Administrator_热传导和热辐射的区别(1)定义或解释 99703

Administrator_热传导和热辐射的区别(1)定义或解释 99703

热传导和热辐射的区别?

(1)定义或解释物质(系统)内的热量转移的过程叫做热传递。

(2)说明热传递是通过热传导、对流和热辐射三种方式来实现。在实际的传热过程中,这三种方式往往是伴随着进行的。

①热传导:热量从系统的一部分传到另一部分或由一个系统传到另一系统的现象叫做热传导。热传导是固体中热传递的主要方式。在气体或液体中,热传导过程往往和对流同时发生。各种物质的热传导性能不同,一般金属都是热的良导体,玻璃、木材、棉毛制品、羽毛、毛皮以及液体和气体都是热的不良导体,石棉的热传导性能极差,常作为绝缘材料。

②对流:液体或气体中较热部分和较冷部分之间通过循环流动使温度趋于均匀的过程。对流是液体和气体中热传递的主要方式,气体的对流现象比液体明显。对流可分自然对流和强迫对流两种。自然对流往往自然发生,是由于温度不均匀而引起的。强迫对流是由于外界的影响对流体搅拌而形成的。

③热辐射:物体因自身的温度而具有向外发射能量的本领,这种热传递的方式叫做热辐射。热辐射虽然也是热传递的一种方式,但它和热传导、对流不同。它能不依靠媒质把热量直接从一个系统传给另一系统。热辐射以电磁辐射的形式发出能量,温度越高,辐射越强。辐射的波长分布情况也随温度而变,如温度较低时,主要以不可见的红外光进行辐射,在500℃以至更高的温度时,则顺次发射可见光以至紫外辐射。热辐射是远距离传热的主要方式,如太阳的热量就是以热辐射的形式,经过宇宙空间再传给地球的。

热传导与热辐射大作业报告..(精编文档).doc

【最新整理,下载后即可编辑】 热传导与热辐射大作业报告

目录 一、作业题目............................................................................................ - 1 - 二、作业解答............................................................................................ - 2 - 个人感想 ................................................................................................... - 17 - 附件.计算中所用程序........................................................................... - 18 -

一、作业题目 一矩形平板a x ≤≤0, b y ≤≤0,内有均匀恒定热源0g ,在0=x 及0=y 处绝热,在a x =及b y =处保持温度1T ,初始时刻温度为0T ,如右图1所示: 1、求0>t 时,矩形区域内的温度分布()t y x T ,,的解析表达式; 2、若m a 18=,m b 12=,3 01m W g =,K 600=,K T 200=,热传导系数 K m W k ?=0.1,热扩散系数20.8m α=。请根据1中所求温度分布用MATLAB 软件绘出下列结果,加以详细物理比较和分析: (a) 300s 内,在同一图中画出点)4,0(、)8,0(、()0,6、)0,12(、)6,9((单位:m )温度随时间的变化; (b) 200s 内,画出点)4,18(、)8,18(、()12,6、)12,12(、)6,9((单位:m )处,分别沿x 、y 方向热流密度值随时间的变化; (c) 画出s s s s s t 1501251007550、、、、=时刻区域内的等温线; (d) 300s 内,在同一图中画出点()0,9(单位:m )在0g 分别等于31m W ,32m W ,33m W 情况下的温度变化; (e) 300s 内,比较点(9,6) (单位:m )在其它参数不变情况下热导率分别为K m W ?5.0、K m W ?0.1和K m W ?5.1的温度、热流密度变化; (f) 300s 内,比较点(9,6) (单位:m )在其它参数不变情况下热扩散系数分别为s m 24.0、s m 28.0和m 22.1的温度、热流密度变化; 3、运用有限差分法计算2中(b)、(d)和(e),并与解析解结果进行比较,且需将数值解与解析解的相对误差减小到1‰以下; 4、附上源程序和个人体会; 以报告形式整理上述结果,用A4纸打印上交。

热辐射计算公式

传热学课程自学辅导资料 (热动专业) 二○○八年十月

传热学课程自学进度表 教材:《传热学》教材编者:杨世铭陶文铨出版社:高教出版时间:2006 1

注:期中(第10周左右)将前半部分测验作业寄给班主任,期末面授时将后半部分测验作业直接交给任课教师。总成绩中,作业占15分。 2

传热学课程自学指导书 第一章绪论 一、本章的核心、重点及前后联系 (一)本章的核心 1、导热、对流、辐射的基本概念。 2、传热过程传热量的计算。 (二)本章重点 1、导热、对流、辐射的基本概念。 2、传热过程传热量的计算。 (三)本章前后联系 简要介绍了热量传递的三种基本方式和传热过程 二、本章的基本概念、难点及学习方法指导 (一)本章的基本概念 1、热传导 导热(Heat Conduction):物体各部分之间不发生相对位移时,依靠分子、原子及自由电子等微观粒子的热运动而产生的热量传递称为导热。 特点:从宏观的现象看,是因物体直接接触,能量从高温部分传递到低温部分,中间没有明显的物质迁移。 从微观角度分析物体的导热机理: 气体:气体分子不规则运动时相互碰撞的结果。 导电固体:自由电子不规则运动相互碰撞的结果,自由电子的运动对其导热起主导作用。 非导电固体:通过晶格结构振动所产生的弹性波来实现热量传递,即院子、分子在其平衡位置振动。 液体:第一种观点类似于气体,只是复杂些,因液体分子的间距较近,分子间的作用力对碰撞的影响比气体大;第二种观点类似于非导电固体,主要依靠弹性波(晶格的振动,原子、分子在其平衡位置附近的振动产生的)的作用。 热流量:单位时间传递的热量称为热流量,用Ф表示,单位为W。 3

