推力计算公式说明

推力计算公式说明
推力计算公式说明

●推力计算公式说明:

SING测试、推力计算公式F=M×G×1.2

F:推力(出力)。

M:载重(包含音圈、测试平台、治具、待测物重量)。

G:测试时最大加速度值pk(g)。备注:g=a

1.2:安全系数。

Random测试、推力计算公式F=M×G×1.414×1.2

F:推力(出力)。

M:载重(包含音圈、测试平台、治具、待测物重量)。

G:测试时最大加速度值rms (g)。备注:g=a

1.414:rms值换算为pk值转换常数。

1.2:安全系数。

●位移与加速度转换计算公式说明:

简化公式a=0.002×F2×d

a:加速度值(pk)

0.002:常数

F:测试频率。

d:位移量(p-p)

电磁式振动试验机测试规格加速度值与推力公式计算

注:电磁式振动试验机设备处理为200KgF时。

例题一:

测试规格(垂直测试、SING正弦波测试)

测试频率:3.33 HZ

测试加速度值:4.4 g(pk)

测试时间:4小时

待测物重量:5 Kg (含治具)

计算公式目的:

1.确保振动测试时,是在购买设备最大位移之内使用。

2.确保电磁式振动试验机使用寿命与减少设备老化程度。

3.不易产生调剂现象发生与设备不易损坏。

推力计算公式F=M×G×1.2

F=(音圈重量6.5Kg+垂直测试平台7Kg+待测物重量5Kg)×4.4g×

1.2

F= 18.5Kg×4.4g

F= 97.68KgF(出力)

依例一振动测试规格,当振动测试时所需消耗97.68KgF(出力),是符合使用范围内,设备可以正常使用。

电磁式振动试验机测试规格加速度值与位移转换公式计算注:电磁式振动试验机设备处理为200KgF时。

例题二:

测试规格(垂直测试、SING正弦波测试)

测试频率:3.33 HZ

测试加速度值:4.4 g(pk)

测试时间:4小时

待测物重量:5 Kg (含治具)

计算公式目的:

4.确保震动测试时,是在购买设备最大位移之内使用。

5.确保电磁式振动试验机使用寿命与减少设备老化程度。

6.不易产生调剂现象发生与设备不易损坏。

转换公式a=0.002×F2×d 等于d=a÷(0.002×F2)

d=4.4g÷(0.002×33.32)

d=4.4g÷(0.002×1108.89)

d=4.4g÷2.21778

d=1.984mm(p-p)

依例二振动测试规格,当振动测试33.3HZ~4.4g时,等于是33.3HZ~1.984mm(p-p),而1.984mm(p-p)是符合使用范围内,设备可以正常使用。

隨機振動加速度值計算:

例二频率20~2000

Hz PSD SLOPE

203dB/Oct

800.04

3500.04

2000 -3dB/Oct

A =〔(3×S2)/( 3+X)〕×〔f2-((f1/f2)×f1)〕

备注:(3为常数,X为斜率)

=〔(3×0.04)/(3+3)〕×〔80-((20/80)×20)〕=〔0.12/6〕×〔80-5〕

=〔0.02〕×〔75〕

= 1.5

B =〔f3-f2〕×PSD

=〔350-80〕×〔0.04〕

= 10.8

C =〔2.3×S3×f3〕×〔logf4/f3〕

=〔2.3×0.04×350〕×〔log2000/350〕

= 32.2×0.7569

= 24.37

Grms=√(A+B+C)=√(1.5+1.08+24.37)=√36.67=6.055Grms

SHOCK冲击测试

冲击测试相关之物理公式

1.V12-V02=2AS

2.V1=V0+AT

3.若初速为零时由公式1可简化为V1=√(2AS)

4.能量守恒

=>1/2M1V12+M1GH1=1/2M2V22+M2GH2

冲击波时间与加速度及速度之关系

1.半弦波(Half-Sine)ΔV=2/πGT

2.锯齿波(Saw-Tooth)ΔV=0.5 GT

3.梯形波(Trapzoidal)ΔV=0.9 GT

(速度变化ΔV m/sec 加速度G g 作用时间T sec)

半正弦波沖擊50g 20ms轉換為跌落,跌落高度計算:

ΔV = 2/3.14 * A * D.t=0.637*50*0.2

積分後得V = 6.37 m/sec(入速與出速的向量和)

撞擊入速= 6.23/2 = 3.18 m/sec

帶入彈性係數0.8 得3.18/0.8 = 3.98 m/sec

又知V = (2gh) ^ ? 帶入得h = 0.8m = 80cm

SINE振动测试

加速度、振幅的计算

A=0.002f2D

A:加速度

f:频率

D:振幅

(测试规格之后经计算振幅以不超过shaker之最大位移量以免伤害到shaker本身)

管道过流计算方法

管道过流计算方法标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

第四章有压管道恒定流 第一节概述 前面我们讨论了水流运动的基本原理,介绍了水流运动的三大方程,水流形态和水头损失,从第五章开始,我们进入实用水利学的学习,本章研究有压管道的恒定流. 一.管流的概念 1.管流是指液体质点完全充满输水管道横断面的流动,没有自由水面存在。 2.管流的特点.①断面周界就是湿周,过水断面面积等于横断面面积;②断面上各点的压强一般不等于大气压强,因此,常称为有压管道。③一般在压力作用而流动. 1.根据出流情况分自由出流和淹没出流 管道出口水流流入大气,水股四周都受大气压强作用,称为自由出流管道。 管道出口淹没在水面以下,则称为淹没出流。 2.根据局部水头损失占沿程水头损失比重的大小,可将管道分为长管和短管。 在管道系统中,如果管道的水头损失以沿程水头损失为主,局部水头损失和流速水头所占比重很小(占沿程水头损失的5%~10%以下),在计算中可以忽略,这样的管道称为长管。否则,称为短管。必须注意,长管和短管不是简单地从管道长度来区分的,而是按局部水头损失和流速水头所占比重大小来划分的。实际计算中,水泵装置、水轮机装置、虹吸管、倒虹吸管、坝内泄水管等均应按短管计算;一般的复杂管道可以按长管计算。 3.根据管道的平面布置情况,可将管道系统分为简单管道和复杂管道两大类。

