高一数学函数值域的多种解题思路总结

高一数学函数值域的多种解题思路总结
高一数学函数值域的多种解题思路总结

高一数学函数值域的多种解题思路总结

求函数值域是高考的热点,也是重点和难点,解这类题目的方法具有多样性

和灵活性。在函数的三要素中,

定义域和值域起决定作用,而值域是由定义域和对应法则共同确定。研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。确定函数的值域是研究函数不可缺少的重要一环。对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。本文就函数值域求法归纳如下,供参考。

1. 直接观察法

对于一些比较简单的函数,其值域可通过观察得到。

例1. 求函数

x 1y =的值域。

解:∵0x ≠ ∴0x 1≠ 显然函数的值域是:),0()0,(+∞-∞

例2. 求函数x 3y -=的值域。

解:∵0x ≥

3x 3,0x ≤-≤-∴

故函数的值域是:]3,[-∞

2. 配方法

配方法是求二次函数值域最基本的方法之一。

例3. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域。

解:将函数配方得:

4)1x (y 2+-= ∵]2,1[x -∈

由二次函数的性质可知:当x=1时,4y m i n =,当1x -=时,8y m a x =

故函数的值域是:[4,8]

3. 判别式法

例4. 求函数

22

x 1x x 1y +++=的值域。 解:原函数化为关于x 的一元二次方程

0x )1y (x )1y (2=-+-

(1)当1y ≠时,R x ∈

0)1y )(1y (4)1(2≥----=?

解得:23y 2

1≤≤ (2)当y=1时,0x =,而??????∈23,211

故函数的值域为?????

?23,21

例5. 求函数)x 2(x x y -+=的值域。

解:两边平方整理得:0y x )1y (2x 222=++-(1)

∵R x ∈

0y 8)1y (42≥-+=? 解得:21y 21+≤≤-

但此时的函数的定义域由0)x 2(x ≥-,得2x 0≤≤

由0≥?,仅保证关于x 的方程:0y x )1y (2x 22

2=++-在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由 0≥?求出的范围可能比y 的实际

范围大,故不能确定此函数的值域为??????23,21。 可以采取如下方法进一步确定原函数的值域。

∵2x 0≤≤

0)x 2(x x y ≥-+=∴

21y ,0y min +==∴代入方程(1)

解得:]

2,0[22

222x 41∈-+=

即当22222x 41-+=时,

原函数的值域为:]21,0[+

注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。

4. 反函数法

直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。

例6. 求函数6x 54

x 3++值域。

解:由原函数式可得:

3y 5y 64x --=

则其反函数为:3x 5y 64y --=,其定义域为:53x ≠

故所求函数的值域为:??? ?

?∞-53,

5. 函数有界性法

直接求函数的值域困难时,可以利用已学过函数的有界性,反客为主来确定函数的值域。

例7. 求函数1e 1e y x x +-=的值域。

解:由原函数式可得:

1y 1y e x -+=

∵0e x > ∴01y 1y >-+

解得:1y 1<<-

故所求函数的值域为)1,1(-

例8. 求函数3x sin x

cos y -=

的值域。

解:由原函数式可得:y 3x cos x sin y =-,可化为: y 3)x (x sin 1y 2=β++ 即

1y y

3)x (x sin 2+=β+ ∵R x ∈

∴]1,1[)x (x sin -∈β+ 即11

y y

312≤+≤- 解得:42y 42≤≤-

故函数的值域为???????

?-42,42

6. 函数单调性法

例9. 求函数)10x 2(1x log 2

y 35x ≤≤-+=-的值域。 解:令1x log y ,2y 325x 1-==-

则21y ,y 在[2,10]上都是增函数

所以21y y y +=在[2,10]上是增函数

当x=2时,81

12l o g 2y 33m i n =-+=-

当x=10时,339log 2y 35max =+=

故所求函数的值域为:?????

?33,81

例10. 求函数1x 1x y --+=的值域。

解:原函数可化为:

1x 1x 2

y -++= 令1x y ,1x y 21-=+=,显然21y ,y 在],1[+∞上为无上界的增函数

所以1y y =,2y 在],1[+∞上也为无上界的增函数

所以当x=1时,21y y y +=有最小值2,原函数有最大值22

2

=

显然0y >,故原函数的值域为]2,0(

7. 换元法

通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角函数公式模型,换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发挥作用。

例11. 求函数1x x y -+=的值域。

解:令t 1x =-,)0t (≥

则1t x 2+= ∵

43)21t (1t t y 22++=++= 又0t ≥,由二次函数的性质可知

当0t =时,1y m i n =

当0t →时,+∞→y

故函数的值域为),1[+∞

例12. 求函数2)1x (12x y +-++=的值域。

解:因0)1x (12≥+-

1)1x (2≤+ 故可令],0[,cos 1x π∈ββ=+ ∴1cos sin cos 11cos y 2+β+β=β-++β=

1)4sin(2+π+β= ∵π≤π+β≤π≤β≤4540,0

211)4sin(201)4

sin(22+≤+π+β≤∴≤π+β≤-

∴ 故所求函数的值域为]21,0[+

例13. 求函数1x 2x x x y 243++-=的值域。

解:原函数可变形为:

22

2x 1x 1x 1x 221y +-?+?= 可令β=tg x ,则有β=+-β=+2222cos x 1x 1,2sin x 1x 2

β-=β?β-=∴4sin 412cos 2sin 21y 当82k π-π=β时,

41y m a x = 当

82k π+π=

β时,41y m i n -= 而此时βtan 有意义。 故所求函数的值域为?????