热辐射的基本概念_黑体、白体、镜体、透明体

热辐射的基本概念·黑体、白体、镜体、透明体 凤谷工业炉 吸收率α=1 的物体叫做绝对黑体,简称黑体 ; 反射率ρ=1 的漫反射的物体叫做绝对白体,简称白体;反射率ρ=1 的镜面反射的物体叫做镜体; 透过率τ-1 的物体叫做绝对透明体,简称透明体。这些都是假想的物体。对于红外辐射,绝 大多数固体和液体实际上都是不透明体,但玻璃和石英等对可见光则是透明体。 注意,所谓黑体或白体,是指物体表面能全部吸收或全部反射所投射的辐射能而言,所以黑体并不一定是黑色,白体并不一定是白色。看起来是白色的表面,也可能具有黑体的性质,这是因为 : 大部分热辐射的波长在 0.1~100μ m之间,而可见光辐射能的波长约有 0.38~0.76 μm之间。 这样,如果一个表面除可见光辐射范围外对其余所有的热辐射具有很高的吸收率,则它将几乎吸收全部的投射辐射,而反射的部分只有很小的份额,从这个意 义上说,该表面近似黑体,可是,它所反射的那很小的份额都处在可见光的波长范围内,因而该表面呈现白色。例如,冰雪对人眼来说是白色的,它对可见光 是极好的反射体,但它却能几乎全部吸收红外长波辐射( α=0.96) ,接近于黑体。 对红外辐射的吸收和反射具有重要影响的,不是物体表面的颜色,而是表面的粗糙度。不管什么颜色,平整磨光面的反射率要比粗糙面高很多倍,即其吸收率要比粗糙面小得很多。 气体无反射性,ρ=0;单原子气体,对称性双原子气体等不吸收热辐射线,透过率τ=1,可称为“透明体”,或“透明介质”。空气中有蒸汽、 CO2时,就变成有吸收性的介质。 实际固体的吸收率除了与表面性质有关外,还与投人辐射的波长有关,即物体的 . 单色吸收率αλ、随投射辐射的彼长而变。

传热学试题库含参考答案

《传热学》试题库 第一章概论 一、名词解释 1.热流量:单位时间所传递的热量 2.热流密度:单位传热面上的热流量 3.导热:当物体有温度差或两个不同温度的物体接触时,在物体各部分之间不发生相对位移的情况下,物质微粒(分子、原子或自由电子)的热运动传递了热量,这种现象被称为热传导,简称导热。 4.对流传热:流体流过固体壁时的热传递过程,就是热对流和导热联合用的热量传递过程,称为表面对流传热,简称对流传热。 5.辐射传热:物体不断向周围空间发出热辐射能,并被周围物体吸收。同时,物体也不断接收周围物体辐射给它的热能。这样,物体发出和接收过程的综合结果产生了物体间通过热辐射而进行的热量传递,称为表面辐射传热,简称辐射传热。6.总传热过程:热量从温度较高的流体经过固体壁传递给另一侧温度较低流体的过程,称为总传热过程,简称传热过程。7.对流传热系数:单位时间单位传热面当流体温度与壁面温度差为1K是的对流传热量,单位为W/(m2·K)。对流传热系数表示对流传热能力的大小。 8.辐射传热系数:单位时间单位传热面当流体温度与壁面温度差为1K是的辐射传热量,单位为W/(m2·K)。辐射传热系数表示辐射传热能力的大小。 9.复合传热系数:单位时间单位传热面当流体温度与壁面温度差为1K是的复合传热量,单位为W/(m2·K)。复合传热系数表示复合传热能力的大小。 10.总传热系数:总传热过程中热量传递能力的大小。数值上表示传热温差为1K时,单位传热面积在单位时间的传热量。 二、填空题 1.热量传递的三种基本方式为、、。 (热传导、热对流、热辐射) 2.热流量是指,单位是。热流密度是指,单位是。 (单位时间所传递的热量,W,单位传热面上的热流量,W/m2) 3.总传热过程是指,它的强烈程度用来衡量。 (热量从温度较高的流体经过固体壁传递给另一侧温度较低流体的过程,总传热系数) 4.总传热系数是指,单位是。 (传热温差为1K时,单位传热面积在单位时间的传热量,W/(m2·K)) 5.导热系数的单位是;对流传热系数的单位是;传热系数的单位是。 (W/(m·K),W/(m2·K),W/(m2·K)) 6.复合传热是指,复合传热系数等于之和,单位是。 (对流传热与辐射传热之和,对流传热系数与辐射传热系数之和,W/(m2·K)) 7.单位面积热阻r t的单位是;总面积热阻R t的单位是。 (m2·K/W,K/W) 8.单位面积导热热阻的表达式为。 (δ/λ) 9.单位面积对流传热热阻的表达式为。 (1/h) 10.总传热系数K与单位面积传热热阻r t的关系为。 (r t=1/K) 11.总传热系数K与总面积A的传热热阻R t的关系为。 (R t=1/KA) 12.稳态传热过程是指。 (物体中各点温度不随时间而改变的热量传递过程。) 13.非稳态传热过程是指。

