基于pscad的双馈风力发电系统的建模与仿真

基于pscad的双馈风力发电系统的建模与仿真
基于pscad的双馈风力发电系统的建模与仿真

风力发电机组监测与控制

课程设计说明书

基于PSCAD 的双馈风力发电

系统的建模与仿真

专业 新能源科学与工程

学生姓名 李坤

班级 能源111

学号 1110604120

指导教师 张兰红

完成日期

2015年 1 月 10 日

摘要

电力是国家的支柱能源和工业经济命脉,经济的飞速发展而导致用电量的急剧增加和国内各大型电厂的建设投产将出现大规模的联合供电系统,这样的供电系统的建立将带来巨大的经济和社会效益,但是,如何保证系统安全、稳定、经济的运行以及保障供电质量是摆在电力科技人员面前的一个重大而迫切的问题。

本论文首先介绍了STATCOM具体的工作原理,对STATCOM的电路结构及其无功补偿的原理进行了分析。然后,通过数学推导建立了STATCOM在abc坐标系以及dq0坐标系下的数学模型,并叙述了本文所采用的常规矢量控制策略的具体控制方法。

分析了双馈型风电场接入输电系统后的暂态特性以及对电力系统暂态稳定性的影响。基于PSCAD仿真平台建立了风力机模型和双馈型发电机组的动态数学模型,在换流器建模方面,转子侧换流器的矢量控制实现了有功功率和无功功率的解耦控制,网络侧换流器的矢量控制实现了直流母线电压保持恒定以及调节输入系统的无功功率。

关键词:风电场;双馈型发电机;暂态稳定;

目录

目录 (1)

1 引言 (2)

2 PSCAD软件简介 (3)

3 PSCAD样例说明 (4)

3.1 STATCOM功能与工作原理分析 (4)

3.2 STATCOM仿真模型的建立过程 (8)

3.3 STATCOM仿真结果分析 (12)

4.1 双馈风力发电机工作原理与控制方法 (14)

4.1.1定子磁链定向矢量控制 (19)

4.1.2 定子磁链观测 (23)

4.2 双馈风力发电机仿真模型的建立 (24)

4.3 双馈风力发电机仿真结果分析 (29)

5 仿真过程中遇到的问题及解决的方法 (33)

6 结论 (35)

7 参考文献 (36)

附录 (37)

附录1:STATCOM原理图 (37)

附录2:STATCOM仿真电路图 (37)

附录3:双馈风力发电机原理图 (38)

附录4:双馈风力发电机仿真电路图 (38)

1 引言

电力是国家的支柱能源和工业经济命脉,经济的飞速发展而导致用电量的急剧增加和国内各大型电厂的建设投产将出现大规模的联合供电系统,这样的供电系统的建立将带来巨大的经济和社会效益,但是,如何保证系统安全、稳定、经济的运行以及保障供电质量是摆在电力科技人员面前的一个重大而迫切的问题。由于配电网结构、运行变化等原因,我国配电网损耗、电压合格率等技术指标与发达国家相比有很大差距,由于电压不合格等原因造成用户电器烧毁的现象仍然存在,而网损过高使得生产的宝贵电能白白浪费,而且影响电力企业的经济效益。

在人们日常生活以及工业生产中,感性负载所占据的比例增大,无功功率问题逐渐成为电力系统和电力用户都十分关注的问题,也是近年来各方面关注的热点之一,功率因数也是衡量电能质量三大指标之一,功率因数也是衡量电能质量三大指标之一。容性负载包括计算机、开关电源、电视、输电线路等,虽然所占比例不大,但是对电力系统的影响也不容忽视。输电线路的电感性无功功率小,由于电容效应,输电线路产生的的容性充电功率大于输电线路吸收的电感性无功功率,必须满足电力系统无功平衡的需要,维持电力系统的电压水平,否则电力系统电压过高,将无法保证安全运行。

2 PSCAD软件简介

PSCAD/EMTDC是当前国际上普遍流行的一种电磁暂态分析软件包,它主要用来研究电力系统的暂态过程。该软件包也能适用于一般电气电子线路以及可等价地用电路来描述系统的仿真分析。该软件具有大规模的计算容量、完整而准确的元件模型库、稳定高效的计算内核、友好的界面和良好的开放性等特点。特别是良好的图形用户界面使得用户可通过图形添加的方式来解决一些复杂的电路功能,相对于基于数学模型的Matlab 仿真软件而言,更易于被人们接受。

PSCAD/ EMTDC包括了电路、电力电子、电机等电气工程学科中常用的元件模型,这些元件模型主要分布在以下元件库中:

(1)无源元件库(Passive Elements):集中参数电阻R、电感L 、电容C; 随时间变化的电阻R 、电感L 、电容C等;

(2)电源模块库(Sources Models):各种电压源、电流源和多相谐波源等

(3)变压器模块库(Transformer Models):各种单相、三相变压器;

(4)电机模块库(Machines):电动机、发电机等;

(5)测量仪器库(Meters):单相电压表、电流表、三相电压表( RMS)、瞬时有功功率/ 无功功率表、频率表及相位( 差) 表;

(6)输入、输出模块库(I/O Devices):输入的两状态开关,输出示波器等;

(7)高压直流输电和柔性交流传输模块(HVDC &FACTS):包括二极管、晶闸管、GT O、IGBT及单相桥、三相桥等

(8)控制系统模型库(Control System Modeling Functions):包含91 种交/ 直流控制、数字/ 模拟控制模型;

此外,PSCAD/EMTDC还具有强大的自定义功能,用户可以根据自己的需要创建具有特定功能的电路模块。

3 PSCAD样例说明

3.1 STATCOM功能与工作原理分析

静止同步补偿器(Static Synchronous Compensator, STATCOM),是目前最先进的无功补偿技术,近年来随着电力电子开关技术的进步而逐渐兴起。STATCOM的原理是利用全控型大功率电力电子器件构成可控的电压源或电流源,使其输出电流超前或滞后系统电压90 ,从而对系统所需的无功进行动态补偿。早期有文献称之为静止无功发生器(Static Var Generator, SVG) 。利用电力电子变流器进行无功补偿的可能性虽然早在 20 年前就已经为人们所认识,但限于当时电力电子器件的耐压和功率水平,无法制造出输电系统中具有实用价值的装置。直到近年来,尤其是高压大功率的门极可关断晶闸管GTO的出现,才极大的推动了STATCOM的开发和应用。STATCOM 是并联型FACTS 设备,它同基于可控电抗器和投切电容器的传统静止无功补偿器SVC相比,性能上具有极大的优越性,越来越得到广泛的重视,必将取代 SVC 成为新一代的无功电压控制设备。

从理论上分析,STATCOM的直流侧可以采用电容或者电感两种形式。因此,其基本拓扑结构分为电压源型和电流源型,分别如图 3-1、3-2 所示:

图 3-1 电压源型STA TCOM

图 3-2 电流源型STA TCOM

实际上,目前STATCOM 装置中研究最深入、应用最广泛是电压源型逆变器结构,原因如下:

1、电流源型逆变器的工作原理,需要采用具有对称特性的大功率开关器件,即双向电压阻断能力。而目前常用的可关断器件存在反向阻断能力差、导通损耗过大的问题;相比之下,电压源型逆变器则不会受到该限制。

2、电流源型逆变器直流侧储能电感不具备防止器件过电压的能力,因此需要安装额外的保护电路或者增大取值裕量;相比之下,电压源型逆变器的直流电容本身具备防止功率器件过电压的能力。

3、电流源型逆变器的直流侧储能电抗在工作中会产生比较大的损耗,给装置设计带来困难;而电压源型逆变器的储能电容损耗要小的多。电压源型逆变器具有的以上优势使其成为目前条件下更合理的选择,因此本文主要研究基于电压源型逆变电路的STATCOM。电压源型STATCOM 的工作原理,是通过可控的大功率电力电子开关器件将直流侧电压进行逆变,从而在逆变器交流侧输出一个与电网同频的正弦电压。此时STATCOM 可以视为一个与电网同步的并且灵活控制的交流电压源,其接入系统时的等效电路如图 3-3:

图 3-3 电压源型 STA TCOM 接入系统的等效图

图中U S ?