?-41,41

例14. 求函数)1x )(c

o s 1x (s i n y ++=,??????ππ-∈2,12x 的值域。 解:)1x )(c o s 1x (s i n y ++=

1x cos x sin x cos x sin +++=

令t x cos x sin =+,则)1t (21x c o s x s i n 2-=

2

2)1t (211t )1t (21y +=++-= 由)4/x sin(2x cos x sin t π+=+= 且??????ππ-∈2,12x

可得:2t 22≤≤

∴当2t =时,223y m a x +=,当

22t =时,2243y += 故所求函数的值域为???????

?++223,2243。

例15. 求函数2x 54x y -++=的值域。

解:由0x 52≥-,可得5|x |≤

故可令],0[,cos 5x π∈ββ=

4)4sin(10sin 54cos 5y +π+β=β++β=

∵π≤β≤0

4544π≤π+β≤π∴

当4/π=β时,104y max +=

当π=β时,54y m i n -=

故所求函数的值域为:]104,54[+-

8. 数形结合法

其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目。

例16. 求函数22)8x ()2x (y ++-=的值域。

解:原函数可化简得:|8x ||2x |y ++-=

上式可以看成数轴上点P (x )到定点A (2),)8(B -间的距离之和。

由上图可知,当点P 在线段AB 上时,10|AB ||8x ||2x |y ==++-=

当点P 在线段AB 的延长线或反向延长线上时,10|AB ||8x ||2x |y =>++-=

故所求函数的值域为:],10[+∞

例17. 求函数

5x 4x 13x 6x y 22++++-=的值域。 解:原函数可变形为:

2222)10()2x ()20()3x (y ++++-+-=

上式可看成x 轴上的点)0,x (P 到两定点)1,2(B ),2,3(A --的距离之和,

由图可知当点P 为线段与x 轴的交点时,43)12()23(|AB |y 22min =+++==,

故所求函数的值域为],43[+∞

例18. 求函数5x 4x 13x 6x y 22++-+-=的值域。

解:将函数变形为:2222)10()2x ()20()3x (y -++--+-=

上式可看成定点A (3,2)到点P (x ,0)的距离与定点)1,2(B -到点)0,x (P 的距离之差。 即:|BP ||AP |y -=

由图可知:(1)当点P 在x 轴上且不是直线AB 与x 轴的交点时,如点'P ,则构成'ABP ?,

根据三角形两边之差小于第三边,有26)12()23(|AB |||'BP ||'AP ||22=-++=<-

即:26y 26<<-

(2)当点P 恰好为直线AB 与x 轴的交点时,有26|AB |||BP ||AP ||==-

综上所述,可知函数的值域为:]26,26(-

注:由例17,18可知,求两距离之和时,要将函数式变形,使A 、B 两点在x 轴的两侧,而求两距离之差时,则要使A ,B 两点在x 轴的同侧。

如:例17的A ,B 两点坐标分别为:(3,2),)1,2(--,在x 轴的同侧;例18的A ,B 两点坐标分别为(3,2),)1,2(-,在x 轴的同侧。

9. 不等式法

利用基本不等式abc 3c b a ,ab 2b a 3≥++≥+)R c ,b ,a (+∈,求函数的最值,其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值,不过有时需要用到拆项、添项和两边平方等技巧。

例19. 求函数

4)x c o s 1x (c o s )x s i n 1x (s i n y 22-+++=的值域。

解:原函数变形为: 52

x cot x tan 3x

cot x tan 3x

sec x ces 1x cos 1x sin 1)x cos x (sin y 22322222222=+≥++=++=++

+=

当且仅当x cot x tan = 即当

4k x π

±π=时)z k (∈,等号成立 故原函数的值域为:),5[+∞

高一数学函数的单调性知识点

高一数学函数单调性 一、函数单调性知识结构 【知识网络】 1.函数单调性的定义,2.证明函数单调性;3.求函数的单调区间 4.利用函数单调性解决一些问题;5.抽象函数与函数单调性结合运用 二、重点叙述 1. 函数单调性定义 (一)函数单调性概念 (1)增减函数定义 一般地,设函数y=f(x)的定义域为I,对于定义域I内某个区间D上的任意两个自变量的值x1、x2 : 如果当x1<x2时,都有f(x1 ) <f(x2 ),那么就说函数y=f(x)在区间D上是增函数; 如果当x1<x2时,都有f(x1 ) >f(x2 ),那么就说函数y=f(x)在区间D上是减函数。 如果函数在区间D上是增函数或减函数,那么就说函数在这一区间具有(严格的)单调性,区间D叫做的单调区间。 (2)函数单调性的内涵与外延 ⑴函数的单调性也叫函数的增减性。函数的单调性是对某个区间而言的,是一个局部概念。 ⑵由函数增减性的定义可知:任意的x1、x2∈D, ① x1<x2 ,且f(x1 ) <f(x2 ),y=f(x)在区间D上是增函数;(可用于判断或证明函数的增减性) ② y=f(x)在区间D上是增函数,且x1<x2 , f(x1 ) <f(x2 ) ;(可用于比较函数值的大小) ③ y=f(x)在区间D上是增函数,且f(x1 ) <f(x2 ), x1<x2。(可用于比较自变量值的大小) 2. 函数单调性证明方法 证明函数单调性的方法有:定义法(即比较法);导数法。 实际上,用导数方法证明一般函数单调性是很便捷的方法,定义法是基本方法,常用来证明解决抽象函数或不易求导的函数的单调性。 (1)定义法:利用增减函数的定义证明。在证明过程中,把数式的大小比较转化为求差比较(或求商比