简单管道是指管径不变且无分支的管道。水泵的吸水管、虹吸管等都是简单管道的例子。由两根以上管道组成的管道系统称为复杂管道。各种不同直径管道组成的串联管道、并联管道、枝状和环状管网等都是复杂管道的例子。 工 程实践中为了输送流体,常常要设置各种有压管道。例如,水电站的压力引水隧洞和压力钢管,水库的有压泄洪洞和泄洪管,供给城镇工业和居民生活用水的各种输水管网系统,灌溉工程中的喷灌、滴灌管道系统,供热、供气及通风工程中输送流体的管道等都是有压管道。研究有压管道的问题具有重要的工程实际意义。 有压管道水力计算的主要内容包括:①确定管道的输水能力;②确定管道直径;③确定管道系统所需的总水头;④计算沿管线各断面的压强。 第二节 简单管路的水力计算 以通过出口断面中心线的水平面为基准面,在离开管道进口一定距离处选定1—1过水断面(该断面符合渐变流条件),管道出口断面为2—2过水断面,1—1与2—2过水断面对基准面建立能量方程,即可解决简单管道的水力计算问题,并可建立一般计算公式。 简单管道自由出流水力计算公式 02gH A Q c μ= 式中,c μ称为管道系统的流量系数,它反映了沿程水头损失和局部水头损失对过流能力的影响。计算公式为 当行近流速水头很小时,可以忽略不计,上述流量公式将简化为 二.二

管道面积.重量-计算公式定律

工程量(面积)计算公式 1、除锈、刷油工程。 (1)设备筒体、管道表面积计算公式: S=π×D×L 式中π——圆周率; D——设备或管道直径; L——设备筒体高或管道延长米。 (2)计算设备筒体、管道表面积时已包括各种管件、阀门、法兰、人孔、管口凹凸部分,不再另外计算。 2、防腐蚀工程。 (1)设备筒体、管道表面积计算公式同(1)。 (2)阀门表面积计算式:(图一) S=π×D×2.5D×K×N 图一

式中D——直径; K——1.05; N——阀门个数。 (3)弯头表面积计算式:(图二) 图二 S=π×D×1.5D×K×2π×N/B 式中D——直径; K——1.05; N——弯头个数; B值取定为:90°弯头B=4;45°弯头B=8。 (4)法兰表面积计算式:(图三) S=π×D×1.5D×K×N 图三

式中D——直径; K——1.05; N——法兰个数。 (5)设备和管道法兰翻边防腐蚀工程量计算式:(图四) 图4 S=π×(D+A)×A 式中D——直径; A——法兰翻边宽。 (6)带封头的设备防腐(或刷油)工程量计算式:(图五)

图五 S=L×π×D+(D[]22)×π×1.5×N 式中N——封头个数; 1.5——系数值。 3、绝热工程量。 (1)设备筒体或管道绝热、防潮和保护层计算公式: V=π×(D+1.033δ)×1.033δ S=π×(D+2.1δ+0.0082)×L图五式中D——直径 1.033、 2.1——调整系数; δ——绝热层厚度; L——设备筒体或管道长; 0.0082——捆扎线直径或钢带厚。 (2)伴热管道绝热工程量计算式: ①单管伴热或双管伴热(管径相同,夹角小于

管道的设计计算——管径和管壁厚度(精)

管道的设计计算——管径和管壁厚度 空压机是通过管路、阀门等和其它设备构成一个完整的系统。管道的设计计算和安装不当,将会影响整个系统的经济性及工作的可靠性,甚至会带来严重的破坏性事故。 A.管内径:管道内径可按预先选取的气体流速由下式求得: =i d 8.1821 ?? ? ??u q v 式中,i d 为管道内径(mm );v q 为气体容积流量(h m 3);u 为管内气体平均流速(s m ),下表中给出压缩空气的平均流速取值范围。 管内平均流速推荐值 1m 内的管路或管路附件——冷却器、净化设备、压力容器等的进出口处,有安装尺寸的限制,可适当提高瞬间气体流速。 例1:2台WJF-1.5/30及2台H-6S 型空压机共同使用一根排气管路,计算此排气管路内径。 已知WJF-1.5/30型空压机排气量为1.5 m 3/min 排气压力为3.0 MPa 已知H-6S 型空压机排气量为0.6 m 3/min 排气压力为3.0 MPa 4台空压机合计排气量v q =1.5×2+0.6×2=4.2 m 3/min =252 m 3/h 如上表所示u=6 m/s 带入上述公式=i d 8.1821??? ??u q v =i d 8.1821 6252??? ??=121.8 mm 得出管路内径为121mm 。

B.管壁厚度:管壁厚度δ取决于管道内气体压力。 a.低压管道,可采用碳钢、合金钢焊接钢管;中压管道,通常采用碳钢、合金钢无缝钢管。其壁厚可近似按薄壁圆筒公式计算: min δ= []c np npd i +-?σ2 式中,p 为管内气体压力(MPa );n 为强度安全系数5.25.1~=n ,取[σ]为管材的许用应力(MPa ),常用管材许用应力值列于下表;?为焊缝系数,无缝钢管?=1,直缝焊接钢管?=0.8;c 为附加壁厚(包括:壁厚偏差、腐蚀裕度、加工减薄量),为简便起见,通常当δ>6mm 时,c ≈0.18δ;当δ≤6mm 时,c =1mm 。 当管子被弯曲时,管壁应适当增加厚度,可取 'δ=R d 20δ δ+ 式中,0d 为管道外径;R 为管道弯曲半径。 b.高压管道的壁厚,应查阅相关专业资料进行计算,在此不做叙述。 常用管材许用应力 例2: 算出例1中排气管路的厚度。管路材料为20#钢 公式 min δ=[]c np npd i +-?σ2中 n=2 , p=3.0 MPa , i d =121 如上表20#钢150o C 时的许用应力为131,即σ=131 ?=1 , C =1 带入公式 min δ=[]c np npd i +-?σ2=1321131212132+?-????=3.8 mm 管路厚度取4 mm