常用材料的导热系数表

材料的导热率 傅力叶方程式: Q=KA△T/d, R=A△T/Q Q: 热量,W;K: 导热率,W/mk;A:接触面积;d: 热量传递距离;△T:温度差;R: 热阻值 导热率K是材料本身的固有性能参数,用于描述材料的导热能力。这个特性跟材料本身的大小、形状、厚度都是没有关系的,只是跟材料本身的成分有关系。所以同类材料的导热率都是一样的,并不会因为厚度不一样而变化。 将上面两个公式合并,可以得到 K=d/R。因为K值是不变的,可以看得出热阻R值,同材料厚度d是成正比的。也就说材料越厚,热阻越大。 但如果仔细看一些导热材料的资料,会发现很多导热材料的热阻值R,同厚度d并不是完全成正比关系。这是因为导热材料大都不是单一成分组成,相应会有非线性变化。厚度增加,热阻值一定会增大,但不一定是完全成正比的线性关系,可能是更陡的曲线关系。 根据R=A△T/Q这个公式,理论上来讲就能测试并计算出一个材料的热阻值R。但是这个公式只是一个最基本的理想化的公式,他设定的条件是:接触面是完全光滑和平整的,所有热量全部通过热传导的方式经过材料,并达到另一端。

实际这是不可能的条件。所以测试并计算出来的热阻值并不完全是材料本身的热阻值,应该是材料本身的热阻值+所谓接触面热阻值。因为接触面的平整度、光滑或者粗糙、以及安装紧固的压力大小不同,就会产生不同的接触面热阻值,也会得出不同的总热阻值。 所以国际上流行会认可设定一种标准的测试方法和条件,就是在资料上经常会看到的ASTM D5470。这个测试方法会说明进行热阻测试时候,选用多大的接触面积A,多大的热量值Q,以及施加到接触面的压力数值。大家都使用同样的方法来测试不同的材料,而得出的结果,才有相比较的意义。 通过测试得出的热阻R值,并不完全是真实的热阻值。物理科学就是这样,很多参数是无法真正的量化的,只是一个“模糊”的数学概念。通过这样的“模糊”数据,人们可以将一些数据量化,而用于实际应用。此处所说的“模糊” 是数学术语,“模糊”表示最为接近真实的近似。 而同样道理,根据热阻值以及厚度,再计算出来的导热率K值,也并不完全是真正的导热率值。 傅力叶方程式,是一个完全理想化的公式。我们可用来理解导热材料的原理。但实际应用、热阻计算是复杂的数学模型,会有很多的修正公式,来完善所有的环节可能出现的问题。总之: a. 同样的材料,导热率是一个不变的数值,热阻值是会随厚度发生变化的。 b. 同样的材料,厚度越大,可简单理解为热量通过材料传递出去要走的路程越多,所耗的

热传导

《热传导》的教学设计 (教科版五年级下册热单元第六课《热是怎样传递的》) 教学背景分析: 学生对于热传递有很多实际的经验和认识,例如为什么用橡胶或者木质材料来制作金属炊具的把手,对于固体传热的方式——热传导也有很多初步的了解。由于热的传递过程不能直接通过眼睛进行观察,因此通过本课教学引导学生利用实验的方法感知热是由温度高的一端传递到温度较低的一端。 教学目标: 1、热一般情况下会从温度较高的一端(物体)传导到温度较低的一端(物体);通过直接接触,将热从一个物体传递给另一个物体,或者从物体的一部分传递到另一部分的传热方法叫做热传导;热传导的方向是由热源点向周围各个方向的。 2、设计实验观察热传导的过程和方向;用文字或图示记录,交流观察到的关于热是怎样传导的现象。 3、保持积极的观察探究热传递的兴趣;体验通过积极思考和探究所获得的成功喜悦。通过动手实验,观察现象证明热传导的方向和过程。 教学重点: 通过设计实验认识热在固体中的传播方式—热传导。 教学难点: 独立设计实验并进行实验的能力。 教学准备: 小组:铁架台、铜棍、蜡环、蜡烛、火柴、废液缸、木块、湿布、实验记录单 三脚架、金属片、蜡片、蜡烛、火柴、废液、木块、湿布、实验记录单 教师:铁架台、十字夹、试管、金鱼、温度计、水、酒精灯、木块、火柴、废液缸、演示文稿 板书设计: 教学过程

附:实验记录单 “热传导”研究记录 第___组 研究的问题:热在_____中的传递 实验准备:蜡烛、火柴、木块、废液缸、湿布、_______、_______、_______ 实验方案(装置示意图): 实验现象:

我们发现(热在传递时的过程和方向):_____________________________________ 学习评价 1、交流各组实验记录单。实验后,在装置图上推测一下热的传递方向。 2、解释:炊具上面装把手的原因。 课后小结: 通过学生主动交流,认真观察,使学生逐步树立与人合作认真细致的科学态度,并初步学会把抽象的或者很难直接观察到的实验现象变得易于观察。通过本课教学,使学生逐步对热的传递及热现象产生兴趣。

传热学试题(答案)

①Nu准则数的表达式为(A ) ② ③根据流体流动的起因不同,把对流换热分为( A) ④A.强制对流换热和自然对流换热B.沸腾换热和凝结换热 ⑤C.紊流换热和层流换热D.核态沸腾换热和膜态沸腾换热 ⑥雷诺准则反映了( A) ⑦A.流体运动时所受惯性力和粘性力的相对大小 ⑧B.流体的速度分布与温度分布这两者之间的内在联系 ⑨C.对流换热强度的准则 ⑩D.浮升力与粘滞力的相对大小 ?彼此相似的物理现象,它们的( D)必定相等。 ?A.温度B.速度 ?C.惯性力D.同名准则数 ?高温换热器采用下述哪种布置方式更安全( D) ?A.逆流B.顺流和逆流均可 ?C.无法确定D.顺流