高一数学 函数单调性讲解

高中数学必修一函数——单调性 考纲解读: 了解单调函数及单调区间的意义,掌握判断函数单调性的方法;掌握增,减函数的意义,理解函数单调函数的性质。 能力解读:函数单调性的判断和函数单调性的应用。利用函数单调性判断方法来判断函数的单调性,利用函数的单调性求解函数的最值问题。掌握并熟悉抽象函数以及符合函数的单调性判断方法。 知识要点: 1.函数单调性的定义, 2.证明函数单调性; 3.求函数的单调区间 4.利用函数单调性解决一些问题; 5.抽象函数与函数单调性结合运用 一、单调性的定义 (1)设函数)(x f y =的定义域为A ,区间A I ? 如果对于区间I 内的任意两个值1x ,2x ,当21x x <时,都有)()(21x f x f <,那么就说 )(x f y =在区间I 上是单调增函数,I 称为)(x f y =的单调增区间 如果对于区间I 内的任意两个值1x ,2x ,当21x x <时,都有)()(21x f x f >,那么就说 )(x f y =在区间I 上是单调减函数,I 称为)(x f y =的单调减区间 (2)设函数)(x f y =的定义域为A 如果存在定值A x ∈0,使得对于任意A x ∈,有)()(0x f x f ≤恒成立,那么称)(0x f 为 )(x f y =的最大值; 如果存在定值A x ∈0,使得对于任意A x ∈,有)()(0x f x f ≥恒成立,那么称)(0x f 为 )(x f y =的最小值。 二、函数单调性的证明 重点:函数的单调性只能在函数的定义域内来讨论,所以求函数的单调区间,必须 先求函数的定义域; (1)定义法求单调性 函数单调性定义中的1x ,2x 有三个特征:一是任意性;二是大小,即 )(2121x x x x <<;三是同属于一个单调区间,三者缺一不可;

高一数学函数专项训练题(含答案)

20XX 年秋高一数学第一学期函数压轴训练题 1.(本小题满分12分)已知x 满足不等式2112 2 2(log )7log 30x x ++≤,求2 2()log log 42 x x f x =?的最大值与最小值及相应x 值. 2.(14分)已知定义域为R 的函数2()1 2x x a f x -+= +是奇函数 (1)求a 值; (2)判断并证明该函数在定义域R 上的单调性; (3)若对任意的t R ∈,不等式2 2 (2)(2)0f t t f t k -+-<恒成立,求实数k 的取值范围; 3. (本小题满分10分)已知定义在区间(1,1)-上的函数2 ()1ax b f x x +=+为奇函数,且12 ()25f =. (1) 求实数a ,b 的值; (2) 用定义证明:函数()f x 在区间(1,1)-上是增函数; (3) 解关于t 的不等式(1)()0f t f t -+<. 4. (14分)定义在R +上的函数f(x)对任意实数a,b +∈R ,均有f(ab)=f(a)+f(b)成立,且当x>1时,f(x)<0, (1)求f(1) (2)求证:f(x)为减函数。 (3)当f(4)= -2时,解不等式1)5()3(-≥+-f x f 5.(本小题满分12分)已知定义在[1,4]上的函数f(x)=x 2 -2bx+4 b (b ≥1), (I)求f(x)的最小值g(b); (II)求g(b)的最大值M 。

6.(12分)设函数()log (3)(0,1)a f x x a a a =->≠且,当点(,)P x y 是函数()y f x =图象上的点时,点(2,)Q x a y --是函数()y g x =图象上的点. (1)写出函数()y g x =的解析式; (2)若当[2,3]x a a ∈++时,恒有|()()|1f x g x -…,试确定a 的取值范围; (3)把()y g x =的图象向左平移a 个单位得到()y h x =的图象,函数1()22()()()2h x h x h x F x a a a ---=-+,(0,1a a >≠且)在1[,4]4的最大值为54,求a 的值. 7. (12分)设函数124()lg ()3 x x a f x a R ++=∈. (1)当2a =-时,求()f x 的定义域; (2)如果(,1)x ∈-∞-时,()f x 有意义,试确定a 的取值范围; (3)如果01a <<,求证:当0x ≠时,有2()(2)f x f x <. 8. (本题满分14分)已知幂函数(2)(1) ()()k k f x x k z -+=∈满足(2)(3)f f <。 (1)求整数k 的值,并写出相应的函数()f x 的解析式; (2)对于(1)中的函数()f x ,试判断是否存在正数m ,使函数()1()(21)g x mf x m x =-+-,在区间 []0,1上的最大值为5。若存在,求出m 的值;若不存在,请说明理由。 9. (本题满分14分)已知函数1 ()(0x f x a a -=>且1)a ≠ (Ⅰ)若函数()y f x =的图象经过()4,3P 点,求a 的值; (Ⅱ)当a 变化时,比较1 (lg )( 2.1)100 f f -与大小,并写出比较过程; (Ⅲ)若(l g )100f a =,求a 的值.

高中数学-函数定义域、值域求法总结

函数定义域、值域求法总结 一.求函数的定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数y=f(x)中y 的取值范围。 常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元)(6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。 定义域的求法 1、直接定义域问题 例1 求下列函数的定义域: ① 2 1 )(-=x x f ;② 23)(+=x x f ;③ x x x f -+ +=211)( 解:①∵x-2=0,即x=2时,分式 2 1 -x 无意义, 而2≠x 时,分式 21 -x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-32 时,根式23+x 无意义, 而023≥+x ,即3 2 -≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3 2 -≥x }.

