,从而将烟气中所含的SO2去除,生成亚硫酸钙悬浮。在浆液池中通过鼓入氧化空气,并在搅拌器的不断搅动下,将亚硫酸钙强制氧化生成石膏颗粒。脱硫效率按照不小于90%设计。其他同样有害的物质如飞灰,SO3,HCI 和HF也大部分得到去除。该脱硫工艺技术经广泛应用证明是十分成熟可靠的。 工艺布置采用一炉一塔方案,石灰石制浆、石膏脱水、工艺水、事故浆液系统等两塔公用。#1锅炉来的原烟气由烟道引出,经升压风机(两台静叶可调轴流风机) 增压后, 送至吸收塔,进行脱硫。脱硫后的净烟气经塔顶除雾器除雾后通过烟囱排放至大气。#2炉的烟道系统流程与#1炉相同,布置上与#1炉为对称布置。 脱硫剂采用外购石灰石粉,用滤液水制成30%的浆液后在石灰石浆液箱中贮存,通过石灰石浆液泵不断地补充到吸收塔内。脱硫副产品石膏通过石膏排出泵,从吸收塔浆液池抽出,输送至石膏旋流站(一级脱水系统),经过一级脱水后的底流石膏浆液其含水率约为50%左右,直接送至真空皮带过滤机进行二级过滤脱水。石膏被脱水后含水量降到10%以下。石膏产品的产量为20.42t/h(#1、#2炉设计煤种,石膏含≤10%的水分)。脱硫装置产生的废水经脱硫岛设置的废水处理装置处理后达标排放或回收利用。 脱硝工艺系统描述 3.1 脱硝工艺的原理和流程 本工程采用选择性催化还原法(SCR)脱硝技术。SCR脱硝技术是指在催化剂的作用下,还原剂(液氨)与烟气中的氮氧化物反应生成无害的氮和水,从而去除烟气中的NOx。选择性是指还原剂NH3和烟气中的NOx发生还原反应,而不与烟气中的氧气发生反应。 化学反应原理 4 NO + 4 NH3 + O2 --> 4 N2 + 6 H2O 6 NO2 + 8 NH3 + O2 --> 7 N2 + 12 H2O

脱硫脱硝培训材料

1、唐山建龙烟气基本参数情况 2、排放标准

3、我厂脱硫脱硝技术参数: 4、脱硫脱硝技术汇总 (1)目前脱硫方法 (2)目前脱硝技术

5、技术原理 (1)SCR 脱硝技术原理 脱硝采用尿素水作为还原剂,尿素热解工艺利用尿素溶液热解工艺为SCR 系统提供反应剂,经燃烧器加热的焦炉烟气(320-350℃)进入脱硝反应器,在反应器内,烟气中的NOx 与氨在催化剂的作用下发生反应,最终以N 2的形式排放。 尿素热解工艺的主要反应如下: CO(NH 2)2 → NH 3 + HNCO HNCO + H 2O → NH 3 + CO 2 SCR 主要反应描述如下: 4NO+4NH 3+O 2 → 3N 2+6H 2O NO+NO 2+2NH 3 → 3H 2O+2N 2 6NO+4NH 3→5N 2+6H 2O (2)脱硫技术原理 烟气脱硫采用石灰/石膏法。烟气中的SO 2与石灰浆液在脱硫塔中反应,生成亚硫酸钙;然后通过强制氧化的方式,最终以硫酸钙形式排放。发生的主要反应方: )()(22aq SO g SO ? )()(3222l SO H O H aq SO ?+ 2232()Ca OH SO CaSO H O +→+ 22332()2Ca OH H SO CaSO H O +→+ 423CaSO O CaSO →+ 6、工艺路线及系统说明 如图2-1所示,1#、2#焦炉烟囱烟气汇合后进入燃烧器,通过燃烧器将焦炉烟气加热至320-350℃,以提供满足SCR 反应的温度窗口,然后进入SCR 反应器进行脱硝,脱硝后的烟气经余热锅炉,使烟气温度降到160°C 以下,并产生一定量的饱和蒸汽,然后烟气在增压风机的作用下进入脱硫吸收塔,在脱硫吸收塔内,烟气中的SO 2与石灰浆液反应得以脱除,净化后的烟气由塔顶烟囱直接排放。 7、方案总体说明 O H CaSO O H CaSO 242422?→+