供热管网各参数计算常用公式

供热管网各参数计算 常用公式

供热管网各参数常用计算公式 1比摩阻R (P/m )——集中供热手册P 196 R = 6.25×10-2×52d G ρλ 其中:λ—— 管道摩擦系数(查动力管道手册P345页) λ= 1/(1.14+2×log K d )2 G —— 介质质量流量(t/h ) 或:R=d 22 λρν=6.88×10-3×25.525 .02d K G ρ ρ—— 流体介质密度(kg/m 3) d —— 管道内径(m ) K ——管内壁当量绝对粗糙度(m ) 2、管道压力降△P (MPa ) △P = 1.15R (L+∑Lg )×10-6 其中:L —— 管道长度(m ) ∑Lg ——管道附件当量长度(m ) 3、管道单位长度热损q (W/m ) q = 其中:T 0 —— 介质温度(℃) λ1 —— 内层保温材料导热系数(W/m.℃) λ2 —— 外层保温材料导热系数(W/m.℃) D 0 —— 管道外径(m ) D 1 —— 内保温层外径(m ) D 2 —— 外保温层外径(m ) α—— 外表面散热系数[α=1.163×(10+6?)] ?—— 环境平均风速。预算时可取α=11.63 Ln —— 自然对数底 4、末端温度T ed (℃) 2122011012121)16(D D D Ln D D Ln T αλλπ++-

T ed = T 0 - GC L L q g 310)(-?+ 其中:T 0 —— 始端温度(℃) L —— 管道长度(m ) Lg —— 管道附件当量长度(m ) G —— 介质质量流量(t/h ) C —— 介质定容比热(kj / kg.℃) 5、保温结构外表面温度T s (℃) T s = T a + α π2D q 其中:Ta ——环境温度(南方可取Ta =16℃) 6、管道冷凝水量(仅适用于饱和蒸汽)G C (t/h ) G C = γ3 106.3-?qL 其中:γ——介质汽化潜热(kj / kg ) 7、保温材料使用温度下的导热系数λt (W/m.℃) λt =λo +2 )(B A T T K + 其中:λo ——保温材料常态导热系数 T A —— 保温层内侧温度(℃) T B —— 保温层外侧温度(℃) K —— 保温材料热变系数 超细玻璃棉K=0.00017 硅酸铝纤维K=0.0002 8、管道直径选择d (mm ) 按质量流量计算:d = 594.5 ωρG 按体积流量计算:d = 18.8ωνG 按允许单位比摩阻计算:d = 0.0364×52 R G ?νλ 其中:G —— 介质质量流量(t/h ) G v —— 介质体积流量(m 3/h ) ω —— 介质流速(m/s ) ρ —— 介质密度(kg/m 3)

压实度计算公式

公式:压实度=试样干密度/标准干密度*100% 压实度又称夯实度,指的是土或其他筑路材料压实后的干密度与标准最大干密度之比,以百分率表示,压实度的测定主要包括室内标准密度(最大干密度)确定和现场密度试验。 压实度是路基路面施工质量检测的关键指标之一,表征现场压实后的密度状况,压实度越高,密度越大,材料整体性能越好。对于路基、路面半刚性基层及粒料类柔性基层而言,压实度是指工地上实际达到的干密度与室内标准击实实验所得最大干密度的比值;对沥青面层、沥青稳定基层而言,压实度是指现场达到的密度与室内标准密度的比值。 压实度是填土工程的质量控制指标,计算方法为: 1.先根据现场试验测得的湿密度和试验室测定的含水率求出的现场实际干密度,此为试样干密度,设为A密度。 2.然后由击实试验后所得的试样最大干密度,设为B密度。 3.实际压实度=A/B,用此数与标准规定的压实度比较,即可知道土的压实程度是否达到了质量标准。

简而言之,压实度=工地试件干密度/最大干密度(100%) 【压实度的概念】: 压实度又称夯实度,指的是土或其他筑路材料压实后的干密度与标准最大干密度之比,以百分率表示压实度的测定主要包括室内标准密度(最大干密度)确定和现场密度试验。 压实度是路基路面施工质量检测的关键指标之一,表征现场压实后的密度状况,压实度越高,密度越大,材料整体性能越好。对于路基、路面半刚性基层及粒料类柔性基层而言,压实度是指工地上实际达到的干密度与室内标准击实实验所得最大干密度的比值;对沥青面层、沥青稳定基层而言,压实度是指现场达到的密度与室内标准密度的比值。 【压实度检测方法】: 1、挖坑灌砂法 挖坑灌砂法是检测压实度最常用的试验方法之一,本方法适用于在现场测定基层(或者底基层)、砂石路面以及路基土的各种材料压实层

压实度计算公式

压实度计算公式 压实度是路基路面施工质量检测的关键指标之一,也是路基路面施工质量检查主控项目之一。表征现场压实后的密实状况,压实度越高,密实度越大,材料整体性能越好。而到底压实度是怎么计算的,又有哪些试验方法呢,下面一起来看看吧。 1、压实度计算 压实度又称压实系数。对于路基与路面基层:压实度是指工地实际达到的干密度与室内标准击实试验所得的最大干密度的比值,用百分率来表示; 对于沥青路面:现场实际达到的密度与标准密度的比值,用百分率来表示。 表达式: 压实度=现场密度/(室内最大干密度或标准密度)×100 从表达式中可以看出,要求压实度,就是要分别测出分子与分母值,再计算出比值。因此,测定压实度过程实际上是测定现场密度和室内最大干密度或标准密度的过程。 2、压实度检测方法 国内外大量研究表明,压实不足和压实均匀性不佳是造成沥青路面发生损坏的主要原因之一。统计表明,压实度每增加1%,路面承载能力相应的提高10%-15%,而压实的费用仅占总投资的1%-4%,所以,有效的压实是提高路面质量有效且经济的方法。 压实度作为公路施工与验收中反映施工质量的一项重要性能指标,其检测方法也受到广泛的关注并不断的发展。传统检测压实质量的方法主要包括:灌砂法、水袋法、环刀法、蜡封法、核子仪、无核密度仪、振动检测等。这些方法都不能

用于在线检测,价格昂贵,劳动量大。特别是核子密实度仪易受外界环境的干扰,且放射性物质对人体有伤害。 3、结语 压实度检测系统通过实时检测被压材料的压实状况,协助判断压实与否,避免欠压和过压,及时发现压实过程中存在的问题并采取相应措施加以解决,大大提高了压实质量和效率。随着压实度实时检测系统的不断发展,由它带动的智能化压路机也会持续发展,压实作业将更加高效,工程质量将得到不断提高。