③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x -21 同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ? ??≠-≥+0201x x ? ???≠-≥21 x x 例2 求下列函数的定义域: ①14)(2 --= x x f ②2 14 3)(2-+--= x x x x f ③= )(x f x 11111++ ④x x x x f -+= 0)1()( ⑤3 7 3132+++-=x x y 解:①要使函数有意义,必须:142 ≥-x 即: 33≤≤-x ∴函数14)(2--= x x f 的定义域为: [3,3-] ②要使函数有意义,必须:???≠-≠-≤≥?? ??≠-+≥--131 40210432x x x x x x x 且或 4133≥-≤<--

(新)高一数学函数专题训练(一)

函数专题训练(一) 一、选择题 1.(文)若函数f(x)的定义域是[0,4],则函数g(x)=f (2x )x 的定义域是( ) A .[0,2] B .(0,2) C .(0,2] D .[0,2) (理)(2013·湖北荆门期末)函数f(x)=1x ln(x 2-3x +2+-x 2-3x +4)的定义域为( ) A .(-∞,-4]∪(2,+∞) B .(-4,0)∪(0,1) C .[-4,0)∪(0,1] D .[-4,0)∪(0,1) 2.(文)(2012·江西文,3)设函数f(x)=????? x 2+1,x ≤1,2x ,x>1.则f(f(3))=( ) A.15 B .3 C.23 D.139 (理)已知函数f(x)=??? 2x +1,x ≤0,f (x -3),x>0, 则f(2014)等于( ) A .-1 B .1 C .-3 D .3 3.已知函数f(x)=??? 2x +1,x<1,x 2+ax ,x ≥1, 若f[f(0)]=4a ,则实数a 等于( ) A.12 B.45 C .2 D .9 4.(2013·银川模拟)设函数f(x)=??? x 2-4x +6,x ≥0,x +6,x<0, 则不等式f(x)>f(1)的解集是( A .(-3,1)∪(3,+∞) B .(-3,1)∪(2,+∞) C .(-1,1)∪(3,+∞) D .(-∞,-3)∪(1,3) 5.(文)函数f(x)=22x -2 的值域是( ) A .(-∞,-1) B .(-1,0)∪(0,+∞)C .(-1,+∞) D .(-∞,-1)∪(0,+∞) (理)若函数y =f(x)的值域是[12,3],则函数F(x)=f(x)+1f (x ) 的值域是( ) A .[12,3] B .[2,103] C .[52,103] D .[3,103] 6.a 、b 为实数,集合M ={b a ,1},N ={a,0},f 是M 到N 的映射,f(x)=x ,则a +b

2014高中数学抽象函数专题

2014高三数学专题 抽象函数 特殊模型和抽象函数 特殊模型 抽象函数 正比例函数f(x)=kx (k ≠0) f(x+y)=f(x)+f(y) 幂函数 f(x)=x n f(xy)=f(x)f(y) [或) y (f )x (f )y x (f =] 指数函数 f(x)=a x (a>0且a ≠1) f(x+y)=f(x)f(y) [) y (f )x (f )y x (f =-或 对数函数 f(x)=log a x (a>0且a ≠1) f(xy)=f(x)+f(y) [)]y (f )x (f )y x (f -=或 正、余弦函数 f(x)=sinx f(x)=cosx f(x+T)=f(x) 正切函数 f(x)=tanx )y (f )x (f 1) y (f )x (f )y x (f -+= + 余切函数 f(x)=cotx ) y (f )x (f )y (f )x (f 1)y x (f +-= + 一.定义域问题 --------多为简单函数与复合函数的定义域互求。 例1.若函数y = f (x )的定义域是[-2,2],则函数y = f (x+1)+f (x -1)的定义域为 11≤≤-x 。 解:f(x)的定义域是[]2,2-,意思是凡被f 作用的对象都在[]2,2- 中。评析:已知f(x)的定义域是A ,求()()x f ?的定义域问题,相当于解内函数()x ?的不等式问题。 练习:已知函数f(x)的定义域是[]2,1- ,求函数()? ?? ? ? ?-x f 3log 2 1 的定义域。 例2:已知函数()x f 3log 的定义域为[3,11],求函数f(x)的定义域 。 []11log ,13 评析: 已知函数()()x f ?的定义域是A ,求函数f(x)的定义域。相当于求内函数()x ?的值域。

高一数学求函数的定义域与值域的常用方法教案

一. 教学内容: 求函数的定义域与值域的常用方法 求函数的解析式,求函数的定义域,求函数的值域,求函数的最值 二. 学习目标 1、进一步理解函数的定义域与值域的概念; 2、会应用代换、方程思想求简单的函数解析式; 3、会求基本初等函数、简单的复合函数及含参变量函数的定义域、值域和最值; 4、会将求函数值域问题化归为求函数的最值问题,重视函数单调性在确定函数最值中的作用; 5、会求实际问题中的函数解析式、定义域、值域和最值问题; 6、会用集合、区间或不等式表示函数的定义域和值域。 三. 知识要点 (一)求函数的解析式 1、函数的解析式表示函数与自变量之间的一种对应关系,是函数与自变量建立联系的一座桥梁,其一般形式是y=f(x),不能把它写成f(x,y)=0; 2、求函数解析式一般要写出定义域,但若定义域与由解析式所确定的自变量的范围一致时,可以不标出定义域;一般地,我们可以在求解函数解析式的过程中确保恒等变形; 3、求函数解析式的一般方法有: (1)直接法:根据题给条件,合理设置变量,寻找或构造变量之间的等量关系,列出等式,解出y。 (2)待定系数法:若明确了函数的类型,可以设出其一般形式,然后代值求出参数的值; (3)换元法:若给出了复合函数f[g(x)]的表达式,求f(x)的表达式时可以令t=g (x),以换元法解之; (4)构造方程组法:若给出f(x)和f(-x),或f(x)和f(1/x)的一个方程,则可以x代换-x(或1/x),构造出另一个方程,解此方程组,消去f(-x)(或f(1/x))即可求出f(x)的表达式; (5)根据实际问题求函数解析式:设定或选取自变量与因变量后,寻找或构造它们之间的等量关系,列出等式,解出y的表达式;要注意,此时函数的定义域除了由解析式限定外,还受其实际意义限定。 (二)求函数定义域 1、函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示; 2、常见题型是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题; 3、如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数,等等;