水泥厂SNCR脱硝技术简述

2012.6CHINA CEMENT 水泥生产过程排出的大量废气中含有有害气体 NO X ,世界各国都十分重视对NO X 的控制和治理。我国工业和信息化部于2010年11月16日发布第127号公告,其中水泥行业准入条件的第五项“环境保护”,明确规定:新建或改扩建水泥(熟料)生产线项目须配置脱除NO X 效率不低于60%的烟气脱硝装置。SNCR 是目前国际上应用于水泥厂脱硝最有效、应用最多的一项技术,国内还没有实际应用的报道。笔者已申报合肥水泥研究设计院脱硝工作项目,拟研究开发SNCR 系统成套装置,现对SNCR 技术做简要叙述。 1SNCR 技术介绍 SNCR 即选择性非催化还原技术,是指在合适的 温度区域喷入氨水或者尿素,通过NH 3与NO X 的反应生成N 2和水从而脱去烟气中的NO X 。SNCR 去除NO X 的化学方程式如下: 4NH 3+4NO +O 2→4N 2+6H 2O 4NH 3+2NO 2+O 2→3N 2+6H 2O 由于烟气中90%~95%的NO X 都是NO ,因此第一个方程式是主要反应方程式。SNCR 系统工艺流程图见图1。 影响SNCR 系统脱硝效率的因素,有如下几点: 1.1反应剂 反应剂常常采用氨水(浓度20%)。其他可选反应 剂包括液氨、尿素、硫酸铵溶液。氨水的应用存在安全隐患方面的问题,氨水极易挥发出氨气,浓氨水对呼吸道和皮肤有刺激作用,并能损伤中枢神经系统。而且氨水有一定的腐蚀作用。尿素的优点是安全性好,成本低,缺点是需要热解或者水解为氨,过程复杂。就国外的运行业绩看,对预热/预分解水泥窑,氨水是最好的反应剂。 1.2温度 对SNCR 工艺而言,反应区的温度是最重要的条件之一。表1罗列了一部分世界上目前使用SNCR 工艺的水泥厂喷入反应剂的温度值。 从上表1中可以看出,多采用温度区间在870℃~ 1100℃之间。1.3 氨水喷入位置 对预热/分解炉水泥窑系统来说,有此合适的温度区间位置见图2。 (1)分解炉燃烧区。这个位置是最理想的喷反应剂处(930℃~990℃)。 (2)分解炉出口,鹅颈管入口处(850℃~890℃)。 (3)鹅颈管出口,5号筒入口处。 1.4在最佳温度区域内的停留时间 在停留时间内,喷入的氨液/尿素与烟气进行混 合;水分蒸发;NH 3分解成NH 2与自由基;尿素分解成 图1 SNCR 系统工艺流程图 水泥厂SNCR 脱硝技术简述 周 磊,刘召春,张钊锋 (合肥水泥研究设计院,合肥230051) 表1 SNCR 法应用温度区间 烟气温度/℃ 920~980870~1100950850~1050870~1100800~1100900~1000 870~1090900~11501000项目 反应剂:氨水/尿素 EC/R report 氨水Mussati 氨水Florida Rock test report 氨水Technical evaluation-Suwanee 两者NESCAUM 两者Draft 1fond report 两者Penta report 两者 EC/R report 尿素Mussati 尿素Florida Rock test report 尿素55