气缸力计算公式

气缸力计算公式 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

气缸推力计算公式 气缸理论出力的计算公式: F:气缸理论输出力(kgf) F′:效率为85%时的输出力(kgf)--(F′=F×85%) D:气缸缸径(mm) P:工作压力(kgf/cm2) 例:直径340mm的气缸,工作压力为3kgf/cm2时,其理论输出力为多少芽输出力是多少 将P、D连接,找出F、F′上的点,得: F=2800kgf;F′=2300kgf 在工程设计时选择气缸缸径,可根据其使用压力和理论推力或拉力的大小,从经验表1-1中查出。 例:有一气缸其使用压力为5kgf/cm2,在气缸推出时其推力为 132kgf,(气缸效率为85%)问:该选择多大的气缸缸径 ●由气缸的推力132kgf和气缸的效率85%,可计算出气缸的理论推力为F=F′/85%=155(kgf) ●由使用压力5kgf/cm2和气缸的理论推力,查出选择缸径为63的气缸便可满足使用要求。 2.气缸理论基准速度为u=1920XS/A (mm/s).其中S为排气回路的合成有效面积,A为排气侧活塞的有效面积. 、耗气量:气缸往复一个行程的情况下,气缸以及缸与换向阀之间的配管内所消耗的空气量(标准大气压状态下) 2、最大耗气率:气缸活塞以最大速度运动时,单位时间内所消耗的空气量(标准大气压状态下)

气缸的最大耗气量: Q=活塞面积 x 活塞的速度 x 绝对压力通常用的公式是: Q=2v(p+) Q------标准状态下的气缸最大耗气量(L/min) D------气缸的缸径(cm) v------气缸的最大速度(mm/s) p------使用压力(MPa)气缸耗气量及气管流量计算方法

流量与管径、压力、流速之间关系计算公式

流量与管径、压力、流速的一般关系 一般工程上计算时,水管路,压力常见为0.1--0.6MPa,水在水管中流速在1--3米/秒,常取1.5米/秒。 流量=管截面积X流速=0.002827X管内径的平方X流速(立方米/小时)。 其中,管内径单位:mm ,流速单位:米/秒,饱和蒸汽的公式与水相同,只是流速一般取20--40米/秒。 水头损失计算Chezy 公式 这里: Q ——断面水流量(m3/s) C ——Chezy糙率系数(m1/2/s) A ——断面面积(m2) R ——水力半径(m) S ——水力坡度(m/m) 根据需要也可以变换为其它表示方法: Darcy-Weisbach公式

由于 这里: h f——沿程水头损失(mm3/s) f ——Darcy-Weisbach水头损失系数(无量纲) l ——管道长度(m) d ——管道内径(mm) v ——管道流速(m/s) g ——重力加速度(m/s2) 水力计算是输配水管道设计的核心,其实质就是在保证用户水量、水压安全的条件下,通过水力计算优化设计方案,选择合适的管材和确经济管径。输配水管道水力计算包含沿程水头损失和局部水头损失,而局部水头损失一般仅为沿程水头损失的5~10%,因此本文主要研究、探讨管道沿程水头损失的计算方法。 1.1 管道常用沿程水头损失计算公式及适用条件 管道沿程水头损失是水流摩阻做功消耗的能量,不同的水流流态,遵循不同的规律,计算方法也不一样。输配水管道水流流态都处在紊流区,紊流区水流的阻力是水的粘滞力及水流速度与压强脉动的结果。紊流又根据阻力特征划分为

水力光滑区、过渡区、粗糙区。管道沿程水头损失计算公式都有适用范围和条件,一般都以水流阻力特征区划分。 水流阻力特征区的判别方法,工程设计宜采用数值做为判别式,目前国内管道经常采用的沿程水头损失水力计算公式及相应的摩阻力系数,按照水流阻力特征区划分如表1。 沿程水头损失水力计算公式和摩阻系数表1

管道承压计算公式

管道承压计算公式 一、根据设计压力计算壁厚 参照规范GB50316-2000<工业金属管道设计规范>计算公式P44,当直管计算厚度S1小于管子外径D 的1/6时,按照下面公式计算 公式1 S1= ) ]([21PY E PD +σ 公式2 S=S1+C1+C2 二、根据壁厚简单计算管道承受压力校核验算 公式1 P=S D ES +2)]([2σ

阀门磅级,MPA, BAR, PSI和公斤的含义和换算 阀门磅级,MPA, BAR, PSI和公斤的含义和换算 class 150 300 400 600 800 900 1500 2500 LB Mpa 1.6-2.0 2.5-5.0 6.3 10.0 13.0 15.0 25.0 42.0 MPA 150LB对应1.6-2.0MPa,300LB对应2.5-5.0MPa,400LB对应6.3MPa,600LB对应10MPa,800LB对应13MPa,900LB对应15MPa,1500LB对应25MPa,2500LB对应42MPa 我通常所用的PN,CLass,都是压力的一种表示方法,所不同的是,它们所代表承受的压力对应参照温度不同,PN欧洲体系是指在120℃下所对应的压力,而CLass美标是指在425.5℃下所对应的压力。所以在工程互换中不能只单纯的进行压力换算,如CLass300#单纯用压力换算应是2.1MPa,但如果考虑到使用温度的话,它所对应的压力就升高了,根据材料的温度耐压试验测定相当于5.0MPa。 阀门的体系有2种:一种是德国(包括我国)为代表的以常温下(我国是100度、德国是120度)的许用工作压力为基准的“公称压力”体系。一种是美国为代表的以某个温度下的许用工作压力为代表的“温度压力体系” 美国的温度压力体系中,除150LB以260度为基准外,其他各级均以454度为基准。 150磅级(150psi=1MPa)的25号碳钢阀门在260度时候,许用应力为1MPa,而在常温下的许用应力要比1MPa大得多,大约是2.0MPa。 所以,一般说美标150LB对应的公称压力等级为2.0MPa,300LB对应的公称压力等级为5.0MPa等等。因此,不能随便按照压力变换公式来变换公称压力和温压等级。 PN是一个用数字表示的与压力有关的代号,是提供参考用的一个方便的圆整数,PN是近似于折合常温的耐压MPa数,是国内阀门通常所使用的公称压力。对碳钢阀体的控制阀,指在200℃以下应用时允许的最大工作压力;对铸铁阀体,指在120℃以下应用时允许的最大工作压力;对不锈钢阀体的控制阀,指在250℃以下应用时允许的最大工作压力。当工作温度升高时,阀体的耐压会降低。 美标阀门以磅级为表示公称压力,磅级是对于某一种金属的结合温度和压力的计算结果,他根据ANSI B16.34的标准来计算。磅级与公称压力不是一一对应的主要原因是磅级与公称压力的温度基准不同。我们通常使用软件来计算,但是也要懂得使用表格来查磅级。日本主要用K值表示压力等级。 对于气体的压力,在中国,我们一般更常用其质量单位“公斤”描述(而不是“斤”),单位kg。其对应的压强单位是“kg/cm2”,一公斤压力就是一公斤的力作用在一个平方厘米上。 同样,相对应于国外,对于气体的压力,常用的压强单位是“psi”,单位是“1 pound/inch2”, 就是“磅/平方英寸”,英文全称为Pounds per square inch。但是更常用的是直接称呼其质量单位,即磅(LB.),实际这LB.就是前面提到的磅力。把所有的单位换成公制单位就可以算出: 1 psi=1磅/inch 2 ≈0.068bar,1 bar≈14.5psi≈0.1MPa,欧美等国家习惯使用psi作单位。 在Class600和Class1500中对应欧标和美标有两个不同数值, 11MPa(对应600磅级)是欧洲体系规定,这是在《ISO 7005-1-1992 Steel Flanges》里面的规定;10MPa(对应600磅级)是美洲体系规定,这是在ASME B16.5里面的规定。 因此不能绝对地说600磅级对应的就是11MPa或者10MPa,不同体系的规定是不同的。 阀门的体系主要有2种:一种是德国(包括我国)为代表的以常温下(我国是100度、德国是120