(推荐)高中数学会考专题集锦-函数的概念与性质专题训练

函数的概念与性质专题训练 一、选择题:(本大题共12小题,每小题4分,共48分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 得分 答案 1、映射f :X →Y 是定义域到值域的函数,则下面四个结论中正确的是 A 、Y 中的元素不一定有原象 B 、X 中不同的元素在Y 中有不同的象 C 、Y 可以是空集 D 、以上结论都不对 2、下列各组函数中,表示同一函数的是 A 、||2x y x y ==与 B 、2 lg lg 2x y x y ==与 C 、23) 3)(2(+=--+= x y x x x y 与 D 、10 ==y x y 与 3、函数1+=x y 的定义域是 A 、( ,+) B 、[1,+ ) C 、[0,+] D 、(1,+) 4、若函数y f x =()的图象过点(0,1), 则y f x =+()4的反函数的图象必过点 A 、(4,—1) B 、(—4,1) C 、(1,—4) D 、(1,4) 5、函数)10(≠>+=+=a a b ax y b a y x 且与函数的图像有可能是 A B C D 6、函数241x y --=的单调递减区间是 A 、 ?? ? ? ?∞-2 1, B 、 ?? ????+∞,21 C 、 ?? ? ???- 0,21 D 、 ?? ????2 1,0 7、函数f(x)()R x ∈是偶函数,则下列各点中必在y=f(x)图象上的是 A 、())(,a f a - B 、())(,a f a -- C 、())(,a f a --- D 、())(,a f a -- 8、如果奇函数f(x)在区间[3,7]上是增函数且最大值为5,那么f(x)在区间[-7,-3]上是 x y O x y O x y O x y O

高一数学函数单调性的定义图象及应用

函数的单调性习题 一. 选择题: 1.函数1 1 --=x y 的单调区间是 ( ) ),.(+∞-∞A )0,.(-∞B ),1(),1,.(+∞-∞C ()+∞-∞,1)1,.(Y D 2.如果函数)(x f 在],[b a 上是增函数,那么对于任意的)(],,[,2121x x b a x x ≠∈,下列结论中不正确的是 ( ) 0) ()(. 2 121>--x x x f x f A 0)]()()[.(2121>--x f x f x x B )()()()(.21b f x f x f a f C <<< 0) ()(. 121 2>--x f x f x x D 3.函数2)1(2)(2+-+=x a x x f 在区间]4,(-∞上单调递减,则a 的取值范围是( ) ),3.[+∞-A ]3,.(--∞B ]5,.(-∞C ),3[+∞ 4.函数2 1 )(++= x ax x f 在区间),2(+∞-上单调递增,则a 的取值范围是( ) )21,0.(A ),1()1,.(+∞--∞Y B ),2 1 .(+∞C ),2.(+∞-D 5.函数)2(,2 3 -≠+=x x y 在区间]5,0[上的最大值、最小值分别是( ) 0,73.A 0,23.B 73,23.C .D 最大值7 3 ,无最小值。 6.函数23)(2++=x x x f 在区间)5,5(+-上的最大值、最小值分别是( ) 12,42.A 41,42.-B 41,12.-C D 最小值4 1 -,无最大值。 7.下列命题正确的是 ( ) A 定义在),(b a 上的函数)(x f ,若存在),(21b a x x ∈,使得21x x <时有 )()(21x f x f <,那么)(x f 在),(b a 上为增函数。 B 定义在),(b a 上的函数)(x f ,若有无穷多对),(21b a x x ∈,使得21x x <时有 )()(21x f x f <,那么)(x f 在),(b a 上为增函数。 C 若)(x f 在区间1I 上为增函数,在区间2I 上也为增函数,那么)(x f 在21I I Y 上也一定为增函数, D 若在)(x f 区间I 上为增函数且),(),()(2121I x x x f x f ∈<,那么21x x <。 8.设),(),,(d c b a 都是)(x f 的单调增区间,且),(),,(21d c x b a x ∈∈21x x <,则)(1x f 与)(2x f 的大小关系为 ( ) )()(.21x f x f A < )()(.21x f x f B > )()(.21x f x f C = D 不能确定 9.考察函数:①x y =;②x x y =;③x x y 2 -=;④x x x y +=。其中在)0,(-∞上 为增函数的有( ) .A ①② B 。②③ C 。③④ .D ①④ 10.已知函数32)(2+-=x x x f 在闭区间],0[m 上有最大值3,最小值2,则m 的取值范围是( ) ),1.[+∞A ]2,0.[B ]2,.(--∞C ]2,1.[D 二. 填空题: 1. 函数x y -=在),[+∞a 上是减函数,则a 的取值范围是 2. 函数x x y 1 2- =的单调递增区间是 3. 函数562+-=x x y 的单调增区间是 4. 已知函数)(x f 在区间),0(+∞上是减函数,那么)1(2+-a a f 与)4 3 (f 的大小关 系为 5. 函数245x x y --=的单调递增区间是

《高一数学必修1》函数的概念、定义域、值域练习题(含答案)

函数的概念、定义域、值域练习题 一、选择题(4分×9=36分) 1.集合A ={x |0≤x ≤4},B ={y |0≤y ≤2},下列不表示从A 到B 的函数是( ) A .f (x )→y =12x B .f (x )→y =13x C .f (x )→y =23 x D .f (x )→y =x 2.函数y =1-x 2+x 2-1的定义域是( ) A .[-1,1] B .(-∞,-1]∪[1,+∞) C .[0,1] D .{-1,1} 3.已知f (x )的定义域为[-2,2],则f (x 2-1)的定义域为( ) A .[-1,3] B .[0,3] C .[-3,3] D .[-4,4] 4.若函数y =f (3x -1)的定义域是[1,3],则y =f (x )的定义域是( ) A .[1,3] B .[2,4] C .[2,8] D .[3,9] 5.函数y =f (x )的图象与直线x =a 的交点个数有( ) A .必有一个 B .一个或两个 C .至多一个 D .可能两个以上 6.函数f (x )=1ax 2+4ax +3 的定义域为R ,则实数a 的取值范围是( ) A .{a |a ∈R } B .{a |0≤a ≤34} C .{a |a >34} D .{a |0≤a <34} 7.某汽车运输公司购买了一批豪华大客车投入运营.据市 场分析,每辆客车营运的利润y 与营运年数x (x ∈N )为二次函数 关系(如图),则客车有营运利润的时间不超过( )年. A .4 B .5 C .6 D .7 8.(安徽铜陵县一中高一期中)已知g (x )=1-2x ,f [g (x )]=1-x 2x 2(x ≠0),那么f ????12等于( ) A .15 B .1 C .3 D .30 9.函数f (x )=2x -1,x ∈{1,2,3},则f (x )的值域是( ) A .[0,+∞) B .[1,+∞) C .{1,3,5} D .R 二、填空题