脱硝工艺介绍

图6-1 典型火电厂SCR法烟气脱硝工艺流程图 脱硝工艺介绍 1脱硝工艺 图1 LNB、SNCR和SCR在锅炉系统中的位置 目前成熟的燃煤电厂氮氧化物控制技术主要包括燃烧中脱硝技术和烟气脱硝技术,其中燃烧中脱硝技术是指低氮燃烧技术(LNB),烟气脱硝技术包括SCR、SNCR和SNCR/SCR 1.1 联 80~90% 气在SCR催化剂的作用下将烟气中的NOx还原成N 2和H 2 O。SNCR/SCR联用工艺系统复杂,而 且脱硝效率一般只有50~70%。 三种烟气脱硝技术的综合比较见表1。 表1 烟气脱硝技术比较

烟气中,与烟气中的NOx混合后,扩散到催化剂表面,在催化剂作用下,氨气(NH 3 )将烟气 中的NO和NO 2还原成无公害的氮气(N 2 )和水(H 2 O)(图3-6)。这里“选择性”是指氨有选 择的与烟气中的NOx进行还原反应,而不与烟气中大量的O 2 作用。整个反应的控制环节是烟气在催化剂表面层流区和催化剂微孔内的扩散。 图2 SCR反应示意图 SCR反应化学方程式如下: 4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O (3-1)

2NO 2 + 4NH 3 + O 2 → 3N 2 + 6H 2 O (3-2) 在燃煤烟气的NOx中,NO约占95%,NO 2 约占5%,所以化学反应式(3-1)为主要反应,实际氨氮比接近1:1。 SCR技术通常采用V 2O 5 /TiO 2 基催化剂来促进脱硝还原反应。脱硝催化剂使用高比表面积 专用锐钛型TiO 2作为载体,(钒)V 2 O 5 作为主要活性成分,为了提高脱硝催化剂的热稳定性、 机械强度和抗中毒性能,往往还在其中添加适量的WO 3、(钼)MoO 3 、玻璃纤维等作为助添 加剂。 催化剂活性成分V 2O 5 在催化还原NOx 的同时,还会催化氧化烟气中SO 2 转化成SO 3 (反 应 NH 4 。 后处理 2 )以 ?会增加锅炉烟道系统阻力900~1200Pa; ?系统运行会增加空预器入口烟气中SO3浓度,并残留部分未反应的逃逸氨气,两者 在空预器低温换热面上易发生反应形成NH 4HSO 4 ,进而恶化空预器冷端的堵塞和腐蚀,因此 需要对空预器采取抗NH 4HSO 4 堵塞的措施。 2.2S CR技术分类 烟气脱硝SCR工艺根据反应器在烟气系统中的位置主要分为三种类型(图3):高灰型、低灰型和尾部型等。

脱硫脱硝提标改造方案及安全措施

脱硫脱硝提标改造方案及施工安全措施 一、施工时间: 二、施工地点:炼焦车间脱硫脱硝区域 三、施工负责人: 四、安全负责人: 五、施工方案: 总体施工程序如下: 稀释风机改备用 布袋更换 催化剂安装 管道、水封改造 取烟口扩大 风机拆除、安装 焦炉停炉烟道清理 风机试运 调试起动 脱硝电器、仪表改造 取烟口检查 电器控制设备改造 CEMS系统改造 PLC系统数据保存改造 称重给料机计重改造 (一)、烟道扩孔及烟道清理方案 首先,将烟道插板提起,停脱硫脱硝系统,停液氨站系统。脱硫脱硝系统停止运行后,除烟道扩孔及烟道清理外的其他改造内容可同时进行。 1、停脱硫脱硝系统后,焦炉地下室开启废气循环系统,用以降低氮氧化物排放。停止加热时可关闭废气循环系统。 2、由于扩孔和清理地下烟道同时进行,所以1#、2#炉不可同时