?顺流式换热器的热流体进出口温度分别为100℃和70℃,冷流体进出口温度分别为20℃和40℃,则其对数平均温差等于() A.60.98℃B.50.98℃ C.44.98℃D.40.98℃ ?7.为了达到降低壁温的目的,肋片应装在( D) ?A.热流体一侧B.换热系数较大一侧 ?C.冷流体一侧D.换热系数较小一侧 21黑体表面的有效辐射( D)对应温度下黑体的辐射力。 22A.大于B.小于 C.无法比较D.等于 23通过单位长度圆筒壁的热流密度的单位为( D) 24A.W B.W/m2 C.W/m D.W/m3 25格拉晓夫准则数的表达式为(D ) 26 27.由炉膛火焰向水冷壁传热的主要方式是( A ) 28 A.热辐射 B.热对流 C.导 热 D.都不是 29准则方程式Nu=f(Gr,Pr)反映了( C )的变化规律。 30A.强制对流换热 B.凝结对流换热

31 C.自然对流换热 D.核态沸腾换热 32下列各种方法中,属于削弱传热的方法是( D ) 33A.增加流体流度 B.设置肋片 34 C.管内加插入物增加流体扰动 D.采用导热系数较小的材 料使导热热阻增加 35冷热流体的温度给定,换热器热流体侧结垢会使传热壁面的温度( A ) 36 A.增加 B.减小 C.不变 D.有时增 加,有时减小 37将保温瓶的双层玻璃中间抽成真空,其目的是( D ) 38A.减少导热 B.减小对流换热 39 C.减少对流与辐射换热 D.减少导热与对流换热 40下列参数中属于物性参数的是( B ) 41A.传热系数 B.导热系数 42 C.换热系数 D.角系数 43已知一顺流布置换热器的热流体进出口温度分别为300°C和150°C,冷流体进出口温度分别为50°C和100°C,则其对数平均温差约为( )

热传导与热辐射大作业报告..

热传导与热辐射大作业报告

目录 一、作业题目.............................................................................................................................. - 1 - 二、作业解答.............................................................................................................................. - 2 - 个人感想.................................................................................................................................... - 17 - 附件.计算中所用程序.............................................................................................................. - 18 -

一矩形平板a x ≤≤0, b y ≤≤0,内有均匀恒定热源0g ,在0=x 及0=y 处绝热,在a x =及b y =处保持温度1T ,初始时刻温度为0T ,如右图1所示: 1、求0>t 时,矩形区域内的温度分布()t y x T ,,的解析表达式; 2、若m a 18=,m b 12=,301m W g =,6T 1=0K m W k ?=0.1,热扩散系数20.8m s α=。请根据1中所求温度分布用 MATLAB 软件绘出下列结果,加以详细物理比较和分析: (a) 300s 内,在同一图中画出点)4,0(、)8,0(、()0,6、)0,12(、)6,9((单位:m )温度随时间的变化; (b) 200s 内,画出点)4,18(、)8,18(、()12,6、)12,12(、)6,9((单位: m )处,分别沿x 、y 方向热流密度值随时间的变化; (c) 画出s s s s s t 1501251007550、、、、=时刻区域内的等温线; (d) 300s 内,在同一图中画出点()0,9(单位:m )在0g 分别等于 31m W ,32m W ,33m W 情况下的温度变化; (e) 300s 内,比较点(9,6) (单位:m )在其它参数不变情况下热导 率分别为K m W ?5.0、K m W ?0.1和K m W ?5.1的温度、热流密度变化; (f) 300s 内,比较点(9,6) (单位:m )在其它参数不变情况下热扩 散系数分别为m 24.0、s m 28.0和s m 22.1的温度、热流密度变化; 3、运用有限差分法计算2中(b)、(d)和(e),并与解析解结果进行比较,且需 将数值解与解析解的相对误差减小到1‰以下; 4、附上源程序和个人体会; 以报告形式整理上述结果,用A4纸打印上交。

关于热传导问题

本科毕业论文 论文题目:关于热传导问题 学生姓名:姜丽丽 学号:200600910058 专业:物理学 指导教师:李健 学院:物理与电子科学学院 2010年5月20日

毕业论文(设计)内容介绍 论文(设计) 题目 关于热传导问题 选题时间2010.1.10 完成时间2010.05.20 论文(设计) 字数 8000 关键词热传导,热量,温度 论文(设计)题目的来源、理论和实践意义: 题目来源:基础研究。 理论和实践意义:在了解热传导的概念基础之上,通过系统地分析热传导的过程,得出热传导的微分方程,从量上对热传导过程有了一个深刻的认识;并且将热传导微分方程应用于解决各种几何形状的固体材料,得出温度分布的情况,以及简单的应用于气体、液体。热传导是深入学习和研究各种传热现象乃至工程热物理各学科的重要基础之一。 论文(设计)的主要内容及创新点: 主要内容:本文主要通过对热传导过程的理论分析,总结出热量与温度的关系,然后分析各种热传导现象温度的变化规律。 创新点:1、总结了不同传热条件下热传导过程中热量与温度的关系; 2、分析了不同条件下热传导温度的变化规律。 附:论文(设计)本人签名:2010年5月20日

目录 摘要 (1) ABSTRACT (1) 一、引言 (2) 二、热传导理论基础 (2) (一)热传导的概念 (2) (二)温度场与温度梯度 (3) (三)热传导方程 (4) 三、固体、液体、气体热传导及热源的影响 (7) (一)无源热传导温度的变化规律 (8) (二)有源热传导温度的变化规律 (10) 四、影响热传导的因素 (11) 五、热传导的应用 (12) 六、总结 (12) 参考文献 (12)