高中数学函数单调性的判断方法

高中数学函数单调性的判断方法 单调性是函数的重要性质,它在数学中有许多应用,如我们常用求函数单调性的方法求函数的值域。那么,有哪些求函数单调性的方法呢? 方法一:定义法 对于函数f(x)的定义域I 内某个区间A 上的任意两个值12,x x (1)当12x x <时,都有12()()f x f x <,则说f(x)在这个区间上是增函数; (2)若当12x x <时,都有12()()f x f x >,则说f(x) 在这个区间上是减函数。 例如:根据函数单调性的定义,证明:函数 在 上是减函数。 要证明函数f (x )在定义域内是减函数,设任意1212,x x R x x ∈<且,则33221221212121()()()()f x f x x x x x x x x x -=-=-++,12x x <因为 210x x ->所以,且在1x 与2x 中至少有一个不为 0,不妨设20x ≠,那么222222121123()24 x x x x x x x ++=++0>,12()()f x f x >所以,故 ()f x 在 (,)-∞+∞上为减函数。 方法二:性质法 除了用基本初等函数的单调性之外,利用单调性的有关性质也能简化解题. 若函数f(x)、g(x)在区间B 上具有单调性,则在区间B 上有: 1. f(x)与c?f(x)当c >0具有相同的单调性,当c <0具有相反的单调性; 2.当f(x)、g(x)都是增(减)函数,则f(x)+g(x)都是增(减)函数; 3.当f(x)、g(x)都是增(减)函数,则f(x)?g(x)当两者都恒大于0时也是增(减)函数,当两者都恒小于0时也是减(增)函数; 例如,已知f (x )在R 上是减函数,那么-5f (x )为____函数。 这道题很简单,我们根据单调性的性质,很容易就能判断它是增函数。 方法三:同增异减法(处理复合函数的单调性问题) 对于复合函数y =f [g(x)]满足“同增异减”法(应注意内层函数的值域), 可令 t =g(x),则三个函数 y =f(t)、t =g(x)、y =f [g(x)]中, 若有两个函数单调性相同,则第三个函数为增函数;

高一数学函数练习题

高一数学函数练习题 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

高一数学第二章函数练习题 一、选择题 1、设集合A 和集合B 都是自然数集合N ,映射B A f →:把集合A 中的元素 n 映射到集合B 中的元素n n +2,则在映射f 下,象20的原象是 (A )2 (B )3 (C )4 (D )5 2、已知不等式为2733 1<≤x ,则x 的取值范围 (A )321<≤- x (B )32 1 <≤x (C )R (D ) 31 21<≤x 3、函数1 1 2 -=x y 在定义域上的单调性为 (A )在()1,∞-上是增函数,在()+∞,1上是增函数 (B )减函数 (C )在()1,∞-上是减增函数,在()+∞,1上是减函数 (D )增函数 4、函数x x x f -+= 11)(的定义域为A ,函数)]([x f f y =的定义域为B ,则 (A )B B A = (B )B A ? (C )B B A = (D )B A = 5、若函数)(x f 的图象经过)1,0(-,那么)4(+x f 的反函数图象经过点 (A))1,4(- (B))4,1(-- (C))1,4(-- (D))4,1(- 6、下列式子或表格 ①)1)(1(log 1>-+-=a x a y a x ②x y 2=,其中}3,2,1,0{∈x ,}4,2,0{∈y ③122=+y x ④)0(122≥=+y y x ⑤

其中表示y 是x 的函数的是 (A )①②③④⑤ (B )②③⑤ (C )③④ (D )④⑤ 7、已知函数)(x f y =的反函数)(1 x f -的定义域为]1,0[,那么函数 ))((R m m x f y ∈+=的值域是 (A )]1,[m m -- (B )]0,1[- (C )]1,0[ (D )R 8、已知函数1)()(32+-+=x a a ax x f 在]1,(--∞上递增,则a 的取值范围是 (A )3≤a (B )33≤≤-a (C )30≤a ,且1≠a )的图象必经过点 (A)(0,1) (B)(1,1) (C) (2, 0) (D) (2,2) 11、下列函数中值域为()∞+, 0的是 (A) x y -=21 5 (B) x y -? ? ? ??=131 (C) 121-?? ? ??=x y (D) x y 21-= 12、甲乙二人同时从A 地赶往B 地,甲先骑自行车到中点改为跑步,而乙则是先跑步到中点改为骑自行车,最后两人同时到达B 地,又知甲骑自行车比乙骑自行车的速度快,并且二人骑车速度均比跑步速度快。若某人离开A 地的距离S 与所用时间t 的函数关系可用图象表示,则下列给出的四个函数图象中,甲、乙各

高一数学函数的单调性与最值教案

高一数学函数的单调性 与最值教案 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

高一数学——函 数 第三讲 函数的单调性与最大(小)值 【教学目标】: (1)通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义; (2)学会运用函数图象理解和研究函数的性质; (3)能够熟练应用定义判断数在某区间上的的单调性; (4)理解函数的最大(小)值及其几何意义。 【重点难点】: 1.重点:函数的单调性、最大(小)值及其几何意义, 2.难点: 利用函数的单调性定义判断、证明函数的单调性,利用函数的单调性求函数的最大(小)值。 【教学过程】:用具: 一、知识导向或者情景引入 1、观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律: (3)函数图象是否具有某种对称性 2、画出下列函数的图象,观察其变化规律: (1)f(x) = x ○ 1 从左至右图象上升还是下降 ______ ○ 2 在区间 ____________ 上,随着x 的增 大,f(x)的值随着 ________ .