施工,3#、4#炉不可同时施工,避免进冷空气太多,烟囱热备温度不够。 3、扩孔施工时,焦炉停止加热,施工单位拆除取气口天圆地方,施工单位用提前预制好的挡板将地下烟道取气口全部覆盖,焦炉再恢复加热,哪部分需要扩孔,拿掉哪一部分挡板,扩完再覆盖,确保焦炉吸力满足生产,炼焦车间要观察焦炉吸力,随时与施工单位保持联系。 4、进入地下烟道清理时,需焦炉停止加热,炼焦车间做好焦炉保温工作,将进风口盖住,烟道翻板关闭,焦炉停产。施工单位清理地下烟道混凝土及开孔时掉下的砖块,保证插板阀能插到底,焦炉停止加热的时间尽量控制在4h以内。4座焦炉的取气口都应进行扩孔,满足设计要求,满足焦炉吸力要求。 (二)、除尘器布袋更换, 采用在线单仓更换的方式:用吊车将布袋吊到除尘器顶部,关闭1#仓室进出口烟气挡板,打开检修门,拆除喷吹支管,将原布袋逐个抽出,拆除旧布袋,将袋笼装上新布袋,由人工安装到仓室内,整个仓室更换完成后,检查无误后,方可封闭检修门。单仓更换结束,其余仓室更换过程同上。 (三)、脱硝模块更换 脱硝模块更换同样采取在线更换,将单仓进出口烟气挡板关闭,打开检修门,清理内部积灰,用吊车将模块吊至安装位置,然后从内向外逐块安装,单仓安装完成后,检查密封,确认无误,封闭检修门,安装结束。 (四)、风机检修 拆除风机壳体保温,拆风机上壳体,拆除风机转子,根据风机新转流程,安装新转子,调整、固定后安装上壳体,恢复保温,安装结束。

2 干法烟气脱硝净化技术

2 干法烟气脱硝净化技术 字体[大][中][小]干法脱硝技术反应温度高(与湿法脱硝相比),因而净化后烟气不需再加热,而且反应系统中不采用水洗工艺,省去后续废水处理问题。因此,干法是目前烟气脱硝应用较多的技术。 2.1 干法脱硝基本原理 干法脱硝目前主要包括催化还原法和无催化还原法两种。所谓催化还原法是利用不同的还原剂,在一定温度和催化剂作用下,NO x还原成N2和水。催化还原法的效果如何,关键是选用有效的还原剂,一般多采用甲烷、氨等作还原剂。它们与NO分别反应如下: CH4+4NO→2N2+CO2+2H2O 4NH3+6NO→5N2+6H2O 无催化还原法不用催化剂,但需在高温区进行。 2.2 选择性催化还原法 (SCR) 选择性催化还原法 (selective catalytic reduction) 简称SCR法。 2.2.1 化学原理 所谓选择性是指在催化剂存在条件下,NH3优先与NO发生还原脱除作用,而不与烟气中的氧进行氧化作用,其目的为了降低氨的消耗量。其反应式为 4NH3+4NO+3O2→4N2+6H2O 4NH3+2NO2+O2→3N2+6H2O 同时还发生一些副反应,其反应式如下: NH3的氧化反应 4NH3+5O2→4NO+6H2O NH3热分解反应 4NH3+3O2→2N2+6H2O 在没有催化剂条件下,上述反应只能在980℃左右进行。而采用催化剂时,其反应温度可控制在300~400℃之间。这一温度范围相当于将氨喷入省煤器区域和空气预热器区域的烟道中烟气温度的范围。此法脱硝率可达80%~90%。 2.2.2 工艺及工艺流程

图18-2为氨选择性催化还原法工艺流程示意图。本工艺采用的反应器为平行通道型(类似于平板和管状反应器),以防止磨损和堵塞。图18-3为SCR反应器结构图。 在反应器中,空间速度SV (space velocicy) 是关键参数。在燃煤电厂中,空间速度一般取1 000~3 000m/h。 NH3的输入量应适当,如输入量太少,难以满足脱硝反应需求; NH3输入量过大,造成NH3损失,易产生氨泄漏(带出) 问题。工业上常采用NH3/NO x摩尔比衡量,一般控制在1.4~1.5为宜。氨的泄漏量(带出) 以反应出口处NH3的浓度来控制,一般控制在 5mg/m3以下。 图18-2 选择性催化还原工艺流程 1—锅炉; 2—省煤器; 3—SCR; 4—空气预热器; 5—静电除尘器;6—脱硫系统; 7—烟囱; 8—SCAH;9—液氧储藏箱; 10—氨蒸发器;11 —氮—空气混合用装置