为 STATCOM 公共接入点(Point of Common Coupling, PCC )处系统电压, U I ?

为 STATCOM 交流侧逆变输出电压,L 为连接电抗器,于是 STATCOM 装置输出的电流为:

进而得到 STATCOM 输出的单相视在功率为:

在理论上,STATCOM 只对无功进行补偿,因此与电网之间不存在有功的往返。然而实际上由于开关损耗以及电容和电抗上等效电阻的存在,STATCOM 装置还是需要从电网吸收很小的有功电流以维持直流侧电压平衡。由于这部分有功相比无功非常微小,因此在进行理论分析的时候一般忽略不计。最后近似认为STATCOM 输出的电压U I ?与电网电压U S ?

相位相同,从而得到装置输出的单相无功功率为:

由以上分析可得,在正常工作时 STATCOM 具有无功双向调节能力:即容性工况和感性工况,分别如下图所示:

图 3-4 容性工况

图 3-5 感性工况

(1) 当U I ?>U S ?

,即 STATCOM 装置交流侧逆变电压幅值大于系统电压幅值,此时流过电抗器的补偿电流超前系统电压90°,STATCOM 装置向系统输出

正的无功功率(Q >0),处于容性工况。

(2) 当U I ?<U S ?

,即 STATCOM 装置交流侧逆变电压幅值小于系统电压幅值,此时电抗器上的补偿电流滞后系统电压90°,STATCOM 装置向系统输出负的无功功率(Q <0),处于感性工况。 综上所述,STATCOM 的工作原理与以往的无功补偿技术存在本质区别。通过对逆变器交流侧电压的幅值和相位进行调控,或者直接对其补偿电流进行跟踪控制,就能够在容性到感性范围内连续调节无功补偿电流,并且做到精确的稳态跟踪准以及快速的动态响应。

3.2 STATCOM仿真模型的建立过程

简单的6-脉冲的静止同步补偿器(STATCOM)

图3-6电压控制与PI控制器

主电路搭建:

交流系统:

电压115kv

短电路500mva

电压控制装置的电压水平,是:

0.78 PU正常条件

0.61 PU故障条件

负载:

电力88mva

功率因数0.884

故障:

3单相接地阻抗的75与X / R比率等于1-发生在1.5秒和0.75秒

图3-7 主电路

图3-8两电平电压型statcom

如图3-9PI调节得到直流侧电流

图3-9 电压控制环

检测算法的实现

如图3-10 3-11

通过PLL模块得到电网电压相角wt

图3-10 三角波形的交流电压的同步发电系统

图3-11 参

考波形的同步系统交流电压和偏移角单相生成

如图3-12PWM0.002。

图3-12 触发脉冲的产生

3.3 STATCOM仿真结果分析

图3-13 为系统仿真主接线图其中仿真参数设置电网电压为115kV,容量为

μ。

100MVA,频率为50HZ,系统等效电阻为0.1Ω,直流侧电容为300F 故障设置在1.5S,三相故障接地,持续时间为0.5S。

图 3-13 仿真主接线图

图3-14 STATCOM无功补偿曲线图

从图3-14可以看出STATCOM可以很好的响应系统,在故障期间发出所需要的无功。

图3-15 STATCOM吸收的有功功率

从图3-15可以看出STATCOM基本不从系统吸收有功,受系统电压源的影响较小。

图3-16 系统的电压变化

从图3-16可以看出STATCOM可以很好的维持系统电压的稳定性

4 双馈风力发电机仿真模型的建立

4.1 双馈风力发电机工作原理与控制方法

设双馈电机的定转子绕组均为对称绕组,电机的极对数为p ,根据旋转磁场理论,当定子对称三相绕组施以对称三相电压,有对称三相电流流过时,会在电机的气隙中形成一个旋转的磁场,这个旋转磁场的转速1n 称为同步转速,它与电网频率1f 及电机的极对数p 的关系如下:

p f n 1160= (4-1)

同样在转子三相对称绕组上通入频率为2f 的三相对称电流,所产生旋转磁场相对于转子本身的旋转速度为:

p f n 2260= (4-2)

由式4-2可知,改变频率2f ,即可改变2n ,而且若改变通入转子三相电流的相序,还可以改变此转子旋转磁场的转向。因此,若设1n 为对应于电网频率为50Hz 时双馈发电机的同步转速,而n 为电机转子本身的旋转速度,则只要维持常数==±12n n n ,见式4-3,则双馈电机定子绕组的感应电势,如同在同步发电机时一样,其频率将始终维持为1f 不变。

常数==±12n n n (4-3) 双馈电机的转差率11n n n S -=

,则双馈电机转子三相绕组内通入的电流频率应为: S f pn f 12260==

(4-4) 公式4-4表明,在异步电机转子以变化的转速转动时,只要在转子的三相对称绕组中通入转差频率(即S f 1)的电流,则在双馈电机的定子绕组中就能产生50Hz 的恒频电势。所以根据上述原理,只要控制好转子电流的频率就可以实现变速恒频发电

了。

根据双馈电机转子转速的变化,双馈发电机可有以下三种运行状态:

1.亚同步运行状态:在此种状态下1n n <,由转差频率为2f 的电流产生的旋转磁场转速2n 与转子的转速方向相同,因此有12n n n =+。

2.超同步运行状态:在此种状态下1n n >,改变通入转子绕组的频率为2f 的电流相序,则其所产生的旋转磁场的转速2n 与转子的转速方向相反,因此有12n n n =-。

3.同步运行状态:在此种状态下1n n =,转差频率02=f ,这表明此时通入转子绕组的电流频率为0,也即直流电流,与普通的同步电机一样。

下面从等效电路的角度分析双馈电机的特性。首先,作如下假定:

1.只考虑定转子的基波分量,忽略谐波分量

2.只考虑定转子空间磁势基波分量

3.忽略磁滞、涡流、铁耗

4.变频电源可为转子提供能满足幅值、频率、功率因数要求的电源,不计其阻抗和损耗。

发电机定子侧电压电流的正方向按发电机惯例,转子侧电压电流的正方向按电动机惯例,电磁转矩与转向相反为正,转差率S 按转子转速小于同步转速为正,参照异步电机的分析方法,可得双馈发电机的等效电路,如图4-1所示:

图4-1 双馈发电机的等值电路图

根据等效电路图,可得双馈发电机的基本方程式:

?????????-=-==???? ??++-=+--=m m m I I I jX I E E jX s R I E s U jX R I E U '21'21'2'2'2'2'211111)()(

(4-5)

式中:

① 1R 、1X 分别为定子侧的电阻和漏抗

② '2R 、'2X 分别为转子折算到定子侧的电阻和漏抗

③ m X 为激磁电抗

④ 1U 、1E 、1

I 分别为定子侧电压、感应电势和电流 ⑤ '2E 、'2

I 分别为转子侧感应电势,转子电流经过频率和绕组折算后折算到定子侧的值。

⑥ '2U 转子励磁电压经过绕组折算后的值,s U /'2 为'2

U 再经过频率折算后的值。 频率归算:

感应电机的转子绕组其端电压为2U ,此时根据基尔霍夫第二定律,可写出转子绕

组一相的电压方程:

22222)(U jsX R I E s s -+=σ =〉s U jX s R I s E s s 22222)(-+=σ =〉s

U jX s R I E s 22222)(-+=σ 式中,s

I 2 为转子电流;2R 为转子每相电阻。图4-1表示与式4-20相对应的转子等效电路。s

E E s 22 =为转子不转时的感应电动势。

绕组归算:

s U jX s R I s U k jX s R k I k k s U jX s R I k E k E e i i e e e '2'2'2'2222222222'2)()()(-+=-???