(2)f(x) = -2x+1 ○1从左至右图象上升还是下降 ______ ○2在区间 ____________ 上,随着x的增大,f(x)的值随着 ________ . (3)f(x) = x2 ○1在区间 ____________ 上,f(x)的值随着x的增大而 ________ . ○2在区间 ____________ 上,f(x)的值随着x的增大而 ________ . 二、新课教学 (一)函数单调性定义 1.增函数 一般地,设函数y=f(x)的定义域为I, 如果对于定义域I内的某个区间D内的任意两个自变量x 1,x 2 ,当x 1

高一数学《函数》专题训练材料(含答案)

高一数学《函数》专题训练材料(学生版) 一、函数概念相关 1、解析式相关 ①若函数f (x )=2 1x 2 -x+a 的定义域和值域均为[1,b ](b >1),求a 、b 的值. ②给出下列两个条件:(1)f( x +1)=x+2x ;(2)f(x)为二次函数且f(0)=3,f(x+2)-f(x)=4x+2.试分 别求出f(x)的解析式. ③已知f (x )是一次函数,且满足3f (x+1)-2f (x-1)=2x+17,求f (x ); 已知f (x )满足2f (x )+f ( x 1 )=3x ,求f (x ). 2、定义域 求下列函数的定义域: ①14)(2 --= x x f ②2 14 3)(2-+--= x x x x f ③= )(x f x 11111++ ④x x x x f -+= 0)1()( ⑤3 7 3132+++-= x x y 2、值域 ① 求13+--=x x y 的值域 ②求函数x x y -+=142的值域 ③求函数6 6 522-++-=x x x x y 的值域 3、复合函数 ①已知函数分别由下表给出,则满足f(g(x))>g(f(x))的x 值是

x 1 2 3 g(x) 3 2 1 f(x) 1 3 1 ②已知函数)(x f 的定义域为)23,21(-∈x ,求)0)(()()(>+= a a x f ax f x g 的定义域。 ②若函数)(x f y =的定义域为[-1,1],求函数)41(+=x f y )4 1(-?x f 的定义域 ③已知函数 2)3()2(2-+--=-a x a ax x f (a 为负整数)的图象经过点R m m ∈-),0,2(,设 )()()()],([)(x f x pg x F x f f x g +==.问是否存在实数)0(

≤--0 ,0,1221 x x x x 若f(x 0)>1,求x 0的取值范围。 ②已知函数f(x)=?? ???+∞∈∈-∈+),4(,11]4,2(,13] 2,0[,12x x x x x ,求函数f(x)的值域。 ③设f(x)为定义域在R 上的偶函数,当x ≤-1时,f(x)的图象是过点(-2,0),斜率为1的射线。又在的 图象中有一部分是过顶点在(0,2),且过点(-1,1)的一段抛物线,试写出函数f(x)解析式,并作出其图象。 二、函数的性质 1、单调性 ①已知f (x )=-x -x 3,x ∈[a ,b ],且f (a )·f (b )<0,则f (x )=0在[a ,b ]内( ) ②函数f (x )=ax -1 x +3在(-∞,-3)上是减函数,则a 的取值范围是________. ③已知函数f (x )=? ???? x 2 +4x ,x ≥0, 4x -x 2 ,x <0.若f (2-a 2)>f (a ),则实数a 的取值范围是( ) A .(-∞,-1)∪(2,+∞) B .(-1,2) C .(-2,1) D .(-∞,-2)∪(1,+∞) ④定义在R 上的函数f (x )满足f (x +y )=f (x )+f (y ),当x <0时,f (x )>0,则函数f (x )在[a ,b ]上有( )

最新高一数学函数经典习题及答案

函 数 练 习 题 班级 姓名 一、 求函数的定义域 1、求下列函数的定义域: ⑴y = ⑵y = ⑶01(21)111 y x x =+-++- 2 _ _ _ ________3、若函数(1)f x +(21)f x -的定义域是 ;函数1(2)f x +的定义域为 。 4、 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范 围。 二、求函数的值域 5、求下列函数的值域: ⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -= + ⑷ 311 x y x -=+ (5)x ≥ ⑸ y = ⑹ 225941x x y x +=-+ ⑺31y x x = -++ ⑻2y x x =- ⑼ y ⑽ 4y = ⑾y x =-

6、已知函数222()1 x ax b f x x ++=+的值域为[1,3],求,a b 的值。 三、求函数的解析式 1、 已知函数2 (1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+ ,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1 f x g x x +=-,求()f x 与()g x 的解析表达式 四、求函数的单调区间 6、求下列函数的单调区间: ⑴ 2 23y x x =++ ⑵y = ⑶ 261y x x =-- 7、函数()f x 在[0,)+∞上是单调递减函数,则2 (1)f x -的单调递增区间是 8、函数236 x y x -=+的递减区间是 ;函数y =的递减区间是 五、综合题 9、判断下列各组中的两个函数是同一函数的为 ( )

高中数学求函数值域的解题方法总结(16种)