压实度计算公式

1.压实度计算公式定义 压实密度,锂离子动力电池在制作过程中,压实密度对电池性能有较大的影响。通过实验证明,压实密度与片比容量,效率,内阻,以及电池循环性能有密切的关系。找出最佳压实密度对电池设计很重要。一般来说,压实密度越大,电池的容量就能做的越高,所以压实密度也被看做材料能量密度的参考指标之一。压实密度不光和颗粒的大小、密度有关系,还和粒子的级配有关系,压实密度大的一般都有很好的粒子正态分布。可以认为,工艺条件一定的条件下,压实密度越大,电池的容量越高。 2.压实密度计算方式 压实密度的计算公式:压实密度=面密度/材料的厚度 在锂离子电池设计过程中,压实密度=面密度/(极片碾压后的厚度—集流体厚度) ,单位:g/cm3 压实密度分为:负极压实密度Anode density(或称为阳极压实密度)和正极压实密度Cathode density(或称为阴极压实密度)。 3. 压实密度制作原理: 锂离子动力电池在制作过程中,压实密度对电池性能有较大的影响。通过实验证明,压实密度与片比容量,效率,内阻,以及电池循环性能有密切的关系。找出最佳压实密度对电池设计很重要。一般来说,压实密度越大,电池的容量就能做的越高,所以压实密度也被看

做材料能量密度的参考指标之一。压实密度不光和颗粒的大小、密度有关系,还和粒子的级配有关系,压实密度大的一般都有很好的粒子正态分布。可以认为,工艺条件一定的条件下,压实密度越大,电池的容量越高。 实验得出以下结论:合适的正极压实密度可以增大电池的放电容量,减小内阻,减小极化损失,延长电池的循环寿命,提高锂离子电池的利用率。在压实密度过大或过小时,不利于锂离子的嵌入嵌出。 现在常用的正极材料(钴酸锂、锰酸锂、磷酸铁锂、三元材料等)和负极材料(人造石墨、天然石墨、复合石墨等),由于材质不同,压实密度也有较大的差别。

螺旋桨推力计算模型

螺旋桨推力计算模型 根据船舶原理知:4 2 D n K T T ρ=(T K 为螺旋桨的淌水特性) 通过资料查得:T K 为进速系数J 的二次多项式,但无具体的公式表示,只能通过图谱查得,同时t K K T T -= 10(0T K 为淌水桨在相同的转速情况下以速度为V A 运动时的推力、进速系数 nD W U nD V J P A p ) 1(-= = ) 估算推力减额分数的近似公式: 1. 汉克歇尔公式: 对于单螺旋桨标准型商船(C B =0.54~0.84) t=0.50Cp-0.12 对于单螺旋桨渔船: t=0.77Cp-0.30 对于双螺旋桨标准型商船(C B =0.54~0.84) t=0.50Cp-0.18 2. 商赫公式 对于单桨船 t=KW 式中:K 为系数 K=0.50~0.70 适用于装有流线型舵或反映舵者 K=0.70~0.90 适用于装有方形舵柱之双板舵者 K=0.90~1.5 适用于装单板舵者 对于双螺旋桨船采用轴包架者:t=0.25w+0.14 对于双螺旋桨船采用轴支架者:t=0.7w+0.06 3. 哥铁保公式 对于单螺旋桨标准型商船(C B =0.6~0.85) P B WP B C C C C t ??? ? ? ?+-=5.13.257.1 对于双螺旋桨标准型商船(C B =0.6~0.85) B WP B C C C t 5.13.267.1+-= 4. 霍尔特洛泼公式 对于单螺旋桨船 stern P C BT D C BC B L t 0015.0)/(1418.0000524.00585.1)/(001979.02101+--+-=式中:10C 的定义如下: 当L/B>5.2 L B C /10= 当L/B<5.2 )134615385.0//(003328402.025.010--=L B C 对于双螺旋桨船: BT D C t B / 1885.0325.0-=