热传递方式

热传递有三种方式:传导、对流和辐射 传导热从物体温度较高的部分沿着物体传到温度较低的部分,叫做传导。 热传导是固体中热传递的主要方式。在气体或液体中,热传导过程往往和对流同时发生。各种物质都能够传导热,但是不同物质的传热本领不同。善于传热的物质叫做热的良导体,不善于传热的物质叫做热的不良导体。各种金属都是热的良导体,其中最善于传热的是银,其次是铜和铝。瓷、纸、木头、玻璃、皮革都是热的不良导体。最不善于传热的是羊毛、羽毛、毛皮、棉花、石棉、软木和其他松软的物质。液体中,除了水银以外,都不善于传热,气体比液体更不善于传热。 对流靠液体或气体的流动来传热的方式叫做对流。 对流是液体和气体中热传递的主要方式,气体的对流现象比液体更明显。 利用对流加热或降温时,必须同时满足两个条件:一是物质可以流动,二是加热方式必须能促使物质流动。 辐射热由物体沿直线向外射出,叫做辐射。 用辐射方式传递热,不需要任何介质,因此,辐射可以在真空中进行。 地球上得到太阳的热,就是太阳通过辐射的方式传来的。 一般情况下,热传递的三种方式往往是同时进行的。 补充内容: 一、热传递与动量传递、质量传递并列为三种传递过程。 二、热传递与热传导的关系 有许多人在学习物理、解答物理习题时,常把热传递与热传导混为一谈,认为热传递与热传导描述的是同一物理过程,殊不知它们是两个不同的概念。 由内能与热能一节以及热、热运动与热现象的阐述可知,物体的内能就是组成物体全部分子、原子的动能、势能和内部电子能等总和,物体内能的改变可以通过分子、原子有规则运动的能量交换来达成,也可以通过分子、原子的无规则运动的能量交换来达成(或者是两者兼有)。前者能量交换的方式就是作宏观机械功的方式,后者能量交换的方式就是所谓的热传递。更确切地讲,所谓热传递就是没有作宏观机械功而使内能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分的过程。它通过热传导、对流和热辐射三种方式来实现。实际热传递过程中,这三种方式常常是相伴进行的,重要的是看哪一种方式占主要地位。在热力学中,把除了热传递以外的其他一切能量转移方式都归于作功。所以,热传递和作功是能量转移的两种方式,除此之外没有其他方式。 由以上论述可知,热传递是能量传递的一种方式,它具体又包括热传导、对流和热辐射三种形式。为了帮助大家能把热传递与热传导更好地加以区别,下面我们有必要对热传导、对流和总辐射分别作论述。 热传导指的是物质系统(气体、液体或固体),由于内部各处温度不均匀而引起的热能(内能)从温度较高处向温度较低处输运的现象。 热传导的实质是由大量分子、原子或电子的相互碰撞,而使热能(内能)从物体温度较高部分传到温度较低部分的过程。热传导是固体中热传递的主要方式,在气体、液体中它往往与对流同时发生。各种物质的热传导性能不同,热传导过程的基本定律是博里叶定律。

常见材料导热系数(史上最全版)

导热率K是材料本身的固有性能参数,用于描述材料的导热能力,又称为热导率,单位为W/mK。这个特性跟材料本身的大小、形状、厚度都是没有关系的,只是跟材料本身的成分有关系。不同成分的导热率差异较大,导致由不同成分构成的物料的导热率差异较大。单粒物料的导热性能好于堆积物料。 稳态导热:导入物体的热流量等于导出物体的热流量,物体内部各点温度不随时间而变化的导热过程。 非稳态导热:导入和导出物体的热流量不相等,物体内任意一点的温度和热含量随时间而变化的导热过程,也称为瞬态导热过程。 导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,°C),在1秒内,通过1平方米面积传递的热量,用λ表示,单位为瓦/米·度 导热系数与材料的组成结构、密度、含水率、温度等因素有关。非晶体结构、密度较低的材料,导热系数较小。材料的含水率、温度较低时,导热系数较小。 通常把导热系数较低的材料称为保温材料(我国国家标准规定,凡平均温度不高于350℃时导热系数不大于0.12W/(m·K)的材料称为保温材料),而把导热系数在0.05瓦/米摄氏度以下的材料称为高效保温材料。 导热系数高的物质有优良的导热性能。在热流密度和厚度相同时,物质高温侧壁面与低温侧壁面间的温度差,随导热系数增大而减小。锅炉炉管在未结水垢时,由于钢的导热系数高,钢管的内外壁温差不大。而钢管内壁温度又与管中水温接近,因此,管壁温度(内外壁温度平均值)不会很高。但当炉管内壁结水垢时,由于水垢的导热系数很小,水垢内外侧温差随水垢厚度增大而迅速增大,从而把管壁金属温度迅速抬高。当水垢厚度达到相当大(一般为1~3毫米)后,会使炉管管壁温度超过允许值,造成炉管过热损坏。对锅炉炉墙及管道的保温材料来讲,则要求导热系数越低越好。一般常把导热系数小于0。8x10的3次方瓦/(米时·摄氏度)的材料称为保温材料。例如石棉、珍珠岩等填缝导热材料有:导热硅脂、导热云母片、导热陶瓷片、导热矽胶片、导热双面胶等。主要作用是填充发热功率器件与散热片之间的缝隙,通常看似很平的两个面,其实接触面积不到40%,又因为空气是不良导热体,导热系数仅有0.03w/m.k,填充缝隙就是用导热材料填充缝隙间的空气. 傅力叶方程式: Q=KA△T/d, R=A△T/Q Q: 热量,W K: 导热率,W/mk A:接触面积 d: 热量传递距离△T:温度差 R: 热阻值 将上面两个公式合并,可以得到 K=d/R。因为K值是不变的,可以看得出热阻R值,同材料厚度d是成正比的。也就说材料越厚,热阻越大。 但如果仔细看一些导热材料的资料,会发现很多导热材料的热阻值R,同厚度d并不是完全成正比关系。这是因为导热材料大都不是单一成分组成,相应会有非线性变化。厚度增加,热阻值一定会增大,但不一定是完全成正比的线性关系,可能是更陡的曲线关系。 实际这是不可能的条件。所以测试并计算出来的热阻值并不完全是材料本身的热阻值,应该是材料本身的热阻值+所谓接触面热阻值。因为接触面的平整度、光滑或者粗糙、以及安装紧固的压力大小不同,就会产生不同的接触面热阻值,也会得出不同的总热阻值。 所以国际上流行会认可设定一种标准的测试方法和条件,就是在资料上经常会看到的ASTM D5470。这个测试方法会说明进行热阻测试时候,选用多大的接触面积A,多大的热量值Q,以及施加到接触面的压力数值。大家都使用同样的方法来测试不同的材料,而得出的结果,才有相比较的意义。 通过测试得出的热阻R值,并不完全是真实的热阻值。物理科学就是这样,很多参数是无法真正的量化的,只是一个“模糊”的数学概念。通过这样的“模糊”数据,人们可以将一些数据量化,而用于实际应用。此处所说的“模糊” 是数学术语,“模糊”表示最为接近真实的近似。