求函数值域的解题方法总结(16种) 在具体求某个函数的值域时,首先要仔细、认真观察其题型特征,然后再选择恰当的方法,一般优先考虑直接法,函数单调性法和基本不等式法,然后才考虑用其他各种特殊方法。 一、观察法: 通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。 例:求函数()x 323y -+=的值域。 点拨:根据算术平方根的性质,先求出 ()x 3-2的值域。 解:由算术平方根的性质知()0x 3-2≥,故()3x 3-23≥+。 点评:算术平方根具有双重非负性,即:(1)、被开方数的非负性,(2)、值的非负性。本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧发。 练习:求函数()5x 0x y ≤≤=的值域。(答案:{}5,4,3,2,1,0) 二、反函数法: 当函数的反函数存在时,则其反函数的定义域就是原函数的值域。 例:求函数2 x 1x y ++=的值域。 点拨:先求出原函数的反函数,再求出其定义域。 解:显然函数2 x 1x y ++=的反函数为:y y --=112x ,其定义域为1y ≠的实数,故函数y 的值域为{}R y 1,y |y ∈≠。 点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。这种方法体现逆向思维的思想,是数学解题的重要方法之一。 练习:求函数x -x -x x 10101010y ++=的值域。(答案:{}1y 1-y |y 或)。 三、配方法: 当所给函数是二次函数或可化为二次函数的复合函数时,可利用配方法求函数的值域。 例:求函数() 2x x -y 2++=的值域。 点拨:将被开方数配方成平方数,利用二次函数的值求。 解:由02x x -2≥++可知函数的定义域为{}2x 1-|x ≤≤。此时2x x -2++=

高一数学函数经典题目与答案

1函数解析式的特殊求法 例1 已知f(x)是一次函数, 且f[f(x)]=4x 1, 求f(x)的解析式 例2 若x x x f 21(+=+),求f(x)例3 已知x x x f 2)1(+=+,求)1(+x f 例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式 例5 已知f(x)满足x x f x f 3)1()(2=+,求)(x f 2函数值域的特殊求法 例 1. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域。 例 2. 求函数22 x 1x x 1y +++=的值域。 例3求函数y=(x+1)/(x+2)的值域 例4. 求函数1e 1e y x x +-=的值域。

例1下列各组中的两个函数是否为相同的函数? ①3) 5)(3(1+-+=x x x y 52-=x y ②111-+=x x y )1)(1(2-+=x x y ③21)52()(-=x x f 52)(2-=x x f 2若函数)(x f 的图象经过)1,0(-,那么)4(+x f 的反函数图象经过点 (A))1,4(- (B))4,1(-- (C))1,4(-- (D))4,1(- 例3 已知函数)(x f 对任意的a b R ∈、满足:()()()6,f a b f a f b +=+- 0,()6a f a ><当时;(2)12f -=。 (1)求:(2)f 的值; (2)求证:()f x 是R 上的减函数; (3)若(2)(2)3f k f k -<-,求实数k 的取值范围。 例4已知{(,)|,,A x y x n y an b n ===+∈Z }, 2{(,)|,315,B x y x m y m m ===+∈Z },22{(,)|C x y x y =+≤14},问是否存在实数,a b ,使得(1)A B ≠?I ,(2)(,)a b C ∈同时成立. 证明题 1已知二次函数2 ()f x ax bx c =++对于x 1、x 2∈R ,且x 1<x 2时 12()()f x f x ≠,求证:方程()f x =121[()()]2 f x f x +有不等实根,且必有一根属于区间(x 1,x 2).

高一数学中函数的单调性4种求法

高一数学中函数的单调性非常重要,分析函数的单调性方法有:定义法,图像法,性质法,复合法.下边结合例题加以说明: 1.定义法 例题已知函数y=x^3-x在(0,a]上是减函数,在[a,+)上是增函数,求a的值。 解分析函数在R+上的单调性 任取x1>x2>0 Y1-Y2=(X1^3-X2^3)-(X1-X2)=(X1-X2)(X1^2+X1X2+X2^2)-(X1-X2) =(X1-X2)(X1^2+X1X2+X2^2-1) 令y1-y2>0 所以 X1^2+X1X2+X2^2-1>0 因为X1^2+X1X2+X2^2-1>X2^2+X2X2+X2^2-1=3X2^2-1 当3X2^2-1>=0时即X2^2>=1/3 X2>=根号3/3时 y1-y2>0 函数是递增的 同理当3X1^2-1<=0时即X1<=根号3/3时 y1-y2<0 函数是递减的 故函数在R+上的增区间为[根号3/3,+)减区间为(0,根号3/3) 因此 a=根号3/3 一般情况下,用定义求函数的单调区间就是求出使y1-y2>0(<0)的x1,x2的取值范围,要变换不等式,求出x1和x2的范围,就可求出函数的单调区间。 2.图像法 例题求y=x+3/x-1的单调区间 解函数定义域为(-,1)并(1,+) Y=X+3/X-1=X-1+4/X-1=1+4/X-1 由图像可知函数在(-,1)和(1,+0)上递减。 函数的图像是解决这类问题的关键。 3.性质法 性质:增+增=增减+减=减

y=f(x)与y=kf(x) 当k>0 有相同的单调性当k<0有相反的单调性 y=f(x)(y>0)与y=k/f(x) 当k>0 有相反的单调性,当k<0 有相同的单调性 例题求y=x^3+x的单调区间。 解因为y=x是增函数,当x>=0时,y=x^3是递增的,当x<0时,y=x^3是递增的,所以y=x^3是R上的增函数。 由性质可知,函数y=x^3+x的单调区间为R. 4.复合法 u=p(x) y=f(u)复合后的函数为:y=f(p(x))它们的单调性为:同增异减。 例题求y=根号(x-1)(x+1)的单调区间。 解令u=(x-1)(x+1) 则y=根号u 当x>=1时 u=(x-1)(x+1)递增 当x<=-1时 u=(x-1)(x+1)递减 Y=根号u递增 所以原函数的单调增区间为[1,+) 减区间为(-,-1]

相关文档
最新文档