管道通过能力的实用计算公式及其选择

天然气由气田或气体处理厂进入输气干线,其流量和压力是稳定的。在有压缩机站的长输管道两站间的管段,起点与终点的流量是相同的,压力也是稳定的,即属于稳定流动。长输管道的末段,有时由于城镇用气量的不均衡,要承担城镇日用气量的调峰,则长输管道末段在既输气又储气、供气的条件下,它的起点和终点压力,以及终点流量二十四小时都是不同的,属不稳定流动(流动随时间而变)。天然气的温度在进入输气管时,一般高于(也可能低于)管道埋深处的土壤温度。并且随着起点到终点的压力降,存在焦耳-汤姆逊节流效应产生温降,但由于管道与周围土壤的热传导,随着天然气在管道的输送过程,天然气的温度会缓慢地与输气管道深处的地层温度逐渐平衡。所以天然气在输气干管中流动状态,也不完全是等温过程,为便于理解,我们先给出稳定流动下的水力计算基本公式,再介绍沿线温度分布规律和平均温度。 计算公式随地形条件差异而不同。 在平坦地带,由于气体密度低,对于输气管道任意两点间的相对高差小于200 m的管道,可视为水平输气管段。在稳定输送状态下,管道输送量与管道起、终点压力的函数关系如下: 式中Q——管道标准状态下的体积流量,m3/s; C——常数,按此处所取各参数单位时,C值为··s/kg; p1——计算管段起点压力,Pa; p2——计算管段终点压力,Pa; λ——水力摩阻系数; d——管道内直径,m; L——管道计算段长度,m; △*——天然气相对密度; T——管道中天然气平均温度,K; Z——管输平均压力与平均温度下天然气压缩系数。 在地形起伏较大地带,当输气管道沿线任意两点高差大于200m,位差对输气管道流量的影响就不能忽略不计了。在稳定输送状态下,非水平输气管段的基本流量公式为:

压实度计算方法

压实度计算方法(灌砂法) 1、称取一定量的标准砂重m千克 2、称取土的重量m1千克 3、称取剩余砂的重量m2千克 4、试坑内实际消耗砂重M=m- m2- m3 (m3圆锥体砂重) 5、试坑体积V=M/P砂(P砂为标准砂的密度),则V即为土的体积 6、试样土的密度为P土湿= m1/V ( g/cm3) 7、求出试样土含水量W水(称取30~40克湿试样土,烧干后再称取重量,土中水的重量与干后土的重量比用百分数表示) 8、求试样干密度P干=P土湿/1+W水(1+W水通常用湿试样土重与干后土重之比求得) 9、压实度是干密度与最大干密度(试验求得)之比用百分数表示K=P干*100%/P大 10、例:灌砂筒与原有砂重为4000克,圆锥体内砂重为270克,灌沙筒与剩余砂重m2=2720克,量砂密度为1.42g/cm3,试坑内湿试样重1460克,求压实度。(称取30克试样,用酒精烧两遍后称重量为25.9克,P大为1.89g/ cm3) 解:M=4000-2720-270=1010克V=M/ P砂=1010/1.42=711.3 cm3 P土湿= m1/V=1460/711.3=2.05 g/ cm3 W水=(30-25.9)*100%/25.9=15.8% 1+ W水=30/25.9=1.158 P干=P土湿/1+W水=2.05/1.158=1.77 g/ cm3 压实度K= P干*100%/P大=1.77*100%/1.89=93.7% 压实度计算方法(环刀法) 一、环刀法适用于细粒土,所需仪器、设备为: 1、环刀:内径6~8cm 高2~3cm 2、天平:称量500g 感量0.1g ; 称量200g 感量0.01g 3、其它:切土刀、钢丝锯、凡士林、小铁锤 二、操作步骤: 1、测出环刀的容积V,在天平上称出环刀质量。 2、按工程需要取原状土或人工制备所需要求的扰动土样,其直径和高度应大于环刀的尺寸,整平两端放在玻璃板上。 3、将环刀的刀口向下放在土样上面,然后用手或小铁锤将环刀垂直下压,边压边削使之土样上端伸满环刀为止,削去两端余土修平,两端盖上平滑的园玻璃片,以免水分蒸发。 4、擦净环刀外壁,拿去玻璃片,称取环刀加土的质量,准确至0.1g 三、注意事项: 1、密度试验应进行2次平行测定,两次测定的差值不得大于0.03g/cm3,取两次试验结果的算术平均值。 2、密度计算准确至0.01 g/cm3。 四、计算公式: 1、湿密度ρ0: ρ0=g/v=g1-g0/V (计算至0.01 g/cm3) 式中:ρ0---湿密度(g/cm3) g---土的质量(g) V ---环刀的体积(cm3) g1---环刀加土的质量(g) g0---环刀质量(g) 2、干密度ρ干ρ干= g0/1+ W水 式中:ρ干---干密度g0---湿密度W水---土的含水率(%) 计算与灌砂法相同

管道设计计算公式(流速规定、泵的选用)

1流速与管径计算公式 水流速度取0.7 m/s,则管径计算值如下: D= 4×Q 3600×π×V = 4×6000 3600×3.14×0.7 =174 mm 空气管道的流速,一般规定为:干、支管为10~15m/s,通向空气扩散装置的竖管、小支管为4~5m/s。 2泵的选型 水管管路的水头损失=沿程水头损失+局部水头损失 沿途水头损失=(λL/d)*V^2/(2g)------------P150(层流、紊流均适用) 局部水头损失=ζ*V^2/(2g) 水管管路的水头损失=沿程水头损失+局部水头损失=(λL/d+ζ)*V^2/(2g) 式中:λ—管道沿途阻力系数;L—管道长度;ζ——局部阻力系数,有多个局部阻力系数,则要相加;d—管道内径, g—重力加速度,V—管内断面平均流速。沿途阻力系数λ和局部阻力系数ζ都可查水力学手册。 λ=64/Re 仅适用于圆管层流。对于紊流,由于运动的复杂性,其规律主要由试验确定,但可在理论上给以某些阐述。P171

沿程水头损失 (1)层流区Re<2320(即lgRe<3.36)λ=64/Re (2)层流转变为紊流过渡区2320<Re<4000(即3.36<lgRe<3.6),试验点散乱,流动情况比较复杂且范围不大,一般不作详细分析。 (3)紊流区Re>4000(即lgRe>3.6)分为紊流光滑区、紊流过渡区、紊流粗糙区。 ①紊流光滑区:不同相对粗糙度△/d试验点均落在直线cd上,说明λ与△/d无关。和层流情况相类似,λ值也仅仅与Re有关。可表示为λ=(Re),但与层流区所遵循的函数关系不同。

②紊流粗糙区:分界线ef右方,λ与Re无关,仅与△/d有关,可表示为λ=(△/d) ③紊流过度粗糙区λ=(△/d,Re)

管道承压计算公式

管道承压计算公式 无锡灏艺合金制品有限公司 一、根据设计压力计算壁厚 参照规范GB50316-2000<工业金属管道设计规范>计算公式P44,当直 管计算厚度S1小于管子外径D 的1/6时,按照下面公式计算 公式1 S1=) ]([21PY E PD +σ 公式2 S=S1+C1+C2