? ??+=??

? ??-+==σσσ

转子的电磁功率(转差功率)

122222*sP I sE I E P s ===,由此机械功率121)1(P s P P P m -=-=

n s T n s T n T s P s P m )1()1()1()1(111111-=-=-=-=

)(111112n n T n sT sP P -===

其中,1n 为同步转速、n 为机械转速。由上两式可看出,机械转矩与电磁转矩一致。

普通的绕线转子电机的转子侧是自行闭合的,

图4-2 普通绕线式转子发电机的等值电路图

根据基尔霍夫电压电流定律可以写出普通绕线式转子电机的基本方程式:

?????????-=-==???? ??+=+--=m m m I I I jX I E E jX s R I E jX R I E U '21'21'2'2'2'211111)()( (4-6)

从等值电路和两组方程的对比中可以看出,双馈电机就是在普通绕线式转子电机的转子回路中增加了一个励磁电源,恰恰是这个交流励磁电源的加入大大改善了双馈电机的调节特性,使双馈电机表现出较其它电机更优越的一些特性。下面我们根据两种电机的基本方程画出各自的矢量图,从矢量图中说明引入转子励磁电源对有功和无功的影响。

从矢量图中可以看出,对于传统的绕线式转子电机,当运行的转差率s 和转子参数确定后,定转子各相量相互之间的相位就确定了,无法进行调整。即当转子的转速超过同步转速之后,电机运行于发电机状态,此时虽然发电机向电网输送有功功率,但是同时电机仍然要从电网中吸收滞后的无功进行励磁。但从图4-4中可以看出引入了转子励磁电压之后,定子电压和电流的相位发生了变化,因此使得电机的功率因数可以调整,这样就大大改善了发电机的运行特性,对电力系统的安全运行就有重要意义。

图4-3 转子中不加励磁时的相量图 图4-4 转子中加入励磁电源后的相量图

风力发电系统建模与仿真

风力发电系统建模与仿真 摘要:风力发电作为一种清洁的可再生能源利用方式,近年来在世界范围内获得了飞速的发展。本文基于风力机发电建立模型,主要完成了以下工作:(1)基于风资源特点,建立了以风频、风速模型为基础的风力发电理论基础; (2)运用叶素理论,建立了变桨距风力机机理模型; (3)分析了变速恒频风力发电机的运行区域与变桨距控制的原理与方法,并给出了机组的仿真模型,为风力发电软件仿真奠定了基础; (4)搭建了一套基于PSCAD/EMTDC仿真软件的风力发电系统控制模型以及完整的风力发电样例系统模型,并且已初步实现风力机特性模拟功能。 关键词:风力发电;风频;风速;风力机;变桨距;建模与仿真 1 风资源及风力发电的基本原理 1.1 风资源概述 (1)风能的基本情况[1] 风的形成乃是空气流动的结果。风向和风速是两个描述风的重要参数。风向是指风吹来的方向,如果风是从东方吹来就称为东风。风速是表示风移动的速度即单位时间内空气流动所经过的距离。 风速是指某一高度连续10min所测得各瞬时风速的平均值。一般以草地上空10m高处的10min内风速的平均值为参考。风玫瑰图是一个给定地点一段时间内的风向分布图。通过它可以得知当地的主导风向。 风能的特点主要有:能量密度低、不稳定性、分布不均匀、可再生、须在有风地带、无污染、分布广泛、可分散利用、另外不须能源运输、可和其它能源相互转换等。 (2)风能资源的估算 风能的大小实际就是气流流过的动能,因此可以推导出气流在单位时间内垂直流过单位截面积的风能,即风能密度,表示如下: 3 ω= (1-1) 5.0vρ 式中, ω——风能密度(2 W),是描述一个地方风能潜力的最方便最有价值的量; /m ρ——空气密度(3 kg); /m

双馈式风力发电机剖析

双馈式风力发电机 【摘要】随着地球能源的日益紧缺,环境污染的日益加重,风能作为可再生绿色能源越来越被人们重视,风力发电技术成为世界各国研究的重点。变速恒频发电技术是一种新型风力发电技术,其主要优点在于风轮以变速运行。通过调节发电机转子电流的大小、频率和相位,从而实现转速的调节。而其中双馈发电机构成的风力发电系统已经成为目前国际上风力发电的必然趋势。 关键词:风能风力发电变速恒频双馈式发电机 一、风力发电 风能作为一种清洁的可再生能源,越来越受到世界各国的重视。 风力发电:把风的动能转变成机械动能,再把机械能转化为电力动能,这就是风力发电。 风力发电在芬兰、丹麦等国家很流行;中国也在西部地区大力提倡。我国的风力资源极为丰富,绝大多数地区的平均风速都在每秒3米以上,特别是东北、西北、西南高原和沿海岛屿,平均风速更大;有的地方,一年三分之一以上的时间都是大风天。在这些地区,发展风力发电是很有前途的。风力发电正在世界上形成一股热潮,因为风力发电不需要使用燃料,也不会产生辐射或空气污染。 风力发电的原理:是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。依据目前的风车技术,大约是每秒三米的微风速度(微风的程度),便可以开始发电。风力发电机因风量不稳定,故其输出的是13~25V变化的交流电,须经充电器整流,再对蓄电瓶充电,使风力发电机产生的电能变成化学能。然后用有保护电路的逆变电源,把电瓶里的化学能转变成交流220V市电,才能保证稳定使用。 风力发电所需要的装置,称作风力发电机组。这种风力发电机组,大体上可分风轮(包括尾舵)、发电机和铁塔三部分。 风轮是把风的动能转变为机械能的重要部件,它由两只(或更多只)螺旋桨形的叶轮组成。当风吹向浆叶时,桨叶上产生气动力驱动风轮转动。桨叶的材料要求强度高、重量轻,目前多用玻璃钢或其它复合材料(如碳纤维)来制造。(现在还有一些垂直风轮,s型旋转叶片等,其作用也与常规螺旋桨型叶片相同)

PSCAD在电力系统电磁暂态仿真的应用

引言 电力工业是国民经济发展的基础工业。随着经济建设的发展,发电设备的容量也在相应增大。为了更好的保证安全运行,经济运行,并保证电能质量,我们应该考虑任何电力系统故障的情况,并加以研究。 电力系统正常运行的破坏多半是由短路故障引起的。在供电系统中,短路冲击电流会使两相邻导体间产生巨大的电动力,使元件损坏;大的短路电流将使导体温度急剧上升,会使元件烧毁;阻抗电压大幅下降,影响系统稳定性。发生短路时,系统从一种状态变到另一种状态,并伴随产生复杂的电磁暂态现象。所以有必要对电力系统电磁暂态进行研究。 目前,电力系统暂态分析的研究理论已越来越完善,但基本上是通过建立数学模型,并解数学方程来分析的。这让我们很难理解其推导过程,所以很有必要利用直观的方法来分析并得出相同的结论。 本设计利用PSCAD软件建立了简单电力系统和复杂电力系统两个仿真模型。简单电力系统模型包括:同步发电机模型、负荷模型等;复杂电力系统模型包括:同步发电机模型、变压器模型、输电线模型、负荷模型等。 本设计通过运用EMTDC模块对电力系统仿真进行计算,并分析其电磁暂态稳定性,其中计算了发生四类短路故障时的暂态参数,并对其分析比较,来研究电力系统的这四类短路之间的异同和暂态对电力系统的影响。 通过此次设计进一步巩固和加强了四年来所学的知识,并得到了实际工作经验。设计中查阅了大量的相关资料,努力做到有据可循。在设计中逐步掌握了查阅,运用资料的能力,总结了四年来所学的电力工业的相关知识,为日后的工作打下了坚实的基础。 由于我在知识条件等方面的局限,仍存在许多不足,但在指导老师和学院大力支持和帮助下,已有相当大的改进,在此表示衷心的感谢。