100万吨焦炉烟气脱硫脱硝技术方案

100万吨焦炉烟气脱硫脱硝 技术方案 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

100万吨焦化2×60 孔焦炉烟气脱硫脱硝工程 技 术 方 案

目录 第一章总论 (6) 项目简介 (6) 总则 (6) 工程范围 (6) 采用的规范和标准 (6) 设计基础参数(业主提供) (7) 基础数据 (7) 工程条件 (8) 脱硫脱硝方案的选择 (9) 脱硫脱硝工程建设要求和原则 (9) 脱硫脱硝工艺的选择 (10) 脱硫脱硝和余热回收整体工艺说明 (11) 第二章脱硫工程技术方案 (12) 氨法脱硫工艺简介 (12) 氨法脱硫工艺特点 (12) 氨法脱硫吸收原理 (12) 本项目系统流程设计 (13) 设计原则 (14) 设计范围 (14) 系统流程设计 (14) 本项目工艺系统组成及分系统描述 (15) 烟气系统 (15) SO2吸收系统 (15) 脱硫剂制备及供应系统 (17) 脱硫废液过滤 (17) 公用系统 (17) 电气控制系统 (17) 仪表控制系统 (18) 第三章脱硝工程技术方案 (20) 脱硝工艺简介 (20)

SCR工艺原理 (20) SCR系统工艺设计 (21) 设计范围 (21) 设计原则 (21) 设计基础参数 (21) 还原剂选择 (22) SCR工艺计算 (22) SCR脱硝工艺流程描述 (23) 分系统描述 (24) 氨气接卸储存系统 (24) 氨气供应及稀释系统 (24) 烟气系统 (25) SCR反应器 (25) 吹灰系统 (26) 氨喷射系统 (26) 压缩空气系统 (26) 配电及计算机控制系统 (26) 第四章性能保证 (28) 脱硫脱硝设计技术指标 (28) 脱硫脱硝效率 (28) SCR及FGD装置出口净烟气温度保证 (29) 脱硫脱硝装置可用率保证 (29) 催化剂寿命 (29) 系统连续运行温度和温度降 (29) 氨耗量 (29) 脱硫脱硝装置氨逃逸 (30) 脱硫脱硝装置压力损失保证 (30) 第五章相关质量要求及技术措施 (31) 相关质量要求 (31) 对管道、阀门的要求 (31) 对平台、扶梯的要求 (31)

脱硫脱硝培训材料

1、唐山建龙烟气基本参数情况 点位SO2(mg/m3)NOx(mg/m3)颗粒物(mg/m3)氧含量(%)烟温(℃)1#焦炉214.4-576.8 566.4-1030.7 566.4-1030.7 7.9-10.7 201.4-229.9 2#焦炉241.8-585.4 530.5-954.9 530.5-954.9 8.3-11.4 132.1-156.7 2、排放标准