二、根据壁厚简单计算管道承受压力校核验算 公式1 P=S D ES +2)]([2σ 阀门磅级,MPA, BAR, PSI 和公斤的含义和换算 阀门磅级,MPA, BAR, PSI 和公斤的含义和换算 class 150 300 400 600 800 900 Mpa MPA 150LB 对应,300LB 对应,400LB 对应,600LB 对应10MPa ,800LB 对应13MPa ,900LB 对应15MP

对应42MPa 我通常所用的PN,CLass,都是压力的一种表示方法,所不同的是,它们所代表承受的压力对系是指在120℃下所对应的压力,而CLass美标是指在℃下所对应的压力。所以在工程互换中如CLass300#单纯用压力换算应是,但如果考虑到使用温度的话,它所对应的压力就升高了定相当于。 阀门的体系有2种:一种是德国(包括我国)为代表的以常温下(我国是100度、德国是12的“公称压力”体系。一种是美国为代表的以某个温度下的许用工作压力为代表的“温度压美国的温度压力体系中,除150LB以260度为基准外,其他各级均以454度为基准。 150磅级(150psi=1MPa)的25号碳钢阀门在260度时候,许用应力为1MPa,而在常温下的许约是。 所以,一般说美标150LB对应的公称压力等级为,300LB对应的公称压力等级为等等。 因此,不能随便按照压力变换公式来变换公称压力和温压等级。 PN是一个用数字表示的与压力有关的代号,是提供参考用的一个方便的圆整数,PN是近似于内阀门通常所使用的公称压力。对碳钢阀体的控制阀,指在200℃以下应用时允许的最大工作以下应用时允许的最大工作压力;对不锈钢阀体的控制阀,指在250℃以下应用时允许的最

灰土及回填土压实系数计算公式

灰土及回填土压实系数计算公式 环刀取样中,环刀法主要用来测定灰土的压实度或者说压实系数, 1、实际含水率计算公式:称湿土,记录数据,然后把土样烘干,记录数据。 湿土质量-干土质量的=水质量,水质量/干土质量*100%=含水率。 实际湿密度计算公式:环刀与土总质量-环刀质量=环刀内湿土质量,湿土质量/环刀体积=湿土密度。环刀体积计算方法:要用尺子测量环刀内径及内高,底面圆的面积*环刀高=环刀内体积。 实际干密度计算公式:干密度=湿密度/(1+含水率)。 压实度计算公式:压实度=实际干密度/该土样最大干密度*100% ,该土样最大干密度是试验室通过对该土样进行击实试验得出的。要想求压实度,首先要做该土样的击实试验。否则,想知道压实情况如何,就只能规定一个最小干密度,小于该最小干密度,为压实不合格。本工程规定:灰土压实系数≥0.96。 最少要压到0.9,一般建筑设计上取0.93。压实系数的意思就是相对理论压实的比例,1就是完全压实(当然这是不可能的)。 垫层压实系数A。为土的控制干密度与最大干密度的比值。可由公式表示:由试验室击实试验确定) 根据的定义:值越大,则土的控制干密度越接近最大干密度表明垫层的压实质量越好;反之,表明垫层的压实质量越差。因此,A的大小,表明了垫层的压实质量。所以A的大小成为灰土垫层的质量检验的一种手段,一般情况下,在地基主要受力层范围以内要求A≥0.97,在地基主要受力层范围以下要求A≥0.95,并且垫层的施工应保证每层A,符合设计要求后方可铺设上层土。 灰土氆层压实系数压实质量 A>1.0 1 灰土垫层A>1.0的实际存在 对于灰土垫层:从理论上讲A一定小于或等于1.0,因为土的控制干密度p。一定小于或等于最大干密度但是,实际上在灰土垫层质量检验的过程中,却存在着部分A>1.0的情况。随机抽取西安地区5项工程灰土垫层的质量检验结果,其A值的分布情况统计于表1。 表1的数据显示:无论灰土垫层A,值满足或不满足设计要求的情况下,部分A值均有可能大于1.0。而且即使有一部分A>1.0,A值仍然小于设计要求,灰土垫层的压实质量仍然较差。 因此,在灰土垫层质量检验中若出现A>1.0,并不意味灰土的压实质量就好。那么,在灰土垫层的质量检验过程中,怎样分析导致A>1.0的具体原因,正确评价灰土垫层压实质量的好坏呢我们应当明确影响灰土垫层A值主要因素,分析导致A>1.0具体原因,“对症下药”综合判断灰土垫层的压实质量。 2 影响灰土垫层值大小的几个因素 为土的控制干密度与最大干密度的比值。归纳起来,影响灰土垫层值大小的因素有下面几个。 (1) 同时影响大小的因素:灰土垫层的材料及配合比,同时影响着土的控制干密度大小。灰土垫层使用的材料(灰、土)不同。的大小就不相同。使用的材料重度越大,就越大,反之越小。其中土的影响程度较大,灰的影响程度较小。灰土的配合比不同的大小也不相同。灰土的配合比越小,由于土比灰重,就越大,反之越小。例如其他条件相同时,1:9灰土的肯定大于3:7灰土的。 (2)影响大小的因素:灰土垫层分层铺设、碾压,压实厚度一般介于15~20cm之间,垫层每一层随着深度的增加,压实的能量越小,压实质量相对越差。因此测定的环刀取样点离垫层每一层顶面越近,A的值就越大,反之越小。 (3)影响大小的因素:A是由试验室击实试验确定的,不同的击实能量,试验得出不同,击实能量越大,相应的越大。因此,在击实试验上按击实能量,规定了轻型击实试验和重型击实试验两种,并规定了相应的试验方法,其得出的也不相同。 (4)其他一些影响因素:A值还受着其他因素的影响。例如灰土垫层铺设完成的时间对的影响,击实试验的击实速率、试验误差对|p。的影响,人为因素对和的影响等,相对而言,这些影响较小。 3 导致灰土垫层A>1.0的原因