风力发电并网方式的

科技信息 SCIENCE&TECHNOLOGYINFORMATION2013年第7期0引言 当今石化能源的日益匮乏,社会的发展对能源的需求不断增加。 风能作为一种清洁可再生能源越来越受到世界各国的重视。近年来风 力发电在国内外都得到了突飞猛进的发展。但由于风能的随机性和不 稳定性,在其发展的过程中也出现很多问题,其中风力发电并网难最 为突出。风电并网技术成为风力发电领域研究的重难点问题。如何将 并网瞬时冲击电流降低到最小规范值,进一步保证并网后系统电压稳 定是当今研究的重点方向。本文对并网技术问题进行相关研究,提出 并网运行方式并进行分析比较。1风力发电并网运行的分析随着风力发电的快速发展,风电场的并网已成为必然的途径。从风电问世以来,风力发电经历了独立运行方式、恒速恒频运行方式、变速恒频运行方式。当今变速恒频发电系统已成为主流,但风力发电并 网仍是热点的研究话题。 不管是哪一种发电类型,并网总是以保证电力系统稳定性为基本 原则。风力发电相比于火力发电和水力发电,由于其不稳定性需要更 精确的并网控制技术。并网运行时,需满足:(1)电压幅值与电网侧电 压幅值相等;(2)频率与电网侧频率相同;(3)电压相角差为零;(4)电压 波形及相位与电网侧的电压波形及相位保持一致。这样保证了并网时 冲击电流理想值为零。否则,若并网产生很大的瞬时冲击电流,不仅损 坏电力设备,更严重的是使电力系统发生震荡,威胁到电力系统稳定 性。 从大的方向看,风力发电系统并网分为恒速恒频风力发电机并网 和变速恒频风力发电机并网。恒速恒频并网运行方式为风力发电机的 转子转速不受风速的影响,始终保持与电网频率相同的转速运行。虽 然其结构简单、运行可靠,但是对风能的利用率不高,机械硬度高,而 且发电机输出的频率完全取决与转速,如控制不好,并网时会发生震 荡、失步,产生很大的冲击电流。所以恒速恒频系统已逐渐退出人们的 视线。随着电力电子技术的日益成熟,以变速恒频并网运行方式取而 代之。变速恒频风力发电并网系统是发电机转速随着风速的变化而变 化,系统通过电力电子变化装置,使机组输出的电能频率控制在与电 网频率一致。变速恒频并网方式减少了机组的机械应力,充分的利用 风能源,使发电效率大大提高;并网时通过精确合理地控制电力电子 变换器,使得并网更加稳定,降低系统因冲击电流过大使电网电压降 低从而破坏电力系统稳定性。2变速恒频双馈发电机并网 目前,并网型的变速恒频风力发电机组主要采用双馈发电机和永 磁同步发电机。 变速恒频双馈发电机的并网原理图如图1所示。 双馈发电机并网的工作原理为当风速变化时,发电机的转子励磁回路由双PWM 变频器控制转子励磁电流的频率,转子转速与励磁电流频率合成定子电流频率。调节励磁电流频率,使定子电流频率始终与电网频率保持一致。电机转动频率、定、转子绕组电流频率的关系式为:f 1=pn 60±f 2式中:f 1为定子电流频率,f 2为转子电流频率,n 为转子转速。双馈发电机既可以同步运行也可以异步运行,通过精确地控制双PWM 变频器,可以实行“柔性并网”,大大提高并网的成功率。一般双馈发电机 并网的结构相对复杂,大多采用多级齿轮箱双馈异步风力发电机组。 当自然风速使得风力发电机转子转速频率与电网频率相同时,风力发 电机同步运行;当风力发电机的转速小于或者大于电网频率时,风力 发电机异步运行,通过双向变频器实现发电机组转子与电网的功率交 换,保证输出频率与电网侧保持一致。在异步运行程中,不仅有励磁损 耗,而且还要从电网吸收无功功率,所以需在并网侧安装无功补偿器。图1变速恒频双馈发电机的并网原理图3直驱式永磁同步发电机并网变速恒频永磁同步发电机并网原理图如图2所示。图2变速恒频永磁同步发电机并网原理图 直驱式永磁同步发电机并网的原理为当风速改变时,发电机输出不同频率的交流电,经过不可控整流电路将交流电变成直流电,再经过DC/DC 直流斩波让直流电压幅值保持压稳定。以逆变器为核心,采用IGBT 作为开关器件构成全桥逆变电路,将整流器输出的直流电逆变成与电网侧电压相角、幅值、相位、频率相同的交流电。逆变有时会产生一定的电压谐波污染和冲击电流,这时必须有效(下转第92页)风力发电并网方式的研究 张伟亮潘敏君韦大耸陈富玲 (贺州学院机械与电子工程学院,广西贺州542800) 【摘要】通过分析风力发电系统并网方式的原理,针对风力发电并网难的问题,提出利用直驱式永磁同步发电机实现风力发电并网。直驱式永磁同步发电机并网比传统的恒速恒频并网方式更加稳定。 【关键词】风力发电;并网运行;恒速恒频;变速恒频 Study on wind Power Grid-connected Mode ZHANG Wei-liang PAN Min-jun WEI Da-song CHEN Fu-ling (School of Mechanical and Electronics Engineering,Hezhou Univ.Hezhou Guangxi,542800,China ) 【Abstract 】By analyzing the theory of grid-connected wind farms,the paper presents using direct-driven permannet magnet synchronous generator to achieve grid-connerted wind power according to the problem in wind power grid-connected difficult.Direct drive permanent magnet synchronous generator than traditional way of constant speed constant frequency grid interconnection is more stable. 【Key words 】Wind power generation ;Parallel operation ;Constant speed constant frequency ;Variable speed constant frequency ※项目基金:此文为贺州学院大学生创新项目研究成果,项目编号2013DXSCX08。 作者简介:张伟亮(1982—),男,硕士,讲师,从事电气工程及其自动化的教学及高压设备的生产研发。 潘敏君,男,贺州学院电气工程及其自动化专业在读学生 。 ○本刊重稿○4

变速恒频双馈风力发电机的主要优点和基本原理

变速恒频双馈风力发电机的原理和优点研究 变速恒频发电技术 变速恒频发电技术是一种新型风力发电技术,其主要优点在于风轮以变速运行。这一调速系统和变桨距调节技术环节结合起来,就构成了变速恒频风力发电系统。其调节方法是:起动时通过调节桨距控制发电机转速;并网后在额定风速以下,调节发电机的转矩使转速跟随风速变化,保持最佳叶尖速比以获得最大风能;在额定风速以上,采用失速与桨距双重调节、减少桨距调节的频繁动作,限制风力机获取的能量,保证发电机功率输出的稳定性和良好的动态特性,提高传动系统的柔性。上述方式目前被公认为最优化的调节方式,也是未来风电技术发展的主要方向。其主要优点是可大范围调节转速,使风能利用系数保持在最佳值;能吸收和存储阵风能量,减少阵风冲击对风力发电机产生的疲劳损坏、机械应力和转矩脉动,延长机组寿命,减小噪声;还可控制有功功率和无功功率,改善电能质量。尽管变速系统与恒速系统相比,风电转换装置中的电力电子部分比较复杂和昂贵,但成本在大型风力发电机组中所占比例并不大,因而大力发展变速恒频技术将是今后风力发电的必然趋势。 目前,采用变速恒频技术的风力发电机组,由于采用不同类型的发电机,并辅之相关的电力电子变流装置,配合发电机进行功率控制,就构成了形式多样的变速恒频风力发电系统。主要有以下几类:鼠笼型异步发电机变速恒频风力发电系统、绕线式异步发电机变速恒频风力发电系统、同步发电机变速恒频风力发电系统、双馈发电机变速恒频风力发电系统。其中,由双馈发电机构成的变速恒频控制方案是在转子电路实现的,采用双馈发电方式,突破了机电系统必须严格同步运行的传统观念,使原动机转速不受发电机输出频率限制,而发电机输出电压和电流的频率、幅值和相位也不受转子速度和瞬时位置的影响,变机电系统之间的刚性连接为柔性连接。基于诸多优点,由双馈发电机构成的变速恒频风力发电系统已经成为目前国际上风力发电方面的研究热点和必然的发展趋势。