3、我厂脱硫脱硝技术参数: 4、脱硫脱硝技术汇总 (1)目前脱硫方法 (2)目前脱硝技术

5、技术原理 (1)SCR 脱硝技术原理 脱硝采用尿素水作为还原剂,尿素热解工艺利用尿素溶液热解工艺为SCR 系统提供反应剂,经燃烧器加热的焦炉烟气(320-350℃)进入脱硝反应器,在反应器内,烟气中的NOx 与氨在催化剂的作用下发生反应,最终以N 2的形式排放。 尿素热解工艺的主要反应如下: CO(NH 2)2 → NH 3 + HNCO HNCO + H 2O → NH 3 + CO 2 SCR 主要反应描述如下: 4NO+4NH 3+O 2 → 3N 2+6H 2O NO+NO 2+2NH 3 → 3H 2O+2N 2 6NO+4NH 3→5N 2+6H 2O (2)脱硫技术原理 烟气脱硫采用石灰/石膏法。烟气中的SO 2与石灰浆液在脱硫塔中反应,生成亚硫酸钙;然后通过强制氧化的方式,最终以硫酸钙形式排放。发生的主要反应方: )()(22aq SO g SO ? )()(3222l SO H O H aq SO ?+ 2232()Ca OH SO CaSO H O +→+ 22332()2Ca OH H SO CaSO H O +→+ 423CaSO O CaSO →+ O H CaSO O H CaSO 242422?→+ 6、工艺路线及系统说明 如图2-1所示,1#、2#焦炉烟囱烟气汇合后进入燃烧器,通过燃烧器将焦炉烟气加热至320-350℃,以提供满足SCR 反应的温度窗口,然后进入SCR 反应器进行脱硝,脱硝后的烟气经余热锅炉,使烟气温度降到160°C 以下,并产生一定量的饱和蒸汽,然后烟气在增压风机的作用下进入脱硫吸收塔,在脱硫吸收塔内,烟气中的SO 2与石灰浆液反应得以脱除,净化后的烟气由塔顶烟囱直接排放。 7、方案总体说明