各种管道水头损失简便计算公式

各种管道水头损失的简便计算公式 (879) 摘要:从计算水头损失的最根本公式出发,将各种管道的计算公式加以推导,得出了计算水头损失的简便公式,使得管道工程设计人员从繁琐的计算中解脱出来,提高了工作效率。 关键词:水头损失塑料管钢管铸铁管混凝土管钢筋混凝土管 在给水工程应用中经常要用到水头损失的计算公式,一般情况下计算水头损失都是从水力摩阻系数λ等基本参数出发,一步一步的代入计算。其实各个公式之间是有一定的联系的,有的参数在计算当中可以抵消。如果公式中只剩下流速、流量、管径这些基本参数,那么就会给计算者省去不少的麻烦。在此我们充分利用了各参数之间以及水头损失与水温的关系,将公式整理简化,供大家参考。 1、PVC-U、PE的水头损失计算 根据《埋地硬聚氯乙烯给水管道工程技术规程》规定,塑料管道沿程水头损失hf应按下式计算: (式1-1) 式中λ—水力摩阻系数; L—管段长度(m); di—管道内径(m);

v—平均流速(m/s); g—重力加速度,9.81m/s2。 因考虑到在通常的流速条件下,常用热塑性塑料给水管PVC-U、PE管一般处于水力光滑区,管壁绝对当量粗糙度对结果的影响非常小或没有影响,故水力摩阻系数λ可按下式计算: (式1-2) 式中Re—雷诺数。 雷诺数Re应按下式计算: (式1-3) 式中γ—水的运动粘滞度(m3/s),在不同温度时可按表1采用。 表1水在不同温度时的γ值(×10-6) 05101520253040 水温℃ 1.78 1.52 1.31 1.14 1.000.890.80 0.66

γ(m3/s) 从前面的计算可知,若要计算水头损失,需将表1中的数据代入,并逐步计算,最少需要3个公式,计算较为繁琐。为将公式和计算简化,以减少工作量,特推导如下: 因具体工程水温的变化较大,水力计算中通常按照基准温度计算,然后根据具体情况,决定是否进行校正。冷水管的基准温度多选择10℃。 当水温为10℃时的γ=1.31×10-6 m3/s,代入式1-3 得(式1-4) 将式1-4代入式1-2 (式1-5) 再将式1-5代入式1-1 得 (式1-6) 取L为单位长度时,hf即等同于单位长度的水头损失i,所以 (式1-7)

压实度计算方法

压实度计算方法(灌砂法) 1、称取一定量的标准砂重m千克 2、称取土的重量m1千克 3、称取剩余砂的重量m2千克 4、试坑内实际消耗砂重M=m- m2- m3 (m3圆锥体砂重) 5、试坑体积V=M/P砂(P砂为标准砂的密度),则V即为土的体积 6、试样土的密度为P土湿= m1/V ( g/cm3) 7、求出试样土含水量W水(称取30~40克湿试样土,烧干后再称 取重量,土中水的重量与干后土的重量比用百分数表示) 8、求试样干密度P干=P土湿/1+W水(1+W水通常用湿试样土重与干 后土重之比求得) 9、压实度是干密度与最大干密度(试验求得)之比用百分数表示 K=P干*100%/P大 10、例:灌砂筒与原有砂重为4000克,圆锥体内砂重为270克,灌 沙筒与剩余砂重m2=2720克,量砂密度为1.42g/cm3,试坑内湿试样重1460克,求压实度。(称取30克试样,用酒精烧两遍后称重量为25.9克,P大为1.89g/ cm3) 解:M=4000-2720-270=1010克V=M/ P砂=1010/1.42=711.3 cm3 P土湿= m1/V=1460/711.3=2.05 g/ cm3 W水=(30-25.9)*100/25.9=15.8% 1+ W水=30/25.9=1.158 P干=P土湿/1+W水=2.05/1.158=1.77 g/ cm3 压实度K= P干*100%/P大=1.77*100%/1.89=93.7%

一.化验白灰滴定液配制 1.钙红0.2g,硫酸钾20g。(硫酸钾用微波炉加热105℃/小时) 研磨 2.乙二胺四乙酸二钠37.26g兑1000ml蒸馏水(EDTA) 3.三乙醇胺2ml兑蒸馏水1000ml和氢氧化钠18g。 4.氯化铵500g兑蒸馏水4500ml. 二.实验步骤 1.取100g土和200ml氯化铵搅拌沉淀30分钟。 2.取50ml氢氧化钠放入锥体瓶内,然后用吸管吸入10ml氯化 铵。 3.滴入钙红,变红为止。 4.取(EDTA)50ml装入滴管,滴入锥体瓶内由红变蓝为止。 5.试管内剩余(EDFA)量符合给定值时,石灰含量合格。三.压实度法求石灰量。 1.压实度*最大干密度*长度*宽度*厚度*石灰剂量/1+石灰剂 量。 例:压实度为93%,最大干密度1.78 g/cm3,宽为7m,厚为0.16m,石灰10%求1m需石灰量T。 0.93*1.78*1*7*0.16*0.1/1+0.1=0.169T

污水管道系统设计计算公式

1.生活污水量 Q1= n?N?K z Q1---居民生活污水设计流量,L/s; n---居民生活污水量定额,L/(cap·d) N---设计人口数, cap; K z---生活污水量总变化系数。 2.设计人口数 N=ρ?F N---设计人口数,cap; ρ---人口密度,cap/h m2 F---居住面积,h m2 cap---“人”的计量单位。 3.工业企业生活污水和淋浴污水设计流量 Q3=A1B1K1+A2B2K2 3600T + C1D1+C2D2 3600 Q3---工业企业生活污水和淋浴污水设计流量, L/s; A1---一般车间最大班职工人数,cap; B1---一般车间职工生活污水定额,以25L/(cap·班)计; K1---一般车间生活污水量时变化系数,以3.0计; A2---热车间和污染严重车间最大班职工人数,cap; B2---热车间和污染严重车间职工生活污水量定额,以35L/(cap·班)计;K2---热车间和污染严重车间生活污水量时变化系数,以2.5计; C1---一般车间最大班使用淋浴的职工人数,cap; D1---一般车间的淋浴污水量定额,以40L/(cap·班)计; C2---热车间和污水严重车间最大班使用淋浴的职工人数,cap;

D2---热车间和污水严重车间的淋浴污水量定额,以60L/(cap·班)计;T---每工作班工作时数,h。 4.工业废水设计流量 Q4=m·M·K z 3600T Q4---工业废水设计流量,L/s; m---生产过程中每单位产品的废水量定额,L/单位产品;M---产品的平均日产量,单位产品/d; T---每日生产时数,h; K z---总变数系数。

相关文档
最新文档