基于PSCAD4.2电力系统距离保护的仿真分析

基于PSCAD4.2电力系统距离保护的仿真分析 摘要:简要地介绍了PSCAD4.2软件及其工具箱,分析了输电线路距离保护的基本原理,并利用软件提供的工具箱搭建了距离保护仿真模型,设置了输电线路可能发生的接 地故障和相间故障,最终得出了不同故障类型下输电线路的电压、电流以及其他量 的变化规律的波形,从而实现了三段式距离保护的作用。仿真波形结果表明:利用 该软件建立的模型是能够准确反应距离保护的作用机理,即距离保护装置能够快速 响应故障信号并动作于断路器,实现输电线路的保护。 关键词: PSCAD4.2;距离保护;接地故障;仿真 Analysis of power system distance protection simulation based on PSCAD4.2 Abstract: Briefly introducing PSCAD4.2 software and its toolbox ,then analyzing the basic principle of the transmission line distance protection , and use the toolbox that the software provides to build a protection simulation model and set a ground fault and phase transmission line failures the system may occur, at last obtain the voltage, current and waveform variation of other different types of transmission line failures , enabling three- distances protection. Simulation waveform results showed that: using the model of the software is accurately able to establish the reaction mechanism of the distance protection , distance protection device can quickly respond to the circuit breaker failure signal and act on it to achieve protection of transmission lines . Key words: PSCAD4.2;Distance Protection;Ground Fault;Simulation 0 引言 电力系统保护中,输电线路的保护主要是距离保护,其不受运行方式的影响,继电保护性能得到提高,因而获得广泛的应用[1]。文献[2]过对继电器模块的搭建来得到对电力系统的继电保护,但如果保护原理发生变化则相应的继电器模块也会发生变化,保护模块的移植性不强。目前,虽然电力系统的保护已经进入微机自动化时[3],但距离保护体系并不十分完善, 其中接地电阻对距离保护的影响表现突出,文献[4-6] 详述了采用自适应的方法来消除接地电阻对距离保护的影响。 PSCAD4.2是一种电力系统电磁暂态仿真软件,尤其在控制系统、无功补偿系统、高压直流输电以及继电保护系统等领域较为活跃,该软件主要对电力系统时域和频率等变量进行 仿真分析,其结果一般以简单易懂的图形界面输出,使得仿真过程清晰、准确而灵活[7-8]。 1 电力系统距离保护的原理 在电力系统继电保护中,距离保护扮演着重要的角色。它满足电力系统的选择性、灵敏性、可靠性以及能够快速切除故障,从而快速恢复电网的正常稳定运行。距离保护是反应于保护安装地点到故障发生处之间的距离(阻抗),以此来根据阻抗的大小而整定动作时间的一 种保护装置[9]。为了满足选择性、速动性和灵敏性的要求,现在广泛采用的是三段式距离保护,其网络接线如图1。

双馈异步风力发电机(讲)

1.引言: 风力发电机组主要包括变频器,控制器,齿轮箱(视机型而定),发电机,主轴承,叶片等等部件,在这些部件中发电机目前国产化程度最高,它的价格约占机组的10%左右。发电机主要包 括2种机型:永磁同步发电机和异步发电机。永磁同步发电机低速运行时,不需要庞大的齿轮箱,但是机组体积和重量都很大,1.5MW 的永磁直驱发电机机舱会达到5米,整个重量达80吨。同时,永磁直驱发电机的单价较贵,技术复杂,制造困难,但是这种机型的优点是少了个齿轮箱,也就少了个故障点。异步发电机是由风机拖动齿轮箱,再带动异步发电机运行,因为叶片速度很低,齿轮箱可以变速100倍,以让风机在1500RPMF运行,目前流行的是双馈异步发电机,主要有1.25MV Y 1.5MV y 2MW三种机型,异步发电机的机组单价低,1KW大概需6000元左右,而且技术成熟,国产化高。 2.双馈异步发电机的原理: 所谓双馈,可以理解为定子、转子同时可以发出电能, 发电机原理理论上说只要有动力带动电动机,在电动机的定子侧就能直接发出电能。现代变速双馈风力发电机的工作原理就是通过叶轮将风能转变为机械转矩(即风轮转动惯量),通过主轴传动链,经过齿轮箱增速到异步发电机的转速后,通过励磁变流器励磁而将发电机的定子电能并入电网。如果超过发电机同步转速,转子也处于发电状态,通过变流器向电网馈电。双馈发电机正是由叶片通过齿轮箱

变速,带动电机高速旋转,同时转子接变频器,通过变频器PW M控制以达到定子侧输出相对完美正弦波,同时在额定转速下,转子侧也能同时发出电流,以达到最大利用风能效果。通俗的讲,就是要变频器控制转子电流,反馈到定子上面,保证定子发出相对完美的正弦无谐波电能,同时在额定转速下,转子也能发出功率出来。有个大致感觉是 1.5MW 发电机的定子发电量大概1200KV,转子大约300KV,转子侧发出的功率要在30%以下,总之越少越好这样可以让变频器功率小点。 3.双馈异步发电机的设计难点: 结构设计难点:因机舱封闭体积,风机运行环境非常恶劣,需要气温-30?55度之间正常运行,希望电机尺寸尽量小,风机对发电机重量有严格要求,部分厂家对转子转动惯量也有要求。发电机需要高速运行,但振速要小,通常要小于 2.8mm/s。此外对于水冷的电机入水温度较高,需要考虑维修和维护问题!比如轴承自动加油等!还有就是,整个发电机是倾斜运行的,大概4?5度的倾斜角度,这个在结构设计时候需要考虑??大家看到发电机的轴承就知道了。 电气设计难点:风机需要效率97%以上,由于转子绕组接变频 器,接变频器就会引发谐波电流,会引起铜耗,铁耗等!此外 定子转子承受很大冲击电压,提高绕组温升问题是优先考虑, 转子电流非常大,上千安培,滑环设计也是难点!电机会有轴 电流,需要考虑绝缘问题!同时高空运行需要防雷处理!转子 绕组线规非常大,成型困难!尽量控制转子输出功率尽量小于 30%,以缩小变频器的功率。

基于Matlab的双馈异步风力发电机风电场仿真

基于Matlab的双馈异步风力发电机风电场仿真 仿真对象是一个由6台1.5MW双馈异步风力发电机组组成的9MW的风电场。这个风电场连接着一个25kv的分布式发电系统,它的电能通过35km长,电压等级为25kv的馈线(B25)输入到120kv的电网上。 一、仿真过程及结果分析 1、风速变化,风机的反映。 初始风速设定为8m/s,时间到t=4s,风速增长到14m/s。开始仿真。 图1 风速突然变化时输出的曲线(voltage regulation 模式)