《热传导和热辐射》习题

《热传导和热辐射》习题 一.如右图1所示,长度为L 的杆,暴露在温度为T ∞的环境中,杆内安装有电热元件,使沿杆长方向产生均匀的内热源速率q ? 。试用长度为dx 的微元体的概念推导控制方程(注:所用到的量自己设定)。 二.边界条件和初始条件如下图2所示,求(),,T x y τ的表达式。 三. 如上图3所示,一矩形板,初始条件:0τ=时,(),T f x y =。 边界条件:0x = 处,0T =;x a =处, 10T H T x ?+=?;y=0处,20T H T y ?-+=?;y b =处,30T H T y ?+=?。求0τ>时,矩形板的温度分布(),,T x y τ。 四. 某一半无限大角区,初始条件和边界条 件如右图4所示。求该区域的(),,T x y τ的表达式。 五. 一块平板0x L ≤≤,初始温度是零度,当时间0τ>时,平板内以恒定的速

率20g w m ????产生热量,而0x =处的边界面保持绝热,x L =处的边界保持温 度为零度。试求:时间0τ>时平板内温度分布(),T x τ的表达式。 六.某实心无限长圆柱,0r b ≤≤,初始温度分布为()F r ,时间0τ>时,r b =处的边界以对流方式向温度为零的环境散热。试求该圆柱的温度分布(),T r τ。 七. 半径r b =的无限长圆柱,初始温度分布为()F r ,突然圆柱体置于温度为T ∞ 环境中,在r b =处的边界以对流形式向温度为T ∞的环境散热。试求0τ>时圆柱内的温度分布(),T r τ。 八.某实心半球,01μ≤≤,0r b ≤≤,初始温度为(),0T r μ=,时间 0τ>时,r b =处的球表面保持温 度为零,0μ=处的底面绝热,如右图5所示。试求该半球的温度分布(),,T f r μτ=。 九.一半无限大物体,0x ≤≤∞,初始温度为i T ,当时间0τ>时,0x =处的边界 条件为00 x q T k x A =?-=?;x →∞时,(),i T T τ∞=。试用Laplace 变换法求解时间0τ>时该区域的温度分布。 十.已知某个函数的Laplace 变换为()22 1 F s s β = +,其中β是正实数。试求函数()F t 。 十一.处于熔解温度m T 的液体占据 0x >的半空间,见右图6,在时间0τ=时,0x =的边界温度降低到温度为0T (0m T T <),并在时间0τ>时,始终维持这个温度。试用精确法或近似法求解固相中的温度分布以及固—液界面的位置随时间的变化。