我国水泥厂脱硝技术现状及展望

我国水泥厂脱硝技术现状及展望 发表时间:2019-02-28T09:36:09.990Z 来源:《防护工程》2018年第32期作者:张林[导读] 人们要全面分析该技术的环境影响,进而采取有效的应对措施,促进水泥生产,降低环境污染与危害,实现人与自然的和谐发展。冀东海德堡(泾阳)水泥有限公司陕西咸阳 713701 摘要:近些年随着我国水泥生产行业的发展迅猛,各种污染物排放量正在逐年递增。这些问题严重威胁人们的身体健康,因此对于氮氧化物的控制就变得至关重要。人们可以采用脱硝技术,从水泥生产源头来有效降低氮氧化物的排放量。但是,其间会出现一系列新的环境问题,人们只有做好相应防范工作,才能有效地降低该技术对生态环境造成的负面影响。 关键词:水泥厂;脱硝技术;现状;展望 1 水泥厂污染物种类分析及产生机理 1.1 二氧化硫(SO2) 二氧化硫(SO2)主要存在窑尾烟气中。硫的来源主要有两部分:原料、燃料。如表1所示,原料中的硫以有机硫化物、硫化物或硫酸盐的形式存在。硫化物大部分为黄铁矿和白铁矿(FeS2),还有一些单质硫化物(如FeS);硫酸盐主要包括石膏(CaSO4·2H2O)和硬石膏(CaSO4)。硫化物在300~600℃发生氧化生成SO2气体,主要发生在预热器的二级筒或三级筒。硫酸盐矿物在低于烧成带温度下很稳定,在预热器内不会分解,大体上都会进入窑系统。燃料中硫的存在形式和原料中的一样,有硫化物、硫酸盐还有有机硫。煤在分解炉、回转窑燃烧,而分解炉存在大量的活性CaO,同时分解炉的温度正是脱硫反应发生的最佳范围,因此烧成带产生的SO2气体可以在分解炉被CaO吸收或者在过渡带和烧成带与碱结合生成硫酸盐。也就是说正常情况下,燃料中的硫很少会影响到硫的排放。 1.2 氮氧化物(NOx) 氮氧化物(NOx)产生于煤粉的燃烧过程,也主要存在于窑尾烟气。分为热力型、快速型(也有称瞬时型)和燃料型三种类型的NOx。热力型NOx主要为在燃烧过程中空气中的N2被氧化而生成的NO,主要产生于温度大于1500℃的高温区;快速型NOx是由燃料燃烧时产生的烃(CHi)等撞击燃烧空气中的N2分子而生成CN/HCN,然后HCN再被氧化为NOx;燃料型NOx则是燃料中的氮化合物在燃烧过程中经过一系列的氧化还原反应而生成的NOx。 1.3 粉尘(PM) 粉尘(PM)的产生机理比较简单,各种原材料在破碎及粉磨作业、煅烧、输送、装卸等过程产生粉尘并随工艺通风气流排放。另有一部分粉尘为物料在倒运、堆放存储、均化过程产生的扬尘,属于无组织排放。 2 水泥厂脱硝技术分析 2.1 低氮分级燃烧技术 作为水泥生产中脱硝技术的一种,低氮分级燃烧技术主要遵循燃烧学原理,通过改变运行工况,将燃烧工艺中生成的氮氧化物进行还原或抑制。在具体应用的过程中,人们要在烟室与分解炉之间建立还原燃烧区。同时,利用煤将原分解炉的一部分分入该区域,使其通过缺氧燃烧形成一系列还原剂,如一氧化碳、甲烷以及氰化氢等,从而将煅烧过程中产生的氮氧化物转化为无危害、无污染的氮气。与此同时,煤在缺氧燃烧的状态下对于氮氧化物的产生也起到了一定的抑制作用。现阶段,低氮燃烧技术主要包括空气分级燃烧、燃料分级燃烧以及浓淡燃烧等。采用该技术,可以更好地改造燃烧室,同时所需经费较少,但是其脱硝效率仅在30%左右,脱硝效果不是十分明显,很难满足氮氧化物控制技术的要求。 2.2 选择性非催化还原技术 选择性非催化还原技术是水泥脱硝技术的重要类型,也叫SNCR技术。其主要原理是:当燃烧温度在850~1000℃时,在有氧的条件下,在排出的气流体中注入氨或氨的先驱物,使一氧化氮按照相应的反应规律进行还原。现如今,水泥行业的还原剂都具有氨气基,其主要由氨水和尿素水组成,可以将煅烧过程的氮氧化物还原为氨气和水,在水泥熟料生产线的分解炉内,存在符合SNCR技术工作的反应温度窗口。该技术对氮氧化物的脱除率较高,一般在50%~80%,同时其操作系统简单,为实际脱硝操作提供便利。但是,该技术对反应温度的要求较高,需要使用大量还原剂,导致运行成本显著增加。此外,该技术易受到反应温度、化学反应时间以及喷枪位置等因素的影响。 2.3 选择性催化还原技术 选择性催化还原法又被称为SCR脱硝技术,也是一种水泥脱硝技术。该技术应用要有一定的催化反应条件,通过具有氨气基的还原剂将烟气中的氮氧化物还原为水和氨气,从而降低氮氧化物的排放量。SCR脱硝技术对温度的要求较高,要求反应温度控制在300~450℃。在没有预热器参与的条件下,水泥炉窖中的烟气道温度远低于该温度,因此必须做好烟气的加热工作。同时,要采用合适的SCR催化剂,如二氧化钛或V205-M003,而催化剂的外形通常采用板式、波纹板式以及蜂窝式等结构。SCR脱硝技术的脱硝效果非常明显,通常氮氧化物的脱除率能够达到60%~90%。但是,其对于设备有着严格的要求,要求其具有较高的耐腐蚀性,同时投资运行所需费用较大,易对环境造成二次污染。 2.4 组合脱硝技术 组合脱硝技术就是指综合运用各种脱硝技术,通常将两种或三种脱硝工艺技术进行组合。通常,人们采用低氮分级燃烧技术与选择性非催化还原技术或选择性催化还原技术相结合的脱硝技术,同时也可以采用选择性非催化还原技术与选择性催化还原技术相组合的脱硝技术,其应用十分广泛。目前,日本、德国等发达国家通常先采用低氮分级燃烧技术来降低氮氧化物含量,再运用烟气脱硝工艺脱硝。这些组合脱硝技术能够提高传统脱硝效率,同时降低投资运行成本。 3 未来发展趋势 3.1 低温烟气循环流化床同时脱硫脱硝除尘技术 锅炉烟气中的NOx绝大部分以NO形式存在,在水中的溶解度远低于NO2、HNO2及HNO3等,这是导致传统脱硫工艺不能同时脱除NOx 的主要原因。因此,将烟气中的NO快速氧化成高价态的NO2是同时脱除的技术关键。 3.2 脉冲电晕等离子体烟气脱硫脱硝除尘一体化技术

相关文档
最新文档