有功功率随转速平稳的增长,用了18秒的时间到达额定9MW。这段时间内风机转速从0.8pu增长到1.21pu。桨距角从0度增长到0.76度,用来限制机械功率。通过调控无功功率来维持电压在1pu。额定功率时,风机吸收了0.68Mvar,从而控制电压不变。 图2 风速突然变化时输出曲线(Var regulation 模式)无功控制模式下,保持功率因数不变,从电网吸收一部分无功来并网(达到同步转速),因吸收无功,电压上升。 2、110kv系统电压突然下降的仿真。 风速不变8m/s。设置5s发生一次0.15pu的电压下降(在Time variation of 中选择Amplitude)。确保风机为无功控制。

图3 110kv电压突然下降(Var Regulation 模式) 用电设备的电流降至0,电动机转速逐渐下降。用电设备被分离出电网。 图4 110kv电压突然下降(voltage regulation模式) 采用Voltage regulation控制模式,用电设备没有被分出电网。因为电压下降时,风电场发出无功功率。

武汉大学电气工程学院丁涛老师综合自动化PSCAD仿真实验

武汉大学 电气工程学院 综合自动化PSCAD仿真实验 姓名:*** 学号:20**302540*** 班级:电气**级*班

一、同步发电机的准同期并列操作 发电机的准同期并列操作,是在同步发电机已经投入调速器和励磁装置,当发电机电压的幅值,频率和相位接近相等时,通过并列点断路器合闸将发电机并入电网运行的一系列动作。 具体参见教材《电力系统自动化》或《自动装置原理》。 1.实验预习 清楚同步发电机准同期并列的概念和原理。 2.实验目的 了解数字仿真软件中发电机组的构成,仿真同步发电机准同期并列操作。 3.实验步骤 (1)将仿真示例copy到电脑。进入PSCAD,打开sync_in_paralell; (2 ) 三个时间的设置 点右键,再点Project setting, 再点Runtime,注意Time setting 三个参数的设置。 Duration of run (sec): 程序计算时间,以秒为单位; Solution time step (sμ): 计算步长,以微秒为单位,两个相邻计算点之间是一个 计算步长; μ,用计算输出的数据来说明,第一个数据的时间坐标是0s, 如上图的200s, 50s μ。 最后一个数据的时间是200s,每两个数据的时间坐标相差50s Channel plot step (sμ): 作图步长,以微秒为单位,图上相邻两个点之间的时间 是一个画图步长。 请将模型计算时间和运行时间区分开,同学们可以看看要得到200s的计算数 据,运行时间是多少。记下点击菜单开始运行和结束运行的实际时间,两者之 差就是运行时间,该时间与电脑性能密切相关。 (3)学习各个元件的使用。 a. 在帮助中没有介绍的元件 例如,双击后有, 表明:点击菜单运行图标,程序计算时间从0开始计时,当计算时间是时,

双馈风力发电机并网控制

双馈风力发电机并网控制 摘要:风力是重要的清洁能源,风力所具备的可再生性以及无污染性使得其受到广泛关注和应用,风力发电也是目前我国重点要求的电力能源技术。而并网控制是将风力发电机稳定地接入到电网系统中的技术。本文主要研究双馈风力发电机并网控制的方法,以及在实际应用中的难点,以及并网控制过程中存在的其他影响控制,并相应地提出优化建议。 关键词:双馈风力发电机;并网控制;方法;难点 一、双馈风力发电机概述 当前风力发电机大体可以分为同步电机好异步电机两类,实际应用中可以细分为鼠笼异步发电机、双馈发电机、同步发电机以及永磁同步发电机。双馈风力发电机是一种绕线式感应发电机,属于异步发电机。由于双馈异步电动机的定子绕组直接同电网相连接,转子绕组通过变流器和电网连接,并由变频器实现对饶子绕组电源电压、相位以及频率和幅值的自动调控,因而在运行中,机组可以在不同的转速下维持恒频发电。然而,虽然双馈发电机具备机械承受应力小、运行噪音小、变频器容量小以及启动效率高的特点,但双馈发电机的电气损耗较大,还需配备齿轮箱,造价较为昂贵。不过相比同步风力发电机,双馈风力发电机能够更好的实现电能稳定输出,实用性较强。 二、双馈发电机的并网控制方法 双馈发电机的并网控制方法和异步发电机相似,主要原理是通过滑差率来调节负荷,发电机的转速和输出功率近似成线性关系,所以只要保持发电机的转速和同步转速相接近就能实现并网。目前,常用的并网方法主要有四种,直接并网控制法、准同期并网法、降压并网控制法以及电子元件软并网控制法。 2.1 直接并网控制法 直接并网控制法是指将风力发电机的输出交流电直接并入到风力电网中,在电机转速和同步转速接近时,由测速系统给出并网信号,再通过自动空气开关实现并网,主要适用于风力发电机和电网相序相同的情况,即电网电容量足够大的同时,风力发电机的容量保持在百千瓦以下。 优点:直接并网控制方法能够保证风力速率变动情况下风力发电机也可以维持横频输出,同时能够单独地对有功功率和无功功率进行解耦控制,便于对风力电动机运行中负载消耗的无功功率进行补偿,稳定其他机组的无功负荷,确保风力发电系统电压的稳定。 缺点:直接并网控制方法要求双馈发电机的相序和发电电网的相序必须保持一致,这就对风力发电机的规格提出了严格的要求。 2.2 准同期并网控制法 异步发电机下的准同期并网控制方法和同步发电机下的准同步并网控制方法基本相同,都是在发电机转速接近同步转速的时候,利用电容励磁先来确定一个稳定的电压,再根据系统电压、频率、相位等来调节发电机的电压和频率,确保二者同步。当二者同步后,就可以将风力发电机接入电网。 优点:准同期并网控制方法对风力系统的电压没有太大的影响,不会出现电压下降的问题,常用于发电机容量和电网容量相似或相差不多的机组。 缺点:按照传统的整步方式,想要实现从整步到准同步的转变,不但需要高精度的整步设备、同期设备以及调速设备,还需要耗费较长的时间,加大了机组构造成本。而且,准同期并网控制方法也需要对电流进行精准控制,确保合闸瞬

双馈风力发电机并网运行控制及仿真

双馈风力发电机并网运行控制及仿真 结合双馈异步风力发电机的运行特点,将矢量控制技术应用到双馈异步风力发电机并网控制中。构建了风力发电机空载并网与最大追踪控制策略,设计了基于LabVIEW、PXI8840及Compact RIO9035的硬件在环仿真系统。通过PXI能够观测到并网前、后定、转子电流、电压、功率等变化情况,为新型风力发电并网控制策略的研究提供了一个公共平台。 标签:双馈;矢量控制;最大风能追踪;LabVIEW;PXI Abstract:According to the operational characteristics of doubly-fed asynchronous wind turbine,vector control technology is applied to grid-connected control of doubly-fed asynchronous wind turbine. The no-load grid-connected and maximum tracking control strategy of wind turbine is constructed,and the hardware in loop simulation system based on LabVIEW,PXI8840 and Compact RIO9035 is designed. The changes of current,voltage,power and so on before and after the grid connection can be observed by PXI,which provides a common platform for the research on the grid-connected control strategy of new wind power. Keywords:doubly-fed;vector control;maximum wind energy tracking;LabVIEW;PXI 1 概述 風能作为一种可再生能源,具有高效,清洁等特点。风力发电技术在世界范围内也得到迅速发展[1,2]。 双馈异步风力发电机(Doubly-Fed Induction Generator,DFIG)机组,通过控制发电机励磁,实现在发电机转速可调情况下的并网运行。采用矢量控制技术调节励磁,可以有效的调节发电机输出功率,在实现最大风能利用效率的同时,还可以调节电网的功率因数,提高电网的稳定性等[3-6]。 本文分析了DFIG机组运行特性,将定子磁链定向的矢量控制技术运用到机组控制策略中,制定控制策略。建立了基于LabVIEW的仿真系统,验证采用矢量控制技术对DFIG并网控制和最大风能追踪控制的精准性。 2 发电机的运行控制 2.1 发电机空载数学模型 为了准确调节DFIG并网前、后的端电压,本文采用磁场定向的矢量控制。为此,首先建立发电机内磁场定向旋转d-q坐标系的数学模型。