材料与热传递

热传递,是热从温度高的物体传到温度低的物体,或者从物体的高温部分传到低温部分的过程。热传递是自然界普遍存在的一种自然现象。只要物体之间或同一物体的不同部分之间存在温度差,就会有热传递现象发生,并且将一直继续到温度相同的时候为止。发生热传递的唯一条件是存在温度差,与物体的状态,物体间是否接触都无关。热传递的结果是温差消失,即发生热传递的物体间或物体的不同部分达到相同的温度。 在热传递过程中,物质并未发生迁移,只是高温物体放出热量,温度降低,内能减少(确切地说是物体里的分子做无规则运动的平均动能减小),低温物体吸收热量,温度升高,内能增加。因此,热传递的实质就是能量从高温物体向低温物体转移的过程,这是能量转移的一种方式。热传递转移的是热能,而不是温度。 编辑本段热传递有三种方式传导、对流和辐射。 1、传导: 它具有依靠物体内部的温度差或两个不同物体直接接触,在不产生相对运动,仅靠物体内部微粒的热运动传递了热量; a.固体与液体:分子碰撞; b.固体与固体间:自由电子运动; c.气体之间:分子热运动; 2、对流: 流体中温度不同的各部分之间发生相对位移时所引起的热量传递的过程; (1)自然对流:靠物体的密度差,引起密度变化的最大因素是温度; (2)受迫对流:(是靠认为作功)受到机械作用或压力差而引起的相对运动;[1] 3、热辐射: 物体通过电磁波传递能量的过程称为辐射,由于热的原因,物体的内能转化为电磁波的能量而进行的辐射过程。 任何物体只要在0K以上,就能发生热辐射,是红外线探测运用的较广,在空分中运用的较 少,板翅式换热器真空钎焊加热是依靠热辐射。 钎焊的目的是破坏铝材表面严密的氧化铝膜,650℃高温,以前是运用盐熔炉,能耗大; 影响换热系数的几个因素: 1、流体的流动状态: a.层流:易产生热边界层; b.紊流:破坏热边界层,多运用紊流; c.过渡层: 2、流体的流速:流速大,大; 3、放热面形状:光滑:大;粗糙:小。 传导热从物体温度较高的部分沿着物体传到温度较低的部分,叫做传导。 热传导是固体中热传递的主要方式。在气体或液体中,热传导过程往往和对流同时发生。各种物质都能够传导热量,但是不同物质的传热本领不同。善于传热的物质叫做热的良导体,不善于传热的物质叫做热的不良导体。各种金属都是热的良导体,其中最善于传热的是银,其次是铜和铝。瓷、纸、木头、玻璃、皮革都是热的不良导体。最不善于传热的是羊毛、羽毛、毛皮、棉花、石棉、软木和其他松软的物质。液体中,除了水银以外,都不善于传热,气体比液体更不善于传热。 对流是靠液体或气体的流动来传热的,是液体和气体中热传递的主要方式,气体的对流现象比液体更明显。 利用对流加热或降温时,必须同时满足两个条件:一是物质可以流动,二是加热方式必须能促使物质流动。 辐射:由物体沿直线向外射出,叫做辐射。用辐射方式传递热,不需要任何介质,因此,辐射可以在真空中进行。地球上得到太阳的热,就是太阳通过辐射的方式传来的。 一般情况下,热传递的三种方式往往是同时进行的。 编辑本段更多信息补充内容: 一、热传递与动量传递、质量传递并列为三种传递过程。 二、热传递与热传导的关系 有许多人在学习物理、解答物理习题时,常把热传递与热传导混为一谈,CPU热传递 认为热传递与热传导描述的是同一物理过程,殊不知它们是两个不同的概念。 由内能与热能一节以及热、热运动与热现象的阐述可知,物体的内能就是组成物体全部分子、原子的动能、势能和内部电子能等总和,物体内能的改变可以通过分子、原子有规则运动的能量交换来达成,也可以通过分子、原子的无规则运动的能量交换来达成(或者是两者兼有)。前者能量交换的方式就是作宏观机械功的方式,后者能量交换的方式就是所谓的热传递。更确切地讲,所谓热传递就是没有作宏观机械功而使内能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分的过程。它通过热传导、对流和热辐射三种方式来实现。实际热传递过程中,这三种方式常常是相伴进行的,重要的是看哪一种方式占主要地位。在热力学中,把除了热传递以外的其他一切能量转移方式都归于作功。所以,热传递和作功是能量转移的两种方式,除此之外没有其他方式。 由以上论述可知,热传递是能量传递的一种方式,它具体又包括热传导、对流和热辐射三种形式。为了帮助大家能把热传递与热传导更好地加以区别,下面我们有必要对热传导、对流和总辐射分别作论述。 编辑本段实质热传导指的是物质系统(气体、液体或固体),由于内部各处温度不均匀而引起的热能(内能)从温度较高处向温度较低处输运的现象。 热传导的实质是由大量分子、原子或电子的相互碰撞,而使热能(内能)从物体温度较高部分传到温度较低部分的过程。热传导是固体中热传递的主要方式,在气体、液体中它往往与对流同时发生。各种物质的热传导性能不同,热传导过程的基本定律是傅里叶定律。 对流作为热传递的一种途径,是流体(气体、液体)中热传递的主要方式。它是指流体中较热部热传递与热传导 分和较冷部分在流体本身的有序的循环流动下的相互搀和,使温度趋于均匀从而达到热能(内能)传递的过程。 对流往往自发产生,这是由于温度不均匀性所引起的压力或密度差异的结果。 至于热辐射,它是指受热物体以电磁辐射的形式向外界发射并传送能量的过程。物体温度越高,辐射越强。与热传导、对流不同,热辐射能把热能以光的速度穿过真空,从一个物体传给另一个物体。任何物体只要温度高于绝对零度,就能辐射电磁波,波长为0.4~40微米范围内的电磁波(即可见光与红外线)能被物体吸收而变成热能,故称为热射线。因电磁波的传播不需要任何媒质,所以热辐射是真空中唯一的热传递方式。例如,太阳传给地球的热能就是以热辐射的方式经过宇宙空间而来的。 由此可见,热传导与热传递是两个从属关系概念,热传递概念的外延明显宽于热传导概念的外延,故热传递是一个属概念,而热传导是一个种概念。 编辑本段热传递的实质用热传递的方式来改变物体内能,就是一个物体的一部分内能转移给另一热传递 个物体,或者是内能从同一物体的高温部分转移给低温部分。(内能转移过程) 颜色深的吸收热量多 两个物体之间或者一个物体的两部分之间能够发生热条件,那就只有一个原因:存在温度差.火焰与水壶之间能发生热传递,就是因为火焰的温度比水壶的温度高.水开始烧后不久,就能看到壶中的水在对流,也就是因为下面的水比上面的水的的温度高了些. 热传递的定义: 热传递,是热从温度高的物体传到温度低的物体,或者从物体的高温部分传到低温部分的过程。热传递是自然界普遍存在的一种自然现象。只要物体之间或同一物体的不同部分之间存在温度差,就会有热传递现象发生,并且将一直继续到温度相同的时候为止。发生热传递的唯一条件是存在温度差,与物体的状态,物体间是否接触都无关。热传递的结果是温差消失,即发生热传递的物体间或物体的不同部分达到相同的温度。 热传递基础知识及各种导热材料应用咨询:简介电子产品热管理过程的目标是从半导体与周围环境的结合部分有效的散热。该过程可以