风力发电系统建模与仿真

风力发电系统建模与仿真

风力发电系统建模与仿真 摘要:风力发电作为一种清洁的可再生能源利用方式,近年来在世界范围内获得了飞速的发展。本文基于风力机发电建立模型,主要完成了以下工作:(1)基于风资源特点,建立了以风频、风速模型为基础的风力发电理论基 础; (2)运用叶素理论,建立了变桨距风力机机理模型; (3)分析了变速恒频风力发电机的运行区域与变桨距控制的原理与方法,并给出了机组的仿真模型,为风力发电软件仿真奠定了基础; (4)搭建了一套基于PSCAD/EMTDC仿真软件的风力发电系统控制模型以及 完整的风力发电样例系统模型,并且已初步实现风力机特性模拟功能。 关键词:风力发电;风频;风速;风力机;变桨距;建模与仿真 1 风资源及风力发电的基本原理 1.1 风资源概述 (1)风能的基本情况[1] 风的形成乃是空气流动的结果。风向和风速是两个描述风的重要参数。风向是指风吹来的方向,如果风是从东方吹来就称为东风。风速是表示风移动的速度即单位时间内空气流动所经过的距离。 风速是指某一高度连续10min所测得各瞬时风速的平均值。一般以草地上空10m高处的10min内风速的平均值为参考。风玫瑰图是一个给定地点一段时间内的风向分布图。通过它可以得知当地的主导风向。 风能的特点主要有:能量密度低、不稳定性、分布不均匀、可再生、须在有风地带、无污染、分布广泛、可分散利用、另外不须能源运输、可和其它能源相互转换等。 (2)风能资源的估算 风能的大小实际就是气流流过的动能,因此可以推导出气流在单位时间内垂直流过单位截面积的风能,即风能密度,表示如下: 3 ω= (1-1) 5.0vρ 式中, ω——风能密度(2 W),是描述一个地方风能潜力 /m 的最方便最有价值的量;

双馈异步风力发电机(西莫讲堂)

主讲人:aser 关键词:双馈异步风力发电机 协助讨论: Edwin_Sun lidb856 pat baizengchen g zslzsl xfq7111 wayne 会议摘要: 1. 引言: 风力发电机组主要包括变频器,控制器,齿轮箱(视机型而定),发电机,主轴承,叶片等等部件,在这些部件中发电机目前国产化程度最高,它的价格约占机组的10%左右。发电机主要包括2种机型:永磁同步发电机和异步发电机。永磁同步发电机低速运行时,不需要庞大的齿轮箱,但是机组体积和重量都很大,1.5MW的永磁直驱发电机机舱

会达到5米,整个重量达80吨。同时,永磁直驱发电机的单价较贵,技术复杂,制造困难,但是这种机型的优点是少了个齿轮箱,也就少了个故障点。异步发电机是由风机拖动齿轮箱,再带动异步发电机运行,因为叶片速度很低,齿轮箱可以变速100倍,以让风机在1500RPM下运行,目前流行的是双馈异步发电机,主要有1.25MW,1.5MW,2MW三种机型,异步发电机的机组单价低,1KW大概需6000元左右,而且技 术成熟,国产化高。 2.双馈异步发电机的原理: 所谓双馈,可以理解为定子、转子同时可以发出电能,发电机原理理论上说只要有动力带动电动机,在电动机的定子侧就能直接发出电能。现代变速双馈风力发电机的工作原理就是通过叶轮将风能转变为机械转矩(即风轮转动惯量),通过主轴传动链,经过齿轮箱增速

到异步发电机的转速后,通过励磁变流器励磁而将发电机的定子电能并入电网。如果超过发电机同步转速,转子也处于发电状态,通过变流器向电网馈电。双馈发电机正是由叶片通过齿轮箱变速,带动电机高速旋转,同时转子接变频器,通过变频器PWM控制以达到定子侧输出相对完美正弦波,同时在额定转速下,转子侧也能同时发出电流,以达到最大利用风能效果。通俗的讲,就是要变频器控制转子电流,反馈到定子上面,保证定子发出相对完美的正弦无谐波电能,同时在额定转速下,转子也 能发出功率出来。有个大致感觉是 1.5MW发电机的定子发电量大概1200KW,转子大约300KW,转子侧发出的功率要在30%以下,总之越少越好这样可以让变频器功率小点。 3. 双馈异步发电机的设计难点: 结构设计难点:因机舱封闭体积,

750kw风力发电机叶片建模与仿真分析解析

毕业论文题目:750KW风力机叶片建模与模态仿真分析 学院: 专业:机械设计制造及其自动化 班级:学号: 学生姓名: 导师姓名: 完成日期: 2014年6月20日

诚信声明 本人声明: 1、本人所呈交的毕业设计(论文)是在老师指导下进行的研究工作及取得的研究成果; 2、据查证,除了文中特别加以标注和致谢的地方外,毕业设计(论文)中不包含其他人已经公开发表过的研究成果,也不包含为获得其他教育机构的学位而使用过的材料; 3、我承诺,本人提交的毕业设计(论文)中的所有内容均真实、可信。 作者签名:日期:年月日

毕业设计(论文)任务书 题目: 750KW风力机叶片建模与模态仿真分析 姓名学院专业班级学号 指导老师职称教研室主任 一、基本任务及要求: 1、查阅20篇左右文献资料,撰写开题报告和文献综述。 2、确定叶片主要翼形构成、外形参数及载荷。 3、应用三维建模软件建立叶片三维实体模型。 4、应用仿真软件对复合材料叶片进行模态仿真分析。 5、改变叶片转速,讨论复合材料叶片动力刚化效应对振动的影响。 6、按照要求撰写毕业论文和打印图纸。 二、进度安排及完成时间: 2014.2.20-3.5:课题调研(含毕业实习及撰写毕业实习报告)、查阅文献资料。2014.3.6-3.28:撰写文献综述和开题报告。 2014.3.29-4.8:确定叶片主要翼形构成、外形参数及载荷。 2014.4.9-4.19:应用三维建模软件建立叶片三维实体模型。 2014.4.20-4.27:应用仿真软件对复合材料叶片进行模态仿真分析。 2014.4.28-5.5:改变叶片转速,讨论复合材料叶片动力刚化效应对振动的影响。2014.5.6-5.26:撰写毕业论文、完成设计。 2014.5.27-6.10:整理毕业设计资料,毕业答辩。

PSCAD的电力系统仿真大作业3

仿真计算 1、在PSCAD中建立典型的同步发电机模型,对同步发电机出口三相短路进行仿真研究。要求: (1)运行“同步发电机短路”模型,截取定子三相短路电流波形,并对波形进行分析,验证与理论分析中包含的各种分量是否一致; 图一同步发电机短路模型

图二、定子三相短路电流 定子三相短路电流中含有直流分量和交流分量,其中周期分量会衰减。三相短路电流直流分量大小不等,但衰减规律相同,均按指数规律衰减,衰减时间常数为Ta,由定子回路电阻和等值电感决定,大约在0.2s。交流分量也按指数规律衰减,它包括两个衰减时间常数,分为次暂态过程、暂态过程和稳态过程。 (2)修改电抗参数Xd(Xd’,X’’d),增加或者减小,截取定子三相电流,并与第一步结果对比分析; 图一是Xd`=0.314 p.u,Xd``=0.280 p.u情况下的定子电流波形;图二是Xd`=0.514 p.u, Xd``=0.280 p.u情况下的定子电流波形。显然,随着Xd`的增大定子的电流在减少。

图三、定子三相短路电流 (3)修改时间常数Td(Td’,T’’d),增加或者减小,截取定子三相电流,并与第一步结果对比分析。 参数Td’=6.55s ,Td”=0.039s时定子电流如图一所示;当参数变为Td’=3.55s ,Td”=0.039s是定子电流如图三所示,显然

图四、定子三相短路电流 2、利用暂态仿真软件对下面的简单电网进行建模,对模型中各元件参数进行详细说明,并进行短路计算。将故障点的电流电压波形及线路M端的电流电压波形、相量图粘贴到课程报告上。 要求:

(1)短路类型为①三相故障;②A相接地;③BC两相故障。 (2)两端系统电势夹角取15o δ=。 (3)故障点设置为线路MN中点(25km处)。 (4)仿真结果包括M、N两侧和短路点处的三相电压、电流的瞬时值波形和短路发生后时刻的三相电压、电流相量图。 三、课程学习心得 通过本课程的学习,你有哪些体会和心得,请写出来。可以从以下几个方面考虑,但不局限于这些方面:通过课程你学到了哪些知识;学会了哪些方法;对电力系统的认识;对课程的建议等。 课程的开始复习了一下简单的电力系统稳态分析部分,然后就进行了课程的重点就是电力系统的暂态分析,其中包括PARK变换、标么值下的磁链方程和电压方程、同步发电机各种电势的表达式、发电机阻抗的概述、(次)暂态电抗和(次)暂态电势、发电机三相短路电流、对称分量法、叠加定理、电力系统简单故障分析。学习了几种电力系统分析中的方法,例如分析同步发电机短路时PARK变换将静止三相坐标系的量转化为旋转坐标系dq0的量,还有分析不对称故障时对称分量法转化到相对简单的对称故障分析中。

风力发电系统建模与仿真

《新能源发电及并网技术》专题报告风力发电系统建模与仿真 学院电气工程学院 专业电气工程 姓名xxxxxxx 学号xxxxxxxxxxxx 2013年6月

目录 1 风资源及风力发电的基本原理 (1) 1.1 风资源概述 (1) 1.2 风力发电的基本原理 (2) 1.3 风力发电特点 (3) 2 风能及风力机系统模型的建立 (3) 2.1风频模型 (3) 2.2 风速模型 (4) 2.3 风力机建模与分析 (5) 3 变桨距风力发电机组控制系统模型 (10) 3.1 变桨距风力发电机组的运行状态 (10) 3.2 变桨距控制系统 (11) 4风力发电控制系统的模拟仿真分析 (13) 4.1 无穷大系统模型的建立 (13) 4.2 风力发电机系统并网模拟仿真分析 (13) 5 结论 (17) 参考文献 (18)

摘要:风力发电作为一种清洁的可再生能源利用方式,近年来在世界范围内获得了飞速的发展。本文基于风力机发电建立模型,建立了以风频、风速模型为基础的风力发电理论基础,运用叶素理论,建立了变桨距风力机机理模型,然后分析了变速恒频风力发电机的运行区域与变桨距控制的原理与方法,并给出了机组的仿真模型,最后搭建了一套基于PSCAD/EMTDC 仿真软件的风力发电系统控制模型以及完整的风力发电样例系统模型,并且已初步实现风力机特性模拟功能。 关键词:风力发电;风频;风速;风力机;变桨距;建模与仿真 1 风资源及风力发电的基本原理 1.1 风资源概述 随着世界工业化进程的不断加快,使得能源消耗逐渐增加,全球工业有害物质的排放量与日俱增,从而造成气候异常、灾害增多、恶性疾病的多发,因此,能源和环境问题成为当今世界所面临的两大重要课题。由能源问题引发的危机以及日益突出的环境问题,使人们认识到开发清洁的可再生能源是保护生态环境和可持续发展的客观需要。可以说,对风力发电的研究和进行这方面的毕业设计对我们从事风力发电事业的同学是有着十分重大的理论和现实意义的,也是十分有必要的。 风力发电起源于20世纪70年代,技术成熟于80年代,自90年代以来风力发电进入了大发展阶段。随着风力发电容量的不断增大,控制方式从基本单一的定桨距失速控制向全桨叶变距控制和变速控制发展。前人在风轮机的空气动力学原理和能量转换原理的基础上,系统分析了定桨距风力发电机组、变桨距风力发电机组、变速风力发电机组的基本控制要求和控制策略,并对并网型风力发电机组的变桨距控制技术进行了一定的研究。变桨距风力发电机组的主要控制是在起动时对风轮转速的控制和并网后对输入功率的控制。通过变距控制可以根据风速来调整桨叶节距角,以满足发电机起动与系统输出功率稳定的双重要求。但由于对运行工况的认识不足,对变桨距控制系统的设计不能满足风力发电机组正常运行的要求,更达不到优化功率曲线和稳定功率输出的要求。 1、风能的基本情况[1] 风的形成乃是空气流动的结果。风向和风速是两个描述风的重要参数。风向是指风吹来的方向,如果风是从东方吹来就称为东风。风速是表示风移动的速度即单位时间内空气流动所经过的距离。

PSCAD的电力系统仿真大作业

电力系统分析课程报告姓名 ******* 学院自动化与电气工程学院 专业控制科学与工程 班级 ******* 指导老师 ******* 二〇一六年五月十三

一、同步发电机三相短路仿真 1、仿真模型的建立 选取三相同步发电机模型,以三相视图表示。励磁电压和原动机输入转矩Ef 与Tm均为定常值,且发电机空载。当运行至时,发电机发生三相短路故障。同步发电机三相短路实验仿真模型如图1所示。 图1 同步发电机三相短路实验仿真模型 2、发电机参数对仿真结果的影响及分析 衰减时间常数Ta对于直流分量的影响 三相短路电流的直流分量大小不等,但衰减规律相同,均按指数规律衰减,衰减时间常数为Ta,由定子回路的电阻和等值电感决定(大约)。pscad同步发电机模型衰减时间常数Ta对应位置如图3所示(当前Ta=)。 图3 同步发电机模型参数Ta对应位置

1)Ta=时,直流分量的衰减过程(以励磁电流作为分析)如图4所示。 图4 Ta=发生短路If波形 2)Ta=时,直流分量的衰减过程(以励磁电流作为分析)如图5所示。 图5 Ta=发生短路If波形 短路时刻的不同对短路电流的影响 由于短路电流的直流分量起始值越大,短路电流瞬时值就越大,而直流分量的起始值于短路时刻的电流相位有关,即直流分量是由于短路后电流不能突变而产生的。 Pscad模型中对短路时刻的设置如图6所示 图6 Pscad对于短路时刻的设置 1)当在t=时发生三相短路,三相短路电流波形如图7所示。 图7 t=时三相短路电流波形 2)当在t=时发生三相短路,三相短路电流波形如图8所示。 图8 t=6时三相短路电流波形 Xd、Xd`、Xd``对短路电流的影响 1) Xd的影响 Pscad中对于Xd的设置如图9所示: 图9 Pscad对于D轴同步电抗Xd的设置 下面验证不同Xd时A相短路电流的稳定值。 i.Xd=(标幺制,下同)时,仿真波形如图10所示 图10 Xd=时A相短路电流波形 ii.Xd=10时,仿真波形如图11所示 图11 Xd=时A相短路电流波形 2)Xd`的影响 在Pscad中暂态电抗Xd`的设置如图13所示: 图13 Pscad对于暂态电抗Xd的设置 下面验证不同Xd`时A相短路电流的暂态过程。 i.Xd`=时A相短路电流的波形如图14所示: 图14 Xd`=时A相短路电流波形 ii.Xd`=1时A相短路电流的波形如图15所示: 图15 Xd``=1时A相短路电流波形 3)Xd``的影响 这里次暂态电抗Xd``与暂态电抗Xd`相似,Xd``影响的是短路后的次暂态过程。

相关文档
最新文档