简单热传导的例子

Simple Conduction Example Introduction This tutorial was created using ANSYS 7.0 to solve a simple conduction problem. The Simple Conduction Example is constrained as shown in the following figure. Thermal conductivity (k) of the material is 10 W/m*C and the block is assumed to be infinitely long. Preprocessing: Defining the Problem 1.Give example a Title 2.Create geometry Preprocessor > Modeling > Create > Areas > Rectangle > By 2 Corners > X=0, Y=0, Width=1, Height=1 BLC4,0,0,1,1 3.Define the Type of Element Preprocessor > Element Type > Add/Edit/Delete... > click 'Add' > Select Thermal Solid, Quad 4Node 55 ET,1,PLANE55

For this example, we will use PLANE55 (Thermal Solid, Quad 4node 55). This element has 4 nodes and a single DOF (temperature) at each node. PLANE55 can only be used for 2 dimensional steady-state or transient thermal analysis. 4.Element Material Properties Preprocessor > Material Props > Material Models > Thermal > Conductivity > Isotropic > KXX = 10 (Thermal conductivity) MP,KXX,1,10 5.Mesh Size Preprocessor > Meshing > Size Cntrls > ManualSize > Areas > All Areas > 0.05 AESIZE,ALL,0.05 6.Mesh Preprocessor > Meshing > Mesh > Areas > Free > Pick All AMESH,ALL Solution Phase: Assigning Loads and Solving 1.Define Analysis Type Solution > Analysis Type > New Analysis > Steady-State ANTYPE,0 2.Apply Constraints For thermal problems, constraints can be in the form of Temperature, Heat Flow, Convection, Heat Flux, Heat Generation, or Radiation. In this example, all 4 sides of the block have fixed temperatures. {Solution > Define Loads > Apply Note that all of the -Structural- options cannot be selected. This is due to the type of element (PLANE55) selected. {Thermal > Temperature > On Nodes {Click the Box option (shown below) and draw a box around the nodes on the top line.

热传导计算

热传导计算 随着微电子技术的飞速发展,芯片的尺寸越来越小,同时运算速度越来越快,发热量也就越来越大,如英特尔处理器3.6G 奔腾4终极版运行时产生的热量最大可达115W ,这就对芯片的散热提出更高的要求。设计人员就必须采用先进的散热工艺和性能优异的散热材料来有效的带走热量,保证芯片在所能承受的最高温度以内正常工作。 如图 1所示,目前比较常用的一种散热方式是使用散热器,用导热材料和工具将散热器安装于芯片上面,从而将芯片产生的热量迅速排除。本文介绍了根据散热器规格、芯片功率、环境温度等数据,通过热传导计算来求得芯片工作温度的方法。 芯片的散热过程 由于散热器底面与芯片表面之间会存在很多沟壑或空隙,其中都是空气。由于空气是热的不良导体,所以空气间隙会严重影响散热效率,使散热器的性能大打折扣,甚至无法发挥作用。为了减小芯片和散热器之间的空隙,增大接触面积,必须使用导热性能好的导热材料来填充,如导热胶带、导热垫片、导热硅酯、导热黏合剂、相转变材料等。如图2所示,芯片发出的热量通过导热材料传递给散热器,再通过风扇的高速转动将绝大部分热量通过对流(强制对流和自然对流)的方式带走到周围的空气中,强制将热量排除,这样就形成了从芯片,然后通过散热器和导热材料,到周围空气的散热通路。 表征热传导过程的物理量

在图3的导热模型中,达到热平衡后,热传导遵循傅立叶传热定律: Q="K"·A·(T1-T2)/L (1) 式中:Q为传导热量(W);K为导热系数(W/m℃);A 为传热面积(m2);L为导热长度(m)。(T1-T2)为温度差。 热阻R表示单位面积、单位厚度的材料阻止热量流动的能力,表示为: R=(T1-T2)/Q=L/K·A (2) 对于单一均质材料,材料的热阻与材料的厚度成正比;对于非单一材料,总的趋势是材料的热阻随材料的厚度增加而增大,但不是纯粹的线形关系。 对于界面材料,用特定装配条件下的热阻抗来表征界面材料导热性能的好坏更合适,热阻抗定义为其导热面积与接触表面间的接触热阻的乘积,表示如下: Z=(T1-T2)/(Q/A)=R·A (3) 表面平整度、紧固压力、材料厚度和压缩模量将对接触热阻产生影响,而这些因素又与实际应用条件有关,所以界面材料的热阻抗也将取决于实际装配条件。导热系数指物体在单位长度上产生1℃的温度差时所需要的热功率,是衡量固体热传导效率的固有参数,与材料的外在形态和热传导过程无关,而热阻和热阻抗是衡量过程传热能力的物理量。 芯片工作温度的计算 如图4的热传导过程中,总热阻R为: R="R1"+R2+R3 (4) 式中:R1为芯片的热阻;R2为导热材料的热阻;R3为散热器的热阻。导热材料的热阻R2为: R2=Z/A (5) 式中:Z为导热材料的热阻抗,A为传热面积。芯片的工作温度T2为: T2=T1+P×R (6)

相关文档
最新文档